“Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación.”

D. Jorge Garrido Holgado
Dr. Josep M. Fabrega Sánchez
ÍNDICE

Prefacio ... 5

1.- Objetivos .. 6

2.- Estado del arte .. 7

3.- Desarrollo del Plan de Trabajo 11

4.- Multiplexación por longitud de onda WDM 14

5.- Multiplexación por División de Frecuencias Ortogonales Ópticas (O-OFDM). 16

6.- Modulación On Off shift Keying de intensidad y detección directa (IM/DD-OOK). 17

7.- Modulación externa de intensidad 21

7.1.- IM/DD mediante modulador Mach-Zehnder 23

7.2.- Efecto de la fibra dentro del sistema 25

7.3.- Histogramas ... 26

8.- Sistema OFDM de modulación e intensidad directa con modulado Mach-Zehnder (MZM). 28

9.- Bases de simulación de un sistema IM/DD 10Gb/s 31

9.1.- Modulo de simulación de un sistema OOK 31

9.1.1.- Generación de secuencia de bits pseudoaleatorias, señal de entrada 32

9.1.2.- Generación del campo óptico 34

9.1.3.- Modulador óptico .. 35

9.1.4.- Desarrollo del filtro óptico .. 36

9.1.5.- Receptor óptico ... 37

9.2.- Modulo de simulación de fibra ... 39

10.- Simulación de un sistema IM/DD-OOK 10Gb/s 42

10.1.- Análisis de la Relación Señal-Ruido vs BER, variando el ancho del filtro, sin considerar el canal de fibra .. 43
10.2.- Análisis de la Relación Señal-Ruido-BER, considerando los efectos de filtrado óptico concatenado... 47
10.3.- Análisis de la Relación Señal-Ruido-BER, considerando los efectos de filtrado óptico concatenado y el canal óptico.. 55
10.3.1.- Longitud de los tramos de fibra a 50 km, Nspans = 1, 5, 10, 15 y 20............. 59
10.3.2.- Longitud de los tramos de fibra a 80 km, Nspans = 1, 4, 8, 12 y 13.................. 62
10.3.3.- Longitud de los tramos de fibra a 100 km, Nspans = 1, 2, 4, 6, 8 y 10............... 64
10.4.- Análisis del comportamiento con BW de 50GHz para los escenarios propuestos. 68
11.- Bases de simulación de un sistema OFDM. .. 70
11.1.- Esquema de simulación del transmisor OFDM... 71
11.2.- Esquema de simulación del receptor... 73
11.2.1.- DDO-OFDM RX basado en FFT .. 74
11.2.2.- DDO-OFDM RX usando un mezclador IQ .. 75
12.- Simulación de un sistema OFDM 10Gb/s... 78
12.1.- Análisis de la Relación Señal-Ruido vs BER, en el sistema OFDM, variando el ancho del filtro, sin considerar el canal de fibra.. 78
12.2.- Análisis de la Relación Señal-Ruido-BER, en el sistema OFDM, considerando los efectos de filtrado óptico concatenado... 80
12.3.- Análisis de la Relación Señal-Ruido-BER, en el sistema OFDM, considerando los efectos de filtrado óptico concatenado y el canal óptico.. 83
12.3.1.- Longitud de los tramos de fibra a 50 km, Nspans = 1, 5, 10, 15 y 20............... 83
12.3.2.- Longitud de los tramos de fibra a 80 km, Nspans = 1, 4, 8, 12 y 13.................. 85
12.3.3.- Longitud de los tramos de fibra a 100 km, Nspans = 1, 2, 4, 6, 8 y 10............. 87
13.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM.... 89
13.1.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, sin filtrado.. 89
13.2.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, considerando filtrado... 90
13.3.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, considerando filtrado y el canal óptico.

13.3.1.- Análisis en la longitud de los tramos de fibra de 50 km, con Nspans = 1, 5, 10, 15 y 20.

13.3.2.- Análisis en la longitud de los tramos de fibra de 80 km, con Nspans = 1, 4, 8, 12 y 13.

13.3.3.- Análisis en la longitud de los tramos de fibra de 100 km, con Nspans = 1, 2, 4, 6, 8 y 10.

13.3.4.- Análisis de amplificación en el sistema OFDM.

14.- CONCLUSIONES.

15.- Bibliografía.
Prefacio

Uno de los sistemas de transmisión más prometedores para las redes de nueva generación son los basados en OFDM / A óptico, que permiten transmitir de forma eficiente, robusta y flexible señales a alta velocidad (hasta 100GB/s) y agregar dinámicamente tráfico a canales de alta capacidad (> 100GB / s). Por lo tanto, suponen un avance muy importante, abriendo la puerta a una serie de nuevas funcionalidades que pueden ser aprovechadas por parte del plan de control que gestiona la red.

Así, en el presente trabajo se pretende desarrollar la simulación de estos sistemas de forma que se asemeje a redes de alta capacidad de diferentes alcances, como las redes troncales y metropolitanas.

Otro de los objetivos es desarrollar una línea investigadora partiendo del conocimiento de las redes flexibles y sus ventajas/requisitos, para poder extrapolarlo a un escenario concreto sobre el que desarrollar un estudio detallado.

Dentro del desarrollo de esta línea de investigación, se ha establecido un acuerdo con el Centro Tecnológico de Telecomunicaciones de Cataluña (CTTC) para el empleo de los Scripts utilizados como base en este trabajo y punto de partida, los cuales se han desarrollado y modificado, por lo que dadas las clausulas de confidencialidad, no se incluirán los códigos desarrollados en esta memoria, aunque sí se desarrollara la base de partida y adaptaciones realizadas de forma clara y concisa que dan lugar a la elaboración del presente documento.
1.- Objetivos

Conocer el funcionamiento de los sistemas ópticos en redes de nueva generación para delimitar las limitaciones de los mismos respecto a los sistemas ópticos mediante OFDM.

Analizar el comportamiento de una red óptica empleando sistemas de OOK de detección directa (IM/DD-OOK) y OFDM en distintos escenarios para analizar el comportamiento de la señal antes de filtrar, después de sucesivos filtrados concatenados y añadiendo los efectos del canal óptico en diferentes configuraciones de longitudes y filtrado hasta una distancia de 1000km, utilizando diferentes anchos de banda de filtrado (12.5, 25 y 50GHz). Es decir, analizaremos el comportamiento en diferentes escenarios, de un sistema típico de 10 Gb/s de modulación de intensidad y detección directa (MI-DD), y un sistema OFDM también de modulación de intensidad y detección directa para compararlo, simulando así, la infraestructura desplegada de una red de agregación (regional/metropolitana) incluyendo parámetros de la red como las distancias entre nodos, el número de nodos, número de routers, a fin de reducir costes.

De esta forma estudiaremos la transmisión eficiente de canales de baja capacidad (10/40 Gbps) a largas distancias con diferentes sistemas y la transmisión de señales de mayor capacidad que asemejen las necesidades de futuro cercano (100/400 Gbps y 1 Tbps), analizando el comportamiento de la rejilla espectral actual establecida por la ITU y buscando las necesidades de adaptación que permitan utilizar los flujos de datos de las mismas.
2.- Estado del arte

En el desarrollo de esta línea de investigación, se analiza la expectativa futura del mercado frente a los nuevos servicios de comunicaciones, donde las exigencias de los usuarios son cada vez mayores y donde los operadores deben considerar una postura dinámica en su desarrollo y despliegue de red para poder cubrir las exigencias y demandas del mercado.

Por este motivo, es importante que analice la evolución de las tecnologías en las últimas décadas y las tendencias del mercado, de forma que podamos consolidar este trabajo, como una inversión actual y con un desarrollo a corto y largo plazo en el desarrollo de los sistemas ópticos.

El tráfico de datos que soportan las redes de telecomunicaciones, es cada vez más heterogéneo e impredecible debido al desarrollo de nuevos servicios para el usuario. Disponer de una red dinámica y flexible, capaz de adaptarse a los cambios en el flujo de datos y que además ofrezca un rendimiento alto de los medios desplegados es el objetivo de desarrollo necesario para poder cubrir las necesidades del mercado y por lo tanto operadores.

Tal como hemos comentado, las redes ópticas están experimentando significativos cambios, impulsados por el crecimiento exponencial de tráfico debido a los servicios multimedia y por el aumento de la incertidumbre en la predicción de las fuentes de este tráfico debido a los modelos cambiantes de los proveedores de contenidos a través de Internet. El cambio ya ha comenzado: simple modulación de encendido y apagado de señales, lo que era adecuado para velocidades de bits de hasta 10 Gb/s, ahora se ha dado paso a la mucho más sofisticado con esquemas de modulación con tasas superiores a 100 Gb/s.
Hoy día, la tecnología de transmisión en redes ópticas es la multiplexación por longitud de onda (WDM), la cual está basada en la transmisión de canales ópticos sobre una misma fibra de igual ancho de banda sobre una rejilla (grid) espectral que es fija y normalizada (establecida por la ITU-T).

Esto implica la infrautilización de recursos en demandas pequeñas, ya que los canales soportan mayor demanda que la utilizada pero dada la imposición no es posible adaptarse. También nos implica una limitación en la velocidad máxima que nos puede proporcionar la propia rejilla, podemos tener velocidades o tasas de datos que no pueden transmitirse a largas distancias mediante una única portadora dentro de la rejilla de 50 GHz (velocidad de 100Gb/s).

![Diagrama ITU-T](image_url)

[Fuente ITU]

El cuello de botella es la división del espectro óptico en una longitud de onda fija "grid ", que ya no funcionará para 400 Gb/s ni con tasas superiores, por lo que es necesario tener una mayor flexibilidad en la rejilla.

Una vez que los transceptores y switch’s tengan esta capacidad se obtendría una nueva tipología de red óptica totalmente flexible, de forma que podemos decir que el equipamiento y el plano de control (señalización y encaminamiento) es capaz de manejar canales ópticos empleando ancho de banda variable.
Si observamos la figura superior, la componente que cambia los canales para llegar desde B hacia C o D se denomina multiplexor add-drop óptico (ROADM). Si este dispositivo fuese conforme a las especificaciones establecidas en rejilla de la ITU, no sería ser capaz de cambiar los canales del espectro a uno más amplio; como la fig. 1a muestra, la coincidencia de espectro óptico con un límite de cuadricula ITU (marcado en negro) no se transmitirán a través de la ROADM. [1]
Por lo tanto, con el fin de construir una red flexible, se requiere un nuevo tipo de ROADM que permita obtener un espectro flexible para ser conmutado desde la entrada a los puertos de salida, para obtener una transmisión eficiente de baja capacidad (10/40Gbps) y de alta capacidad (100/400Gbps y 1Tbps), para lo que será necesario el estudio de una rejilla flexible con una granularidad más baja que permita, que formatos de modulación con alta eficiencia espectral (EE) sean explotados en su totalidad.[1]

<table>
<thead>
<tr>
<th>Demand bit rate (Gb/s)</th>
<th>Modulation format</th>
<th>Channel bandwidth (GHz)</th>
<th>Fixed grid solution</th>
<th>Efficiency Increase for EON</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>DP-QPSK</td>
<td>25+10</td>
<td>150 GHz channel</td>
<td>35 GHz vs. 50 = 43%</td>
</tr>
<tr>
<td>100</td>
<td>DP-QPSK</td>
<td>37.5+10</td>
<td>150 GHz channel</td>
<td>47.5 GHz vs. 50 = 5%</td>
</tr>
<tr>
<td>100</td>
<td>DP-16QAM</td>
<td>25+10</td>
<td>150 GHz channel</td>
<td>35 GHz vs. 50 = 43%</td>
</tr>
<tr>
<td>400</td>
<td>DP-QPSK</td>
<td>75+10</td>
<td>4 100 Gb/s in 4 50 GHz channels</td>
<td>85 GHz vs. 200 = 135%</td>
</tr>
<tr>
<td>400</td>
<td>DP-16QAM</td>
<td>75+10</td>
<td>2 200Gb/s in 2 50 GHz channels</td>
<td>85 GHz vs. 100 = 17%</td>
</tr>
<tr>
<td>1000</td>
<td>DP-QPSK</td>
<td>190+10</td>
<td>10 100G in 10 50 GHz channels</td>
<td>200 GHz vs. 500 = 150%</td>
</tr>
<tr>
<td>1000</td>
<td>DP-16QAM</td>
<td>190+10</td>
<td>5 200Gb/s in 5 50 GHz channels</td>
<td>200 GHz vs. 250 = 25%</td>
</tr>
</tbody>
</table>

Tabla 1. Mejora de la eficiencia de espectro flexible sobre un enlace punto a punto, asumiendo una rejilla 50 GHz para DWDM fija y banda de seguridad de canal de 10 GHz y superchannels para EONs.

[Fuente: IEEE Communications Magazine - BEYOND 100G OPTICAL COMMUNICATIONS]

Sabemos que OFDM es una clase de modulación multiportadora (MultiCarrier Modulation – MCM) basada en la propiedad de ortogonalidad de todas las señales que forman el canal a transmitir. Esta propiedad permite concentrar las señales de subportadoras en menor ancho espectral que si utilizáramos WDM, el espectro de las subportadoras puede solaparse con el resto permitiendo la eliminación de bandas de guarda entre las mismas porque no serán necesarias. [2]

La propiedad de ortogonalidad se consigue estableciendo que las frecuencias centrales de cada subportadora estén separadas entre sí un múltiplo entero del
inverso de la duración de símbolo. Es decir, si T_s es el tiempo de símbolo, la frecuencia central de cada subportadora deberá estar separado n/T_s, donde “n” será un número entero. [2]

Podemos deducir, que utilizar OFDM en las redes ópticas nos permitirá poder modelar de forma flexible el flujo de datos, por lo que será materia de estudio en este trabajo.

3.- Desarrollo del Plan de Trabajo

A continuación se lista el itinerario de tareas desarrollado el desempeño de este trabajo de investigación, se ha partido de dos objetivos claramente diferenciados desarrollados en tareas, la composición presentada de forma resumida ha sido la siguiente:

Objetivo 1. Estudio de situación tecnológica actual. Conocer las ventajas e inconvenientes de la tecnología óptica existente.

En esta primera parte del trabajo se procederá al estudio de diferente documentación que permita introducirnos en la situación tecnológica actual para conocer sus ventajas e inconvenientes y poder desarrollar un escenario de análisis que permita realizar el estudio detallado.

TAREA 1.1:

Análisis y estudio de documentación. Comprender las bases de la tecnología óptica actual y visualización de la evolución y las necesidades de mercado y demandas futuras.
TAREA 1.2:

Analizar los fundamentos teóricos que permitan comprender el comportamiento de las redes EON y las limitaciones impuestas por la ITU en las redes existentes.

TAREA 1.3:

Análisis de redes ópticas elásticas (flexgrid), EON, evaluación teórica de escenarios y necesidades tecnológicas.

Objetivo 2. Análisis y simulaciones de sistema óptico mediante Matlab considerando y estudiando los efectos de filtrado y concatenación para emular redes Metropolitanas. Estudiar las modulaciones OOK y OFDM en las redes ópticas.

TAREA 2.1:

Conocer, estudiar y simular una red óptica en OOK y OFDM en transmisión y recepción a nivel teórico.

Desarrollo de simulaciones mediante Matlab, de sistemas IM/DD sin filtrado y sin considerar los efectos del canal óptico.

TAREA 2.2:

Realización de escenarios para simulaciones. Análisis de escenarios, desarrollo de escenarios y empleo transpondedores variables.

Desarrollo de simulaciones mediante Matlab, de sistemas IM/DD considerando los efectos del filtrado y efectos de la fibra, para diferentes anchos de filtro y longitudes de enlace.
TAREA 2.3:

Análisis de conmutación óptica flexible, conclusiones y nuevos escenarios. Desarrollo inicial de simulaciones de sistemas IM/DD-OOK para redes Metropolitanas/Regionales (de longitud variable de distancia entre nodos hasta un máximo de 1000km de enlace) mediante Matlab analizando los efectos de la concatenación de filtros y los efectos del canal óptico.

TAREA 2.4:

Desarrollo de scripts y simulaciones mediante Matlab. Análisis de resultados y conclusiones finales de los parámetros de diseño. Inicio de elaboración de memoria PRELIMINAR y conclusiones iniciales obtenidas.

Objetivo 3: Trabajos finales, análisis de simulaciones y conclusiones.

Presentación de resultados:

Una vez finalizado el estudio, se presentará el trabajo de investigación.

TAREA 3.1: Desarrollo de la línea investigadora, desglose de conclusiones obtenidas.

TAREA 3.2: Elaboración de resultados, conclusiones.

TAREA 3.3: Documentación final, líneas futuras.
4.- Multiplexación por longitud de onda WDM

Podemos decir que la tecnología de transmisión más extendida en las redes ópticas es la multiplexación por longitud de onda (WDM). Teniendo en cuenta las elevadas tasas de bit que se requieren hoy en día, la introducción de la tecnología wavelength division multiplexing (WDM) en la transmisión óptica es fundamental, ya que permite aumentar la capacidad de transmisión.

Podemos decir que actualmente WDM es la tecnología que permite multiplexar diferentes portadoras ópticas (generadas por diferentes transmisores ópticos) en una sola fibra óptica mediante el uso de diferentes longitudes de onda para diferentes señales. Esto permite una multiplicación de la capacidad de las fibras. [2]

Esta tecnología se basa en la transmisión de canales ópticos sobre una misma fibra de igual ancho de banda sobre una rejilla espectral fija establecida por la ITU-T (Coarse Wavelength Division Multiplexing - CWDM ó Dense Wavelength Division Multiplexing - DWDM). Este enfoque en la transmisión de canales de ancho de banda fijo restringe la capacidad de la red a adaptarse a las necesidades reales de transmisión, y la posibilidad de seguir creciendo en capacidad en la transmisión de largas distancias, siendo un punto restrictivo en el diseño de redes metropolitanas.

Podemos destacar que la tecnología Coarse-WDM (CWDM) permite multiplexar hasta 16 longitudes de onda en una única fibra según la recomendación de la ITU-T (G.694.2), con un espaciado entre canales de 2.500 GHz, en el rango de longitudes de onda entre 1.310 nm y 1.610 nm.

Además, los sistemas ópticos que usan tecnología CWDM resultan relativamente baratos, debido en gran parte a que la tolerancia de longitud de onda para los transmisores es bastante grande, alrededor de 3 nm, por lo que pueden utilizarse láseres no estabilizados con respecto a la temperatura, que
son láseres de menor calidad y, por lo tanto, de menor precio. También podemos destacar que la tasa de bit por canal se sitúa, por lo general, entre 1 y 3,125 Gb/s.

También tenemos que destacar que los sistemas basados en esta tecnología encuentran aplicación básicamente en el marco de las redes de área metropolitana, debido a su corto alcance.

Por otro lado, existe otra la tecnología derivada, Dense-WDM (DWDM), la cual nos permite multiplexar hasta 64 longitudes de onda en una única fibra de acuerdo con la norma de la ITU-T (G.694.1), que especifica un espaciado entre canales de 100 GHz o 200 GHz, dispuestos en varias bandas de transmisión en el rango de 1.500-1.600 nm. Además, recientemente han aparecido en el mercado sistemas DWDM con separación entre canales de 50 GHz y por lo tanto, el número de canales ópticos que se pueden multiplexar aumenta notablemente.

Con la tecnología DWDM, la separación entre canales es más estrecha que con la tecnología CWDM, con la consecuencia de que los equipos de multiplexación son más complejos y costosos que los equipos CWDM. Además, los transmisores ópticos requieren estabilización en temperatura para evitar cambios de la longitud de onda nominal debidos a variaciones de temperatura. Con esta tecnología, las tasas de bit por canal óptico varían entre 10 Gb/s y 40 Gb/s, por lo cual la aplicación de la tecnología DWDM es básicamente para redes de larga distancia (redes troncales).

No obstante, WDM y su arquitectura, introducen una alta rigidez en la red, que implican un bajo rendimiento del ancho de banda disponible y poca flexibilidad a la hora de reconfigurarse en función de las variaciones del tráfico.

También existe un problema de la concatenación de filtros ópticos, dado que no son filtros ideales, el paso por diferentes nodos (que a su vez contienen varios filtros) provoca que se degrade la señal como veremos más adelante.
5.- Multiplexación por División de Frecuencias Ortogonales Ópticas (O-OFDM).

Antes de realizar el desarrollo profundo del trabajo, es necesario realizar una introducción de todas las tecnologías y técnicas que se emplearan siendo el punto de partida O-OFDM. La multiplexación por división de frecuencias ortogonales (OFDM) es una tecnología de modulación basada en la transmisión de señales de alta velocidad, mediante la división de la misma en un número grande de sub-portadoras de menor capacidad. Esta división permite ajustar el ancho de banda de la señal a transmitir, eligiendo únicamente el número de sub-portadoras que la generan.

OFDM es una clase especial de modulación multi-portadora (MultiCarrier Modulation - MCM) basada en la propiedad de ortogonalidad de todas las señales que forman el canal a transmitir. Esta propiedad es la que nos permite concentrar las señales sub-portadoras utilizando menos ancho espectral que con la tecnología comentada anteriormente, WDM, ya que, utilizando esta técnica de modulación, el espectro de las sub-portadoras puede solaparse con el resto permitiendo la eliminación de bandas de guarda entre las mismas.

Esta modulación nos permite introducir un nuevo concepto en las tecnologías de transporte para redes ópticas, son las Elastic Optical Networks (EONs). Tecnologías de transporte con modulación multi-portadora como Optical-Orthogonal Frequency Division Multiplexing (O-OFDM) nos permiten alcanzar una granularidad más fina que la conseguida con WDM, a la hora de crear canales con anchos de banda variables con capacidad de adaptación en función de la demanda.

En OFDM, los datos se transmiten en paralelo en muchas sub-portadoras. Por lo tanto, incluso cuando el canal general es selectivo en frecuencia, el “sub-canal” a través del cual se transmite una sub-portadora dada es aproximadamente plano en frecuencia. De esta forma, para OFDM, la ejecución en canales AWGN (Additive White Gaussian Noise) establece una
base teórica desde la que se pueden encontrar los resultados para el caso más general de un canal selectivo en frecuencia. Estos nuevos resultados proporcionan una base para el diseño de los futuros sistemas de IM/DD.

Tener canales con ancho de banda variable implica una complejidad adicional a la hora del proceso de enrutado, la asignación del espectro disponible, lo que hace necesario el desarrollo de nuevos algoritmos de planificación para realizar el cómputo de las rutas y la asignación del espectro disponible en la fibra.

6.- Modulación On Off shift Keying de intensidad y detección directa (IM/DD-OOK).

Para transmitir información a través de un sistema por fibra óptica es necesario modular una propiedad de la portadora óptica con la señal de información. Esta propiedad puede ser la intensidad, la fase, frecuencia o polarización. El sistema de transmisión más sencillo y económico es aprovechar la relación lineal entre la potencia óptica emitida por un láser y su corriente de alimentación y hacer variar esta corriente según la información a transmitir.

En el extremo receptor tendrá lugar el proceso inverso a través del cual se obtendrá una corriente proporcional a la potencia óptica y por tanto proporcional a la información, es decir, la fuente de luz es modulada por la corriente de información inyectada junto con la corriente de polarización en el diodo. En el receptor, el detector óptico convertirá directamente la potencia óptica recibida en corriente eléctrica, usando fotodiodo PIN o fotodiodo de avalancha (APD).

El receptor ideal es el que se presenta en la siguiente figura, se detecta el campo óptico (normalmente con un fotodetector PIN o APD), se amplifica la corriente resultante y se inyecta en un bloque de muestreo y decisión, pasando antes por un filtro (adaptado).
La modulación de intensidad por lo tanto, se trata de modular la intensidad (potencia) de la luz transmitida, son los conocidos como IM/DD (*intensity modulation direct detection*), dado que también se combinan con la detección directa (empleando solo un fotodetector).

Para la modulación de intensidad, los bits se codifican en dos símbolos con diferente potencia cada uno. Esto hace que, resulte en diferentes amplitudes tanto para los “1” como para los “0”. A este tipo de modulaciones se les denominan OOK (On Off shift Keying – Modulacion Fuera de Desplazamiento literalmente). Dicho esquema será el que emplearemos en las simulaciones que resumiendo lo anterior podemos concretar que se basa en hacer una implementación en equivalente paso bajo para la simulación, es decir, que el “0” frecuencial se asume que se corresponde con la portadora óptica.

De forma matemática, para obtener la expresión del equivalente paso bajo del campo eléctrico de la onda óptica a la salida del laser (Ec.2) hemos de hacer la raíz cuadrada de la potencia óptica (Ec.1).

\[
P_{\text{salida}} = P_0(1 + m^* x(t)) \quad \text{[Ec.1]}\]

\[
E_{\text{salida}} = \sqrt{P_0(1 + m^* x(t))} \quad \text{[Ec.2]}\]

Donde \(m\) es el índice de modulación que será siempre menor o igual a uno para evitar sobre-modulación. \(P_0\) es la potencia de bias y \(x(t)\) es la señal de información normalizada a 1.
La potencia óptica podemos redefinirla como hemos visto en la ecuación 1 (Ec.1), pero incorporando las características del laser:

\[P_{\text{optica}} = P_0 + SI \ast (i(t) - I_{th}) \]

Donde:

\(SI \): slope, pendiente de la recta, eficiencia del laser,
\(I_{th} \): intensidad umbral a superar para no dejar de trabajar en esa zona,
\(I_0 \): intensidad en el instante inicial.

\[P_0 = SI \ast (I_0 - I_{th}) \]

Por lo que la potencia óptica podríamos expresarla como:

\[P_{\text{optica}} = SI \ast (I_0 - I_{th}) + SI \ast (i(t) - I_{th}) = P_0 \left(1 + \frac{i(t)}{I_0 - I_{th}} \right) \]

En recepción, los fotodiodos detectores el proceso de transformación óptica-eléctrica sigue el proceso inverso de forma que por cada fotón incidente se genera un electrón de corriente recibida, por lo que la intensidad detectada en función del campo eléctrico al cuadrado es equivalente a la potencia óptica por la responsividad (\(R \)):

\[i_{\text{Detectada}} = \Re |E|^2 \]

\[i_{\text{Detectada}} = \Re \ast P_{\text{optica}} \]

La señal codificada tendrá dos componentes, los componentes en fase (I) y cuadratura (Q). Tanto la transmisión como la recepción se hacen sobre el eje real (componente I). Esto resulta muy conveniente porque los fotodetectores se comportan como simples conversores de intensidad de luz en corriente eléctrica, tal y como se ha visto antes. Los sistemas de modulación de intensidad son los más populares y simples, como indiqué en el inicio de este
punto. Por ello, son los que se encuentran desplegados en la mayoría de las redes ópticas operativas de hoy día.

El principal problema de esta técnica se da conforme a la velocidad con que ella se enciende y se apaga, la luz tiende a cambiar por la dependencia del índice de refracción del material semiconductor del láser en la región activa con la densidad de portadores inyectados.

El aumento de la corriente inyectada hace crecer la densidad de portadores, el que hace caer el índice de refracción y, por lo tanto, la potencia y componentes espectrales (chirp) del pulso emitido, de manera que en el receptor la luz que llega es menos clara y hace difícil la detección precisa.

Como consecuencia de esto se ve la necesidad de realizar la modulación con dispositivos independientes al láser, para altas frecuencias, como indico en la siguiente figura donde represento las técnicas de modulación en el dominio óptico:

Figura 2: Técnica de modulación directa.

La máxima velocidad a la cual se puede modular una fuente óptica depende principalmente del tipo de recombinación de los portadores, así como de las capacidades asociadas al semiconductor. Los dispositivos láser que se encuentran comúnmente en el mercado tienen una velocidad máxima de aproximadamente 10Gbps, correspondiente a la capacidad de un canal en DWDM.
Podemos indicar que la ventaja de la detección directa es que el criterio de detección siempre es el mismo tanto si la señal es analógica como digital, siendo la única diferencia es de orden cuantitativo, es decir, la señal analógica con valores continuos, y la señal digital con valores discretos.

En el primer caso se requiere una relación señal ruido más elevada que con las señales digitales, por lo que la separación entre repetidores será inferior que la requerida en un sistema digital del mismo ancho de banda, es decir tendremos una mayor limitación en las longitudes de los tramos.

7.- Modulación externa de intensidad.

Tal como indicamos, la modulación directa del láser es barata y se adapta muy bien a aplicaciones de bajo coste y distancias y/o velocidades de transmisión moderadas. Para aplicaciones más avanzadas sin embargo hay que recurrir a la modulación externa que se caracteriza por no influir en la corriente del láser.

Frente a la modulación directa de la fuente óptica (láser), la aparición de los moduladores externos Mach-Zehnder significó un avance importante en el dominio óptico debido a que:

1) permiten que la fuente óptica funcione con un nivel constante de alimentación con lo que se prolonga su vida media

2) se consigue una mayor velocidad de modulación puesto que no se basa en movimiento de electrones en el diodo semiconductor.
3) Se reduce la modulación de fase residual o chirp (fluctuación de los elementos espectrales en la potencia de salida del dispositivo) que tiene efectos indeseados en la transmisión. Los moduladores externos más típicos son los moduladores electro-ópticos Mach-Zehnder.

Los moduladores electro-ópticos externos son fundamentales en los sistemas de comunicaciones ópticas actual. Su rango de aplicación se encuentra en los sistemas digitales de alta velocidad. La modulación de fase de una señal luminosa se hace a través de guías de onda en Niobato de Litio con difusión de titanio. Se consigue al aplicar un voltaje a los electrodos posicionados sobre el cristal de Niobato de Litio, el campo producido por este voltaje tiene una interacción electro-óptica con el Niobato de Litio e induce a un cambio en sus índices de refracción.

El modulador de intensidad tipo Mach-Zehnder, es el más común. Funciona de la siguiente manera: la señal óptica entra a la guía de onda y se divide en dos cada una con una intensidad óptica del 50%. De este modo, el haz de luz de entrada se divide en dos caminos, y en cada uno de estos hay un modulador de fase, lo que permite que haya una diferencia de fases controlada entre los dos caminos. Dependiendo del cambio de fase relativo, las interferencias varían y pasan de constructivas a destructivas y viceversa.

![Figura 4: Esquema Mach-Zehnder (MZ)](image)
7.1.- IM/DD mediante modulador Mach-Zehnder.

Tal como comente en el punto principal, el modulador externo más utilizado es el que se conoce como modulador electro-óptico Mach Zehnder. Electro-óptico porque se basa en el fenómeno del mismo nombre según el cual algunos materiales cambian su índice de refracción óptico de forma proporcional al campo eléctrico que se les aplica. Y Mach Zehnder, porque para convertir la modulación de fase producida por el efecto electro-óptico en una modulación de amplitud se requiere una configuración interferométrica (combinación de luz de diferentes receptores) entre las que la tipo Mach Zehnder (ver Figura 4) es la más común.

Con este modulador conseguimos trabajar con un nivel constante de alimentación en la fuente óptica lo cual prolonga su vida media, además conseguimos mayores velocidades de modulación y reducimos la modulación de fase o chirp.

En la figura 5, podemos ver el esquema del modulador con los voltajes de entrada en cada rama, donde Ve1 y Ve2 corresponden respectivamente al voltaje aplicado a cada rama o electrodo del modulador. Vc1 y Vc2 corresponden a la sensibilidad del electrodo, es decir, es el voltaje necesario para conseguir un cambio de fase de \(\pi \) radianes en la señal óptica.

Figura 5: Voltaje aplicado a cada rama en el esquema Mach-Zehnder (MZM)
En el modulador tipo Push-Pull, inyectamos una señal a cada rama con la misma amplitud pero con fases opuestas. De esta manera generamos dos modulaciones de fase iguales pero con signos contrarios, así en la salida del modulador podemos tener una señal óptica cuya amplitud cambia en función de la señal eléctrica aplicada a los electrodos. Este modo es típico de moduladores con un único acceso común a las dos ramas del modulador, estos son los moduladores más comunes en la práctica y son llamados single-drive. Con estos moduladores, al introducir la señal eléctrica por este acceso afecta de la misma forma a ambas ramas pero con signo contrario, tal y como necesitamos para el modo Push-Pull.

En este caso \(V_1 = V_c - V_e \) y \(V_2 = V_e \), por lo que la expresión del campo eléctrico podemos escribirla de la siguiente manera:

\[
E_{\text{salida}} = \frac{E_{\text{entrada}}}{2} \left(e^{\frac{\pi V_1}{V_c}} + e^{\frac{\pi V_2}{V_c}} \right) \quad [\text{Ec.8}]
\]

\[
E_{\text{salida}} = E_{\text{entrada}} \cos\left(\frac{\pi V_e}{V_c}\right) \quad [\text{Ec.9}]
\]

Con la expresión Ec.9 podemos obtener fácilmente la función de transferencia del modulador, aunque en la realidad difícilmente se cumple el reparto proporcional entre las dos ramas interferométricas, por lo que para cuantificar esta diferencia que se producen en las ramas se utiliza el parámetro “alfa” (\(\alpha \)), el cual nos indica la cantidad de señal de cada rama. No obstante lo consideraremos ideal, por lo que \(\alpha = 1/2 \).

Este parámetro está relacionado con una de las características más importantes que definen un modulador, la Relación de Extinción (“Extinction Ratio, ER) que utilizaremos en los script de simulación, y representa la relación entre potencia máxima y la potencia mínima o también se puede expresar como:
\[ER = 10\log\left(\frac{1}{1 - 2\alpha}\right) \quad \text{[Ec.10]} \]

\[E_{\text{salida}} = E_{\text{entrada}}\left(\sqrt{\alpha}e^{j\theta} + \sqrt{1 - \alpha}e^{j\theta}\right) \quad \text{[Ec.11]} \]

Desarrollando la tensión de entrada en forma de modulo y fase obtenemos la relación siguiente \[5\]:

\[E_{\text{salida}} = \sqrt{\cos^2\theta + (1 - 2\alpha)^2 \sin^2\theta} \cdot e^{j\arctan\left(\frac{1 - 2\alpha}{\cos 2\theta}\right)} \quad \text{[Ec.12]} \]

Podemos ver con esta última expresión (Ec.12), que además de la modulación de amplitud obtenemos un chirp o modulación de fase adicional, provocado porque tenemos una ER (Extinction Ratio) finita.

7.2.- Efecto de la fibra dentro del sistema.

Tal como comentamos anteriormente, trabajamos con un sistema ideal basado en transformaciones complementarias de amplitud eléctrica – potencia óptica (IM) y potencia óptica – amplitud eléctrica (DD) para conformar el sistema IM/DD, sistema que es ideal si no contamos con el canal. Pero al introducir la fibra como canal también introducimos sus problemas derivados de no linealidad producidas en el receptor debido a la dispersión cromática producida por la propia fibra.

Dadas las distancias que simularemos, utilizaremos fibra óptica monomodo (SMF), en la que deberemos considerar el efecto de la dispersión cromática que producirá que diferentes componentes espectrales viajen a diferente velocidad a través de la propia fibra.

La dispersión cromática es un fenómeno de la fibra óptica no deseado en las aplicaciones de telecomunicaciones. Precisamente, actúa como un filtro que disminuye su ancho de banda de paso a medida que se incrementa la distancia...
de fibra y, de este modo, limita la velocidad de transmisión. Por esto, se trata del efecto más impactante en telecomunicaciones, por lo que el estudio, control y la mitigación de sus efectos son clave para el buen funcionamiento del sistema de comunicaciones ópticas.

La función de transferencia simplificada, que caracteriza la fibra óptica es según [5]:

$$H(\omega) = e^{\frac{D\pi c^2}{2}f_m^2}$$ [Ec.13]

NOTA: En realidad la función de transferencia de la fibra se define de forma implícita con la Ec. No lineal de Schroedinger. Por lo que la [Ec.13], es sólo una simplificación que solo tiene en cuenta el efecto de la dispersión.

Donde D es el coeficiente de dispersión cromática, utilizaremos el valor típico D=16.5ps/nm-Km en tercera ventana con \(\lambda=1.55\)um, L es la longitud de fibra la cual iremos variando dentro de tres escenarios para longitudes de tramos de 50, 80 y 100 km hasta alcanzar un total de 1000km, c la velocidad de la luz en el vacío y \(f_m\) la frecuencia de separación de la banda respecto de la portadora. Podemos observar directamente de la ecuación anterior (Ec.13), que se impone un retardo diferente en cada banda lateral de la señal transmitida a través de la fibra.

7.3.- Histogramas

Si muestreamos una señal recibida, podemos obtener histogramas que nos permiten evaluar la calidad de la señal (por ejemplo, con la tasa de error de bit, BER, parámetro que utilizaremos para determinar criterios de calidad en las simulaciones).

Este método es sensible a la distorsión de la señal y al ruido, por lo que lo podemos utilizar para monitorizar distorsiones inducidas por la dispersión...
cromática. Tratamos el ruido óptico a nivel de amplitud, lo que nos permitirá evaluar fácilmente que parte de la señal está más atenuada, “0” o “1”.

Para las simulaciones utilizaremos el diagrama de ojo, que es una distribución de amplitud síncrona en un período de bit determinado. Se trata de una herramienta de uso común para analizar la calidad de las señales, y la podemos utilizar también para monitorizar sus prestaciones, nos muestra la superposición de las distintas combinaciones posibles de unos y ceros en un rango de tiempo o cantidad de bits determinados, es decir, el diagrama de ojos nos superpone los bits recibidos y nos permite ver como afecta el ruido, tanto a los “1” como a los “0” porque añadimos ruido óptico (en amplitud) que hace que tenga mas potencia la señal.

[Figura 6: Diagrama de ojos para una potencia de -29 dBm.]

Observando los diagramas de ojo, podremos visualizar la degradación del patrón a medida que aumenta la atenuación de las señales, es decir, en un canal de transmisión digital, las señales que se propagan, siempre estarán expuestas a atenuación, la cuál dependerá principalmente de las distancias asociadas al enlace (nodos), que en nuestro caso se simularan mediante la concatenación de filtros, siendo cada filtro el equivalente a una estación nodal.
8.- Sistema OFDM de modulación e intensidad directa con modulador Mach-Zehnder (MZM).

La idea es implementar de OFDM óptico de banda lateral única con un MZM, separando la señal modulada desde su complejo conjugado (A desde A *). Con un modulador MZ tenemos dos formas de realizar OFDM óptico de banda lateral única [3]:

1) Mediante la inserción de sub-portadoras no moduladas DC

[Fuente: Sander Jansen- © Nokia Siemens Networks]

Figura 7: Esquema de implementación de OFDM óptico de banda lateral única con un MZM mediante la inserción de sub-portadoras no moduladas DC

Los bits a transmitir se introducen en el sistema en serie y lo primero que nos encontramos es un bloque serie-paralelo. Este bloque agrupará los bits para codificarlos, generalmente, mediante un modulador QAM y enviará un grupo de símbolos al siguiente bloque, la IFFT, se realiza la inversa de la Transformada Discreta de Fourier.
Al lado de la banda deseada se genera una banda imagen, que será eliminada antes de la transmisión mediante un filtro paso banda (Band Pass Filter-BPF).

La generación de las subportadoras son sin modular con el fin de separar la spectralmente la banda OFDM de DC.

La principal desventaja es que a partir de una perspectiva de la complejidad digital de la instalación no es muy eficiente:

- Sólo 1/4 de la FFT se utiliza para los datos
- Sólo la mitad de la anchura de banda de la DAC se utiliza para la generación de datos

2) **Utilizando un modulador IQ a RF.**

En este método, todas las subportadoras son moduladas y se utilizan dos conversores DA (DAC) para convertir la parte real e imaginaria de la señal OFDM de la digital en el dominio analógico.

Posteriormente se utiliza un mezclador IQ para la conversión de la señal OFDM en una frecuencia intermedia de manera que la señal puede ser modulada con un MZM estándar. Es el que utilizaremos.

![Figura 8: Esquema de implementación de OFDM óptico de banda lateral mediante un modulador IQ.](Fuente: Sander Jansen- © Nokia Siemens Networks]
Las principales ventajas de esta configuración son el tamaño de la FFT y el ancho de banda del CAD, que se utilizan totalmente para la modulación de datos.

Las principales desventajas son que se necesitan dos conversores DAC y que el uso del modulador IQ hace que la parte analógica de la configuración sea más compleja.
9.- Bases de simulación de un sistema IM/DD 10Gb/s.

9.1.- Modulo de simulación de un sistema OOK.

Tal como se comentó al inicio de este trabajo, para la simulación de los escenarios se empleará como punto de partida scripts desarrollados en Matlab por el Centro Tecnológico de Telecomunicaciones de Cataluña (CTTC), los cuales serán adaptados para tipificar las condiciones de contorno y escenario concreto.

El esquema implementado en los scripts es un sistema OOK, tal como se comentó en el punto “6.- Modulación de intensidad y detección directa (IM/DD).”, dicho esquema se basa en hacer una implementación en equivalente paso bajo para la simulación, donde el “0” frecuencial se asume que se corresponde con la portadora óptica.

Por otro lado, para emular la señal analógico, la continuidad en el tiempo se aproxima utilizando un sistema digital con una frecuencia de muestreo suficientemente alta. Se suelen utilizar 8 o más muestras por símbolo, aunque para algunos casos concretos puede llegar a ser menor.

En la estructura de los scripts utilizados, primero se fijan todas las variables necesarias como el número total de bit, bit rate, muestras por bit, etc:

```matlab
% Simulacion sistema OOK
clear all; close all;
%=============================================% Definicion de tiempos y frecuencias del sistema%=============================================Rb=10.7e9; %bitrate
time_window = 64*1024/Rb;
fs=8*Rb; % frecuencia de muestreo
dt = 1/fs; % sample time
time = (0:dt:(time_window-dt)); % time variable
tl=length(time); % total number of samples
```
El tiempo Window nos indica el número de bits simulados, es decir, la resolución del BER. Cuanto más larga sea la ventana más bajaremos la resolución de la tasa de error.

La frecuencia de muestreo define la parte del espectro alrededor de la longitud de onda de interés que estamos simulando, si el filtro es ancho se saldría de la simulación por lo que es indiscutible tener un compromiso al respecto.

9.1.1.- Generación de secuencia de bits pseudoaleatorias, señal de entrada.

La idea general es generar bits, emulamos el canal de transmisión y comparamos con los bits recibidos. Con dichas variables cargadas anteriormente, se generan los datos a razón de una muestra por bit, cargando una secuencia de bits pseudoaleatoria (PRBS, “Pseudo-Random Bit Sequence”), éstas son unas secuencias conocidas, que cumplen una serie de propiedades y se pueden generar de forma sencilla con un LFSR, (Linear Feedback Shift Register, Registro de desplazamiento con retroalimentación lineal), que es un registro de desplazamiento en el cual la entrada es un bit que proviene de aplicar una función de transformación lineal a un estado anterior, realimentado de acuerdo con un polinomio primo, de tal forma que el LFSR sea máximo, es decir, que su periodo sea máximo.

En el caso concreto, utilizaremos una PRBS (“Pseudo-Random Bit Sequence”) de orden 15 (PRBS15 = \(x^{15} + x^{14} + 1\)), que hemos grabado previamente en un fichero de texto. Como la secuencia tiene un número limitado de bits, hay que concatenarla tantas veces como sea necesario para los casos en que el número total de bits a simular sea mayor que la longitud de la PRBS. El código empleado es el siguiente:

```matlab
spb = fs/Rb; % samples per bit
nb = floor(tl/spb); % total number of bits
```
% Definición de la señal de entrada de orden 15
%===
% Definimos la fuente de datos
bits=load('singprbs15.txt'); % cargamos la PRBS en
% el archivo singprbs15.txt para 2^15-1

% Comprobamos si la ventana de tiempo es mayor que la longitud de
% la fuente PRBS y concatenar los datos si es necesario
if nb<=length(bits)
 data=bits(1:nb);
else
 data=[];
 for k=1:1:floor(nb/length(bits)),
 data=[data, bits];
 end
 excess=mod(nb, length(bits));
 data=[data, bits(1:excess)];
end
% resamblado de datos utilizando un pulso rectangular
for k=1:1:spb,
 data_aux(k:spb:spb*(length(data)-1)+k)=data;
end
% añadimos ceros a la longitud de tiempo
es=tl-nb*spb; % exceso de muestras
datasig=[zeros(1,es),data_aux,zeros(1,es)];

Cargamos la PRBS que nos asegura que cada bit tiene la misma probabilidad
de ser “1” que “0”, con una periodicidad determinada (32.767 registros = 2^{15} -1),
concatenando en función del numero de bits definidos, repitiendo en función de
las muestras por símbolo, generamos pulsos rectangulares según estas
muestras por bit que se han definido.

Como el ultimo bit no esta especificado, (2^{15} -1), rellenamos con ceros.
9.1.2.- Generación del campo óptico.

El siguiente paso trata de codificar los bits generados en pulsos. Ello se puede hacer con un re-muestreo, pero para el caso de la señal que nos ocupa, simplemente repetimos la misma muestra/bit tantas veces como muestras por tengamos especificadas. Dichos pulsos podemos considerarlos como señales eléctricas en un dominio analógico, por lo que el siguiente paso será pasar estas señales eléctricas al dominio óptico. Para ello, usamos un modulador óptico alimentado por un láser que funciona como fuente de onda continua.

Como el láser es de onda continua y trabajamos en un simulador por equivalente paso bajo, estamos considerando que el láser oscila a una frecuencia 0.

```matlab
%===================================================== % Generamos el campo óptico utilizando un láser ideal %=====================================================
laser_power=2e-3; % Potencia de salida del Laser [W]
laser_linewidth=10e6; % Ancho de línea del Laser [Hz]
Ei=laser_cw(laser_power, laser_linewidth, tl, fs);

%=== laser_cw.mat
function Eo = laser_cw(Po, linewidth, nsamples, fs)
% ENTRADAS
% ========
% Po = Potencia de salida
% linewidth = ancho de línea del laser
% nsamples = longitud de la matriz de salida
% fs = frecuencia de muestreo
sigma_pn=sqrt(2*pi*linewidth*fs);
fn=sigma_pn*randn(1, nsamples);
pn=(1/fs)*cumsum(fn);
Eo=sqrt(Po)*exp(1i*pn);
% Eo = salida campo óptico

 Así, lo único que hace el módulo de láser que se indica arriba, es generar una potencia continua y añadir un cierto ruido de fase. La señal de salida de este
módulo tiene el mismo número de total de muestras que la señal eléctrica analógica; dado que ambas se corresponden al mismo lapso de tiempo que estamos emulando/examinando.

9.1.3.- Modulador óptico.

Referente al tratamiento del modulador, este simplemente utiliza la señal óptica generada por el láser y le aplica los pulsos eléctricos de acuerdo con una relación de extinción especificada. Para el caso que nos ocupa, se especifica una relación de extinción de unos 30 dB para hacerlo todo bastante ideal.

```matlab
% Modulamos la salida del Laser

ERdB=30; %Radio de extincion [dB]
Em=modulator(ERdB, Ei, datasig);

function Eo = modulator(ErdB, Ei, data)
% MODULADOR IDEAL CON RELACION DE EXTINCTION FINITA
% =======
% ErdB = Extinction ratio (dB)
% Ei = Input optical field
% data = data signal [0,1]
% Eo = Output optical field
Pin=mean(abs(Ei).^2);
Er=10^(ErdB/10); %Extinction Ratio (linear)
amplitude=(sqrt(1)-sqrt(1/Er))/2;
bias=(sqrt(1)+sqrt(1/Er))/2;
data_Er=amplitude*2*(data-0.5)+bias;
Eo=Ei.*data_Er;
```

De esta forma hemos generado la señal en el dominio óptico, y ahora, para evaluar sus prestaciones, se hacen medidas de sensibilidad en ausencia de fibra, es decir, atenuamos la señal óptica justo antes del receptor óptico y se mide la tasa de error. Así, justo antes del receptor óptico, introducimos un
atenuador que a cada paso del bucle introduce una atenuación mayor para así decrementar la potencia de entrada al receptor óptico.

```matlab
% Modulamos la salida del Laser
ERdB=30; %Radio de extincion [dB]
Em=modulator(ERdB, Ei, datasig);
% Ajustes del atenuador
attdB=29:.05:32;
BER_theo=zeros(1,length(attdB));
BER=zeros(1, length(attdB));
power=zeros(1, length(attdB));
disp('Starting sensitivity measurement...');
tinit=tic; % seguimos el proceso
for l=1:1:length(attdB),
% Atenuacion
 att = sqrt(10^(-attdB(l)/10));
 Er=att*Em;
```

La relación de extinción nos diferencia la potencia de los “0” y de los “1”, idealmente tendríamos que “0” es una potencia 0, dado que no lo consideramos ideal, indicamos una relación mil veces superior una respecto de la otra (30dB).

**9.1.4.- Desarrollo del filtro óptico.**

Respecto a los parámetros del filtro a considerar, Sigma es el valor que cuadra con la caracterización experimental de los filtros [4]. Omega es el vector que contiene las frecuencias, primero consideramos las positivas (+Rb/2) y luego las negativas. Utilizaremos la función de transferencia [3], que normalizaremos con un máximo para garantizar que tendremos un cero.

El fragmento de script desarrollado es el siguiente:

```matlab
% Parametros del filtro
BW= 50e9; % luego veremos que simulare con anchos de 25 y 12.5GHz
```
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

D. Jorge Garrido Holgado

D. Josep M. Fabrega Sánchez

```matlab
sigma=5e9;
step=fs/length(Em);
%cumsum: suma acumulada de elementos
omegal=cumsum(step*ones([1, length(Em)/2]))-step; omega2=step-
flipud(omegal);
omega=[omegal, omega2];
argerfl=(.5*BW-omega)/(sqrt(2)*sigma);
argerf2=(-.5*BW-omega)/(sqrt(2)*sigma);
% espectro de campo óptico de un filtro de paso de banda creada por un WSS
% Longitud de onda conmutadores selectivos
hs=0.5*sigma*sqrt(2*pi)*(erf(argerf1)-erf(argerf2));
hs=hs/max(hs);
```

### 9.1.5.- Receptor óptico.

El receptor óptico que utilizaremos en la simulación, está basado en un fotodetector de avalancha, APD. Primero especificamos los parámetros del APD, luego se fotodetecta y pasamos por un filtro paso bajo (Bessel de orden 5 y ancho de banda de 0.8 veces la velocidad de bit) para filtrar el ruido.

```matlab
%==
% RECEPTOR OPTICO -- Datos del fotodetector APD --
%==
Responsivity=0.7;
M=1;
Rl=50; % Impedancia [Ohm]
Id=1e-12; % dark current [A]
T=300; % [K] Room temperature
FndB=4.7; % Figura de ruido F [dB]
ka=1; % coeficiente de ionizacion (worst case = 1)
Ir=APD(Er, Responsivity, 1, M, Rl, Id, T, FndB, fs);
%==
% Datos de salida del filtro
```
Aunque he definido el fotodetector como APD, hay que apreciar que si hubiera sido PIN nos daría igual resultado respecto a la OSNR dado que la ganancia avalancha aplicada para la conversión electro óptica es unitaria (M=1)

Por último, la señal resultante pasa por el decisor que también calcula la tasa de error (módulo BER_OOK_real).

```matlab
%% Calculamos la BER teórico para comparar
%
P1=max(abs(Er).^2); % Received power for "1"s [W]
P0=min(abs(Er).^2); % Received power for "0"s [W]
I1=P1*Responsivity*M; % Photodetector current for "1"s [A]
I0=P0*Responsivity*M; % Photodetector current for "0"s [A]
Fa= M; % Excess noise factor (M corresponds to ka = 1)
%
% Shot noise varianza para "1"s and "0"s
sigma_s_2_1=2*1.6e-19*(M^2)*Fa*(I1/M+Id)*0.8*Rb;
sigma_s_2_0=2*1.6e-19*(M^2)*Fa*(I0/M+Id)*0.8*Rb;
%
% Variacion de Ruido Termico
sigma_t_2=4*1.38e-23*T*(10^(FndB/10))*0.8*Rb/Rl;
%
% Desviación típica general de "1" y "0 s" s
sigma_1_t=sqrt(sigma_s_2_1+sigma_t_2);
sigma_0_t=sqrt(sigma_s_2_0+sigma_t_2);
%
% Factor Q teorico y BER
Q_theo=(I1-I0)/(sigma_1_t+sigma_0_t);
BER_theo(l)=.5*erfc(Q_theo/sqrt(2));
```
En éste módulo se toma la muestra óptima de cada bit y ahí se aplica el umbral para decidir entre los “1” y los “0”. Una vez obtenidos los bits, se calcula la tasa de error simplemente comparando la secuencia transmitida con la recibida. Para poder ver las curvas de sensibilidad, se mide la potencia óptica recibida, así como también se hacen los cálculos para el sistema teórico de cara a comparar los resultados con la teoría.

9.2.- Modulo de simulación de fibra.

El script que utilizaremos para simular la fibra es una modificación del anterior en el que incluiremos entre los bloques de transmisor (láser+modulador) y receptor (atenuación variable + fotodiodo + filtro) el módulo de fibra.

Este módulo emula la transmisión de las señales por la fibra óptica. Es un módulo adaptado a partir del SSPROP, desarrollado por la universidad de Maryland, donde se utiliza el método de split-step Fourier para solucionar la ecuación no lineal que describe la propagación de señales por la fibra óptica.

En análisis numérico, el método de split-step Fourier, es un método numérico pseudo-espectral utilizado para resolver las ecuaciones diferenciales parciales no lineales como la ecuación no lineal de Schrödinger. El nombre surge por dos razones. En primer lugar, el método se basa en el cálculo de la solución en pequeños pasos, y el tratamiento de la los pasos lineales y no lineales por separado. En segundo lugar, es necesaria la transformada de Fourier de ida y vuelta porque la etapa lineal se realiza en el dominio de la frecuencia, mientras que el paso no lineal se realiza en el dominio del tiempo.
En el campo de la propagación del pulso de luz en las fibras ópticas, la interacción de mecanismos lineales y no lineales hace que sea difícil encontrar soluciones analíticas generales, donde el método split-step nos proporciona una solución numérica a este problema.

Tal como indique anteriormente, una de las ecuaciones más utilizadas en las comunicaciones ópticas es la ecuación de Schrödinger no lineal, que describe la propagación de señales por fibra óptica, gobierna la propagación de señales ópticas en fibras no lineales en medios dispersivos. Esta ecuación, exceptuando algunos casos muy especiales no tiene soluciones analíticas, y debe ser resuelta de forma numérica con el método comentado anteriormente (SSF).

Para la resolución de esta ecuación con Matlab partiremos de la rutina “SSPROP”, que como comentamos, ha sido desarrollada por la Universidad de Maryland y utiliza el método Split-step Fourier.

En nuestra rutina, como paso previo, inicializamos las variables necesarias para emular la fibra, incluyendo la longitud de onda a la que se quiere emular la propagación, la atenuación de la fibra, la dispersión, el parámetro de no-linealidad etc.

```matlab
%=== % Definimos los parámetros físicos de la fibra % (Utilizando SSMF) %=== c = 3e8; %[m/sec] velocidad de la luz lambda0 = 1550*1e-9; %[m] longitud de onda central alphadB = 0.2*1e-3; %[dB/m] atenuacion de la fibra alpha = alphadB/(10*log10(exp(1))); Dp = 17e-6; %[s/m^2] parametros de dispersion S= 0.07*10e3; %[s/m^2] pendiente de dispersion -slop % Coeficiente de dispersion de la fibra beta2=-(Dp*(lambda0^2))/(2*pi*c)); beta3=(((S*lambda0^4)/(4*(pi^2)*c^2)))-beta2*lambda0^2/(pi*c);```
n2=2.6e-20; %[m^2/W] índice de no linealidad
Aeff=80e-12; %[m^2] Área del núcleo
gamma= 2*pi*n2/(Aeff*lambda0); % Coeficiente de no linealidad de la fibra

fiber_length=50e3; % [m]
max_deltaz=1e3; % [m]
max_phase_change=.05; % [grados]

Luego calculamos el número de pasos discretos a realizar para la simulación, así como también se especifican los márgenes/límites de precisión para el método split-step Fourier.

Una vez se tienen todos estos parámetros definidos, se procede a lanzar la rutina “SSPROP” que emula la propagación por la fibra.
10.- Simulación de un sistema IM/DD-OOK 10Gb/s.

Iniciaremos el entorno de simulación con un sistema IM/DD de 10Gb/s con corrección de errores en recepción mediante código FEC (forward error correction). Para tener en consideración la corrección de errores fijaremos una BER objetivo de acuerdo con la capacidad de corrección del código.

Fijándonos en la norma ITU-T G.975.1, utilizaremos un código Super-FEC, el cual entrelaza dos códigos entrelazados (Código principal exterior RS(1023,1007), m=10, T=8, y Código principal interior BCH(2047,1952), m=11, T=8) [6], para elevar la ganancia de codificación de la cabida útil de la unidad de datos de canal óptico (ODU) estándar G.709/Y.1331, siempre con la misma relación de datos en la unidad de transporte de canal óptico (OTU) G.709/Y.1331, es decir 7% de tara.

El hecho de tener en cuenta un 7 % de tara (OH, overhead), implica incrementar la velocidad de bit y pasar de 10 Gb/s a **10.7 Gb/s**, y planteamos una BER objetivo de **1e-3** (BER, Bit Error Rate y es el acrónimo que usamos para referirnos a la tasa de error de bit. Es la medida experimental de la probabilidad de error de bit y se obtiene dividiendo el número de bits erróneos entre el número total de bits).

Para las simulaciones utilizaremos una fuente Láser estándar, de 2mW de potencia de salida y ancho de línea de 10MHz.

El esquema de la instalación que estudiaremos tendrá tres partes diferenciadas, analizaremos el:

1. Efecto de filtrado para cada uno de los anchos propuestos (12.5, 25, 50 GHz).

2. Añadiremos diez filtros concatenados para analizar el efecto también en los diferentes BW, simulando así los efectos de paso por una central.
3. Añadiremos el efecto del canal óptico al caso anterior.

Por lo que los tres puntos anteriores podemos recogerlos en el siguiente esquema:

![Diagrama de sistemas OFDM/A ópticos para redes de nueva generación]

10.1.- Análisis de la Relación Señal-Ruido vs BER, variando el ancho del filtro, sin considerar el canal de fibra.

Realizaremos un análisis del sistema sin considerar la atenuación y medida de potencia, midiendo la OSNR a 12.5 GHz de ancho de banda de referencia.

La relación señal-ruido óptica (OSNR) es uno de los parámetros más útiles para estimar la calidad de una señal directamente en el dominio óptico. Esto sucede porque la podemos relacionar muy fácilmente con la probabilidad de error de bit de la señal transmitida a través de un enlace amplificado de manera óptica.

Además, puesto que la OSNR es transparente a la velocidad de bit y al formato de modulación de la señal óptica, resulta un parámetro ideal para monitorizar las prestaciones de los enlaces en redes reconfigurables de manera dinámica.

Al obtener las curvas de BER vs OSNR podemos observar donde obtenemos el valor de la BER fijado de corte de 1e-3, en función del ancho del filtro, analizaremos los valores para BW=50, 25 y 12.5 GHz, utilizando para la simulación como frecuencia de muestreo realizaremos las simulaciones para 4 y 8 veces la R\text{b} (bit rate, f_s=4*R_b, f_s=8*R_b).
OSNR vs BER

Figura 9: OSNR vs BER y diagrama de ojos para BW=50GHz, fs1=4*Rb

BW=25GHz, fs1=4*Rb

OSNR vs BER

Figura 10: OSNR vs BER y diagrama de ojos para BW=25GHz, fs1=4*Rb

BW=12.5GHz, fs1=4*Rb
Si analizamos de forma superpuesta la relación existente entre BER y OSNR para cada ancho de filtro:

Figura 11: OSNR vs BER y diagrama de ojos para BW=12.5GHz, fs=4*Rb

Figura 12: OSNR vs BER para los diferentes BW, con fs=4Rb
Si cambiamos la frecuencia de muestreo, \(fs = 8Rb \), podemos observar mayor definición de la simulación:

Figura 13: OSNR vs BER para los diferentes BW, con \(fs = 8Rb \)

Si superponemos las gráficas anteriores podemos observar la gran diferencia de los resultados en función de la ampliación de la frecuencia de muestreo, lo que nos lleva a decidir que para el resto de simulaciones usaremos la mayor.

Figura 14: OSNR vs BER para los diferentes BW, con \(fs = 4Rb \) (continuo) y \(fs = 8Rb \) (discontinuo)
Podemos deducir que estamos filtrando después de añadir ruido, de forma que, al filtramos mucho, disminuir el ancho de banda, disminuimos el ruido que entra en el receptor, como vemos cuando pasamos de 50 GHz a 25 GHz.

Pero si filtramos demasiado (BW = 12.5 GHz) nos aparece un cierto nivel de interferencia, que nos arruina la señal recibida. Por lo que se deduce como interesante estudiar el efecto de concatenar varios filtros analizando el comportamiento en diferentes anchos de banda, lo que veremos en el siguiente punto.

10.2.- Análisis de la Relación Señal-Ruido-BER, considerando los efectos de filtrado óptico concatenado.

El espectro de amplitud óptica de salida del dispositivo se prevé que sea la convolución de esta función de apertura con la función de transferencia óptica (OTF) del dispositivo [4], en este caso, se supone que es Gaussiana, es decir:

\[S(f) = \int_{-\infty}^{\infty} R(f')L(f-f')df' \quad [Ec.14] \]

Donde \(L(f) \) es una función gaussiana normalizada dada por:

\[L(f) = \exp\left[\frac{-f^2}{2\sigma^2}\right] \quad [Ec.15] \]

Donde \(\sigma \) es la desviación estándar de la OTF gaussiana, es la caracterización experimental de los filtros, cuyo valor es de 5GHz y está relacionado con el ancho de banda de 3 dB por:

\[\sigma = \frac{BW_{OTF}}{2\sqrt{2\ln 2}} \quad [Ec.16] \]

Los filtros ópticos se pueden considerar Gausianos, sin embargo ello no aproxima bien su comportamiento real, sino que se aproxima mejor el modelo presentado en la referencia [4], que expresa el espectro del campo óptico de un filtro paso banda como:
\[S(f) = \frac{1}{2} \sigma \sqrt{2\pi} \left[\text{erf} \left(\frac{B / 2 - f}{\sqrt{2\sigma}} \right) - \left(\frac{B / 2 - f}{\sqrt{2\sigma}} \right) \right] \] [Ec. 17]

Donde \(\text{erf} (x) \) representa la función de error. El espectro de potencia óptica del filtro de paso de banda, al ser comparado con las mediciones de un analizador de espectro óptico, se encuentra elevando al cuadrado la Ec. (17) y la conversión a unidades logarítmicas. Observamos también que \(S(f) \) es el espectro de amplitud del dispositivo, y, como tal, es válido para valores complejos, lo que permite para la predicción del comportamiento de fase de los canales de WSS. [Ver: “9.1.4. - Desarrollo del filtro óptico.”]

El esquema empleado es el siguiente:

El modelo del filtro que utilizaremos es el presentado en [4], para lo que introducimos en nuestro script el siguiente código que lo conforma considerando los efectos de la fibra:

```matlab
%%=======================================================================
% INTRODUCE OSNR
%%=======================================================================
Eosnr=OSNR(Em, 10*log10(12.5e9/fs)+OSNRdB(l)+3, 12.5e9, fs);
% El factor 10*log10(12.5e9/fs) es para tener en cuenta la variación de muestreo
% los 3 dB que sumamos es para tener en cuenta que el ruido también está en otro estado de polarización
%%=======================================================================
% EFECTOS DEL FILTRADO OPTICO --
%%=======================================================================
%filtro
```

D. Jorge Garrido Holgado

D. Josep M. Fabrega Sánchez
%Añadimos diez filtros concatenados
Ei_f=hs.*fft(Eosnr);
Er=ifft(Ei_f);

%filtro 2
Ei_f1=hs.*fft(Er);Er1=ifft(Ei_f1);

%filtro 3,4,....
Ei_f2=hs.*fft(Er1);Er2=ifft(Ei_f2);
Ei_f3=hs.*fft(Er2);Er3=ifft(Ei_f3);
Ei_f4=hs.*fft(Er3);Er4=ifft(Ei_f4);
Ei_f5=hs.*fft(Er4);Er5=ifft(Ei_f5);
Ei_f6=hs.*fft(Er5);Er6=ifft(Ei_f6);
Ei_f7=hs.*fft(Er6);Er7=ifft(Ei_f7);
Ei_f8=hs.*fft(Er7);Er8=ifft(Ei_f8);
Ei_f9=hs.*fft(Er8);Er9=ifft(Ei_f9);

%===
% APD Photodetector
%===
Responsivity=0.7;

M=1;
Rl=50; % Impedancia [Ohm]
Id=1e-12; % dark current [A]
T=300; % [Å°K] Room temperature
FndB=4.7; % Noise figure [dB]
ka=1; % Coeficiente de Ionization(worst case = 1)

Ir=APD(Er, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir1=APD(Er1, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir2=APD(Er2, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir3=APD(Er3, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir4=APD(Er4, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir5=APD(Er5, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir6=APD(Er6, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir7=APD(Er7, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir8=APD(Er8, Responsivity, 1, M, Rl, Id, T, FndB, fs);
Ir9=APD(Er9, Responsivity, 1, M, Rl, Id, T, FndB, fs);

%=============
% Salida del filtro
%=============
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

[Ba, Aa]=besself(5, 2*pi*0.8*Rb); % Bessel 5th order .8*Bitrate
[B, A]=impinvar(Ba, Aa, fs); % Convert to digital
Io=filter(B, A, Ir); % filter 1
Io1=filter(B, A, Ir1); % filter 2
Io2=filter(B, A, Ir2); % filter 3
Io3=filter(B, A, Ir3); % filter 4
Io4=filter(B, A, Ir4); % filter 5
Io5=filter(B, A, Ir5); % filter 6
Io6=filter(B, A, Ir6); % filter 7
Io7=filter(B, A, Ir7); % filter 8
Io8=filter(B, A, Ir8); % filter 9
Io9=filter(B, A, Ir9); % filter 10

% Calculamos la BER
Ith=(I1+I0)/2; % Optimum threshold
ts=3; % Optimum sample
BER(l)=BER_OOK_real(Io, data, spb, Ith, ts);
BER1(l)=BER_OOK_real(Io1, data, spb);
BER2(l)=BER_OOK_real(Io2, data, spb);
BER3(l)=BER_OOK_real(Io3, data, spb);
BER4(l)=BER_OOK_real(Io4, data, spb);
BER5(l)=BER_OOK_real(Io5, data, spb);
BER6(l)=BER_OOK_real(Io6, data, spb);
BER7(l)=BER_OOK_real(Io7, data, spb);
BER8(l)=BER_OOK_real(Io8, data, spb);
BER9(l)=BER_OOK_real(Io9, data, spb);

Donde, fs es la frecuencia de muestreo, Ei es el campo óptico a la entrada del filtro, Eo es el campo óptico a la salida del filtro, BW es el ancho de banda del filtro y sigma es el factor sigma [4]. De acuerdo con medidas experimentales, sigma suele considerarse de 5GHz [4].
Analizamos el código indicado para obtener los resultados y mostrar los efectos de la concatenación de diez filtros para todas las frecuencias.

Podemos observar que con una resolución de 4Rb para un filtro de BW=50GHz, los efectos de la concatenación son los siguientes:

![Gráfico de OSNR vs BER](image)

Figura 15: Efectos de la concatenación de filtros en la relación OSNR vs BER (BW=50GHz, fs=4Rb).

Si hacemos un zoom a la zona de interés (BER de 10e-3):
Figura 16: Zoom. Efectos de la concatenación de filtros en la relación OSNR vs BER (BW=50GHz, fs=4Rb).

Donde podemos apreciar que para un BER objetivo de 10e-3 tendremos unos valores aproximados de OSNR de 8.7dB (un filtro) a 8.3dB (aplicando diez filtros).

Si disminuimos el ancho del filtro a 25GHz:
Figura 17: Efectos de la concatenación de filtros en la relación OSNR vs BER (BW=25GHz, fs=4Rb).

En este caso podemos observar que para alcanzar una BER 10e-3 con un filtro necesitamos una OSNR de 7.8 dB y en el decimo filtro 10. 4 dB, es decir, conforme filtramos más la señal necesitamos aumentar la relación de la señal frente a ruido para conseguir el BER objetivo.
Con el ancho de filtro de 12.5 GHz, podemos observar el mismo caso que comenté anteriormente, donde además, podemos observar que a partir de aplicar el cuarto filtro (OSNR ≈ 17dB), la relación OSNR necesaria es excesivamente alta (▲ 30dB).

Si superponemos los resultados tras aplicar el quinto y decimo filtro para cada ancho de filtro, podremos observar la variación siguiente de OSNR (dB):

<table>
<thead>
<tr>
<th>Ancho de Filtro</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filtro 5</td>
<td>Filtro 10</td>
<td>Filtro 5</td>
</tr>
<tr>
<td>BW= 50GHz</td>
<td>8.52 dB</td>
<td>8.49 dB</td>
<td>8.51 dB</td>
</tr>
<tr>
<td>BW= 25GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW= 125GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 18: Efectos de la concatenación de filtros, relación OSNR vs BER (BW=12.5GHz, fs=4Rb).
10.3.-Análisis de la Relación Señal-Ruido-BER, considerando los efectos de filtrado óptico concatenado y el canal óptico.

Una vez analizado el efecto que nos produce aplicar filtros de forma concatenada simulando que cada uno de ellos mantiene la similitud de los efectos de paso por una estación metropolitana, debemos incluir ahora, los efectos que producirá el canal óptico, de forma que consideremos las atenuaciones producidas por las distancias y las dispersiones del canal.

En la definición de los parámetros de la fibra consideraremos los siguientes valores que se adaptan a lo existente en el mercado por varios fabricantes en tercera ventana (1550nm de longitud de onda central):

- Atenuación: 0.29 dB/km
- Dispersión cromática: 16.5ps/nm*km
- Área del núcleo: 80um
Índice de no linealidad: 2.6×10^{-20} m2/w

Pendiente de dispersión: 0.07 ps/nm2km

Longitud tramos de estudio: 50, 80, 100 km

La concatenación de filtros simulará el paso por un nodo central, es decir, la atenuación que introduce el filtro será la equivalente a una central metropolitana/regional, por lo que añadiremos filtros concatenados, analizando un ancho de 12.5, 25 y 50GHz, que simularan el paso por las centrales metropolitanas. Consideraremos diferentes configuraciones de distancia, para lo que hemos creado en el script la variable Nspan que hace referencia al numero de tramos que se consideran de una longitud determinada. El esquema que emplearemos para diferentes configuraciones será el siguiente:

Analizaremos el efecto de los filtros junto con la fibra para cubrir una distancia de hasta 1000 km, las simulaciones que realizaremos son las siguientes:

1. **Spans de fibra de 50 km. Longitud de los tramos de fibra a 50 km, simularemos obteniendo las gráficas de BER vs OSNR para Nspans=1, 5, 10, 15 y 20.**

2. **Spans de fibra de 80 km. Longitud de los tramos de fibra a 80 km, simularemos obteniendo las gráficas de BER vs OSNR para Nspans=1, 4, 8, 12 y 13.**
3.- Spans de fibra de 100 km. Longitud de los tramos de fibra a 100 km, simularemos obteniendo las gráficas de BER vs OSNR para Nspans= 1, 2, 4, 6, 8 y 10.

Después de cada span, realizamos un doble filtrado para emular el paso por un nodo. Así, vamos acumulando fibra + filtros tantas veces como Nspans estamos especificando, por lo que el script configurado para tal fin, tiene las siguientes modificaciones respecto al anterior:

```matlab
% Definimos los parametros fisicos de la fibra
% (usamos SSMF)
c = 3e8; %[m/sec] velocidad de la luz
lambda0 = 1550*1e-9; %[m] center wavelength
alphadB = 0.29*1e-3; % [dB/m] atenuacion de la fibra
alpha = alphadB/(10*log10(exp(1)));
Dp = 16.5e-6; % [s/m^2] parametro de dispersion
S= 0.057*10e3; % [s/m^2] dispersion slope

% Coeficiente de dispersion de la fibra
beta2=-(Dp*(lambda0^2))/(2*pi*c);
beta3=((S*lambda0^4)/(4*(pi^2)*(c^2)))-beta2*lambda0^2/(pi*c);
n2=2.6e-20; %[m^2/W] non-linear index
Aeff=80e-12; %[m^2] Area del nucleo
gamma= 2*pi*n2/(Aeff*lambda0); % Fiber non-linearity coefficient

fiber_length=100e3; % Longitud considerada para cada tramo[m]
Dp_span= fiber_length*Dp; % Acumulamos la dispersion para cada span [s/m]
max_deltaz=1e3; % [m]
max_phase_change=.05; % [degrees]
Nspans=1;

betap=[0, 0, beta2, beta3]; % Dispersion array
```
%Define fiber length increment and number of steps
\[\text{deltaz} = \max_{\text{phase change}} \left(\frac{\pi}{180} \right) \left(\frac{\gamma \times \max(\text{abs}(\text{Em})^2)}{} \right); \]
\[
\text{if} \quad \text{deltaz} > \max_{\text{deltaz}} \\
\quad \text{deltaz} = \max_{\text{deltaz}}; \\
\text{end}
\]
step_num = fiber_length / deltax;

% Parametros del filtro
BW = 50e9;
sigma = 5e9; % Es el valor que cuadra con la caracterización experimental de los filtros según el artículo [3]
step = fs / length(Em);

% cumsum: suma acumulada de elementos
omega1 = cumsum(step * ones([1, length(Em)/2])) - step;
omega2 = step - fliplr(omega1);
omega = [omega1, omega2];

argerf1 = (0.5 * BW - omega) / (sqrt(2) * sigma);
argerf2 = (-0.5 * BW - omega) / (sqrt(2) * sigma);

% espectro de campo óptico de un filtro de paso de banda creado por un WSS
% Longitud de onda comutadores selectivos
hs = 0.5 * sigma * sqrt(2 * pi) * (erf(argerf1) - erf(argerf2));
hs = hs / max(hs);
hdcm = exp(1i * (pi^2) * (omega) * beta2 * (fiber_length) * 2);
Ein = Em;

for kspans = 1:1:Nspans,
 % Calculamos la propagación a través de la fibra
 Ef = ssprop2(Ein, dt, deltax, step_num, alpha, betap, gamma, 100, 1e-5);
 % compensamos las pérdidas de fibra
 gain = 10.^(alphadB * fiber_length / 10);
 Eg = sqrt(gain) * Ef;
 % Filtramos dos veces por nodo
 Ei_f = hs .* hdcm .* fft(Eg); % Incluimos la compensación ideal (hdcm)
 Eo_f = ifft(Ei_f);
 Ein = ifft(Ei_f);
end
10.3.1.- Longitud de los tramos de fibra a 50 km, Nspans = 1, 5, 10, 15 y 20.

Analizaremos la relación OSNR-BER considerando el canal óptico, para tramos de fibra de una longitud de 50 km, concatenando filtros mediante la variable Nspans que nos indica el número de tramos, hasta una longitud de 1000 km.

Analizaremos una longitud total de 1000 km con Nspans = 1, 5, 10, 15 y 20, podemos observar el efecto de la fibra y el filtrado para cada BW:

Podemos apreciar que con anchos de filtro de 50 GHz, obtenemos el BER deseado con una relación OSNR de 9.45 dB en la máxima longitud contemplada.
Figura 21: Zoom. OSNR vs BER para L=50km, BW=50GHZ, fs=4Rb

Analizamos los mismos efectos para un BW de 25 GHz:

Figura 22: OSNR vs BER para L=50km, BW=25GHZ, fs=4Rb
Podemos apreciar que para longitudes analizadas superiores a los 500 km, la relación OSNR es muy alta, superior a 30dB, mientras que para 50km tenemos 9dB, para 250km tenemos 13dB y para 500km 18dB.

Analizamos los mismos efectos para un BW de 12.5 GHz:

![Diagrama OSNR vs BER para diferentes longitudes](image1)

Figura 23: OSNR vs BER para L=50km, BW=12.5GHZ, fs=4Rb

![Diagrama OSNR vs BER zoom](image2)

Figura 24: Zoom. OSNR vs BER para L=50km, BW=12.5GHZ, fs=4Rb
Donde podemos concluir que para filtros estrechos de BW=12.5GHz, necesitaríamos una OSNR demasiada grande, por lo que este tipo de filtros no podremos considerarlos como aptos para aplicarlos a largas distancias.

10.3.2.- Longitud de los tramos de fibra a 80 km, Nspans=1, 4, 8, 12 y 13.

Analizaremos cinco tramos distanciados 80km entre cada uno de ellos, es decir, las distancias de 80, 320, 640, 960 y 1040 km.

Figura 25: OSNR vs BER para L=80km, BW=50GHZ, fs=4Rb
OSNR vs BER considerando Filtrado y Canal óptico BW 25GHz

Figura 26: OSNR vs BER para $L=80\text{km}$, $BW=25\text{GHz}$, $fs=4\text{Rb}$

OSNR vs BER considerando Filtrado y Canal óptico BW 12.5GHz

Figura 27: OSNR vs BER para $L=80\text{km}$, $BW=12.5\text{GHz}$, $fs=4\text{Rb}$
10.3.3.-Longitud de los tramos de fibra a 100 km, Nspans = 1, 2, 4, 6, 8 y 10.

Podemos observar como el incremento en la relación OSNR para el BER objetivo, se mantiene prácticamente constante, destacando una singularidad, el OSNR es menor para una longitud de 200km que para 100km:

<table>
<thead>
<tr>
<th>Nspan=1, L=100 Km</th>
<th>Nspan=2, L=200 Km</th>
<th>Nspan=4, L=400 Km</th>
<th>Nspan=6, L=600 Km</th>
<th>Nspan=8, L=800 Km</th>
<th>Nspan=10, L=1000 Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSNR (dB)</td>
<td>8.57</td>
<td>8.53</td>
<td>8.69</td>
<td>8.72</td>
<td>8.88</td>
</tr>
</tbody>
</table>

Tabla 2: Relación de OSNR en función de la longitud de los tramos

Figura 28: OSNR vs BER para L=100km, BW=50GHZ, fs=4Rb
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

Figura 29: Zoom. OSNR vs BER para L=100km, BW=50GHZ, fs=4Rb

Analizamos el comportamiento con BW=25GHz

Figura 30: Zoom. OSNR vs BER para L=100km, BW=25GHZ, fs=4Rb
Si analizamos el comportamiento conjunto de los tres anchos de filtro estudiados, podemos observar que para la consecución del BER objetivo con filtros de ancho 50GHz hay una pequeña variación en los valores de OSNR requeridos, mientras que para 25GHz se duplican los valores aproximadamente y para 12.5GHz, la OSNR llega a valores de 30dB:
Figura 32 Zoom. OSNR vs BER para L=100km, BW=12.5GHZ, fs=4Rb
10.4.- Análisis del comportamiento con BW de 50GHz para los escenarios propuestos.

Como conclusión general de lo anterior, se observa que con un ancho de filtro de 50GHz se obtienen los mejores resultados de OSNR para un BER de 10e-3, consiguiendo para todas las simulaciones estar entre el margen de 8.5 a 9.45 dB:

![Gráfico OSNR vs BER considerando Filtrado y Canal óptico BW 50GHz](image)

Podemos confirmar que el filtro de BW 50GHz tiene mejor comportamiento considerando tramos de larga distancia, obteniendo las peores relaciones para los tramos de 50 km que son de los considerados los más pequeños.
Figura 34: OSNR vs BER para L= 50, 80, 100km, BW=50GHZ, primer y ultimo tramo.
11.- Bases de simulación de un sistema OFDM.

Tal como se comento en el punto “8.- Sistema OFDM de modulación e intensidad directa con modulador Mach-Zehnder (MZM).”, las bases de simulación están desarrolladas para OFDM óptico de banda lateral única con un MZM.

La idea básica de OFDM es dividir el rango del espectro disponible en varios subcanales (sub-potadoras). Usando canales de banda estrecha, estos experimenten casi un desvanecimiento plano, haciendo la ecualización mucho más simple. Para obtener una mayor eficiencia espectral la respuesta en frecuencia de los sub-canales son solapadas y ortogonales, de ahí el nombre de OFDM. Esta ortogonalidad puede mantenerse, aun cuando la señal pase a través del canal óptico que es dispersivo en el tiempo, introduciendo un prefijo cíclico que explicare mas adelante. Existen varias versiones de OFDM pero nosotros nos centraremos en sistemas que usan un prefijo cíclico. El prefijo cíclico es una copia de la última parte del símbolo OFDM.

![Figura 35: Uso del prefijo cíclico para conservar la ortogonalidad.](image)

Figura 35: Uso del prefijo cíclico para conservar la ortogonalidad.

Esto hace que la señal transmitida sea periódica, lo cual juega un papel decisivo para evitar la interferencia entre símbolos y entre portadoras. El prefijo cíclico introduce una pérdida en la relación señal-ruido (SNR) que supone un inconveniente que deberemos estudiar más adelante.
11.1. Esquema de simulación del transmisor OFDM.

En este medio la realización de las subportadoras son sin modular con el fin de separar la espectralmente la banda OFDM de DC [3].

Las principales ventajas son que desde una perspectiva de componente analógico la configuración es sencilla y que sólo se requiere un conversor DA.

La principal desventaja como ya indicamos, es que a partir de una perspectiva de la complejidad digital de la instalación no es muy eficiente, porque sólo un cuarto de la FFT se utiliza para datos y sólo se utiliza para la generación de datos la mitad de la anchura de banda del DAC.

Se hace una transmisión en banda lateral única para poder tener una transmisión más robusta a la dispersión cromática.

Figura 36: Esquema simplificado del transmisor OFDM [3].

El script desarrollado para tal simulación está basado en el anterior utilizado para los sistemas IM/DD, incluyendo los parámetros necesarios para transformar el sistema a uno OFDM, el desarrollo modificado del script es el siguiente:

```matlab
% Parametros de transmision
Rb=10.7e9; % Velocidad de transmision
Ncarriers=64; % No. de portadoras de OFDM
bps=2; % Bits per simbolo
sps=8; % Muestras por simbolo
```
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

\[fs = sps * Rb / bps; \] % Freq de muestreo
\[dt = 1 / fs; \] % Tiempo por muestra
\[frf = 1.5 * Rb / bps; \] % Freq. de RF a la que subir la señal previo a la modulación
\[CP = 0.02; \] % "Cyclic prefix"
\[NCP = \text{round}(CP * Ncarriers); \] % Numero de muestras del CP
\[k = 3; \] % Factor de clipping (3 para un QPSK)
\[NTS = 4; \] % No. de símbolos de entrenamiento
\[Nsymbols = 64 * 1024; \] % No. de símbolos de "payload"
\[NsymbolsTS = Nsymbols + NTS * Ncarriers; \] % No. de símbolos totales

% Definición del filtro eléctrico para pasar de digital a analógico
\[N = 2^8; \] % Filter order
\[fc = Rb / bps / 2; \] % cut-off frequency
\[r = 0.15; \] % roll-off
\[h1 = \text{firrcos}(N, fc, r, fs, \text{'rolloff'}, \text{'sqrt'}); \]

% Filtro para generar la banda lateral única (BLU) ópticamente
\[N = 2^8; \] % Filter order
\[fc2 = 2 * Rb / bps / 2; \] % cut-off frequency
\[r2 = 0.15; \] % roll-off
\[h2 = \text{firrcos}(N, fc2, r2, fs, \text{'rolloff'}, \text{'sqrt'}); \]

%%%%%
% Transmisor
%%%%%
% 1) Generar los datos de "payload"
\[\text{data} = \text{randint}(1, bps * Nsymbols, [0 1]); \]
% 2) Generar el símbolo de entrenamiento
\[\text{TS} = \text{randint}(1, Ncarriers * bps, [0,1]); \]
% 3) Juntar los datos con el símbolo de entrenamiento
\[\text{dataTS} = \text{data}; \]
\[\text{for } \text{knts} = 1:1:NTS, \]
\[\quad \text{data} = [\text{TS} \text{ data}]; \]
\[\text{end} \]
% 4) Mapear a constelación
\[\text{hModulator} = \text{comm.QPSKModulator('BitInput',true)}; \]
\[\text{cdata} = \text{step}(\text{hModulator, data}); \]
% 5) Paralelizar
\[\text{cdatar} = \text{transpose(reshape(cdata, Ncarriers, NsymbolsTS/(Ncarriers)))}; \]
% 6) Hacer la transformada inversa
\[\text{fftdata} = \text{ifft(cdatar, Ncarriers, 2)}; \]
% 7) Añadir el "cyclic prefix"
\[\text{fftdata}_{-}cp = [\text{fftdata} \text{ fftdata}(;,1:\text{round}(CP*Ncarriers))]; \]
% 8) Serializar
Diseño y simulación de sistemas OFDM / À ópticos para redes de nueva generación

D. Jorge Garrido Holgado

CX=reshape(transpose(fftdata_cp),
round((1+CP)*Ncarriers)*(NsymbolsTS/Ncarriers), 1);

% 9) Clipping
deviation=std(Cx);

%Por arriba
index= Cx>=k*deviation;
Cx_c=Cx;
Cx_c(index)=k*deviation;
clear index;

%Por abajo
index=find(Cx<=-

11.2.- Esquema de simulación del receptor.

Después de la detección directa de la señal OFDM offset, la señal OFDM esta presente entre B y 2B, como podemos visualizar en la figura inferior. Por lo tanto hay presente una frecuencia intermedia y la señal de OFDM tiene que experimentar una reducción en frecuencia para la detección. El principio general de compensar OFDM detección directa es el de la siguiente figura:

![Figura 37: Esquema de compensación OFDM-DD [3].](image)
Los dos receptores de detección directa de uso frecuente son:

- El de conversión descendente basado en FFT.
- El de conversión descendente usando un mezclador IQ.

11.2.1.- DDO-OFDM RX basado en FFT.

En esta implementación de conversión descendente se lleva a cabo por la FFT que en esencia dicha implementación es la inversa del transmisor con sub-portadoras no moduladas cerca de DC (MZM-1 [3]) comentada en el punto anterior.

La principal ventaja es que desde una perspectiva componente analógico la configuración es sencilla.

La principal desventaja es que a partir de una perspectiva de la complejidad digital, la configuración es no muy eficiente porque solo un cuarto de la FFT se utiliza para datos y sólo la mitad de la anchura de banda del ADC se utiliza para generar datos.

![Esquema simplificado del receptor OFDM basado en FFT](image)

Figura 38: Esquema simplificado del receptor OFDM basado en FFT [3].
11.2.2.- DDO-OFDM RX usando un mezclador IQ.

En esta implementación de conversión descendente se lleva a cabo mediante un mezclador eléctrico IQ

Esta implementación es la inversa del transmisor usando el mezclador IQ (MZM 2 en [3]). Las principales ventajas son el tamaño de la FFT y ancho de banda DAC se utilizan en su totalidad. Las principales desventajas son que se necesitan dos DACs, el uso de la electricidad y que el modulador IQ hace la parte analógica de la configuración bastante compleja.

![Diagrama de receptor OFDM usando mezclador IQ](image)

Figura 39: Esquema simplificado del receptor OFDM usando IQ [3].

En un receptor de detección directa, la relación entre potencias de portadora y señal (CSP) se ajusta en el transmisor y tiene una gran influencia en el rendimiento del sistema, podemos tener que:

Resultados demasiado bajos de CSP son indeseados, la mezcla de la sub-portadora de la señal OFDM con la propia señal óptica produce un resultado de la señal OFDM bajo.

![Diagrama de recepción muy baja de CSP](image)

Figura 40: Recepción muy baja de la CSP [3].
Resultados demasiado elevados de CSP también son malos, se mezcla la portadora óptica consigo mismo y la recepción óptica de la señal OFDM es baja.

Se ha observado que para la mayoría de los sistemas de transmisión OFDM DDO se obtiene el rendimiento óptimo cuando tanto la portadora óptica y la señal OFDM tienen la misma potencia. [3]

La parte del script desarrollado en lo referente al receptor es el segundo que hemos indicado, basado en FFT, el desarrollo es el siguiente:

```
%------------------------------------------------------------
% Receptor
%------------------------------------------------------------
Responsivity=0.7;  
M=1;  
Rl=50;  % Impedance [Ohm]  
Id=1e-12;  % dark current [A]  
T=300;  % [ºK] Room temperature  
FndB=4.7;  % Noise figure [dB]  
ka=1;  % Ionization coefficient (worst case = 1)

Ir=APD(Er, Responsivity, 1, M, Rl, Id, T, FndB, fs);

% Downconvert to baseband  
signalrx=Ir' .*cos(2*pi*frf*ttt)+1i*Irr).*sin(2*pi*frf*ttt);

% filter  
signalrx_aux=[signalrx; zeros(N/2,1)];  % Add zeros to avoid transient
signalrx_auxf=filter(h1,1,signalrx_aux);  % Filter
signalrxf=signalrx_auxf(N/2+1:end);

% Downsample
```

Figura 41: Recepción muy alta de la CSP [3].
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

D. Jorge Garrido Holgado

D. Josep M. Fabrega Sánchez

```matlab
Cx_r=downsample(signalrxf, sps);

% 1) paralelizar
rxdata_cp=transpose(reshape(Cx_r, round((1+CP)*Ncarriers), NsymbolsTS/Ncarriers));

% 2) QITUar el cyclic prefix
rxdata=rxdata_cp(:, 1:Ncarriers);

% 3) calcular la FFT
fftdatarx=fft(rxdata, Ncarriers, 2);

% 4) Equalizar
TS=cdatar(1,1:Ncarriers); % Extrae simbolo de entrena
Hs=fftdatarx(1:NTS,:); % Extraiem el simbol d'entrenament que rebem
H=mean(Hs)./TS; % Estimem el canal
A=H;
B=1./H;
IW=diag(B); % Matriu d'equalitzacio
% també es pot calcular fent la inversa de la matriu diagonal de A
% IW=inverse(diag(A));

fftdatarx_eq=fftdatarx*IW;

fftdatarx_eq(:,1)=cdatar(:,1);
fftdatarx_eq(:,Ncarriers/2+1)=cdatar(:,Ncarriers/2+1);

% 10) serializar
cdatarx=reshape(transpose(fftdatarx_eq), NsymbolsTS, 1);

% 11) demapear
hDemod = comm.QPSKDemodulator('BitOutput',true);
rec = step(hDemod, cdatarx);
[Nerr, BER(ks)]=biterr(data(NTS*Ncarriers:end), rec(NTS*Ncarriers:end));
end
```
12.- Simulación de un sistema OFDM 10Gb/s.

Realizaremos las mismas simulaciones que hicimos para el sistema IM/DD, con el fin de comparar los mismos escenarios y analizarlos conjuntamente bajo los mismos parámetros y premisas, para lo que iniciamos el análisis sin considerar efectos del canal ni de los filtros, luego añadiremos 10 filtros concatenados y por último incluiremos el canal óptico con diferentes escenarios (con la configuración de los analizados anteriormente), todos los análisis variando el ancho de banda del filtro, de 12.5, 25 y 50 GHz.

12.1.- Análisis de la Relación Señal-Ruido vs BER, en el sistema OFDM, variando el ancho del filtro, sin considerar el canal de fibra.

Figura 42: OSNR vs BER para los diferentes BW, con fs=4Rb
Figura 43: Zoom. OSNR vs BER para los diferentes BW, con fs=4Rb
12.2.- Análisis de la Relación Señal-Ruido-BER, en el sistema OFDM, considerando los efectos de filtrado óptico concatenado.

Analizamos el caso primero para anchos de filtro de 12.5 GHz:

![Figura 44: OSNR vs BER considerando la concatenación de filtros SIN Canal óptico para BW=12.5GHz](image)

Podemos apreciar que con filtrados de anchos 12.5GHz, la señal no es coherente al igual que vimos en el estudio del sistema IM/DD.
Analizamos ahora el efecto de filtrado para anchos de 25 GHz:

Figura 45: Zoom. OSNR vs BER considerando la concatenación de filtros SIN Canal óptico para BW=25GHz
Figura 46: Zoom. OSNR vs BER considerando la concatenación de filtros SIN Canal óptico para BW=25GHz

Analizamos ahora el efecto de filtrado para anchos de 50 GHz:

Figura 47: OSNR vs BER considerando la concatenación de filtros SIN Canal óptico para BW=50GHz
12.3.- Análisis de la Relación Señal-Ruido-BER, en el sistema OFDM, considerando los efectos de filtrado óptico concatenado y el canal óptico.

12.3.1.- Longitud de los tramos de fibra a 50 km, Nspans = 1, 5, 10, 15 y 20.

BW=50 GHz

Figura 48: OFDM: OSNR vs BER Considerado efectos de filtrado y Canal óptico. L=50Km, BW=50GHz

BW=25GHz; fs=4*Rb

OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=50Km, BW=25GHz

Nspan= 1, L= 50Km
Nspan= 5, L= 250Km
Nspan= 10, L= 500Km
Nspan= 15, L= 750Km
Nspan= 20, L= 1000Km
Figura 49: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=50Km, BW=25GHz

Figura 50: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=50Km, BW=12.5GHz
12.3.2. - Longitud de los tramos de fibra a 80 km, Nspans=1, 4, 8, 12 y 13.

Figura 51: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=80Km, BW=50GHz

Figura 52: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=80Km, BW=25GHz
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

Figura 53: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=80Km, BW=12.5GHz
12.3.3.- Longitud de los tramos de fibra a 100 km, Nspans = 1, 2, 4, 6, 8 y 10.

Figura 54: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=50GHz

Figura 54_Bis: Zoom OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=50GHz.
OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=25GHz

Figura 55: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=25GHz

OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=12.5GHz

Figura 56: OFDM: OSNR vs BER Considerando efectos de filtrado y Canal óptico. L=100Km, BW=12.5GHz

13.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM.

13.1.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, sin filtrado.

Podemos comprobar que los sistemas IM/DD la relación OSNR para los tres anchos de banda estudiados, está comprendida entre 8 y 9 dB, mientras que para los sistemas OFDM con los anchos de filtro de 12.5 y 25 GHz la OSNR supera los 30dB y para el ancho de 50 GHz, es de 16.5dB.

<table>
<thead>
<tr>
<th>BW</th>
<th>IM / DD</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 GHz</td>
<td>8.5 dB</td>
<td>>30dB</td>
</tr>
<tr>
<td>25 GHz</td>
<td>7.9 dB</td>
<td>>30dB</td>
</tr>
<tr>
<td>50 GHz</td>
<td>8.7 dB</td>
<td>16.5dB</td>
</tr>
</tbody>
</table>

Tabla 4: Comparación de OSNR sin filtrado en los sistemas estudiados.

Figura 57: Comparación de la relación OSNR vs BER sin considerar filtrado ni canal óptico
13.2.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, considerando filtrado.

Podemos apreciar en las siguientes figuras que para anchos de filtros pequeños, de 12.5GHz en nuestro caso, en los sistemas de detección directa solo conseguimos el BER deseado con el primer filtrado, mientras que con el sistema OFDM no se consigue con el empleo de filtros concatenados para relaciones inferiores a 30dB.
Al aumentar el ancho del filtro a 25GHz, observamos que el efecto de filtrado es mejor para los sistemas de detección directa OOK que para OFDM, en el primero obtenemos la BER objeto en el margen entre 7.7 – 10.7 dB hasta el decimo filtro aplicado, por el contrario en el sistema OFDM conseguimos el BER deseado para relaciones altas (17-23dB) en los tres primeros filtros concatenados.

Figura 59: Comparación de la relación OSNR vs BER considerando efectos de filtrado concatenado para BW=25GHz, sistemas IM/DD (primera) y OFDM (segunda).

Si aumentamos más el ancho de los filtros, a 50GHz, podemos observar que el efecto de filtrado es muy lineal para cada paso de filtro en los dos sistemas, destacando que en OFDM la relación OSNR prácticamente duplica a la de los sistemas OOK.
Figura 60: Comparación de la relación OSNR vs BER considerando efectos de filtrado concatenado para BW=50GHz, sistemas IM/DD (primera) y OFDM (segunda).
13.3.- Análisis comparativo de las simulaciones realizadas para los sistemas IM/DD y OFDM, considerando filtrado y el canal óptico.

En una red donde se concatenan pérdidas como en los escenarios analizados que además son susceptibles del empleo de amplificadores por las distancias propuestas en el estudio, la OSNR que se tiene al final estará determinada por la manera en que se concatenan estos bloques, por lo que analizaremos el comportamiento sin considerar inicialmente el uso de amplificadores y luego analizaremos si son realizables en el apartado de conclusiones.

13.3.1.- Análisis en la longitud de los tramos de fibra de 50 km, con Nspans = 1, 5, 10, 15 y 20.
Podemos observar que con anchos pequeños, al aplicar efectos del canal óptico, aunque las relaciones no son optimas, se deduce una mejora en los sistemas OFDM respecto a OOK, al aumentar en ancho a 25GHz vemos que la respuesta mejora en los dos sistemas pero de forma mas representativa en OOK.

Si analizamos el comportamiento con el ancho de 50 GHz una mejora representativa en los sistemas OOK y OFMD aunque en este ultimo alcanzamos valores altos de OSNR pero a diferencia del anterior, vemos que aparecen interferencias constructivas conforme aumenta la distancia, ya que la

Figura 62: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 50km, para BW=25GHz, sistemas IM/DD (primera) y OFDM (segunda).
relación OSNR para una distancia de 750 km es notablemente mejor que para las distancias de 250 y 500 km.

Figura 63: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 50km, para BW=50GHz, sistemas IM/DD (primera) y OFDM (segunda).
13.3.2.- Análisis en la longitud de los tramos de fibra de 80 km, con Nspans=1, 4, 8, 12 y 13.

Figura 64: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 80km, para BW=12.5GHz, sistemas IM/DD (primera) y OFDM (segunda).
Figura 65: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 80km, para BW=25GHz, sistemas IM/DD (primera) y OFDM (segunda).
Figura 66: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 80km, para BW=50GHz, sistemas IM/DD (primera) y OFDM (segunda).
13.3.3.- Análisis en la longitud de los tramos de fibra de 100 km, con Nspans = 1, 2, 4, 6, 8 y 10.

Figura 67: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 100km, para BW=12.5GHz, sistemas IM/DD (primera) y OFDM (segunda).
Figura 68: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 100km, para BW=25GHz, sistemas IM/DD (primera) y OFDM (segunda).
Diseño y simulación de sistemas OFDM / A ópticos para redes de nueva generación

Figura 69: Comparación de la relación OSNR vs BER considerando efectos de filtrado y canal óptico en longitudes de 100km, para BW=50GHz, sistemas IM/DD (primera) y OFDM (segunda).
13.3.4.- Análisis de amplificación en el sistema OFDM.

Si analizamos los puntos anteriores relacionando el factor de ruido y el OSNR para las diferentes longitudes de span y anchos de filtro podremos saber si los amplificadores necesarios son realizables o no.

Cada amplificador añade ruido de manera proporcional a su ganancia y al factor de ruido. La potencia de ruido acumulada crece de manera lineal con el número de amplificadores (cuantos más amplificadores, más ruido). Si los amplificadores son iguales y se utilizan para compensar las pérdidas que puede haber en un tramo de fibra, entonces la potencia total del ruido acumulado a lo largo de la cadena de transmisión es proporcional a la potencia del ruido de un amplificador. Formalmente, podremos escribir la OSNR acumulada al final de una cadena de N amplificadores iguales para compensar N tramos con pérdidas L en cada tramo [7]:

$$OSNR = \frac{P_0}{NF_n h v_0 L B_0} \quad [Ec.18]$$

Donde:

- P_0: es la potencia de salida del transmisor
- N: es el número de tramos
- h: es la constante de Planck
- v_0: es la frecuencia central de la señal
- B_0: es el ancho de banda de medida
- L: son las pérdidas a compensar en cada tramo

Si fijamos el factor de ruido en $F_n = 4$dB, con las características de la fibra fijadas anteriormente:

- Atenuación: 0.29 dB/km
- Dispersión cromática: 16.5ps/nm*km
Longitud tramos de estudio: 50, 80, 100 km

Aunque el enlace es de larga distancia, no consideraremos la compensación de la dispersión por la modulación OFDM. Para los tramos de 50 km, tendremos:

\[
\begin{align*}
P_0 &= 2\text{mw} \\
N &= 20, 13, 10 \text{ tramos} \\
F_n &= 4\text{dB} = 2.5118\text{w} \\
h &= 6.63 \times 10^{-34} \text{ J/s} \\
v_0 &= 3 \times 10^9 / 1550 \times 10^9 = 193.5\text{THz} \\
L_{50} &= 50 \times 0.29 = 14.5\text{dB} = 28.18 \\
L_{80} &= 80 \times 0.29 = 23.2\text{dB} = 208.93 \\
L_{100} &= 100 \times 0.29 = 29\text{dB} = 794.33
\end{align*}
\]

\[
\text{OSNR}_{90\text{km}} = \frac{P_0}{NF_nhv_0LB_0} = \frac{2 \times 10^{-3}}{20 \times 2.5118 \times (6.63 \times 10^{-34}) \times (193.5 \times 10^9)^2 \times (28.18) \times (12.5 \times 10^9)} = 880.98 = 29.45\text{dB}
\]

<table>
<thead>
<tr>
<th>B_0</th>
<th>OSNR_{50}</th>
<th>$\text{OSNR}_{80(*)}$</th>
<th>OSNR_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 GHz</td>
<td>29.45 dB</td>
<td>22.48 dB</td>
<td>17.96 dB</td>
</tr>
<tr>
<td>25 GHz</td>
<td>26.43 dB</td>
<td>19.61 dB</td>
<td>14.95 dB</td>
</tr>
<tr>
<td>50 GHz</td>
<td>23.43 dB</td>
<td>16.60 dB</td>
<td>11.94 dB</td>
</tr>
</tbody>
</table>

Tabla 3: OSNR en función del ancho del filtro y longitud de los tramos, utilizando amplificadores.

(*) Para span de 80 km se consideran 13 tramos, 1040 km.

Podemos destacar que al aumentar el ancho de banda disminuye la OSNR y que para los tramos de 100 km es donde tenemos menor exigencia de OSNR.

Se puede ver que para cubrir una misma distancia, es mejor juntar tanto como se puedan los amplificadores entre sí. De este modo, si los separamos cada 50 km, la OSNR es mejor (más alta) que si los separamos cada 100 km.
Si analizamos los resultados de las gráficas para cada span podemos evaluar el factor de ruido para los amplificadores necesario para cada caso en el que se cumple la transmisión, para evaluar que:

1.- Si el factor de ruido es de 4dB o más, entonces la cadena de amplificación es realizable con amplificadores EDFA comerciales.

2.- Si el factor de ruido está entre 3dB y 4dB, entonces habría que pensar en amplificadores EDFA de muy bajo ruido.

3.- Si el factor de ruido está por debajo de los 3dB, entonces hay que pensar en otras soluciones, como una amplificación Raman, combinándola con EDFA (amplificación híbrida).

Si estudiamos los dos casos más críticos que han sido viables con OFDM son con anchos de 50 GHz, los que cubren hasta 750km con tramos de 50km (15° span, OSNR=19.4dB) y 600km con tramos de 100km (6° span, OSNR=20.5dB):

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>50</td>
<td>250</td>
<td>500</td>
<td>750</td>
<td>1000</td>
</tr>
<tr>
<td>km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOK</td>
<td>8.87</td>
<td>9.05</td>
<td>9.25</td>
<td>9.37</td>
<td>9.47</td>
</tr>
<tr>
<td>OFDM</td>
<td>16.9</td>
<td>>30</td>
<td>22</td>
<td></td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>10</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOK</td>
<td>8.84</td>
<td>8.74</td>
<td>9.00</td>
<td>9.08</td>
<td>9.15</td>
<td>9.30</td>
</tr>
</tbody>
</table>
Si analizamos el caso de BW=50GHz con tramos de 50km, 15 span, vemos que la OSNR obtenida acumulada necesaria es de 19.4dB para cubrir 750km, necesitaríamos que el factor de ruido de los amplificadores utilizados fuese como mínimo para el primer caso:

$$F_n = \frac{P_0}{N\cdot OSNR \cdot hv/LB} = 8.03\, dB$$

Por lo que estamos en el primer caso indicado en el que podemos utilizar amplificadores comerciales EDFA.

Sin embargo, en el otro caso mencionado, la distancia es de 600 km con una OSNR de 20.5 dB lo que indica que el factor de ruido necesario para los amplificadores es de -4.56 dB debido a las grandes pérdidas que introduce el cable a tener los tramos más largos, lo que implica que a diferencia del caso anterior no podremos utilizar amplificadores EDFA comerciales, sino que estaríamos en el tercer caso donde debemos mejorar el enlace introduciendo amplificación híbrida Raman-EDFA con bombeo contrapropagante:

Los haces de bombeo y señal útil se propagan uno en sentido contrario de otro. El hecho de no necesitar tanta ganancia hace que el ASE de los EDFA sea menor y dé un factor de ruido menor.
Aunque el bombeo copropagante puede mejorar más las prestaciones del ruido que el contrapropagante, no se propone por su mayor susceptibilidad a la transferencia de RIN del bombeo, su diafonía a través del bombeo y la dependencia de la ganancia respecto del estado de polarización, también hubiéramos tenido que reducir la potencia de la señal útil para evitar penalizaciones por efectos no lineales de la fibra.
14.- CONCLUSIONES

La relación señal-ruido óptica (OSNR) es uno de los parámetros más útiles para estimar la calidad de una señal directamente en el dominio óptico. Esto sucede porque la podemos relacionar muy fácilmente con la probabilidad de error de bit de la señal transmitida a través de un enlace amplificado de manera óptica.

Como la OSNR es transparente a la velocidad de bit y al formato de modulación de la señal óptica, resulta un parámetro ideal para monitorizar las prestaciones de los enlaces en redes reconfigurables de manera dinámica, motivo por el cual nos hemos basado en este trabajo al realizar las graficas de viabilidad, OSNR vs BER.

Se ha analizado el comportamiento de los sistemas OOK y OFDM para conseguir una BER objetivo de 10^{-3}, con diferentes anchos de banda de filtrado (12.5, 25 y 50GHz) en los siguientes escenarios:

1. Sin utilización de filtros.

<table>
<thead>
<tr>
<th>COMPARACION DE LA OSNR SIN FILTRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>12.5 GHz</td>
</tr>
<tr>
<td>25 GHz</td>
</tr>
<tr>
<td>50 GHz</td>
</tr>
</tbody>
</table>
2. Concatenando filtros, para una BER 10^{-3}.

<table>
<thead>
<tr>
<th>FILTRO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK</td>
<td>8.4</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>OFDM</td>
<td>8.6</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

Evolución de la OSNR (dB) aplicando filtros concatenados para BW=12.5GHz

<table>
<thead>
<tr>
<th>FILTRO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK</td>
<td>7.7</td>
<td>7.9</td>
<td>8.1</td>
<td>8.4</td>
<td>8.5</td>
<td>8.8</td>
<td>9.2</td>
<td>9.5</td>
<td>9.7</td>
<td>10.5</td>
</tr>
<tr>
<td>OFDM</td>
<td>17.5</td>
<td>19.5</td>
<td>23.5</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

Evolución de la OSNR (dB) aplicando filtros concatenados para BW=25GHz

<table>
<thead>
<tr>
<th>FILTRO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK</td>
<td>8.71</td>
<td>8.67</td>
<td>8.68</td>
<td>8.63</td>
<td>8.52</td>
<td>8.50</td>
<td>8.57</td>
<td>8.38</td>
<td>8.35</td>
<td>8.31</td>
</tr>
</tbody>
</table>
3. Concatenando filtros y efectos del canal óptico para diferentes escenarios.

a. Concatenando varios tramos con una longitud de fibra a 50 km, para Nspans = 1, 5, 10, 15 y 20.

<table>
<thead>
<tr>
<th>Nspan</th>
<th>OOK</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>5</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>10</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>15</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>20</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitud</th>
<th>OOK</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Km</td>
<td>13.5</td>
<td>>30</td>
</tr>
<tr>
<td>250 Km</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>500 Km</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>750 Km</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>1000 Km</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nspans</th>
<th>OOK</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.2</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>>30</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>>30</td>
</tr>
<tr>
<td>15</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>20</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitud</th>
<th>OOK</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Km</td>
<td>8.87</td>
<td>16.9</td>
</tr>
<tr>
<td>250 Km</td>
<td>9.05</td>
<td>>30</td>
</tr>
<tr>
<td>500 Km</td>
<td>9.25</td>
<td>22</td>
</tr>
<tr>
<td>750 Km</td>
<td>9.37</td>
<td>19.4</td>
</tr>
<tr>
<td>1000 Km</td>
<td>9.47</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nspan</th>
<th>OOK</th>
<th>OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.9</td>
<td>>30</td>
</tr>
<tr>
<td>5</td>
<td>>30</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>19.4</td>
<td>>30</td>
</tr>
<tr>
<td>15</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>20</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>
b. Concatenando varios tramos con una longitud de fibra a 80 km, para Nspans=1, 4, 8, 12 y 13.

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>80</td>
<td>320</td>
<td>640</td>
<td>960</td>
<td>1040</td>
</tr>
<tr>
<td>OOK</td>
<td>9.5</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>OFDM</td>
<td>6.8</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

Evolución de la OSNR (dB) considerando el canal óptico y aplicando filtros concatenados para BW=12.5GHz, BER 10\(^{-3}\)

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>80</td>
<td>320</td>
<td>640</td>
<td>960</td>
<td>1040</td>
</tr>
<tr>
<td>OOK</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>OFDM</td>
<td>19</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

Evolución de la OSNR (dB) considerando el canal óptico y aplicando filtros concatenados para BW=25GHz, BER 10\(^{-3}\)

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>80</td>
<td>320</td>
<td>640</td>
<td>960</td>
<td>1040</td>
</tr>
<tr>
<td>OOK</td>
<td>8.5</td>
<td>8.7</td>
<td>8.8</td>
<td>9.21</td>
<td>9.22</td>
</tr>
<tr>
<td>OFDM</td>
<td>16.8</td>
<td>18.5</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>
c. Concatenando varios tramos con una longitud de fibra a 100 km, para Nspans = 1, 2, 4, 6, 8 y 10.

EVOLUCIÓN DE LA OSNR(dB) CONSIDERANDO EL CANAL ÓPTICO Y APLICANDO FILTROS CONCATENADOS PARA BW=12.5GHz, BER 10e-3

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>10</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>OOK</td>
<td>14</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>OFDM</td>
<td>9.2</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

EVOLUCIÓN DE LA OSNR(dB) CONSIDERANDO EL CANAL ÓPTICO Y APLICANDO FILTROS CONCATENADOS PARA BW=25GHz, BER 10e-3

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>10</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>OOK</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>13.5</td>
<td>15.2</td>
<td>19</td>
</tr>
<tr>
<td>OFDM</td>
<td>18</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>

EVOLUCIÓN DE LA OSNR(dB) CONSIDERANDO EL CANAL ÓPTICO Y APLICANDO FILTROS CONCATENADOS PARA BW=50GHz, BER 10e-3

<table>
<thead>
<tr>
<th>Nspan</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>10</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>OOK</td>
<td>8.84</td>
<td>8.74</td>
<td>9.00</td>
<td>9.08</td>
<td>9.15</td>
<td>9.30</td>
</tr>
<tr>
<td>OFDM</td>
<td>17.2</td>
<td>20</td>
<td>>30</td>
<td>20.5</td>
<td>>30</td>
<td>>30</td>
</tr>
</tbody>
</table>
Podemos observar los efectos de las no-linealidades de la fibra, en la señal OFDM (en tiempo) que se comporta como un ruido Gausiano, es decir, es bastante imprevisible y tiene picos muy grandes en relación con la media, lo que penaliza mucho, pero para el BLU (Single Side Band) con detección directa puede ser crítico.

Los resultados indican que los sistemas OFDM tienen peores características que OOK respecto a los requisitos de OSNR, lo que era de esperar debido a que en el OOK se hace una compensación de la dispersión de forma ideal, mientras que en el OFDM no, es lo bueno del OFDM, poder llegar a grandes distancias sin ningún tipo de compensación, por lo que podemos asegurar que lo malo de OFDM es que su requisito de OSNR es elevado, y lo bueno es que no necesita módulos para compensar la dispersión en los nodos, \textit{y esto implica un ahorro considerable de costes por parte del operador}.

En OFDM BLU, el que implementamos en este trabajo, no se hace modulación de intensidad, sino que se modula la amplitud del campo óptico. Ello conlleva que se pueden detectar y compensar fácilmente ciertos cambios de fase inducidos por la dispersión. Esta compensación se hace en la parte de ecualización del receptor.

En el caso de OFDM, vemos que para 6 spans en el estudio de tramos de 100 km, la relación OSNR es mejor que para 4 spans. Para la fibra presentada, a partir de 400 km vemos como se produce el efecto, haciendo que aparezcan comportamientos indefinidos; en nuestro caso interferencias constructivas.

Como la dispersión es el efecto más crítico de la fibra óptica, al añadir más fibra se incrementa la dispersión total acumulada. Como con el OFDM podemos compensar los efectos de la dispersión mediante la ecualización, ello no supone mayor problema y, por tanto, podemos llegar a mayores distancias sin módulos compensadores de dispersión.
El número de amplificadores a emplear sería el mismo en los dos sistemas. Lo único es que deben tener un factor de ruido un poco más bajo para evitar añadir un exceso ruido. En comparación con los costes que conllevaría la instalación de módulos compensadores de dispersión se produce un ahorro considerable con OFDM.

Con OFDM se puede hacer una carga de portadoras optimizada, es decir, cada sub-portadora se puede modular de forma independiente con un formato de modulación diferente. Esto es interesante para el caso que consideramos, dado que los filtros ópticos, cuando se van concatenando, forman una respuesta frecuencial conjunta que limita el ancho de banda. Así, por ejemplo, se puede mejorar también la transmisión del OFDM poniendo formatos de modulación de más bits por símbolo en las portadoras que caen en el centro del filtro óptico y formatos de modulación más robustos (de menor bit por símbolo) a las portadoras que caen en las bandas de transición del filtro óptico, más afectada por el efecto de concatenación.

Si analizamos los puntos anteriores relacionando el factor de ruido y el OSNR para las diferentes longitudes de span y anchos de filtro podremos saber si los amplificadores necesarios son realizables o no, según lo comentado en “13.3.4.- Análisis de amplificación en el sistema OFDM”.

Cada amplificador añade ruido de manera proporcional a su ganancia y al factor de ruido, y la potencia de ruido acumulada crece de manera lineal con el número de amplificadores, cuantos más amplificadores, más ruido. Si los amplificadores son iguales y se utilizan para compensar las pérdidas que puede haber en un tramo de fibra, entonces la potencia total del ruido acumulado a lo largo de la cadena de transmisión es proporcional a la potencia del ruido de un amplificador, fijando un factor de ruido en \(F_n = 4 \text{dB} \), con las características de la fibra analizada, obtuvimos los valores mínimos de OSNR acumulada mínima (tabla 3), en función de la longitud de los tramos que equivaldría a la separación entre los amplificadores:
Podemos observar que al aumentar el ancho de banda disminuye la OSNR y que para cubrir una misma distancia, es mejor juntar tanto como se puedan los amplificadores entre sí. De este modo, si separamos los amplificadores cada 50 km, la OSNR es mejor (más alta) que si los separamos cada 100 km, pero no obstante los valores que se han obtenido en este trabajo indican que los amplificadores necesarios son NO realizables en todos los casos, dados los valores tan altos de OSNR que debemos conseguir según los graficos analizados anteriormente.

Si analizamos de forma explicita los tramos realizables mas críticos vistos en “13.3.4.- Análisis de amplificación en el sistema OFDM” se justifica que para distancias de 50 y 80 km se pueden utilizar en los casos de viabilidad, amplificadores EDFA comerciales dado que el factor de ruido es aproximadamente de 8 dB.

Sin embargo, para las distancias de tramos de 100km, distancia es de 600 km con una OSNR de 20.5 dB, el factor de ruido necesario para los amplificadores es de -4.56 dB debido a las grandes pérdidas que introduce el cable a tener los tramos más largos y debemos mejorar el enlace introduciendo amplificación híbrida Raman-EDFA, donde los haces de bombeo y señal útil se propagan uno en sentido contrario de otro. El hecho de no necesitar tanta ganancia hace que el ASE de los EDFA sea menor y dé un factor de ruido menor.

Aunque el bombeo copropagante puede mejorar mas las prestaciones del ruido que el contrapropagante, no se propone por su mayor susceptibilidad a la
transferencia de RIN del bombeo, su diafonía a través del bombeo y la dependencia de la ganancia respecto del estado de polarización, también hubiéramos tenido que reducir la potencia de la señal útil para evitar penalizaciones por efectos no lineales de la fibra, por lo que se propondría amplificación híbrida Raman-EDFA con bombeo contrapropagante.
15.- Bibliografía

