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Abstract. Anonymization of graph-based data is a problem which has been widely
studied last years and several anonymization methods have been developed. In-
formation loss measures have been carried out to evaluate the noise introduced
in the anonymized data. Generic information loss measures ignore the intended
anonymized data use. When data has to be released to third-parties, and there is
no control on what kind of analyses users could do, these measures are the stan-
dard ones. In this paper we study different generic information loss measures for
graphs comparing such measures to the cluster-specific ones. We want to evaluate
whether the generic information loss measures are indicative of the usefulness of
the data for subsequent data mining processes.
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1 Introduction

Currently, the data mining processes require large amounts of data, which often con-
tain personal and private information of users and individuals. Although basic pro-
cesses are performed on data anonymization, such as removing names or other key
identifiers, remaining information can still be sensitive, and useful for an attacker to
re-identify users and individuals. To solve this problem, methods which introduce noise
to the original data have been developed in order to hinder the subsequent processes of
re-identification. However, the noise introduced by the anonymization processes may
affect the data, reducing its usefulness in subsequent processes of data mining. It is
necessary to keep the main properties of the data to ensure the data mining process is
not altered by the anonymization process.

The anonymization processes should allow the analysis performed into the anony-
mized data lead to results as equal as possible to the ones obtained when applying
the same analysis to the original data. Nevertheless, data modification is in contradic-
tion with data utility. The larger data modification, the less data utility. Thus, a good
anonymization method hinders the re-identification process while causing minimal dis-
tortion in the data.

Owing to what we have mentioned in the previous paragraph, several measures have
been designed to evaluate the goodness of the anonymization methods. Generic infor-
mation loss measures evaluate in what extent the analysis on anonymized data differs
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from the original data. Each measure focuses on a particular property of the data. We
assume that if these metrics show little variation between original and anonymized data,
then the subsequent data mining processes will also show little variation between origi-
nal and anonymized data. However, the behaviour of anonymized data in the subsequent
data mining processes may not coincide with the expected results. Since evaluating the
distortion introduced in the graph is not enough, it is necessary to assess the noise intro-
duced in the subsequent data mining processes. No analysis has been made to evaluate
whether these measures are suitable to accommodate the information loss when data
are used to specific purposes. In our work we consider the case of clustering-specific
processes.

1.1 Our contributions

In this paper we compare some generic information loss measures to clustering-specific
ones on graph formatted data. We evaluate whether such generic information loss mea-
sures predict the divergence between the clusters obtained from the original data and the
clusters obtained from the anonymized data, correctly. We offer the following results:

– We analyse the behaviour of some generic and clustering-specific information loss
measures and demonstrate that some measures behave in similar way independently
of the dataset where they are applied. On the contrary, others present a behaviour
subordinated to the applied dataset.

– We demonstrate that some generic information loss measures are strongly corre-
lated to clustering-specific measures; while others present moderate correlation and
few of them do not show correlation.

– We model the perturbation strategies according to three different edge modification
approaches: Edge add/del, Edge rotation and Edge swap. We also demonstrate that
perturbation strategy affects the correlation value between generic and clustering-
specific information loss measures.

– Last but not least, we analyse different datasets and prove that correlation depends
on dataset properties, as well.

1.2 Roadmap

This paper is organized as follows. In Section 2, we review different anonymization
processes and some generic measures used for graph assessment. Section 3 presents
our experimental framework, including perturbation and clustering methods, graph as-
sessment and data sets used in our experiments. In Section 4, we show the experiments
and comment on the results. Finally, in Section 5, we discuss conclusions and future
work.

2 Anonymization and graph assessment

As we have stated before, the two main objectives of an anonymization process are:
(1) to preserve the privacy of users or individuals who appear in a data set, hindering
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the re-identification processes, and (2) to preserve data utility on anonymized data, i.e.,
minimizing information loss.

Anonymization methods and graph assessment depend on the type of data they are
intended to work with. In this paper, we will work with simple, undirected and unla-
belled graphs. Because these graphs have no attributes or labels in the edges, informa-
tion is only in the structure of the graph itself and, due to this, the adversary can use
information about the structure of the network to attack the privacy. However, since all
of the information is contained in it, we want to preserve the structure of the graph.

2.1 Notation

Let G = (V,E) be a simple graph, where V is the set of nodes and E the set of edges in
G. We use vi ∈V to denote node i and (vi,v j) ∈ E an edge connecting nodes vi and v j.
We define n = |V | to denote the number of nodes and m = |E| to denote the number of
edges. We use G = (V,E) and G̃ = (Ṽ , Ẽ) to indicate the original and the anonymized
graphs, respectively.

2.2 Anonymization

We categorize anonymization methods on graph formatted data into three main cate-
gories:

– Graph modification approaches: These methods anonymize a graph by modifying
(adding and/or deleting) edges or nodes in a graph. There are two basic approaches:
(1) The simplest way alters the graph structure by removing and adding edges ran-
domly. It is called randomization or random-based approach. (2) Another way con-
sists on edge addition and deletion to fulfil desired constraints, i.e. anonymization
methods do not modify edges at random, they modify edges to meet some desired
constraints. For example, k-anonymity-based approaches modify graph structure
(by adding and removing edges) in order to get the k-anonymity value for the graph.

– Generalization approaches (also known as clustering-based approaches): These meth-
ods cluster nodes and edges into groups. Then, they anonymize each group into a
super-node to publish the aggregate information about structural properties of the
nodes [16]. The details about individuals can be hidden properly, but the graph
may be shrunk considerably after anonymization, which may not be desirable for
analyzing local structures.

– Differentially private approaches: These methods refer to algorithms which guar-
antee that individuals are protected under the definition of differential privacy [11].
Differential privacy imposes a guarantee on the data release mechanism rather than
on the data itself. The goal is to provide statistical information about the data while
preserving the privacy of users.

Generalization approaches do not enable local structure data analysis, so they are
not a good approach to release data for clustering purposes. Differential privacy mech-
anism provides statistical information about the data, but it does not allow us to release
all structural information for clustering purposes. For example, Hay et al. [17] propose
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an algorithm to public release the degree distribution, which is one of the most com-
monly studied graph’s properties. However, it does not allow us to release the entire
network structure. Therefore, we will focus on graph modification approaches, which
preserve local structures and keep the details of the data for clustering processes.

One widely adopted strategy of graph modification approaches is randomization.
Randomization methods are based on adding random noise in original data. It has been
well investigated for relational data. To work with graph data there are two basic ap-
proaches [1]: (1) Rand Add/Del: randomly add and delete edges from the original graph
(this strategy keeps the number of edges) and (2) Rand Switch: exchange edges between
pairs of nodes (this strategy keeps the number of edges and the degree of all nodes).
Naturally, edge randomization can also be considered as an additive-noise perturbation.

Hay et al. [15] proposed a method to anonymize unlabelled graphs. This method
is called Random Perturbation and is based on removing p edges at random from the
graph, and then adding p false edges at random. The set of nodes is not changed and
the number of edges is preserved in the anonymized graph.

Ying and Wu [29] studied how different randomization methods (including Rand
Add/Del and Rand Switch methods) affect the privacy of the relationship among nodes.
After the experiments, they proposed new variations of the randomization algorithms to
preserve spectral characteristics of the original graph: Spctr Add/Del and Spctr Switch.

Ying et al. [30] suggested a variation of Rand Add/Del method, called Blockwise
Random Add/Delete strategy or simply Rand Add/Del-B. This method divides the
graph into blocks according to the degree sequence and implements modifications (by
adding and removing edges) on the nodes at high risk of re-identification, not at random
over the entire set of nodes. The authors expect to introduce fewer perturbations (with
better utility preservation) to achieve the same privacy protection.

Previous methods are all random-based. Another widely adopted strategy of graph
modification approaches consists on edge addition and deletion to meet desired con-
straints. Some desired constraints are based on the k-anonymity concept. This concept
was introduced by Sweeney [28] for the privacy preservation on relational data. For-
mally, the k-anonymity model is defined as follows: let RT (A1, . . . ,An) be a table and
QIRT be the quasi-identifier associated with it. RT is said to satisfy k-anonymity if and
only if each sequence of values in RT [QIRT ] appears with at least k occurrences in
RT [QIRT ]. The k-anonymity model indicates that an attacker cannot distinguish among
different k records although he manages to find a group of quasi-identifiers. Conse-
quently, the attacker cannot re-identify an individual with a probability greater than 1

k .

The k-anonymity model can be applied using different concepts when dealing with
networks rather than relational data. A greatly used option is to consider the node de-
gree as a quasi-identifier. This corresponds to k-degree anonymity. In short, in k-degree
anonymity we presume that the only possible attack is when the attacker knows the
degree of some nodes. Therefore, if some node is re-identified with this information,
then we have an information leakage. k-Anonymity methods are based on modifying
the network structure (by adding and removing edges) to ensure that all nodes satisfy
this model. In other words, the main objective is that all nodes have at least k−1 other
nodes sharing the same degree. Liu and Terzi [21] developed a method which given a
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network G = (V,E) and an integer k, finds a k-degree anonymous network G̃ = (V, Ẽ)
where Ẽ ∩E ≈ E, trying to minimize the number of changes on edges.

Zhou and Pei [34] used the 1-neighbourhood sub-graph of the objective nodes as
quasi-identifiers. Let k be a positive integer. For a node u ∈ V , u is k-anonymous in
anonymization G̃ if there are at least k−1 other nodes v1, . . . ,vk−1 ∈V |ΓG̃(u),ΓG̃(v1), . . . ,ΓG̃(vk−1)
are isomorphic, where Γ (vi) is the 1-neighbourhood of node vi. G is k-anonymous if
every node in G is k-anonymous. It is called k-neighbourhood anonymity. Zou et al.
[35] considered all structural information about a target node as quasi-identifier and
proposed a new model called k-automorphism to anonymize a network and ensure
privacy against this attack. They define a k-automorphic network as follows: given a
network G, (a) if there exist k− 1 automorphic functions Fa(a = 1, . . . ,k− 1) in G,
and (b) for each node v in G, Fa1(v) 6= Fa2(1 ≤ a1 6= a2 ≤ k− 1), then G is called
a k-automorphic graph. Hay et al. [16] went a step further. They designed a method,
named k-candidate anonymity, which uses queries as quasi-identifier. In this method,
a node vi is k-candidate anonymous to question Q if there are at least k− 1 other
nodes in the graph with the same answer. Officially, |candQ(vi)| ≥ k where candQ(vi) ={

v j ∈V | Q(v j) = Q(vi)
}

. A graph is k-candidate anonymous to question Q if all of its
nodes are k-candidate anonymous to question Q. The question Q is modelled according
to the knowledge of the adversary assumed.

When there is little diversity in the sensitive attributes inside an equivalence class,
it is possible to obtain information from anonymized data. Although there are k indis-
tinguishable records in each equivalence class, if the information in sensitive attributes
is the same, it is possible to infer information unless the attacker does not know ex-
actly which record it is. l-diversity [23] alleviates the problem of sensitive attribute
disclosure. It ensures that the sensitive attribute values in each equivalence class is di-
verse. An attacker, though, can also infer some sensitive information from similarity or
skewness attack [20]. This leads to t-closeness [20], which is another privacy definition
that considers the sensitive attribute distribution in each class. There are other privacy
definitions of this flavour, but they all have been criticized for being ad hoc [33].

2.3 Graph assessment

Several generic measures have been used to quantify the structure’s properties in graph
formatted data. The authors usually use these measures and compare the values obtained
by the original and the anonymized data in order to quantify the noise introduced by the
anonymization process. When we quantify the information loss as described above, we
talk about generic information loss measure.

Hay et al. [15] utilized five structural properties from graph theory for quantifying
network structure. For each node, the authors evaluate closeness centrality (average
shortest path from one node to every other node), betweenness centrality (proportion of
all shortest paths which go through the node) and path length distribution (computed
from the shortest path between each pair of nodes). For the graph as a whole, they
evaluate the degree distribution and the diameter (the maximum shortest path between
two nodes). The objective is to keep these five measures close to their original values,
assuming that it involves little distortion in the anonymized data.
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Ying and Wu [29] and Ying et al. [30] used both real space and spectrum based char-
acteristics to study how the graph is affected by randomization methods. The authors
focused on four real space characteristics of the graph and on two important eigenval-
ues of the graph spectrum. The real space characteristics are: the harmonic mean of
the shortest distance, the modularity (which indicates the goodness of the community
structure), the transitivity (which measures the fraction of all possible triangles present
in the graph), and the sub-graph centrality (which is used to quantify the centrality of
node). Since graph spectrum has close relations with many graph characteristics and
can provide global measures for some network properties, the authors also consider the
following two spectral characteristics: the largest eigenvalue of the adjacency matrix
and the second smallest eigenvalue of the Laplacian matrix.

Alternatively, Zou et al. [35] defined a simple method for evaluating information
loss on undirected and unlabelled graphs. The method is based on the difference be-
tween the original and the anonymized graph edges, Cost(G, G̃) = (E ∪ Ẽ)− (E ∩ Ẽ).
Liu and Terzi [21] used clustering coefficient and average path length for the same pur-
pose. Clustering coefficient is the fraction of possible triangles that exist. Average path
length is defined as the average number of steps along the all shortest paths.

Hay et al. [16] examined five properties commonly measured and reported on net-
work data: degree (distribution of the degrees of all nodes in the graph), path length
(distribution of the lengths of the shortest paths between randomly sampled pairs of
nodes), clustering coefficient, network resilience (the number of nodes in the largest
connected component of the graph when nodes are removed in degree decreasing or-
der) and infectiousness (measured by calculating the proportion of nodes infected by a
hypothetical disease, which is simulated by first infecting a randomly chosen node and
then transmitting the disease to each neighbour with the specified infection rate).

There are existing studies that work on graphs trying to maximize some specific
task-oriented utility. Budi et al. [3] defined the kb-anonymity model, which combines
privacy-preserving using the k-anonymity model and specific task of behaviour-preserving
test and debugging data. Lucia et al. [22] improved the model to avoid the probing at-
tack for evolving programs. Both papers consider the anonymization of paths in a pro-
gram code, which can be represented as a graph, and use a specific utility measurement,
which is test coverage. The aim is to ensure that the replaced data exhibits the same kind
of program behaviour shown by the original data so that the replaced data may still be
useful for the purposes of testing and debugging. Although there are some similarities
between their work and ours, the purpose of ours is quite different.

It is important to emphasize that these generic information loss measures only evalu-
ate structural and spectral changes between original and anonymized data. That is, these
measures do not evaluate the data mining processes on anonymized data, and as such,
they are general or application-independent. The analysis of specific and application-
dependent quality measures is an open problem. We consider in this paper the case of
an application in clustering.
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3 Experimental set up

Some authors evaluate their anonymization methods comparing the results of generic
measures on original data with the results on anonymized data. They assume that small
distortion on these measures involves little distortion on anonymized data utility. Our
objective is to evaluate the correlation between generic information loss (GIL) measures
and specific information loss (SIL) measures based on clustering processes. Hence, if
the GIL indicates that there is little perturbation on anonymized data, then the clustering
results on the anonymized data must be close to the results on the original data. Oth-
erwise, the GIL measures used in graph assessment are not representative of real data
utility.

To conduct this experiment, we have to test as much anonymization methods as
we can. As we have seen, there are several anonymization methods and it is hard to
analyse all of them. Nevertheless, all of graph modification approaches are based on
edge modification and can be modelled as an additive-noise perturbation. So, we can
model the generic behaviour of these methods through basic edge perturbation. We
define the basic edge perturbation on Section 3.2.

Our experimental framework is shown in Figure 1. As we can see, we choose five
graph formatted datasets, three edge perturbation methods, several generic information
loss measures and six graph clustering algorithms. First, we apply perturbation to graph
datasets (details are shown in Section 3.1) using edge perturbation methods (Section
3.2). Then, we evaluate original and perturbed data using GIL measures for quantifying
network structure (Section 3.3). Next, we apply the clustering processes (Section 3.4)
both on original and on perturbed data and we use clustering-based specific measures
(Section 3.5) to evaluate the results. Lastly, we compare the GIL and SIL results. If the
degree of similarity between them are close, the GIL measures provide correct infor-
mation about data utility. Otherwise, these measures do not provide correct information
about the utility of the anonymized data for clustering.

Each dataset is perturbed from 1% to 25% of edge set. We compute perturbation
percentage using the edge difference (ED), which is defined as the percentage of origi-
nal edges that are not present in the perturbed graph, as shown in Equation 1.

ED(G, G̃) = 1− |E ∩ Ẽ|
max(|E|, |Ẽ|)

(1)

3.1 Datasets

Five different real data sets are used in our experiments. Although all these sets are
unlabelled, we have selected these datasets because they have different graph properties.
They are the following ones:

– Zachary’s karate club [31] is a small social graph widely used in clustering and
community detection. It shows the relationship among 34 members of a karate club.

– American college football [12] is a graph of American football games among Di-
vision IA colleges during regular season Fall 2000.
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Original 1% Anon. 25% Anon.

Graph assessment
1% ... 25%

GIL

Clustering assessment
1% ... 25%

SIL

Perturbation

process

Are equal?

Fig. 1: Experimental framework. Each dataset is perturbed from 1% to 25% using each
perturbation method. Next, we compare the original and perturbed data using GIL mea-
sures in order to quantify the noise introduced on data. Then, we do the same with real
clustering processes and SIL measures. Finally, we compare the results of GIL and SIL
measures and evaluate the correlation between them. We want to analyse whether GIL
measures are useful to predict the clustering real data utility.

– Jazz musicians [13] is a collaboration graph of jazz musicians and their relation-
ship.

– Flickr is a sub-graph collected from Flickr OSN. This data has been obtained from
[18], where a sampling process has been performed over original data provided by
[24]. Nodes represent the users and edges the relationship among them. Although
relations are directional in this network, we have eliminated the direction of the
edges to get an undirected graph.

– URV Email [14] is the email communication network at the University Rovira i
Virgili in Tarragona (Spain). Nodes are users and each directed edge represents that
at least one email has been sent.

Dataset n m deg AD D

Zachary’s karate club 34 78 4.588 2.408 5

American college football 115 613 10.661 2.508 4

Jazz musicians 198 2,742 27.697 2.235 6

Flickr 954 9,742 20.423 2.776 4

URV Email 1,133 5,451 9.622 3.606 8
Table 1: Datasets’ properties. For each dataset we present the number of nodes (n),
number of edges (m), average degree (deg), average distance (AD) and diameter (D).
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vi v j

vk vp

(a) Edge add/del

vi v j

vk

(b) Edge rotation

vi v j

vk vp

(c) Edge swap

Fig. 2: Basic operations for edge modification. Dashed lines represent deleted edges
while solid lines are the added ones. Colour of the nodes indicates whether a node
changes its degree (grey) or not (white).

Table 1 shows a summary of the datasets’ main features, including the number of
nodes (n), number of edges (m), average degree (deg), average distance (AD) and di-
ameter (D).

3.2 Perturbation methods

We model the generic behaviour of the edge-modification methods for graph anonymiza-
tion through the perturbation introduced by three basic edge modifications. These are:

– Edge add/del is the most generic edge modification. It simply consists on deleting
an existing edge (vi,v j) ∈ E and adding a new random one (vk,vp) 6∈ E. Figure 2a
illustrates it.

– Edge rotation among three nodes can be defined as follows: if vi,v j,vk ∈V , (vi,v j)∈
E and (vi,vk) 6∈ E, we delete (vi,v j) and create (vi,vk). Figure 2b shows this basic
operation.

– Edge swap between four nodes vi,v j,vk,vp ∈ V where (vi,v j), (vk,vp) ∈ E and
(vi,vp), (vk,v j) 6∈ E is defined by deleting edges (vi,v j), (vk,vp) and creating new
edges (vi,vp), (vk,v j), as we can see in Figure 2c.

As we have already commented, most of these anonymization methods use one (or
more) of these basic edge modification or perturbation. It is true that some anonymiza-
tion methods do not apply edge modification over all edge set, but this behaviour is
specific and different for each anonymization method. We believe that this approach
can model the basic behaviour of edge-modification methods for graph anonymization,
although each method has its specific peculiarities.

For all perturbation methods, the number of nodes and edges remain the same, but
the degree distribution changes on Edge add/del and Edge rotation, while it remains the
same on Edge swap. Clearly, Edge add/del is the most general concept and all other
perturbations can be modelled as a particular case of Edge add/del. Therefore, Edge
rotation is a subset of Edge add/del and Edge swap is a subset of Edge rotation, being
the most specific concept.

All random-based anonymization methods related to Rand Add/Del are clearly re-
lated to Edge add/del perturbation concept. For example, Random Perturbation algo-
rithm [15], Spctr Add/Del [29] and Rand Add/Del-B [30] use this concept to anonymize



10 J. Casas-Roma et al.

graphs. Most of k-anonymity methods can be also modelled through Edge add/del con-
cept [34, 35, 16]. Edge rotation is a specification of Edge add/del and a generalization of
Edge swap. On every edge movement, one node keeps its degree and the other changes
it. The Univariant Micro-aggregation for Graph Anonymization algorithm (UMGA)
[5] applies this concept to anonymize the graph according to k-degree anonymity con-
cept. Other methods are related to Edge swap perturbation concept. For instance, Rand
Switch and Spctr Switch [29] apply this concept to anonymize a graph. Liu and Terzi
[21] also apply this concept to graph’s reconstruction step of their algorithm for k-
degree anonymity.

3.3 Graph assessment

We use different generic measures for quantifying network structure. These generic
measures are used to compare both the original and the anonymized data to quantify
the noise introduced in the perturbed data by the anonymization process. These generic
measures evaluate some key graph’s properties. They evaluate the graph structure, so
they are general or, in other words, application-independent. Information loss was de-
fined by the discrepancy between the results obtained on the original and the anony-
mized data.

In our experiments we use several graph measures based on structural and spectral
properties. In the rest of this section we review the measures used.

Average distance (AD) is defined as the average of the distances between each pair
of nodes in the graph. It measures the minimum average number of edges between any
pair of nodes. Formally, it is defined as:

AD(G) =
∑i, j di j(n

2

) (2)

where di j is the length of the shortest geodesic path from vi to v j, meaning the number
of edges along the path.

Diameter [15] (D) is defined as the largest minimum distance between two nodes
in the graph, as Equation 3 shows.

D(G) = max(di j),∀i 6= j (3)

Another used measure is edge intersection [35, 21] (EI). It is defined as the per-
centage of original edges which are also in the anonymized graph. Formally:

EI(G, G̃) =
|E ∩ Ẽ|

max(|E|, |Ẽ|)
(4)

Clustering coefficient [21, 16, 12, 6] (C) is a measure widely used in the literature.
The clustering coefficient of a graph is the average:

C(G) =
1
n

n

∑
i=1

C(vi) (5)
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where C(vi) is the clustering coefficient for node vi. The clustering of each node is
the fraction of possible triangles that exist. For each node the clustering coefficient is
defined by:

C(vi) =
2T (vi)

deg(vi)(deg(vi)−1)
(6)

where T (vi) is the number of triangles surrounding node vi, and deg(vi) is the degree
of vi.

Transitivity [29, 30, 6] (T) is the fraction of all possible triangles present in the
graph. Possible triangles are identified by the number of triads (two edges with a shared
node), as we can see in Equation 7.

T (G) =
3× (number o f triangles)

(number o f triads)
(7)

Betweenness centrality [15] (BC) is a centrality measure, which calculates the
fraction of number of shortest paths that go through each node. This measure indicates
the centrality of a node based on the flow among other nodes in the graph. A node with
a high value indicates that this node is part of many shortest paths in the graph, which
will be a key node in the graph structure. We define the betweenness centrality of a node
vi as:

BC(vi) =
1
n2 ∑

s,t

gi
st

gst
(8)

where gi
st is the number of geodesic paths from vs to vt that pass through vi, and gst is

the total number of geodesic paths from vs to vt .
The second centrality measure is closeness centrality [15] (CC), which is described

as the inverse of the average distance to all accessible nodes. Closeness is an inverse
measure of centrality in which a larger value indicates a less central node, while a
smaller value indicates a more central node. Formally, we define the closeness centrality
of a node vi as:

CC(vi) =
n

∑ j di j
(9)

And the last centrality measure is degree centrality [15] (DC). It evaluates the cen-
trality of each node associated with its degree. That is, the fraction of nodes connected
to it. A higher value indicates greater centrality in the graph. The degree centrality of a
node vi is depicted in Equation 10.

DC(vi) =
deg(vi)

m
(10)

The last three centrality measures described above evaluate the centrality of each
node of the graph from different concepts. These measures give us a value of centrality
for each node. To assess the perturbation introduced in the graph by the anonymization
process, we compute the vector of differences for each node between the original and
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the anonymized graph. Then, we compute the root mean square (RMS) to obtain a sin-
gle value for the whole graph. We calculate the difference of the centrality measures
between the original and the anonymized graph as follows:

ε(G, G̃) =

√
1
n

n

∑
i=1

(gi− g̃i)2 (11)

where gi is the value of the centrality measure for the node vi of G, and g̃i is the value
of the centrality measure for the node vi of G̃. In our experiments we use Equation 11 to
compute a value representing the error induced in the whole graph by the anonymization
process in the centrality measures.

We also focus on two important eigenvalues of the graph spectrum. The first one is
the largest eigenvalue of the adjacency matrix A (λ1) [29] where λi are the eigenval-
ues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues of A encode information about the
cycles of a graph as well as its diameter. The spectral decomposition of A is:

A = ∑
i

λieieT
i (12)

where ei is the eigenvector corresponding to λi eigenvalue.
The other one is the second smallest eigenvalue of the Laplacian matrix L (µ2)

[29], where µi are the eigenvalues of L and 0 = µ1 ≤ µ2 ≤ . . .≤ µm ≤m. The eigenval-
ues of L encode information about the tree structure of G. µ2 is an important eigenvalue
of the Laplacian matrix and can be used to show how good the communities separate,
with smaller values corresponding to better community structures. Laplacian matrix is
defined as:

L = D−A (13)

where Dn×n is a diagonal matrix with row-sums of A along the diagonal, and 0’s else-
where.

The number of nodes, edges and average degree are not considered as parameters
to assess anonymization process, since anonymization methods analysed in this work
keep these values constant.

3.4 Clustering methods

Six clustering algorithms are used to evaluate the perturbation methods. All of them
are unsupervised algorithms for graph formatted data based on different concepts and
developed for different applications and scopes. An extended revision and comparison
of them, among others, can be found at [19, 32]. The selected clustering algorithms are:

– Markov Cluster Algorithm (MCL) was developed by S. Van Dongen [10]. The al-
gorithm is based on the simulation of flow in graphs and it is widely used in bioin-
formatics. It starts by computing an integer power of the diffusion matrix (usually
the square), which yields the probability matrix of a random walk after a specific
number of steps. This step is called expansion. Next, it computes the probability
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of the walker to be trapped within a community. This step is called inflation. The
expansion and inflation steps are iterated until it obtains a disconnected tree. Its
components are the communities. The inflation parameter controls the granularity
of the result sets, and its value is adjusted according to the data of each graph.
Its complexity can be lowered to O(Nk2) if, after each inflation steps, only the k
largest elements of the resulting matrix are kept, whereas the others are set to zero.

– Algorithm of Girvan and Newman (Girvan-Newman or GN) [25] is an important
community detection algorithm in graphs. It is a hierarchical divisive algorithm,
in which edges are iteratively removed based on the value of their betweenness
centrality. The algorithm has a complexity O(N3) on a sparse graph.

– Fast greedy modularity optimization (Fastgreedy) by Clauset, Newman and Moore
[7] is a hierarchical agglomeration algorithm for detecting community structure.
Starting from a set of isolated nodes, the edges of the original graph are iteratively
added to produce the largest possible increase of the modularity at each step. Its
running time on a sparse graph is O(N log2 N).

– Walktrap [26] by Pons and Latapy tries to find densely connected sub-graphs, also
called communities in a graph via random walks. The idea is that short random
walks tend to stay in the same community. They proposed a measure of similarities
between nodes based on random walks to capture the community structure in a
graph. It runs in time O(mn2) and space O(n2) in the worst case.

– Infomap by Rosvall and Bergstrom [27] use the problem of optimally compressing
the information on the structure of the graph to find the best cluster structure. This is
achieved by compressing the information of a dynamic process taking place on the
graph, namely a random walk. The optimal compression is achieved by optimizing
a quality function, which is the Minimum Description Length of the random walk.
Such optimization can be carried out rather quickly with a combination of greedy
search and simulated annealing.

– Multilevel by Blondel et al. [2] is a multi-step technique based on a local optimiza-
tion of Newman-Girvan modularity in the neighbourhood of each node. After a
partition is identified in this way, communities are replaced by super-nodes, yield-
ing a smaller weighted network. The procedure is then iterated, until modularity
does not increase any further. The computational complexity is essentially linear in
the number of edges of the graph.

MCL, Walktrap and Infomap are based on the random walk concept, while Girvan-
Newman and Fastgreedy are based on hierarchical edge betweenness, and Multilevel
is based on modularity concept. Although some algorithms permit overlapping among
different clusters, we have not allowed such overlapping in our experiments by setting
the parameter to zero. This is because setting overlapping to zero simplifies the method
which evaluates the similarity between results.

3.5 Clustering assessment

In this work we want to analyse the utility of the perturbed data by evaluating it on
different clustering processes. Like generic graph measures, we compare the results ob-
tained both by the original and the perturbed data in order to quantify the level of noise
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introduced in the perturbed data. This measure is specific and application-dependent,
but it is necessary to test the perturbed data in real clustering processes.

We consider the following approach to measure the clustering assessment for a par-
ticular perturbation and clustering method: (1) apply the perturbation method p to the
original data G and obtain G̃; (2) apply a particular clustering method c to G and obtain
clusters c(G) and apply the same method to G̃ to obtain c(G̃); (3) compare the clusters
c(G) to c(G̃). In relation to information loss, it is clear that the more similar c(G̃) is
to c(G), the less information loss. Thus, clustering specific information loss measures
should evaluate the divergence between both sets of clusters c(G) and c(G̃).

Ideally, results should be the same. That is, the same number of sets with the same
elements in each set. In this case, we can say that the anonymization process has not af-
fected the clustering process. When the sets do not match, we should be able to calculate
a measure of divergence.

For this purpose, we use precision index [4]. Under the situation that true commu-
nities of a graph are known a priori, precision index could be directly used to evaluate
the similitude between two sets of clusters. Given a graph composed of n nodes and
m communities, each community is assigned label ltc. Nodes are assigned the same la-
bels ltc as the community they belong to, where ltc is the true label for each node. In
our experiments, the true communities are the ones assigned by the original dataset.
Assuming the graph has been divided into clusters, for every cluster i, we examine all
nodes in i and obtain the frequency that the true labels occur. The label that most fre-
quently occurs is assigned as the predicted label lpc to each node in the cluster i. The
precision is then defined as the fraction of all nodes in which the predicted label lpc is
the same as the true label ltc:

Precision =
∑

n
v=1 equal(ltc, lpc)

n
(14)

where equal(x,y) = 1 if x = y and 0 otherwise.
Notice that the precision is a value in the range [0,1], which takes the value 0 when

there is no overlap between the sets and the value 1 when the overlap between the sets
is complete.

4 Experimental results

To compare the cluster-specific measures and the generic ones, we have computed these
measures for pairs of graphs (G, G̃) using some particular perturbation method p. That
is G̃ = p(G).

In this section, we show the results of our experiments. For each dataset (G) we ap-
ply the three perturbation methods, and then, we assess graph measures on the perturbed
data. Next, we apply clustering algorithms and compare the original and the perturbed
results using the precision index, our cluster-based measure. We refer to specific infor-
mation loss measure as a result of precision index applied to specific clustering algo-
rithm on original and anonymized data. In other words, we refer to specific information
loss measure as a value of Precision(c(G),c(G̃)), where c is one of our clustering meth-
ods and G̃ = p(G) for a particular perturbation method p. From now on, we will use
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the name of the clustering algorithm to refer to its precision index computed as we have
mentioned above.

Perturbation methods have been applied with a percentage of noise. It has been
added iteratively with a 1% of the number of edges at each step. The goal is that we
can see how the structural properties of the graph evolve. The values showed by all
measures and metrics are averaged values computed from independent executions. In
our framework, we have used the Pearson correlation to compute the linear dependence
between all measures and metrics, where the p-values refer to the observed significance
level of a hypothesis test with the null hypothesis that correlation is equal to 0.

Parameters used in our experiments are detailed in Table 2. “Perturbation range”
specifies the percentage of noise introduced, “execs” is the number of independent exe-
cutions for every experiment and “MCL inflation” parameter controls the granularity of
the resulting clusters on Markov Cluster Algorithm (MCL). Others clustering methods
are used with default values.

Parameter Value

Perturbation range From 1% to 25%

Execs 20

MCL Inflation 1.8
Table 2: Parameters used in our experiments.

In our experiments we want to address the following questions:

– Do the generic information loss measures and precision behave in similar way in-
dependently of the dataset? In Section 4.1 we analyse whether the GIL and SIL
measures present similar behaviour over different datasets, i.e., they behave in sim-
ilar way independently of the specific characteristics of the dataset.

– Are the generic information loss measures correlated with clustering-specific mea-
sures? In Section 4.2 we compare the GIL versus SIL measures in order to describe
the correlation among them.

– What are the effects of various data perturbation strategies? In Section 4.3 we com-
ment the correlation’s results based on the three perturbation methods presented on
Section 3.2.

– What are the differences between measures when various graph datasets are con-
sidered? In Section 4.4 we discuss the correlation’s results for each specific dataset
to analyse the differences among them.

4.1 Analysing measures

Before comparing the generic information loss measures with the precision, we analyse
all measures in order to evaluate whether each measure behaves in similar way to itself
on different datasets. If a measure presents a high self-correlation, then it will conduct
in a similar way independently of the data where it is applied. Therefore, we analyse
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the self-correlation of all generic and clustering-specific measures. Self-correlation is
measured by comparing the results of specific measure over each dataset to all others.
Then, we calculated the Pearson correlation on the resulting set.

Pearson AD D BC CC DC EI C T λ1 µ2

r 0.846 0.150 0.957 0.902 0.992 0.999 0.974 0.948 0.247 0.097
p-value (0.000) (0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.006)

Table 3: Pearson self-correlation value (r) and its observed significance level (p-value)
of generic information loss (GIL) measures.

Most of the GIL measures show strong self-correlation over all datasets used in
our experiments. As we can see in Table 3, average distance (AD), betweenness cen-
trality (BC), closeness centrality (CC), degree centrality (DC), edge intersection (EI),
clustering (C), and transitivity (T) present self-correlation values higher than 0.84 with
p-values equal to 0. These results confirm that the measures evolve in a similar way over
all datasets, i.e., the behaviour of the measures is similar independently of the dataset
in which they are applied. Diameter, the largest eigenvalue of the adjacency matrix (λ1)
and the second smallest eigenvalue of the Laplacian matrix (µ2) present weak and very
weak self-correlation values. It denotes that their behaviour is clearly subordinate to the
dataset. It is interesting to underline that diameter cannot be computed on Flickr and
URV Email datasets because the perturbation methods generate some isolated nodes,
so the number of connected components is greater than one and the diameter of the
dataset cannot be computed. Furthermore, on Football dataset the diameter keeps the
same value on all perturbed data. That is because Football dataset does not follow the
power-law on degree distribution. All nodes have a degree value between 7 and 12, and
it is improbable to increase or decrease the diameter value by random edge perturbation.
Therefore, the behaviour of the diameter on a perturbation process is very dependent of
the dataset.

Pearson MCL Infomap Multilevel GN Fastgreedy Walktrap

r 0.287 0.626 0.777 0.828 0.782 0.656
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 4: Pearson self-correlation value (r) and its observed significance level (p-value)
of precision index, our clustering-specific information loss measure. We use the name
of the clustering algorithm to refer to its precision value computed as we have described
in Section 4.1.

The precision values are presented in Table 4. As we have mentioned, we use the
name of the clustering algorithm to refer to its specific information loss measure com-
puted as Precision(c(G),c(G̃)), where c is one of our clustering methods and G̃ = p(G)
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for a particular perturbation method p. Most of them show strong self-correlation values
and all of them present p-values equal to 0. Multilevel, Girvan-Newman and Fastgreedy
achieve self-correlation values greater than 0.77, while Infomap and Walktrap achieve
values close to 0.6, and MCL presents weak self-correlation with a value of 0.28.

4.2 Comparing generic and clustering-specific measures

Pearson correlation values for all generic information loss and clustering-specific mea-
sures are shown in Table 5. These values are computed using all datasets and all pertur-
bation methods.

The first and the second generic information loss measures which we analyse are
average distance and diameter. Both measures are related to paths and cannot be calcu-
lated for graphs with two or more connected components. Thus, both measures cannot
be computed on few perturbed graphs because isolated nodes have appeared during
perturbation process. The Pearson correlation index for average distance and the pre-
cision for all clustering methods is 0.732. As we can see in Table 5, average distance
achieves strong correlation values with all clustering methods, except with MCL, where
the achieved value is quite lower than others and indicates a moderate correlation be-
tween average distance and the precision values of MCL clustering. As we can see, p-
values are 0 for all experiments, demonstrating that results are statistically significant.
On the contrary, diameter does not present correlation since its p-values are greater
than 0.05 on three experiments, and no statistical significance can be assigned to its
correlation value. In addition, the correlation value is 0.128, which is very low.

Two of the three centrality measures show similar behaviour and achieve strong
correlation values. The correlation index is 0.753 for betweenness centrality, 0.848 for
closeness centrality and 0.422 for degree centrality. Therefore, betweenness and close-
ness centrality are strong correlated to clustering-based measures. Betweenness and
closeness centrality achieve correlation values higher than 0.831 for Multilevel, Girvan-
Newman and Fastgreedy clustering algorithm. Clearly, the Girvan-Newman algorithm
are related to betweenness centrality since it uses the edge betweenness values to dis-
cover the clusters, and the edge betweenness and the node betweenness are related.
Multilevel and Fastgreedy use the concept of modularity, which is also related to node
centrality. The other centrality measure, degree centrality, presents different behaviour
and a moderate correlation value of 0.422. Our perturbation methods introduce differ-
ent noise on degree centrality measure: Edge add/del modify the degree of four nodes,
Edge rotation modify the degree of only two nodes and Edge swap does not modify
the degree of any node. Thus, Edge swap keeps the same values for this measure but
introduce noise on anonymized data and perturb the precision values with all clustering
methods. Similar situation is presented on Edge rotation. Clearly, degree centrality is
not a suitable measure to analyse the noise introduced by perturbation methods using
both Edge rotation or Edge swap.

Edge intersection is a simple measure which is strong correlated to clustering-based
measures. Clustering coefficient and transitivity are also strong correlated to clustering-
based measures. These measures show strong correlation to the precision results of
Infomap, Multilevel, Girvan-Newman, Fastgreedy and Walktrap. As the measures we
have seen in the previous paragraph, these ones show low correlation to the precision



18 J. Casas-Roma et al.

results of MCL. The mean correlation indexes are 0.785, 0.814 and 0.743 for edge
intersection, clustering coefficient and transitivity.

Next, we will analyse the spectrum-based generic information loss measures. These
are the largest eigenvalue of the adjacency matrix and the second smallest eigenvalue of
the Laplacian matrix. The largest eigenvalue of the adjacency matrix presents moderate
correlation, achieving a value of 0.442. The second eigenvalue of the Laplacian ma-
trix does not get good results on any clustering-based measures, achieving an averaged
value of 0.116. Additionally, the p-values demonstrate the results are not statistically
significant.

Pearson MCL Infomap Multilevel GN Fastgreedy Walktrap µ

AD
0.580 0.716 0.807 0.785 0.747 0.755 0.732
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

D
0.201 0.101 0.098 0.134 0.218 0.014 0.128
(0.000) (0.075) (0.083) (0.018) (0.000) (0.803)

BC
0.559 0.687 0.854 0.865 0.831 0.724 0.753
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CC
0.667 0.833 0.903 0.909 0.874 0.899 0.848
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

DC
0.296 0.380 0.416 0.504 0.481 0.457 0.422
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

EI
0.581 0.820 0.861 0.887 0.814 0.748 0.785
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

C
0.614 0.833 0.889 0.909 0.836 0.802 0.814
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

T
0.557 0.763 0.840 0.840 0.770 0.690 0.743
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1
0.191 0.482 0.509 0.546 0.529 0.397 0.442
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

µ2
0.086 0.152 0.131 0.154 0.135 0.040 0.116
(0.088) (0.003) (0.010) (0.002) (0.007) (0.429)

µ 0.433 0.577 0.631 0.653 0.624 0.553 NA
Table 5: The Pearson correlation values (r) between clustering precision value and
generic information loss measures (average distance (AD), diameter (D), betweenness
centrality (BC), closeness centrality (CC), degree centrality (DC), edge intersection
(EI), clustering coefficient (C), transitivity (T), the largest eigenvalue of the adjacency
matrix (λ1) and the second smallest eigenvalue of the Laplacian matrix (µ2)). The p-
values for each correlation are showed within brackets and the last column and row
show the average values for each row and column (µ).
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Finally, it is important to underline that the precision on clustering measures achieves
moderate correlation, with values from 0.624 to 0.653, on Multilevel, Girvan-Newman
and Fastgreedy algorithms. Infomap and Walktrap achieve lower correlation values, but
still moderate correlation. MCL presents the worst results of all clustering algorithms
with a correlation value of 0.433.

Aggregating some generic measures In the previous paragraphs we have compared
the correlation between each individual generic information loss measures and the pre-
cision index. Here, we consider an overall assessment between a group of some GIL
measures and the precision. This experiment tries to illustrate which group of one or
more GIL measures are the best ones to explain the clustering-based measures.

Num. GIL measures r-square σ

1 CC 0.725 0.146

2 BC+CC 0.742 0.150

3 BC+CC+EI 0.765 0.155

4 D+BC+CC+EI 0.777 0.127

5 AD+D+BC+CC+EI 0.787 0.117
Table 6: Results of regression analysis, where the dependent variable is the precision
index and the independent variable is a set of one or more GIL measures. The first
column indicates the number of GIL measures considered, the second one the GIL
measures set which achieves the best result, the third column the r-square value, and
the last one the standard deviation (σ ).

Let us consider the r-square from a multivariate regression analysis, where the de-
pendent variable is the precision index and the independent variable is a set of one
or more GIL measures. The r-square value is indicative of the aggregate correlation
between a set of the GIL measures and the precision values. We compute the regres-
sion analysis between all combinations from 1 to 5 GIL measures and the precision.
The result for only one measure is perfectly consistent with Pearson correlation analy-
sis, which has explained previously, where closeness centrality achieves the best result,
as we can see in Table 6. The best combination of two GIL measures is betweenness
and closeness centrality, with a r-square value of 0.742 and standard deviation of 0.15.
For three GIL measures, the best combination is the betweenness centrality, closeness
centrality and edge intersection. All GIL measures have obtained high individual cor-
relation values, therefore these results are predictable. Nevertheless, when we consider
the best combination of four GIL measures, the diameter appears, which has obtained
very low individual correlation values. It is interesting because diameter can help us to
predict the clustering-specific perturbation in combination with other GIL measures, but
it can be useless when we consider only the diameter. Finally, average distance is added
to the group when considering a combination of five measures. The r-square value is
0.787. It is relevant to note that if more measures are considered, higher r-square val-
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ues are obtained. Thus, the r-square difference between 2 and 5 measures is close to
0.04, which implies a little gain and also a considerable increment of computational
and time cost. The problem and its peculiarities are the key points to determine the best
combination (one or more) of GIL measures to predict the clustering-specific ones.

4.3 Comparing perturbation methods

Next, we will briefly analyse the results based on perturbation methods. Edge add/del
is the most general edge modification. It adds and deletes edges at random over entire
nodes set. Therefore, an edge is created in every step and another is deleted, changing
the degree of four nodes (two nodes decrease their degree while two others increase
theirs). Hence, the degree sequence and all related measures suffer high perturbation
when Edge add/del is applied. Edge rotation is a sub-set of Edge add/del. It modifies
an edge keeping one node and changing the other. Thus, two nodes change their degree
in every step (one node decreases its and another increases its). Therefore, the degree
sequence and related measures suffer quite less perturbation than Edge add/del. Finally,
Edge swap switches two edges between four nodes, but none of them modify their de-
gree. Accordingly, the degree sequence and related measures do not modify their values.
It is a sever problem, because these measures do not transmit the noise introduced on
data.

The degree centrality measure evaluates the centrality of each node associated with
its degree. Edge swap does not change the node’s degree, so it does not introduce pertur-
bation on this measure. But the precision for all clustering methods on all datasets show
that Edge swap introduces perturbation on data. Therefore, this measure is not corre-
lated with clustering results and it is not a suitable measure to evaluate the perturbation
introduced in the perturbed data.

Pearson Edge add/del Edge rotation Edge swap

µ 0.670 0.698 0.705

σ 0.206 0.208 0.211
Table 7: Pearson correlation averaged values (µ) and standard deviation (σ ) for each
perturbation method (values are averaged over all generic and clustering-based infor-
mation loss and all datasets).

Table 7 presents average results and standard deviation for each perturbation method.
For each method we compute the correlation between all generic and specific informa-
tion loss measures over all datasets, and then we calculate the averaged value and the
standard deviation for all values which are statistically significant (i.e., for all correla-
tion values with p-value < 0.05). It is interesting to note that Pearson correlation values
obtained by Edge swap are higher, on almost all cases, than Edge rotation and Edge
add/del. The average value is 0.705 for Edge swap, while Edge rotation gets a value
of 0.698 and Edge add/del a value of 0.670. The standard deviation is similar in all
methods.
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4.4 Comparing datasets

In this section, we will summarise the results based on datasets. Table 8 presents the
Pearson correlation averaged values and standard deviation for each dataset used in
our experiments. For each dataset we compute the correlation between all generic and
clustering-based information loss measures over all perturbation methods, and then
we calculate the averaged value and the standard deviation for all values which are
statistically significant (i.e., for all correlation values with p-value < 0.05). We can
see important differences between datasets. For example, correlation values between
generic information loss measures and precision on American college football (Foot-
ball) achieve the highest correlation value and the lowest standard deviation value, while
on Zachary’s karate club (Karate) the value keeps quite low and the standard deviation
value rises. As we have commented, Football dataset is a collaboration network repre-
senting American football games among colleges during regular season. Hence, it does
not follow the power-law on degree sequence. The minimum degree value is 7 and the
maximum is 12. Therefore, the connectivity is homogeneous in this graph since there is
no hubs and all nodes are highly connected to other nodes. Probably, this graph is more
robust to noise than other graphs and the perturbation methods do not cause abruptly
disruption on perturbed data.

Pearson Karate Football Jazz Flickr URV Email

µ 0.716 0.796 0.717 0.780 0.729

σ 0.247 0.119 0.170 0.184 0.163
Table 8: Pearson correlation averaged values (µ) and standard deviation (σ ) for each
dataset (values are averaged over all generic and clustering-specific information loss
and all perturbation methods).

4.5 Summary

Firstly, we have analysed the behaviour of the generic information loss measures and
precision over different datasets. As we have seen, some measures behave in similar
way independently of the data where they are applied. Only diameter, the largest eigen-
value of the adjacency matrix and the second smallest eigenvalue of the Laplacian ma-
trix present weak self-correlation values, indicating that their behaviour is dependent
on the data where they are applied.

Secondly, we have compared the generic information loss measures and the preci-
sion index. Our experiments are based on correlation between each generic information
loss measure and precision index computed for each clustering algorithm. The tests
showed strong correlation between some generic information loss measures and the
clustering-based ones. Some of those discussed are the average distance, betweenness
centrality, closeness centrality, edge intersection, clustering coefficient, and transitivity.
Degree centrality and the largest eigenvalue of the adjacency matrix present moderate
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correlation values. As we have mentioned, these measures are clearly subordinate to the
perturbation method applied, and therefore the correlation is lower than other measures.
Finally, some generic information loss measures, like diameter and the second smallest
eigenvalue of the Laplacian matrix, show weak correlation values with the clustering-
specific measures. In addition, some experiments related with these measures are not
statistically significant.

Thirdly, we have demonstrated that considering two or more generic information
loss measures helps us to get a higher correlation value. Therefore, the gain is not great
and the complexity rises when considering two or more generic measures.

Fourthly, we have exposed that the perturbation method affects the correlation be-
tween generic and cluster-specific information loss measures. As we have seen, datasets
perturbed by Edge swap show higher correlation between generic and specific informa-
tion loss measures than the datasets perturbed by Edge add/del or Edge rotation.

Finally, we have discussed the effect of the datasets on correlation between generic
and clustering-specific information loss measures. We have seen substantial differences
between datasets in our experimental framework. The degree distribution and the con-
nectivity of the graph affect the robustness of the network and how the perturbation
affects the graph’s structure.

5 Conclusions and further research

In this paper we have reported an experimental study of the possible correlation between
generic information loss measures and the clustering-specific ones. We have applied
three perturbation methods based on randomization techniques on five real networks.
We have used a graph collected from Flickr OSN, two real world social networks that
have well-known documented structures (Zachary’s karate club and American college
football) and two collaboration networks (Jazz musicians and URV Email). We have
studied different perspectives of randomization, from graph assessment to clustering
assessment.

After seeing the results of the experiments, we can see that there are strong cor-
relations between some generic information loss measures and precision index, our
clustering-specific measure. They are average distance, betweenness centrality, close-
ness centrality, edge intersection, clustering coefficient and transitivity. Other measures,
degree centrality and the largest eigenvalue of the adjacency matrix, present moderate
correlation values. However, we have not found clear correlations between the preci-
sion index and the diameter and the second smallest eigenvalue of the Laplacian matrix.
Some experiments related to these two measures are not statistically significant, and in
addition, the correlation values are very low. Considering two or more generic informa-
tion loss measures is possible, thus the complexity rises and the correlation increments
only a little.

Even so, we have seen that datasets and randomization methods are significant to
determine the correlation between generic and cluster-specific information loss in some
cases. Clearly, the edge modification method and the structure and properties of the
dataset are playing an important role on anonymization results and data utility. Nev-
ertheless, it is also true that there is an important correlation between some generic
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information loss measures and the cluster-specific ones, independently of the dataset
and the perturbation method applied.

Certainly, the purpose of the data should be taken into account during the anonymiza-
tion process. Each dataset has its own properties which should be analysed to choose
the best anonymization method. If different datasets are generated according to each
problem-specific environment, then it is necessary to analyse the background knowl-
edge an attacker can infer from different anonymized datasets.

Many interesting directions for future research have been uncovered by this work.
Other measures of quality should be evaluated. For example, other spectral properties
can be considered as graph assessment measures. Another data mining processes should
be also used to evaluate anonymized data. Finally, other graph’s types will be consid-
ered, such as weighted graphs [9], directed graphs or bipartite graphs [8].
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