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Abstract

Nowadays the Android platform is the fastest growing handheld operating
system. As such, it has become the most coveted and viable target of malicious
applications.

The present study aims at designing and developing new approaches to detect
malicious applications in Android-based devices. More precisely, MaLDroide
(Machine Learning–based Detector for Android malware), a framework for
detection of Android malware based on Machine Learning techniques, is intro-
duced here. It is devised to identify malicious applications.

To start with, features of real–world known-benign and known–malicious appli-
cations are extracted, gathering 299 features grouped into 8 categories: stats,
requested permissions, used permission, API calls, Intents, risks, system calls,
and content access. MaLDroide uses static analysis in order to automatically
extract these features.

As an essential part of the work, a mechanism for dimensionality reduction,
using Principal Component Analysis (PCA), was applied, the original 299
features are reduced to 27, retaining 90% of the variance, and dramatically
reducing time and space consumption.

Once determined the appropriate data set, a training process of the seven
most widely used Machine Learning algorithms (Naı̈ve Bayes, Decision Tree,
Random Forest, k-Nearest Neighbor, Support Vector Machine, Multi-Layer
Perceptron, and AdaBoost) is undertaken.

After an evaluation process with 436 normal applications and 2295 malware
samples, and on the basis of the evaluation results, one can conclude that
Support Vector Machine classifier produces the most accurate predictions, and

identifies malware with an accuracy of 99.8%.

The evaluation also shows that our framework constitutes a valuable tool which
is effective in detecting malware for Android devices.

Keywords: Mobile Malware, Android, Android Malware Detection, Static
Analysis, Security, Machine Learning, Dimensionality Reduction.



Resumen

En la actualidad la plataforma Android es el sistema operativo de mayor creci-
miento entre los dispositivos móviles. Por ello, también se ha convertido en el
objetivo más codiciado y viable para las aplicaciones maliciosas.

Este trabajo tiene como objetivo el diseño y el desarrollo de nuevas formas
de detección de estas aplicaciones maliciosas en los dispositivos basados en
Android. Más concretamente, en este trabajo se presenta MaLDroide (Machine
Learning–based Detector for Android malware), un marco de trabajo para la
detección de malware en Android utilizando técnicas de Aprendizaje Automati-
zado.

Para empezar, se extraen una serie de atributos de aplicaciones recientes y reales,
tanto legı́timas como malware. Exactamente se recogen 299 atributos agrupados
en 8 categorı́as: estadı́sticas, permisos solicitados, permisos utilizados, llamadas
a la API, Intents, riesgos, llamadas al sistema y acceso a contenidos. MaLDroide
utiliza análisis estático para extraer estos atributos de forma automatizada.

Como parte esencial del trabajo, se ha utilizado un mecanismo que permite
reducir la dimensión del problema utilizando Análisis de Componentes Prin-
cipales (PCA, por sus siglas en inglés), pasando de las 299 iniciales a las 27
finales, manteniendo un 90 % de la varianza y reduciendo espectacularmente el
tiempo y el espacio necesarios.

Una vez determinado el conjunto de datos adecuado, se procede al adiestra-

miento de los clasificadores mediante los siete algoritmos de Aprendizaje Auto-
matizado más ampliamente utilizados: Naı̈ve Bayes, Decision Tree, Random
Forest, k-Nearest Neighbor, Support Vector Machine, Multi-Layer Perceptron y
AdaBoost.

Finalmente, se realiza una evaluación usando 436 aplicaciones legı́timas y 2296
casos de malware. Y a la vista de los resultados obtenidos, se puede concluir
que el clasificador Support Vector Machine obtiene más predicciones correctas,

con una precisión del 99,8 %.



A la vista de estos resultados queda patente que el marco de trabajo presentado
es una herramienta muy eficaz para detectar malware en los dispositivos con
Android.

Palabras clave: Malware en móviles, Android, Detección de malware para
Android, Análisis Estático, Seguridad, Aprendizaje Automatizado, Reducción
de Dimensión.
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Resum

Actualment, la plataforma Android és el sistema operatiu de major creixement
entre els dispositius mòbils. Per això, també ha esdevingut l’objectiu més
cobejat i viable per a les aplicacions malicioses.

Aquest treball té com a objectiu el disseny i el desenvolupament de noves
formes de detecció d’aquestes aplicacions malicioses en els dispositius basats
a l’Android. Més concretament, en aquest treball es exposa el MaLDroide
(Machine Learning–based Detector for Android malware), un marc de treball
per a la detecció de malware a l’Android utilitzant tècniques d’Aprenentatge
Automatitzat.

Per començar, s’extreuen una sèrie d’atributs d’aplicacions recents i reals, tant
legı́times com malware. Exactament es recullen 299 atributs agrupats en 8 cate-
gories: estadı́stiques, permisos sol·licitats, permisos utilitzats, cridades a la API,
Intents, riscos, cridades al sistema i accés a continguts. El MaLDroide utilitza
anàlisi estàtica per extreure aquests atributs d’una manera automatitzada.

Com a part essencial del treball, s’ha utilitzat un mecanisme que permet reduir

la dimensió del problema utilitzant Anàlisi de Components Principals (PCA,
per les seves sigles en anglès), passant dels 299 atributs inicials als 27 finals,
mantenint un 90% de la variància i reduint espectacularment el temps i l’espai
necessaris.

Una vegada determinat el conjunt de dades més adequat, es procedeix a
l’ensinistrament dels classificadors amb els set algorismes d’Aprenentatge
Automatitzat més àmpliament utilitzats: Naı̈ve Bayes, Decision Tree, Random
Forest, k-Nearest Neighbor, Support Vector Machine, Multi-Layer Perceptron i
AdaBoost.

Finalment, es realitza una avaluació usant 436 aplicacions legı́times i 2296
casos de malware. I a la vista dels resultats obtinguts, es pot concloure que el

classificador Support Vector Machine obté més prediccions correctes, amb una

precisió del 99,8%.

A la vista d’aquests resultats queda patent que el marc de treball presentat és
una eina molt eficaç per detectar malware als dispositius amb l’Android.



Paraules clau: Malware en dispositius mòbils, Android, Detecció de malwa-
re per a l’Android, Anàlisi Estàtica, Seguretat, Aprenentatge Automatitzat,
Reducció de la Dimensió.
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”Did I ever tell you what the definition of insanity is? Insanity
is doing the exact . . . same f*****g thing . . . over and over
again expecting . . . shit to change . . . That. Is. Crazy.”

Vaas, in “Far Cry 3”

1
Introduction

Malware is an umbrella term, a short form for malicious software, actually covering a
generic definition for all kinds of computer threats. Malware is defined as software designed
to infiltrate or damage a computer system without the owner’s informed consent. Malicious
mobile applications can steal user’s information, make premium calls, and send SMS
advertisement spams without the user’s permission.

Android is the most popular handheld operating system (OS) in the most important
markets in America, Europe and Asia, outperforming its rivals iOS and Windows Phone,
according to the Kantar Worldpanel ComTech’s “Smartphone OS market share data”,
October 2014. In 2014, research firm IDC stated that more than a billion smartphones will
be sold and global market share was 85% for Android, 11% for iOS, 3% for Windows Phone
and remaining 1% for all other platforms (Fig. 1.1).

Speaking of malware that infects mobile devices amounts to speaking of Android

malware. Kaspersky Labs estimates that Android is the target of more than 98% of the
mobile malware[10]. Due to its popularity, inevitably Google’s Android has attracted
many malware writers’ attention, and more and more Android malicious applications have
been discovered recently. From a purely quantitative point of view, malware designed for
Android has the greatest opportunities of success. Android is also an open platform, and
the compatibility of Android causes it to become more liable to be attacked by malicious
applications than other mobile operating systems [77], for instance iOS or Windows Phone.

1



Figure 1.1: World-Wide Smartphone Shipments (Millions of Units — % of Smartphones).
Source: wikipedia.

1.1 Motivation

The amount of malware on mobile devices has been growing significantly since it was
first discovered in 2010 (Fig. 1.2). With the aim of detecting malware, mobile devices
have adopted traditional approaches such as the antivirus. This strategy is not the most
efficient against mobile malware, particularly when most malware is evolving rapidly to
evade detection by traditional signature-based scanning. Furthermore, an antivirus needs
to monitor a device’s activities closely to detect malicious behavior. These procedures
demand excessive memory and power usage, which becomes a drawback in handheld
devices, degrading user experience.

Moreover, malware writers know that the best way to infect as many devices as possible
is to attack central app markets. Like Apple, Google also provides a centralized market for
Android applications called Google Play Store. However, Android has the ability to install
apps from third-party sources: some of them are well-known (such as Amazon or Samsung),
but others are not, such as web pages (mostly in Russia, India or China) and memory sticks.

Due to the openness of the Android platform, however, applications may also be installed
from other sources.

2



Figure 1.2: McAfee Labs Threats Report: Third Quarter 2013. Source: McAfee Labs.

1.2 Objetives

The work reported here aims to study the best classifier for detecting Android malware using
Machine Learning classifiers in order to confront the rapid growth of malware. My interest
has been focused, mainly, on the identification of malware, instead of studying it.

Machine Learning classifiers have played a relevant role in the development of Artificial
Intelligence (AI) and detection systems. For this reason, my purpose in this work is to
evaluate Machine Learning classifiers to provide an alternative solution to the malware
detection problem.

In this work, MaLDroide (Machine Learning–based Detector for Android malware)
will be presented. MaLDroide aims to become a lightweight framework for detection of
Android malware that infers a model that enables identifying malware. MaLDroide performs
a static analysis, gathering as many features from an application’s code and manifest as
possible.

An important key element in malware detection is a collection of specific attributes by
means of which malware could be characterized. In this concern, I will identify the variables
(features) that should allow classifiers to determine whether an application is malware or
not.

In so doing, I intend to contribute some significant aid in Android malware detection,
and defend final users against it.

3



1.3 Structure of Contents

The materials contained in the present document are organized into five chapters, two
appendices, and a bibliographical section.

The why, the aims and scope of the work carried out in this study are stated in this first
chapter. A glance at the current state of the problem addressed in the study, as well as
at some ways in which that problem has been faced out, are offered in Chapter 2. The
idea and way a proceeding underlying the construction of the framework proposed here for
detection of malicious software for Android devices are expounded in detail in Chapter 3,
and the results obtained after the experiments previously devised are described and analyzed
in Chapter 4. Finally, a summary of conclusions and open problems appears in Chapter 5.

To put the problem in an adequate context, Appendices A and B provide the reader with
some background on the subject. The bibliographical section at the end of the document
presents a wide and recent list of sources dealing with the matter treated in the study.
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”We’ve always defined ourselves by the ability to overcome
the impossible. And we count these moments. These mo-
ments when we dare to aim higher, to break barriers, to reach
for the stars, to make the unknown known. We count these
moments as our proudest achievements. But we lost all that.
Or perhaps we’ve just forgotten that we are still pioneers.
And we’ve barely begun. And that our greatest accomplish-
ments cannot be behind us, because our destiny lies above
us.”

Cooper, in “Interstellar” 2
State of the Art

Android was released in 2008, and since then a number of studies focusing on analyzing
Android security mechanisms have appeared [81].

This chapter contains an overwiew of different recent approaches that have been taken
in the field of Android security,

2.1 Android Malware Categories

Most Android-targeted malware can be grouped into the categories of trojan, spyware, root
permission acquisition (exploit), installer (dropper), and botnet. Next, I will briefly describe
the most common malware in Android handheld system:

1. Trojan. It is a harmful piece of software that is intended to appear as legitimate.
Users are typically led to download and execute the trojan on their devices. Trojans
are also known to create backdoors through which malicious users can get access to
the system. Unlike viruses and worms, trojans do not self-replicate; and they do not
infect files.

2. Spyware. A compound word formed from spy and software. It is a type of malware
that is secretly installed on a device to collect information. It is frequently used for
commercial purposes, such as repeatedly opening pop-up advertisement or redirecting
users to a particular site. Spyware causes inconvenience by changing a device’s
settings or becoming difficult to be removed.

5



3. Root permission acquisition (exploit). It uses unknown vulnerabilities or 0-day
attacks: it is a new vulnerability that has not been discovered yet, and therefore the
said vulnerability has not been patched for. It is a kind of malware that acquires root
permission to clear security settings and then makes additional attacks on the Android
platform.

4. Installer (dropper). It hides malware in a program and guides users to run malware
and spyware. The malicious code can be either contained inside the dropper or
downloaded by the dropper to the target device.

5. Botnet. It is a network of infected devices under the command of an attacker. The
attacker, known as the botmaster, is able to control the bots and command them
to perform malicious activities such as stealing data, intercepting messages and
making phone calls without users’ knowledge. An tainted device and the botmaster
communicate through a rendez-vous point that is called command and control (C&C)

server.

2.2 Attack Vectors

Because of the nature of mobile devices, they are also open to new types of attack. Malware
commonly use three types of penetration techniques for installation, activation, and running
on Android platform:

• Downloading (Drive-by Download) is the traditional attack technique: malware
developers need enticing users to download apps that might appear to be interesting
and attractive.

• Repackaging is one of the most common techniques that malware developers use
to install malicious applications on Android platform. These types of approaches
normally start from popular legitimate apps that have been modified (repackaged) by
injecting malicious logic or obfuscated program segments so that they have the same
structure as the original application, but contain malicious code. Thus, determining
whether an application contains a repackaged or obfuscated malware, or whether an
application is legitimate, becomes very challenging.

• Updating technique is more difficult for detection. Malware developers may still use
repackaging but, instead of enclosing the affected code to the app, they include an
update component which is devised to download malicious code at runtime.

6



2.3 Malware Detection

2.3.1 Detection Analysis

For malware detection, there are two common practices: static and dynamic analysis of
software. Both have advantages and disadvantages, and numerous approaches to both static
and dynamic analysis paradigms do exist.

2.3.1.1 Static Analysis

Static analysis involves various binary forensic techniques, including decompilation, de-
cryption, pattern matching and static analysis of system calls. All of these techniques have
in common that the software is not being executed.

Many static analysis techniques construct graphs based on code structure. One of these
graphs is the data flow graph. Elish et al. [21] use data flow as a source of features by
determining if risky API calls are connected in some way to data input by a user. For
example if an application sends a text message containing information provided by the user,
then it is probably safe. If a text message is sent containing information generated without
the user’s input, it will probably be malicious.

A second useful graph is the control flow graph. It maps blocks of a program to
nodes, and possible paths of execution are the edges. Woodpecker [33] is a tool for detecting
security leaks in Android devices. It uses control flow graphs to search for paths of execution
that allow the use of dangerous API calls without requesting permissions.

The last graph is the dependence graph. In this kind of graph, nodes represent com-
ponents of the program and the edges represent some sort of dependence. Walenstein et
al. [90] use such a class dependence graph to detect isolated classes within repackaged
applications. Isolated classes are more likely to contain malicious code that might have
been injected. It is possible to detect isolated nodes in a graph with centrality metrics, like
betweenness1 and closeness2. A node with high closeness and low betweenness can be
considered isolated.

Opcodes3 are often used as features in static analysis. Many malicious activities have
characteristic opcode patterns that can be detected by classifiers. Opcodes are also useful in
detecting similarities between parts of programs. DroidMOSS [100] uses a sliding window
to compare large sections of opcodes in an unverified application to opcodes of other known
applications.

1Betweenness centrality measures how often a node appears on shortest paths between nodes in the graph.
2Closeness centrality of a node refers to the average distance from that node to all other nodes in the graph.
3An opcode is the part of a machine language instruction that determines the type of operation to be

performed.
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2.3.1.2 Dynamic Analysis

Dynamic analysis, also called taint analysis, is a set of techniques which involve running
an application in a controlled environment and monitoring its behavior. Various heuristics
have been used to best capture and analyze dynamic behavior of applications, such as
monitoring file changes, network activity, processes and system call tracing.

A sandbox is a protected area for running untrusted applications that does not allow
malicious behavior to influence anything outside the protected area. For example, an isolated
virtual machine can act as a sandbox for testing malicious applications. Researchers can
observe malicious activity without risking infection of other devices or leaking sensitive
information.

Since February 2012, Google uses a verification service named Bouncer. Bouncer
uses a sandbox to automatically scan applications submitted to the Android Play Store
for malware. As soon as an application is uploaded, Bouncer checks it and compares it
to the behavior of previous malicious apps. Unfortunately, as Oberheide and Miller [62]
demonstrated, there are many ways to circumvent this sandbox testing.

Building a sandbox that is indistinguishable from a physical device is one of the great
subjects of current research.

A significant challenge for dynamic analysis is input generation. Many malicious
applications initiate suspicious activity without regard for user interaction, but more stealthy
attacks could wait for a user to perform a predefined action before activating. To detect
this type of malware, systems that can simulate human input are needed. Input generation
systems are evaluated by the amount of code coverage4 that they achieve.

The Monkey5 is a system that helps developers to test applications by producing pseudo-
random input during program execution. The Monkey does not simulate system events such
as receiving a phone call. Just as malware could wait for a user action, it can also respond to
system events. The Monkey achieved code coverage of 53%.

Dynodroid [56] is a system for input generation. Dynodroid simulates system events
and allows a human to assist with input generation during testing. It uses an observer to
determine which events are relevant.Dynodroid achieved code coverage of 55%.

2.3.2 Detection Methodologies

Commonly, Android malware detection techniques can be classified into three detection
techniques, namely signature-based detection, anomaly-based detection and behavior-based

4Code coverage refers to the amount of source code that has been executed. For example, a program that
has been tested with 100% code coverage will have executed every piece of code in the program.

5http://developer.android.com/tools/help/monkey.html
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detection [52]:

Signature-based detection technique is a traditional method used to detect malware in
personal computer environment. Signature based methods [45], introduced in the
mid90s, detect the presence of a virus by using short identifiers called signatures,
which consist of sequences of bytes in the code of the infected program. The major
drawback of this approach is that it cannot detect metamorphic or unknown malware.

Static and dynamic methods can be used to define signatures. Static analysis targets
the code without actually running a program. Dynamic analysis is a method of
searching for certain patterns in memory leakage, traffic and data flow while running
the program.

Anomaly-based detection monitors regular activities in the devices [74], and looks for any
behavior that deviates from the normal pattern . Zhou et al. [102] have applied both
the signature-based and anomaly-based detection technique in their Android malware
detection system.

Behavior-based detection technique [9] is a method of detection focused on analyzing
the behavior of a program to conclude whether it is malicious or not. Behavior-
based technique usually applies Machine Learning approach for learning patterns and
behaviors from known malware, and then to predict the unknown one.

Apart from traditional approaches, other researchers resort to Machine Learning tech-
niques. Instead of using predefined signatures for malware detection, Machine Learning
techniques provide an effective way to dynamically extract malware patterns of behavior.
Gavrilut et al. [31] applied Machine Learning tecniques to identify patterns of behavior for
viruses in Windows executable files, by using a simple multi-stage combination (cascade) of
different versions of the perceptron algorithm.

2.4 Related Work

Although Android malware is a relatively new interesting topic, there has already been a
plethora of research in this field. Just after Android was released in 2008, the contributed
paper [75] was one of the first studies focused on analyzing Android security mechanisms
(actually, on its Linux side).

In the context of Machine Learning methods, the first major contributions for detecting
malware were proposed in [76, 49, 42]. These authors tried to detect unknown computer

9



viruses by using classifiers like Decision Trees, Bayesian Networks, Support Vector Machine
(SVM), and Boosting, among others.

Enck et al.[25] was one of the first studies concerning Android permission model,
internal components and their interactions. Schmidt et al.[73] perform a static analysis of
the executables to extract function calls in Android environment. Function call lists are
compared with malware executables for classifying the function calls. Polla et al.[66] survey
some security solutions for mobile devices.

Kirin [24] is a logic–based tool for Android that performs a lightweight certification of
applications to mitigate malware at install time.

SCanDroid [30] presents a methodology for static analysis of Android applications to
identify privacy violations. It extracts security specifications from manifest, and checks
whether all data flows through that application are consistent with the aforesaid specifica-
tions.

Bläsing et al.[7] describe another dynamic analysis system for Android, focused on
classifying applications as malicious (or not), by scanning those applications according to
criteria establishing potential danger.

TaintDroid [22] monitors applications for the leakage of sensitive information, imple-
mented upon the Dalvik Virtual Machine. Private data are considered tainted, and anything
that reads them will also be considered tainted, and then tracked. If private data leave the
Android device, the user is provided with a report. DroidBox [51] uses TaintDroid to detect
privacy leaks, but also comes with a patched Dalvik Virtual Machine to monitor the Android
API and to report on file system and network activity, the use of cryptographic operations
and cell phone usage. It then provides a timeline view of the monitored activity. DroidBox
is useful for manually identifying malware by viewing its observed behavior.

ComDroid [14] performs static analysis of decompiled bytecode of Android applications
to find Android Intents sent with weak permissions.

Crowdroid [12] is a dynamic analysis and Machine Learning-based framework that
recognizes Trojan-like malware on Android smartphones, by analyzing the number of times
that each system call has been issued by an application during the execution of an action
that requires user interaction. Collected observations are classified using K-Means, showing
a detection rate of 100%. The main difference with other approaches is that authors analyze
the monitored features in the cloud.

In 2012, researchers at the North Carolina State University published a data sample,
called Android Malware Genome Project, that consists of 49 different Android malware
families with a total of 1,260 malware cases [101].
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There are also studies [27, 4, 16, 65] on the use of static-based detection methods relying
on permissions which require a small amount of resources and enable a quick detection.
However, these methods have a relatively low detection rate. In case of dynamic detection
methods [96, 32], they exhibit a high detection rate, but require a lot of resources, and
detecting malicious behaviors takes them a long time.

DroidRanger [102] uses imported packages and other features extracted from the appli-
cation in order to achieve malware classification, and also extracts system calls made by
native code and looks for attempts to hide this code.

DroidMat [94] claims to outperform Androguard [17] in accuracy and efficiency. Droid-
Mat uses several features including permissions, deployment of components, intent messages,
and API calls. It also performs different types of clustering to classify applications as benign
or malicious.

Andrubis [53, 91] is an extension of the Anubis service: a platform for analyzing
unknown applications. Andrubis was the first dynamic analysis platform for Android
available as a web application since May 2012. Users can submit Android applications and
receive a detailed report including a maliciousness rating when analysis is finished.

MADAM [18] (Multi-level Anomaly Detector for Android Malware) uses 12 features
to detect Android malware at both kernel and user level. Together with the K-Nearest
Neighbors (KNN) classifier, MADAM successfully obtained a 93% accuracy rate for 10
malwares. However, it is incapable of detecting malware that avoids the system call with
root permission, for example SMS malware.

Andromaly[80] is a host-based malware detection system that continuously monitors
smartphone features and events. Andromaly relies on Machine Learning techniques moni-
toring both the smartphone and user’s behaviors by observing 88 features to describe these
behaviors, ranging from activities to CPU usage. Andromaly identified the best classifica-
tion method out of six classifiers (DTJ48, NB, Bayesian Networks, k-Means, Histogram
and Logistic Regression), and achieved a 99.9% accuracy rate with the decision tree (J48)
classifier. Although its authors achieved great accuracy, they had used self-written malware
to test their framework.

RobotDroid [99] is based on the SVM classifier to detect unknown malware in mobile
devices. The focus was on privacy information leakage and hidden payment services. The
authors evaluated three malware types (Gemini, DroidDream and Plankton). This framework
is limited to a few malware types.

In their turn, Sanz et al.[71] worked out PUMA (Permission Usage to detect Malware in
Android), a framework to detect malicious Android applications through Machine Learning
techniques by analyzing the extracted permissions.
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Kim et al.[46] proposed a malicious application detection framework on Android market
performing both static and dynamic detection methods using Machine Learning. Saranya
et al.[88] not only check permissions but their treatment also involves a feature selection
method that finds the best performance in detecting new malware.

TStructDroid [82] constitutes a real-time malware detection system by using theoretical
analysis, time-series feature logging, segmentation and frequency component analysis of
data, and a learned classifier to analyze monitored data. TStructDroid shows a 98% accuracy
and less than 1% false alarm rate.

MADS [72] (Malicious Android applications Detection through String analysis) ex-
tracts the strings contained in applications to build Machine Learning classifiers and detect
malware. Huang et al.[44] used static analysis and evaluated four classifiers (AdaBoost,
NB, DT48 and SVM) on permissions to detect anomalies. Then, this authors claimed that
permission-based analysis is a quick filter for identifying anomalous applications.

STREAM [2] uses an Android emulator to collect selected features such as battery,
memory, network and permission. It then applied several Machine Learning classifiers
to the collected data. Liu’s approach [54] is a malware detection method based on the
Multiple Classifier System (MCS) [92], wherein each base classifier (SVM) is responsible
for detecting only one kind of malware.

Yerima et al. [97] present an approach based on Bayesian classification models ob-
tained from static code analysis. The models were built from a collection of code and app
characteristics that provide indicators of potential malicious activities. This models were
evaluated with real malware samples. Canfora et al.[13] compute the occurrences of a set
of system calls invoked by the application under analysis. The fundamental hypothesis is
that different malicious applications can share common patterns of system calls that are
not present in normal applications, since these common patterns are recurrently used to
implement malicious actions.

In [26], Feizollah et al. evaluate 5 Machine Learning classifiers, and results were
validated using malware data samples from the Android Malware Genome Project. These
authors consider only three network features: connection duration, TCP size and number
of GET/POST parameters. Narudin et al.[61] proposed an alternative solution combining
the anomaly-based approach with Machine Learning classifiers, evaluating that solution on
two data sets, namely MalGenome[101] and a self-collected private data set. In 2013, Han
and Choi [37] published their study in which they applied Machine Learning to selected
features, evaluating 5 malware families.

A5 [89], short form for Automated Analysis of Adversarial Android Applications, is
an automated system to process Android malware, combining static and dynamic malware
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analysis techniques. Main innovation in A5 consists of platforms, both virtual and physical,
to capture behavior that could otherwise be missed.

Dendroid [86, 87] is an approach, based on Text Mining and Information Retrieval
techniques, to analyze and classify code structures in Android malware families. These
authors use those code structures in order to investigate hierarchical relationships among
malware families.

DroidDolphin [95] is a dynamic analysis framework based on Big Data and Machine
Learning to detect malicious Android applications. Liu and Liu [55] propose a scheme for
detecting malicious applications using a decision tree classifier. In contrast to other previous
researches, they consider requested permission pairs as an additional condition, and also
consider used permissions to improve detection accuracy.

Protsenko and Müller [68] proposed a static detection method based on software com-
plexity metrics (involving control and data flow metrics as well as object-oriented design
metrics); such a method shows resilience against common obfuscation transformations.

Finally, DREBIN [3] performs a broad analysis of Android applications to detect on-
device malware by using Machine Learning based on features like requested hardware
components, permissions, names of app components, intents, and API calls. However, it
is unable to detect malwares that use obfuscation technique and dynamically loaded code
technique.

The aforementioned approaches, summarized in Tables 2.1 and 2.2, demonstrate the
logic behind applying Machine Learning classifiers to detect Android malware.
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”Knowledge is useless if it is not used.”
Gixx, in “Guild Wars 2”

3
Methodology

The Android malware detection method proposed in the present work is discussed in detail
in this chapter. This chapter contains the overall work flow of the experiments. Figure 3.1
illustrates the experiment work flow structure consisting of four phases. The first stage is
data collection, which collects normal and malicious applications. In the second phase,
which is feature selection and extraction, features selected are extracted, labelled and
stored to be applied in the next phase. The Machine Learning classifiers entail the third
phase, whereby the stored information trains the Machine Learning classifiers to produce
several detection models. The last phase is the evaluation and choice of a classifier based
on empirical data obtained, in order to build our framework.

Figure 3.1: The experiment work flow structure
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The following sections describe each phase in detail.

3.1 Data Collection Phase

3.1.1 Benign Applications

The top successful applications at Google Play1 Store for Android are selected as benign
applications. The benign cases (436) consist of apps available on Google Play in November
2014. Although there is a relatively small number of benign cases vs. that of the malicious
ones, I have supposed apps to be mostly malicious.

The most popular applications from the Android official market have been included, and
I have also decided to include some “scam apps” (i.e. wifi boosters, battery doctor, photo
galleries, ...) because those kinds of apps usually hide malware.

3.1.2 Malicious Applications

Several sources were considered for use as a malicious data set. Our malware cases consist
of 2295 malicious apps grouped into different families. A malware family is basically a
collection of malware presenting a similar behavior. The selected malicious applications
belong to trojans, adware, rootkits, bots and backdoors categories.

Among the malicious apps, some 1900 apps are taken from DREBIN[3], 331 from
contagio [64], and the rest of malicious apps are collected from the Andriod Malware
Genome Project [101]:

• MalGenome data set. The Android Malware Genome Project is a malware repository
that covers the majority of malware families for Android (Table 3.1). This repository
contains 1247 malicious apps grouped into 49 different families. These samples
included specimens with a variety of infection techniques (repackaging, update attacks,
and drive-by-download) and payload functionalities (privilege escalation, remote
control, financial charge, and private information leakage).

• DREBIN data set. The data set contains 5,560 applications from 179 different malware
families. The samples have been collected in the period of August 2010 to October
2012.

• Contagio Mobile Dump. Contagio Mobile is a public malware repository managed
by a group of independent security researchers and counts on a great support within

1https://play.google.com/store
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Malware Description

SMS The malware sends Premium SMS messages charged against the user.
Banking The malware is designed specifically to intercept Banking messages.
Root The malware uses a rootkit as a method of attack.
Info The malware uploads personal information to a remote server, without notifying the user.
Spyware The malware remains on in the background, or has the capability of remotely monitoring the smartphone
Botnet The malware exhibits a behavior associated with botnets, e.g. accepts remote commands.
Market The malware was spotted in the official Google Play Store

Table 3.1: Malware Genome Project’s malware classes.

the malware community. This data set contains 331 samples, some of which are very
recent (November 2014).

3.1.3 Samples Description

Our samples consisted of a total of 2731 applications split into 2295 malicious apps and 436
clean apps. There were no duplicate programs in the cases and every sample is labelled as
either malicious or benign.

Figure 3.2: The distribution of applications (malware/benign) in the data set

Once the data collection phase was finished, I ended up with a less benign cases than I
would have expected, as seen in Fig. 3.2. However, this should not affect the further analysis.
After verification of the samples, the next step of this method was devoted to extract features
from the collected applications.

3.2 Feature Extraction and Selection Phase

In the feature extraction phase, MalDroide statically examines the collected benign and
malware apk samples to determine and extract the necessary features. Besides, it analyzes

18



the decompiled source code of an application, by identifying used permissions required by
the application, API calls, as well as other features for malware detection.

Behavior of both malicious and benign applications are profiled with a set of feature
vectors [2]. In order to apply any Machine Learning technique, relevant features from every
application have been extracted. Android applications are delivered as apk files. I decide to
use an open source project, namely Androguard [17], as support to process these files and
extract features.

Analysts [94] have observed that malicious applications have significantly more permis-
sions than benign ones. This is expected since permissions allow applications to perform
actions that can potentially harm the user. Malicious applications also tend to request
unusual permissions when compared to legitimate ones [5].

Let an application feature Fi, obtained from digging in the apk by MaLDroide, be
defined as:

Fi =

{
1, if discovered by MaLDroide,
0, otherwise.

Every application is assigned a vector defined by f = (f1, f2, . . . , fn), where fi is the
result of the ith variable Fi.

MalDroide uses the information extracted with the help of Androguard to construct the
following feature categories:

Stats: MaLDroide retrieves the following statistical information from the apk, when avail-
able. MaLDroide gathers 11 statistical features:

• Number of classes, packages, permissions, activities, services, receivers, and
providers.

• Minimum and target SDK version.

• If apk contains URL’s or IP’s hardcoded.

Requested Permissions: One of the most important security mechanisms introduced in
Android is the permission system. Every Android application must include, in a
manifest file, a list of request permissions to access certain restricted elements, such
as hardware devices (camera, GPS, file system, ...), sensitive features of the system
(contacts, bookmarks, ...), and access to certain exposed parts of other applications.
Malicious software tends to request certain permissions more often than innocuous
applications [55, 16, 65]. For example, INTERNET requests the right to access the
internet, READ CONTACTS requests the right to access the users contact list, and a
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great percentage of current malware sends premium SMS messages and thus requests
the SEND SMS permission.

MaLDroide gathers 107 permissions both dangerous and harmless.

Used Permissions: This feature set is a list of all used dangerous permissions. There is not
a file that describes the permissions actually used by an app. Therefore, MaLDroide
needs to analyze the dex file to identify which permissions are actually used by the
app. MaLDroide selects a total number of 62 used permissions.

API Calls: Certain API calls allow to gain access to sensitive data or resources, and are
frequently found in malware samples. MaLDroide collects the following types of API
calls:

• API calls for accessing sensitive data, such as getSubscriberId(), getDe-
viceId(), getLine1Number(), getSimSerialNumber (), getNet-
workOperator(), and getCellLocation().

• API calls for sending and receiving SMS messages/phone calls, like sendText-
Message().

• API calls for execution of external commands, such as ClassLoader.load-

Class() and System.loadLibrary().

• API calls for network communication, like HttpURLConnection() and
Socket().

• API calls frequently used for encrypting, like Cipher.getInstance().

MaLDroide gathers 56 potentially dangerous API calls.

Intents: Inter-process communication on Android is mainly performed through intents.
MaLDroide collects a set of suspicious intents as another feature set. A typical
example of an intent message involved in malware is BOOT COMPLETED, which is
used to trigger malicious activity directly after booting the device. MaLDroide selects
27 suspicious Intents.

Risks: Androrisk is another utility of Androguard tool set, which identifies “red flags”
based on permissions, shared libraries, and other risk factors [20]. MaLDroide checks
the following risk factors (5):
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• Dynamic Code: DexClassLoader is a class loader that loads classes from .jar
and .apk files containing a classes .dex entry. This can be used to execute code
not installed as a part of an app.

• Native Code: Android apps can load code written in C/C++ by using the Native
Development Kit (NDK). Native code can be used to boost application perfor-
mance for resource intensive applications. Nevertheless, the use of native code
increases the risk of the app.

• Java Reflection: Java Reflection is used to examine or modify the runtime
behavior. Using this characteristic, Android applications can load Java classes at
runtime, which may be used to circumvent API restrictions.

• Crypto: Androrisk searches for the use of cryptographic libraries that may
obscure part of the code that avoids a static analysis.

• Score: Using Fuzzy Logic, Androrisk calculates a score (0-10, 10 meaning the
most risky score) of risk factors.

System Calls: Linux kernel is executed in the lowest layer of Android architecture (Fig.
A.1). Calls to system commands, like chmod, rm, mount, or su, are registered. In
total, MaLDroide collects 19 different Linux system calls.

Content Access: Content providers manage to access to central repositories of data in
Android system. A special form of URI, which starts with content://, is assigned
to each content provider. Any app can query the inbox from the device using its URI
content://sms/inbox, although READ SMS permission must be required in
order to access. MalDroide locates access via URI to 12 content providers.

First, MaLDroide decompress and decompiles the apk file to retrieve the content. MaL-
Droide uses Androguard tools to extract the information from the apk files. Androguard can
turn them into Java’s bytecode. Next, it processes the Android manifest file to extract data
(mainly, requested permissions). MaLDroide looks up into the bytecode identifying selected
API calls, dangerous used permissions, suspicious system calls and content access (Table
3.2).

Finally, MaLDroide stores a vector of features similar to Fig. 3.3.
Not all of the collected information items will be used in the analysis, but it is kept in

the data set in case of future study.
Lastly, I need to gather all generated vectors to shape the data set. This is simply done

with a script in R to construct the full data set.
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com.whatsapp:<1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,
1,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,0,
1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0,1,1,0,1,1,1,0,0,
1,1,1,1,0,0,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,
0,1,0,1,1,1,0,1,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,1,1,
1,1,1,0,1,1,7,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,0,
1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,1,0,0,1,
1,0,0,0,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,
1,0,0,1,1,0,benign>

Figure 3.3: An example of feature vector for the WhatsApp application retrieved with
MaLDroide

3.2.1 Android App Reverse Engineering: Androguard

Android applications are written in Java and compiled by the Android SDK tools with any
data and resource files into an Android package.

Androguard [17] is a popular static analysis tool for Android applications. It can
disassemble and decompile Dalvik bytecode. It can also compute a similarity measure to
detect repackaged apps or known malware. It also has modules that can parse and retrieve
information from the AndroidManifest.xml. Due to its flexibility, it is used by some other
analysis frameworks that need to perform some static analysis.

This tool has three different decompilers: DAD, DED and JAD. The one used by default
is DAD, which is also the fastest one, due to the fact that it is a native decompiler. Additional
features, such as visualizing the application as a graph and permissions examination, are
available as separate scripts.

To facilitate the Machine Learning detection approaches in the present work, I have
implemented an Androguard-based Android analysis tool for automated reverse engineering
of the apk files, named MaLDroide.py.

3.2.2 Feature Selection

In Machine Learning applications, a large number of extracted features, some of which
redundant or irrelevant, present several problems such as misleading the learning algorithm,
over-fitting, reducing generality, and increasing model complexity and run-time.

Applying the most suitable feature selection at a preparatory stage enables to use our
malware detector more efficiently, with a faster detection cycle. Nevertheless, a reduction of
the amount of features should be performed in such a way that a high level of accuracy is
preserved.
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Full generated data set contains 299 features, most of which may be redundant and
do not contribute significantly to classification. Accordingly, it is necessary to reduce the
number of features to an appropriate level. In the present work, the feature reduction method
has been Principal Component Analysis (PCA).

Principal Component Analysis (PCA) [85] creates a number of principal components
which is less than or equal to the total number of available variables. Each principal compo-
nent (PC) should exhibit a high variance with other components. Top principal components
are orthogonal to each other, and have minimal correlation. A principal component can be
expressed as a linear combination of original features (Fig. 3.4), strategically chosen so as
to produce a reduction of dimensionality.

PC1: 0.102*permission__android.permission.RECORD_AUDIO +
0.102*permission__android.permission.UPDATE_DEVICE_STATS +
0.098*api_call__Landroid.app.ActivityManager...

restartPackage
PC2: 0.177*used_permission__android.permission.NFC +

0.177*permission__android.permission.NFC +
0.177*used_permission__android.permission.

AUTHENTICATE_ACCOUNTS
...

PC27: 0.207*permission__android.permission.MODIFY_AUDIO_SETTINGS+
0.185*api_call__Landroid.telephony.TelephonyManager...

getNeighboringCellInfo-
0.175*api_call__Ljava.lang.ClassLoader...loadClass...

Figure 3.4: Top Principal Components.

Data Set Number of Features Number of Cases Comments

Full 299 2731
PCA5 43 2731 95% of variance preserved.
PCA3 27 2731 90% of variance preserved.

Table 3.3: Data sets used in the experiments

In Table 3.3, a description of the data sets used in the experiments of this study can be
found.
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3.2.3 Data Set Discussion

Before digging into next phases, I am going to have a quick look at the most frequently used
permissions in Android applications. Fig. 3.5 shows that malware requires relatively more
permissions with a fewer implemented classes. An important point to be taken into account
is that not all the permissions requested by a malicious application are necessarily required
for it to do its malicious work [8]. For example, when a trojan is attached to a legitimate
application (repackaging), the resulting application requires the permissions of the original
application in addition to the permissions that it requires for its own malicious purposes.

Figure 3.5: Number of classes vs number of permissions in malware/benigns applications.

Fig. 3.6a shows the top 25 permissions requested by both malicious and benign applica-
tions in the data set.

We can see that the permission INTERNET is requested by every application (100%),
either malware or legitimate. Therefore, this is a feature in the data set which will provide
us very little information, since it presents no variability.

As a guiding principle, I am mainly interested in such permissions for which there is a
substantial difference between malware and legitimate application requests. Fig. 3.6b shows
the major differences between the most requested permissions, depending on legitimate
applications or malware.
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(a) Top 25 requested permissions.

(b) Top 25 major differences in requested permissions between malware and benign
applications.
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3.3 Machine Learning Phase

The third phase of this methodology, just the one truly involving a Machine Learning
approach, includes the training of the classification models from the collected data.

The experiments described in this work compare runs of Machine Learning algorithms
with and without feature selection from the data sets described in the preceeding section.

I have resorted to WEKA (Waikato Environment for Knowledge Analysis) [93, 36] to
train and evaluate different algorithms used in the experiments. WEKA is a collection of
Machine Learning algorithms for Data Mining tasks.

As above described, our data sets have 2731 cases. Typically, in a Machine Learning
approach, not all cases will be used to train the classifier. Moreover, only a relatively small
percentage of the data set (called the training set) will be used for training the classifier;
most cases (the so–called test set) in the data set will be used to verify the classifier.
Accordingly, the classifiers are trained on the training set, and then the generated classifiers
are verified with the help of data in the test set.

3.3.1 Machine-Learning Algorithms

A huge diversity of classifiers can be used for Machine Learning techniques. After extensive
study of existing Machine Learning approaches, one can highlight disadvantages and
advantages of the following algorithms, which I consider to seem to be the most appropriate
for the task of malware detection:

• Naı̈ve Bayes (NB) [48] assumes the features to be independent random variables, and
calculates their probabilities to draw a conclusion. It is a relatively fast algorithm, but
the initial assumption that features are strongly independent is not always realistic in
real world.

• Decision Tree (J48) [50] is a tree relying on the feature values to classify instances. A
decision tree consists of nodes and leaves. Nodes perform evaluations of features, and
leaves contains the reached conclusion (namely, whether the app under considetation
is classified as malware or benign).

• Ramdom Forest (RF) [11] combines decision trees made up by the independent
random features to draw a conclusion, and achieves a relatively high detection rate.
Random Forest is a Machine Learning classifier frequently used in malware detection
studies in the Android environment [47, 37].
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• K-Nearest Neighbor (KNN). Although it is a very simple algorithm (an instance of
the so-called “lazy algorithms”) and exhibits fast performance, it becomes inappropri-
ate when the training set suffers from noise or outliers

• Support Vector Machine (SVM) has a robust theoretical and conceptual background,
thanks to which its performance regarding classification results is generally better
than that achieved by other algorithms. However, it is conceptually complex, hard to
interpret, CPU– and memory–intensive, and performs well on linearly-separable data;
otherwise, it requires involved non-linear transformations by means of kernels. In the
present work, the linear kernel has been chosen.

• Neural networks (NN) [34] is another Machine Learning technique inspired by
the human brain. However, since neural networks technique takes more time than
other classifiers when training [60], it is considered difficult to apply to any malware
detection system in which real time is a constraint. The Multi-Layer Perceptron
(MLP) is a type of artificial neural network consisting of a network of neuron layers.
It has been widely employed among researchers in various fields such as banking,
defence, and electronics. MLP has medium-level complexity. In this work, one hidden
three–node layer was chosen. This classifier is flexible and supports high degree of
complexity, but it seems complex and hard to interpret.

• AdaBoost (AB) [28] is an iterative classifier that runs other algorithms multiple times
in order to reduce the error. For the first iteration all of the algorithms have the same
weight. As the iterations continue, the boosting process adds weights to the algorithms
that reveal lower errors from the results of the classifier runs.

In this study I have used the algorithms and the parameters specified in Table 3.4.

Algorithm Used configuration

Naı̈ve Bayes (NB) N/A
Decission Tree (J48) N/A
Random Forest (RF) Number of trees: 10
k-Nearest Neighbors (KNN) K=1
Support Vector Machine (SVM) Kernel: linear
Multi-Layer Perceptron (MLP) Hidden layer:1, nodes in hidden layer: 3
AdaBoost (AB) Base classifier: SimpleLogistic

Table 3.4: Machine Learning classifiers used in the experiments.
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3.4 Evaluation Phase

In order to evaluate each algorithm, three validation methods were chosen. These methods
are known as 10% split cross–validation, 33% split cross–validation, and 5–fold cross–
validation.

The first method, 10% split cross–validation, is defined as using 10% of a data set for
training purposes and remaining 90% for testing. Similarly, the second method, 33% split
cross–validation, uses 33% of the data set for training purposes and the remainder for testing.
Finally, as a case of k–fold cross–validation method, a 5–fold option was used, which is
described as applying the classifier to data 5 times, and each time with a 80-20 configuration,
i.e. 80% of data for training and 20% for testing; the final model is the average of these 5
iterations.

The benefit of split methods is that they take much less time as compared to the k-fold
method, since the process is carried out only once, whereas the same process is to be done
k times for the k–fold method. Over–fitting is a drawback of the 33% split method, and
it occurs when a classifier memorizes the training set instead of getting trained. In the
majority of the experiments, the k-fold method generally produces better results than the
split methods, which can be understood as a sign of over–fitting..

The WEKA software has been preferred for this study, due to its simplicity and user-
friendly interface. More specifically, the algorithms used in WEKA are displayed in Table
3.4. In those cases in which no configuration parameters are specified, the configuration
used was the default.

In order to evaluate the performance of algorithms, I have chosen the following standard
metrics:

• True Positive Rate (TPR), which is the proportion of correctly classified instances.

• False Positive Rate (FPR) is the proportion of incorrectly classified instances.

• Precision, which is the number of true positives divided by the total number of
elements labelled as belonging to the positive class.

• Area under Curve (AUC) provides the relation between false negatives and false
positives.

Different algorithms were trained with three alternative data sets (Table 3.3): the full data
set , the PCA data set with a linear combination of 5 parameters per Principal Component
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(denoted PCA5 data set), and the most compressed data set (namely PCA3 data set) obtained
after applying PCA to generte a linear combination of 3 parameters per PC.

To sum up: I have built three data sets (Full, PCA5, and PCA3), then I have chosen
seven Machine Learning algorithms (NB, J48, RF , KNN, SVM, MLP, and AB), I have
selected four metrics (TPR, FPR, Precision, and AUC), and three validation methods (10%
split, 33% split, and 5-fold cross-validation). All these “ingredients” have been combined
together to perform a series of experiments in the WEKA environment (Fig. 3.7). The
results of these experiments will be shown, analyzed and interpreted in next chapter.

Figure 3.7: Example of an experiment in WEKA
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”We’re made up of thousands of parts with thousands of func-
tions all working in tandem to keep us alive. Yet if only one
part of our imperfect machine fails, life fails. It makes one
realize how fragile... how flawed we are...”

Ingun Black–Briar, in “The Elder Scrolls V: Skyrim”

4
Experimentation Results

As I have already stated, the present work addresses a study and evaluation of various
Machine Learning classifiers for Android malware detection in order to face the problem of
its rapid growth.

MaLDroide experiment results are presented and interpreted in this chapter.
The empirical results of experiments are presented in Table 4.1. Details concerning the

experiments have already been described in the preceding chapter.

In view of the results summarized in Table 4.1, one may conclude that all these classifiers
show a high effectiveness rate. But we cannot see the wood for the trees!.

A thorough examination of these results is required. For instance, one might be led to
conclude that a 96% true positive rate (which is the lowest value) reached by Naı̈ve Bayes
algorithm is an excellent output; however, one should have in mind that this implies that
105 cases have been misclassified (104 are malware misclassified as benign, and 1 benign
sample has been misclassified as malware). Accordingly, apparently negligible variations in

FPR involve hundreds of cases that become misclassified, which is not acceptable in this
context.

I would like to put special emphasis on the fact that the dimensionality reduction process
applied to the full data set by PCA does not entail a significant loss in the different
performance measures. This circumstance becomes clear by examining and comparing
the successive rows in Table 4.1. Taking this fact into account, as well as the results shown
in Table 4.2, the said dimensionality reduction has been worth.
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10% split 33% split 5-fold cross-validation

Data Set Algorithm TPR FPR Prec. AUC TPR FPR Prec. AUC TPR FPR Prec. AUC

Full

NB 0.995 0.009 0.995 0.997 0.995 0.021 0.995 0.995 0.996 0.010 0.996 0.997
J48 0.996 0.021 0.996 0.987 0.997 0.018 0.997 0.99 0.999 0.004 0.999 0.999
RF 0.996 0.017 0.996 1.0 0.999 0.006 0.999 1.0 0.999 0.004 0.999 1.0
KNN 0.998 0.011 0.998 0.994 0.999 0.006 0.999 0.997 1.0 0.0 1.0 1.0
SVM 0.997 0.013 0.997 0.992 0.999 0.006 0.999 0.997 1.0 0.0 1.0 1.0
MLP 0.998 0.013 0.998 1.0 0.999 0.006 0.999 1.0 1.0 0.0 1.0 1.0
AB 0.996 0.021 0.996 0.987 0.997 0.018 0.997 0.99 1.0 0.0 1.0 1.0

PCA5

NB 0.988 0.006 0.989 0.993 0.981 0.006 0.983 0.99 0.96 0.01 0.968 0.981
J48 0.995 0.017 0.995 0.989 0.994 0.018 0.994 0.988 0.998 0.006 0.968 0.995
RF 0.989 0.047 0.989 1.0 0.996 0.015 0.996 1.0 0.999 0.006 0.999 1.0
KNN 0.993 0.034 0.994 0.98 0.996 0.024 0.996 0.986 0.999 0.004 0.999 0.998
SVM 0.998 0.011 0.998 0.994 0.999 0.006 0.999 0.997 1.0 0.002 1.0 0.999
MLP 0.996 0.019 0.996 0.995 0.999 0.006 0.999 0.993 0.999 0.004 0.999 0.995
AB 0.995 0.025 0.995 0.993 0.994 0.032 0.994 0.991 0.999 0.004 0.999 1.0

PCA3

NB 0.995 0.007 0.995 0.992 0.986 0.005 0.987 0.992 0.962 0.009 0.969 0.986
J48 0.995 0.017 0.995 0.989 0.994 0.018 0.994 0.988 0.998 0.006 0.998 0.995
RF 0.995 0.027 0.995 1.0 0.997 0.015 0.997 1.0 0.999 0.004 0.999 1.0
KNN 0.998 0.011 0.998 0.994 0.999 0.006 0.999 0.997 0.999 0.004 0.999 0.998
SVM 0.998 0.011 0.998 0.994 0.999 0.006 0.999 0.997 1.0 0.002 1.0 0.999
MLP 0.996 0.021 0.996 0.995 0.999 0.006 0.999 0.993 0.999 0.004 0.999 0.995
AB 0.995 0.025 0.995 0.993 0.994 0.032 0.994 0.991 0.999 0.004 0.999 0.998

Table 4.1: The performance of classifiers on malware detection

For my purposes, the most significant part of Table 4.1 is left–bottom block (correspond-
ing to experiments conducted with PCA3 data set and 10%–split cross-validation); in this
block the performance measures under the most restrictive conditions have been collected.
Consequently, this block contains the results to which special attention must be paid. Im-
portant as they are also, the remaining blocks in Table 4.1 provide useful information for
comparison tasks.

AUC values confirm that the Machine Learning techniques under consideration provide
compelling results regarding malicious application detection in Android.

As expected, the values obtained in the 5-fold cross–validation reveal rates that are
generally higher than those provided by the other validation methods, as can be inferred
from the 5-fold cross–validation columns in Table 4.1. This fact points out that a certain
risk of over–fitting in training process can have occurred.

Apart from considering the effectiveness of the algorithms, I am also interested in their
computational performance, since both on-device and conventional computer executions
become a fundamental parameter to be considered. To this end, I will compare the execution
times in the course of training and test processes. These execution times can be found in
Table 4.2.
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Algorithm

Data Set NB J48 RT KNN SVM MLP AB
Full 0.11 / 0.11 0.17 / 0.00 0.11 / 0.00 0.01 / 4.79 12.64 / 0.17 34.40 / 0.05 13.56 / 0.00
PCA5 0.02 / 0.01 0.18 / 0.00 0.29 / 0.00 0.00 / 0.67 0.43 / 0.04 5.51 / 0.00 3.20 / 0.00
PCA3 0.01 / 0.01 0.13 / 0.00 0.29 / 0.00 0.00 / 0.57 0.28 / 0.03 3.81 / 0.00 2.46 / 0.00

Table 4.2: Elapsed time (in seconds) for training and testing.

To start with, it is seen in Table 4.2 that the execution time dramatically decreases when
using reduced data set (PCA5 and PCA3), as compared to the full data set. This is especially
evident in the cases of the most time-consuming algorithms: Multi–Layer Perceptron (MLP),
AdaBoost (AB), and Support Vector Machine (SVM). The training time is reduced to one
tenth (from 34.4 sec. to 3.81 sec. in the case of MLP).

Moreover, the case of KNN algorithm shows that training time is almost zero, while the
test time becomes relatively high. This is due to the algorithm nature (it is called a “lazy
algorithm”): in the training process, a lazy algorithm does not do much work, while in test
stage KNN must calculate all the Euclidean distances for all of the cases. For this reason,
this algorithm is not especially effective as an on-device classifier.

Decision Tree-based algorithms (say J48 and Random Forest) demonstrate their simplic-
ity and test speed, their training and test times being almost the best ones.

As a consequence of the above considerations and results, I am now in a position to
decide on a classifier for the framework of Android malware detection proposed in the
present work.

From Table 4.1, we can observe that SVM algorithm has a slightly better classification
performance than other methods. As the table illustrates, Support Vector Machines (SVM)
classifier provides the best TPR value with 99.8%, which means nearly perfect prediction.
Regarding TPR and FPR, k-Nearest Neighbor (KNN) clasiffier is tied with SVM. The
remaining classifiers reach slighly lower rates.

Narrowly, SVM outperforms the other classifiers if the whole Table is taken into consid-
eration. Other classifiers, such as KNN, MLP, and AB classifiers attain excellent rates in
malware detection. Accordingly, any of them might be accepted as a good candidate for
malware classifier in this framework.

The empirical results provide an initial roadmap to investigate selected Machine Learning
algorithms for Android malware classification, and represent a resource for validating the
future improvements of new malware classification approaches.
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”Big things have small beginnings.”
David, in “Prometheus”

5
Conclusions

This present work is devoted to the study and evaluation of Machine Learning-based
techniques to effectively detect Android malware by selecting and collecting appropriate
features. In the light of several measure values, an “ideal” classifier is proposed.

5.1 Contributions and Conclusions

This trained classifier is an essential part of the framework designed in this work. This
framework has been named MaLDroide (Machine Learning–based Detector for Android
malware).

The major contributions and conclusions in this work are as follows:

• In this study I have use 2295 samples of recent (as in November 2014), real–world
malicious applications extracted from the Android Malware Genome Project, the
DREBIN Project, and contagio mobile dump. For comparison purposes, I have
resorted to 436 cases of recent and free, real-world legitimate applications borrowed
from Google Play Store.

• I have devised an method for selecting and extracting 299 features that allow me to
characterize the above applications according to the main criteria related to security
and malicious activity in Android handheld system.

• After a dimensionality reduction stage carried out by means of Principal Component
Analysis (PCA), the initial 299 features have been compressed to 27 features, almost
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completely preserving their original global variance. In so doing, a reduced data set
has been determined.

• The best known and studied Machine Learning algorithms have been trained and
evaluated in their performance over the chosen data set. Those algorithms are Naı̈ve
Bayes (NB), Decision Tree (J48), Random Forest (RF), k-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and AdaBoost (AB).

• Four standard performance measures have determined a ranking of the aforesaid
algorithms.

The final product resulting from this study is a framework for Android malicious
application detection consisting of

• A procedure for features extraction from applications based on static analysis of
Android manifest and source code,

• a dimensionality reduction mechanism for compressing the number of features without
considerable accuracy loss,

• a Machine Learning algorithm, Support Vector Machine (SVM), already configured,
trained and adjusted to be applied.

This framework leads to 99.8% accuracy, which means that it is capable to discriminate
almost all the cases of malware existing in the considered data set.

5.2 Limitations

As I have demonstrated in Chapter 4, MaLDroide shows a high efficacy in detecting recent
real-world malware on the Android platform. However, as any tool, MaLDroide can
potentially limit its effectiveness as a framework for malware detection. For instance,

• MaLDroide’s detection performance critically depends on the availability of represen-
tative malicious and benign applications.

• Machine Learning techniques can help us to recognize similar and quasi-clone mal-
ware but they cannot identify completely new brand malware.
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• As a purely static method, MaLDroide suffers from the inherent limitations of static
code analysis. Some attacks based on reflection and encryption become undetectable
by MaLDroide. MaLDroide may also fail to detect malware that uses updating
technique as attack vector, because only the main package is analyzed.

• MaLDroide depends upon tools such as Androguard. Thus, deficiencies and limita-
tions in this tool may also manifest in MalDroide.

5.3 Future Work

This work simply represents the first step in a longer journey towards developing a practical
Android handheld malware detection system.

I have in mind to develop an efficient and lightweight implementation of MaLDroide
that can be embedded into an Android handheld device for real-time detection. Furthermore,
the framework presented here may potentially be applied to develop a cloud-based malware
detection system [83, 84].

Future studies will intend to face hardly detectable malware. Given that diverse variants
and new types of malware are arising, additional research on Machine Learning techniques
should be considered in order to detect future malware.
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”A man chooses. A slave obey. OBEY.”
Andrew Ryan, in “Bioshock”

A
Android Platform

Andriod platform is an open source mobile operating system for mobile phones. However, it
can be better described as a middleware running on top of embedded Linux. Each application
is written in Java (possibly accompanied by native code), runs in its own virtual machine,
and runs in a process with a low-privilege user ID. This design choice minimizes the effects
of buffer overflows. Applications can access only to their own files by default

There are four layers in the Android stack (Fig. A.1):

• Android Application Layer,

• Application framework,

• Android runtime,

• Linux kernel, that acts as an abstraction layer between software stack and the hard-
ware of device.

Android applications are developed using Java programming language along with the
tools and APIs provided by the Android Software Development Kit.

A.1 Components of the Android Application

Android applications are composed of several standard components which are responsible
for different parts of the application functionality. Android defines four types of application
components:
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Figure A.1: Android Architecture

• Activities provide user interfaces. Activities are started with Intents , and they can
return data to their invoking components upon completion. All visible portions of
applications are Activities. The activity which is started at the application launch
time is called the main activity. The life cycle of an activity includes several states.
It begins from onCreate() and ends at the time when onDestroy() is called.
After an activity has been created, onStart() is the point at which the activity
becomes visible to users.

• Services, which are background processes for functionality not directly tied to the
user interface. Services work quite similarly to activities, the only difference is that
services usually perform a long term task. Services can be started in two different
ways. Calling startService() allows us to run an independent task, and the
service quits automatically when the task is finished. The other way to start a service is
through application bindings, and thus the application has to decide when the service
is activated and when it is killed.

• Content Providers are databases addressable by their application-defined URIs. The
data in content providers can be shared across applications, but only when the access
is allowed.

• Broadcast Receivers, which passively receive messages from the Android application
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framework. Registering a broadcast receiver lets our application listen to a particular
state of either the system or other applications.

A.2 Android Application Structure

In Android, applications are usually written in Java (less than 5% have native C components
[102]), and are distributed as apk (Android package) files. These apk files are in fact zip files
which contain everything that the application needs to run, including compiled Java classes
(in Dalvik1 DEX format2), icons, XML files specifying the user interface (UI), application
data, and an AndroidManifest.xml binary XML file containing application meta-data.

The structure of Android applications and the Android security mechanisms have been
well–documented [79] and many tools exist for creating and manipulating apks.

Typically, Android applications that have a user interface specify at least one Android
Activity, whereas those that do not have a user interface specify at least one Service. These
are classes that typically contain the core functionality of the mobile application, and are the
primary method for executing application code.

A.2.1 Android Manifest

The AndroidManifest.xml file is the configuration file of the Android applications. The
manifest file informs the Android framework of the application components and how to route
intents between components. It also declares the specific screen sizes handled, available
hardware and, most importantly for this work, the application’s required permissions.

<manifest>
<uses-permission />
<permission />
<permission-tree />
<uses-sdk />
....

</manifest>

Figure A.2: Example of Android Manifest file.

1An alternative runtime environment called Android Runtime (ART) was included in Android 4.4. ART
will replace Dalvik entirely in Android 5.0.

2The DEX bytecode format is independent of device architecture and needs to be translated into native
machine code to run on the device. The most significant change from Dalvik to ART is that Dalvik is based on
Just-in-Time (JIT) compilation, while ART is based on Ahead-of-Time (AOT) compilation.
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A.3 The Android Security Model

The Android system uses several methods to secure the devices [23]. In next sections, the
security features that affect applications directly will be described.

A.3.1 Permissions

Android security model highly relies on permission–based mechanisms. The Android
platform has about 130 application permissions with four protection levels that govern
access to resources. The protection level is a parameter of a permission and needs to be
specified when defining our own permissions. Each level of protection enforces a different
security policy. From weak to strong, we have following levels:

Normal permission: includes lower–risk permissions which control access to API calls
that are not particularly harmful. The system automatically grants this type of permis-
sion to a requesting application at installation, without asking for the user’s explicit
approval. For example, VIBRATE and SET WALLPAPER are permissions that are
not considered to have any danger associated with them.

Dangerous permission: regulates access to potential harmful API calls that would give
access to private user data. The dangerous protection level will cause warnings
to be displayed to the user before installation, and requires the user’s explicit ap-
proval to be granted. For example, permissions to read the location of a user
ACCESS FINE LOCATION or WRITE CONTACTS are classified as dangerous.

Signature permission: only granted if the requesting application is signed by the same
certificate as the certificate that was used to sign the application that defined the
permission.

SignatureOrSystem permission: only granted to applications installed in the system ap-
plications folder (a part of the system image) or that the application is signed by the
same certificate as the one used to sign the version of the Android system installed
on the device. Applications from the Android Market cannot be installed into the
system applications folder. System applications must be pre–installed by the device
manufacturer or manually installed by an advanced user.

A small number of permissions are enforced by Unix groups, rather than the Android
permission validation mechanism. In particular, when an application is installed with the
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INTERNET, WRITE EXTERNAL STORAGE, or BLUETOOTH permissions, it is assigned
to a Linux group that has access to the pertinent sockets and files.

Android uses a static permission approach for its security, all permissions are requested
and granted at install-time. Once being granted, they cannot be changed and will be valid
throughout the lifetime of this application.

A.3.2 Application Programming Interface (API)

The public API describes 8,648 methods3, some of which are protected by permissions.
There is no centralized policy for checking permissions when an API is called.

Figure A.3: Android API Architecture

The Android API framework is composed of two parts: a library that resides in each
application’s virtual machine and an implementation of the API that runs in the system
process. The API library runs with the same permissions as the application it accompanies,
whereas the API implementation in the system process has no restrictions. API calls are
handled in three steps (Fig. A.3):

1. the application invokes the public API in the library,

2. he library invokes a private interface (an RPC stub) also in the library,

3Android developers reference:http://developer.android.com/reference/
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3. the RPC stub initiates an RPC request with the system process that asks a system
service to perform the desired operation.

Permission checks are placed in the API implementation in the system process. When
necessary, the API implementation calls the permission validation mechanism to check that
the invoking application has the necessary permissions. Permission checks therefore should
not occur in the API library. Instead, the API implementation in the system process should
invoke the permission validation mechanism.

An application can use Java Reflection to access all of the API library’s hidden and
private classes and methods [57]. Some private interfaces do not have any corresponding
public API; anyway, applications can still invoke them using reflection. Java code running
in the system process is in a separate virtual machine and therefore immune to reflection.

A.3.3 Content Providers

Content providers are used to share data between multiple applications. For example, contact
information is stored in a content provider so that other applications can query it when
necessary.

System Content Providers are installed as standalone applications, separate from the
system process and API library.

User data are stored in Content Providers, and permissions are required for operations on
some system Content Providers. For example, applications must hold the READ CONTACTS

permission in order to execute read queries on the Contacts Content Provider.

A.3.4 Intents

In order to communicate and coordinate between components, Android provides a message
routing system based on URIs. Activities, services and broadcast receivers are activated by
an asynchronous message called an intent. An Intent is a message that declares a recipient
and optionally includes data. Intents notify applications of events, such as a change in
network connectivity. Additionally, some Intents sent by the system are delivered only
to applications with appropriate permissions. Furthermore, to prevent applications from
mimicking system Intents, Android restricts who may send certain Intents. All Intents are
sent through the ActivityManagerService (a system service), which enforces this restriction.

For activities and services, intents define an action that should be performed (start or
stop). Some intents may include additional data that specify what to act on. For broadcast
receivers, the intent simply defines the current announcement that is being broadcast. For
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example, for an incoming SMS text message, the additional data field will contain the
content of the message and the sender’s phone number.

To Receiver sendBroadcast(Intent i)
sendBroadcast(Intent i, String
rcvrPermission)
sendOrderedBroadcast(Intent i, ...)
sendOrderedBroadcast(Intent i, String
recvrPermission)
sendStickyBroadcast(Intent i)
sendStickyOrderedBroadcast(Intent i, ...)

To Activity startActivity(Intent i)
startActivityForResult(Intent i, int
requestCode)

To Service startService(Intent i)
bindService(Intent i, ServiceConnection conn,
int flags)

Table A.1: A non-exhaustive list of Intent-sending mechanisms

Intents can include URIs that reference data stored in an application’s Content Provider.
If the Provider has allowed URI permissions to be granted (in the manifest), this will give
the Intent recipient the capacity to read or write the data at the content. If a malicious code
intercepts the Intent, it can access the data URI contained in the Intent.

A malicious application can launch an Intent spoofing attack by sending an Intent to
an exported component that is not expecting Intents from that application. If the victim
application takes some action upon receipt of such an Intent, the attack can trigger that
action.
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”You have to learn the rules of the game. And then you have
to play better than anyone else.”

Albert Einstein, Physician.

B
An Brief Overview of Machine Learning

In 1959, Arthur Samuel defined Machine Learning as a field of study that gives computers
the ability to learn without being explicitly programmed. This is an informal definition,
but also an old one. A slightly more recent definition was proposed by Tom Mitchell [59],
who states that a computer program is said to learn from experience E with respect to
some task T and some performance measure P , if its performance on T , as measured by P ,
improves with experience E.

Machine Learning algorithms can commonly be divided into three different types de-
pending on the training data:

• supervised learning,

• unsupervised learning,

• semi-supervised learning.

For supervised learning algorithms, the training data set must be labelled (e.g., malware
and benign). For unsupervised learning algorithms, data do not need to be labelled and try
to determine how data are organised into different groups called clusters. Finally, semi-

supervised algorithms use a mixture of both labelled and unlabelled data in order to build
models, improving the accuracy of solely unsupervised methods.
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B.1 Classifiers

Classification is a fundamental issue in Machine Learning and Data Mining. In classification,
the goal of a learning algorithm is to construct a classifier given a set of training examples
with class labels.

A case E is represented by a tuple of attribute values (x1, x2, . . . , xn), where xi is the
value of attribute Xi. Let C represent the classification variable, and let c be the value of
C. In this work, there are only two classes: MALWARE (the positive class) or BENIGN (the
negative class) is assumed.

A classifier is a function that assigns a class label to a case.

B.1.1 Bayesian Classifiers

Bayesian Networks (BN) are defined as probabilistic models based on the Bayes Theorem
for multivariable analysis. BN are directed acyclic graphs (DAG) that have an associated
probability distribution function: nodes represent problem variables, and the eedges represent
conditional dependencies between such variables.

The most important capability of Bayesian Networks is their ability to determine the
probability that a certain hypothesis is true (e.g., the probability of an app to be malware)
given a historical data set.

According to Bayes Rule, the probability of a sample S = (x1, x2, . . . , xn) being class
c is p(c|S) = p(S|c)p(c)

p(E)
. Assuming that all attributes are independent, given the value of the

class variable, p(S|c) = p(x1, x2, . . . , xn|c) =
∏n

i=1 p(xi|c) .

B.1.1.1 Naı̈ve Bayes

Naı̈ve Bayes (NB) is the simplest form of Bayesian Network wherein given a class variable,
all attributes are assumed to be independent [98].

The algorithm is able to classify by calculating the maximum likelihood of the attributes
belonging to a certain class. Even with the interaction of certain attributes, the Naı̈ve Bayes
assumption does not lose predictive accuracy even if the actual probabilities are different.

In Naı̈ve Bayes, the acyclic graph becomes the simpliest possible one, and each attribute
node has no parent except the class node.

Naı̈ve Bayes classifiers have high accuracy on the data sets in which strong dependencies
exist among attributes. Surprisingly it makes an assumption that is almost always violated
in real applications: given the class value, all attributes are independent. The reason is that
NB does not penalize inaccurate probability estimation as long as the maximum probability
is assigned to the correct class [19].
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B.1.2 Decision Trees

Decision Tree (DT) classifiers are a type of Machine Learning classifiers that can be
graphically represented as trees [78, 40]. A decision tree consists of three building blocks:
internal nodes, edges and leaves. Internal nodes represent conditions regarding the variables
of a problem, whereas leaves nodes represent the ultimate decision of the algorithm.

Different training methods are typically used for learning the graph structure of these
models from a labelled data set; special attention will be paid here to the C4.5 algorithm
and the Random Forest algorithm.

B.1.2.1 C4.5

C4.5 [69, 70] belongs to a succession of decision tree learners. Although C4.5 has been
superseded by C5.0, a commercial system from RuleQuest Research, this description will
focus on C4.5 since its source code is readily available. As a particular case, J48 is an open
source Java-based implementation of the C4.5 Decision Tree algorithm present in WEKA
[93].

C4.5 adopts a greedy approach in which decision trees are constructed in a top–down
recursive divide–and–conquer manner. Most algorithms for decision tree induction also
follow a top–down approach, which starts with a training set and their associated class labels.
The training set is recursively partitioned into smaller subsets as the tree is being built. By
selecting the attributes according to the gain ratios criterion, C4.5 builds up a decision tree
where each path from the root to a leaf represents a specific classification rule.

B.1.2.2 Random Forest

Collection of trees are called forest, and Random Forest (RF) [43, 11] uses many classifica-
tion trees to be able to classify a class based on the majority vote of classification generated
by the trees.

The algorithm generatesK trees independently, which makes it very easily parallelizable.
For each tree, RF algorithm constructs a full binary tree of a given depth. The features
used in each tree are selected randomly (meaning that the same feature can appear multiple
times). The resulting classifier is a voting of the K random trees.

This algorithm tends to work best when all the features are relevant, since the features
selected for any given tree are small.
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B.1.3 k-Nearest Neighbor

The k-Nearest Neighbor algorithm is based on learning by analogy, that is, by comparing
a given test example with training examples that are similar to it. Each training example
represents a point in an n-dimensional space.

The k-Nearest Neighbor algorithm is amongst the simplest of all Machine Learning
algorithms: an example is classified by a majority vote of its neighbors, with the example
being assigned to the most common class amongst its k nearest neighbors (where k is
a positive integer, typically small). If k = 1 , then the example is simply assigned to the
class of its nearest neighbor. Closeness is defined in terms of a distance metric, such as the
Euclidean distance.

At training time, k-Nearest Neighbor algorithm simply stores the entire training set. At
test time, to predict a class, k-Nearest Neighbor algorithm finds the training example that is
the most similar one. In particular, the algorithm finds the training example that minimizes
the Euclidean distance between both cases. The algorithm predicts the same class for the
k-nearest training cases.

Despite its simplicity, k-Nearest Neighbor classifiers are astonishingly effective.

B.1.4 Support Vector Machines

Support Vector Machine (SVM) [15] is a set of supervised learning method used for
classification, regression and outlier detection.

SVM is effective in high dimensional spaces and also when the number of dimensions is
greater than the number of samples. SVM is very memory efficient because it uses a subset
of training points (formed by the so–called support vectors) in the decision function. In
general, the number of support vectors is far smaller than the number of training samples.

Given a training set, SVM tries to find a decision boundary that maximizes the (geo-
metric) margin. This will result in a classifier that separates the positive and the negative
training examples by means of a “gap” (geometric margin). We will assume that we are
given a training set that is linearly separable1. This is a way of setting up an optimization

problem that attempts to find a separating hyperplane with as large a margin as possible.
Let D be some training data, that is, a set of n points of the form

D =
{(
x(i), y(i)

)
|x(i) ∈ Rm, y(i) ∈ {−1, 1}

}n
i=1

,

where the yi are either -1 or 1, indicating the class to which the point xi belongs, and each
x(i) is an m-dimensional vector of real numbers.

1It is possible to separate the positive and negative examples using some separating hyperplane.
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In this optimization approach, SVM algorithm is trying to find parameters that maximize

the margin, denoted γ , subject to the constraint that all training examples are correctly
classified. This can be formulated as a constrained optimization problem:

min
w,b

1

γ(w, b)
, (B.1)

such that y(i)(wx(i) + b) ≥ 1,∀i = 1, . . . , n. (B.2)

The goal of this objective function is to ensure that all points are correctly classified.
The difficulty with the optimization problem is what happens with data that are not linearly
separable. Into the bargain, a “penalty” constraint is added if a point cannot be correctly
classified.

The original algorithm was modified [15] to introduce nonlinear classifiers by applying
a kernel function. This allows the algorithm to fit the maximum-margin hyperplane in a
transformed feature space.

Different kernel functions can be specified for the decision function. The basic idea is
to map the given data into some feature space, using some nonlinear mapping, and then to
learn a linear classifier in the new space. A kernel function is a symmetric function K that
computes a dot product in some space:

K(x, z) = φ(x)Tφ(z) .

Some examples of kernel functions can be adduced:

• Linear kernel K(x, z) = xT z

• Polynomial kernel K(x, z) =
(
1 + xT z

)p, where p = 2, 3, . . . . It encompasses all
polynomial terms up to degree p.

• Radial basis kernel K(x, z) = e−
1
2
x−z2 .

• Gaussian kernel K(x, z) = e(−x−z
2

2σ2
).

B.1.5 Neural Networks

A Neural Network is a fine–grained, parallel, distributed computing model characterized
by:

• a large number of very simple, neuron-like processing elements called units, or nodes,
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• a large number of weighted (positive or negative real values), directed connections
between pairs of units,

• local processing in that each unit computes a function based on the outputs of a limited
number of other units in the network,

• each unit computes a simple function of its input values, which are the weighted

outputs from other units. If there are n inputs to a unit, then the unit’s output, or
activation, is defined by a

(k)
i = g

(∑n
j=0 Θ

(k)
i,j xj

)
, where a(k)

i is the activation of unit

i in layer k , and Θ(k) is a matrix of weights controlling function mapping from layer
k to k + 1 . Thus each unit computes a (simple) function g of a linear combination of
its inputs2.

hΘ(x)

...
...

x1

a
(1)
1

Θ (2)1

x2

a
(1)
2

Θ (2)
2

x3

a
(1)
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3

xn
a

(1)
n

Θ
(2

)

n

Figure B.1: Artificial Neural Network with 1 hidden layer

Multi-Layer Perceptron (MLP) [63] is an artificial neural network model that consists of
multiple layers of nodes that interact via weighted connections (Fig. B.1).

B.1.5.1 Backpropagation Algorithm

The neural networks can be consider as an acyclic directed graph of units based on backprop-
agation algorithm. Intuitively, the backpropagation algorithm calculates the error of node j
in layer l , denoted by δ

(l)
j . The activation alj of node j in layer l is a totally calculated

value, so we expect there to be some error compared to the ”real” value, and the δ term
captures this error. The only ”real” value that we have available is our actual classification y ,
so let us first calculate δ(L) = a(L)−y = hΘ(x)−y . With δ(L) calculated, we can determine
the error terms for the other layers as follows: δ(L−1) =

(
Θ(L−1)

)T
δ(L) g

(
z(L−1)

)
.

2Originally the neuron output function g in original model was proposed as threshold function. However
linear, ramp and sigmoid are also widely used output functions.
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Algorithm 1 Back Propagation Algorithm
Given training data

(
x(i); y(i)

)
, i = 1, . . . ,m.

Initialize ∆
(l)
ij = 0 for all i, j, l.

for i = 1, . . . ,m do
Perform forward propagation to compute a(l) for each layer (l = 1, 2, . . . , L) .
Calculate δ(L) = a(L) − y.
Move back through the network from layer L− 1 down to layer 1 (back propagation).

Use ∆ to accumulate the partial derivative terms
(

∆
(l)
ij ← ∆

(l)
ij + a

(l)
j δ

(l+1)
i

)
.

end for
Compute D(l)

ij =
1

m
∆

(l)
ij + λΘ

(l)
ij if j 6= 0, and D(l)

ij =
1

m
∆

(l)
ij otherwise.

Calculate the partial derivative for each parameter
∂

∂Θ
(l)
ij

J(Θ) = D
(l)
ij .

B.1.6 Boosting

Boosting is a method to improve the performance of classifiers [28], such as Decision Trees
or Naı̈ve Bayes. Boosting is a method for combining multiple classifiers. Studies have
shown that ensemble methods often improve performance over single classifiers. Boosting
produces a set of weighted models by iteratively learning a model from a weighted data set,
evaluating it, and reweighting the data set based on the model’s performance.

The underlying idea of Boosting [29, 58] is to combine simple “rules” to form an
ensemble such that the performance of the single ensemble member is improved (“boosted”).
Let h1, h2, . . . ., hT be a set of hypotheses, and consider the composite ensemble hypothesis

h(x) = sign

(
T∑
t=1

αt ht(x)

)
,

where each ht(x) is a classifier producing values ±1 , and αt denotes the coefficient with
which the member ht is combined. Both αt and the hypothesis ht are to be learned within
the boosting procedure.

At each iteration, the boosting procedure updates the weight of each sample such that
the misclassified ones get more weighting for the next iteration. Boosting hence focuses on

the examples that are hard to classify.
The AdaBoost (Adaptive Boosting) algorithm [41, 6, 93], the most commonly known

boosting algorithm, is described in Algorithm 2.
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Algorithm 2 AdaBoost Algorithm
Given training data

(
x(i); y(i)) , y(i) ∈ {−1,+1}, i = 1, . . . ,m .

Initialize the weights assigned to each sample, αi =
1

m
, i = 1, . . . ,m .

loop
Apply learning algorithm to weighted data set and store resulting model.
Compute error err of model on weighted data set and store error.
if err = 0 or err ≥ 0.5 then

Terminate model generation.
end if
for j = 1, . . . ,m do

if
(
x(j); y(j)

)
classified correctly by model then

Multiply weight of instance αj by − log (err/(1− err)).
end if
Normalize weight of all instances.

end for
end loop

B.2 Evaluation of Classifiers

The simplest way of measuring the perfomance of a classifier is to count correct decissions.

B.2.1 Confusion Matrix and Related Measures

Table B.1 describes a confusion matrix for computing the evaluation indicators.

Predicted class
Positive Negative

Actual class
Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

Table B.1: Confusion matrix

The following entries are shown in a confusion matrix:

• True Positives (TP): positive instances predicted to be positive.

• True Negatives (TN): negative instances predicted to be negative.

• False Positives (FP): negative instances predicted to be positive.

• False Negatives (FN): positive instances predicted to be negative.
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On the basis of the aforementioned confusion matrix, the following indicators are given
by Eqs. (B.3):

TPR =
TP

TP + TN
(B.3a)

FPR =
FP

FP + TN
(B.3b)

Precision =
TP

FP + FP
(B.3c)

Recall =
TP

TP + FN
(B.3d)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(B.3e)

F1 − score = 2× Precision ∗Recall
Precision+Recall

(B.3f)

True positive rate (TPR) means the proportion of correctly identified normal applications.
False positive rate (FPR) represents the proportion of malware-containing applications
incorrectly identified as benign. Precision is an indicator representing an error of the

decision value, which represents the proportion of correctly diagnosed normal applications.
Accuracy is an indicator representing the system’s accuracy, expressed in the proportion of
correctly identified normal applications and malware, among the results. Finally, F1–score

is also called F–measure and means accuracy in the aspect of decision results, where an
F1-score reaches its best value at 1 and worst score at 0.

These measures focus only on the positive examples and predictions, although overall
they capture some information about the rates and kinds of errors made. However, neither

of them captures any information about how well the model handles negative cases [67].

B.2.2 ROC Curves

A Receiver Operating Characteristic (ROC) curve is a graphical plot that illustrates the
performance measure of a binary classifier determined by the true-positive rate versus the
false one. ROC is mainly used for visualizing, organizing and selecting the optimal classifier
based on the varying performances of classification algorithms.

ROC curves allows us evaluating and comparing algorithms. ROC curves signify the
tradeoff between false positive and true positive rates, which means that any increase in the
true positive rate is accompanied by a decrease in the false positive rate.

Misclassification rate is often a poor criterion by means of which to assess the perfor-
mance of classification rules. Because of these problems, one of the most frequently adopted
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measures of performance for the binary classifiers is the area under the ROC curve (AUC)
[39, 38]. The area below the ROC curve, known as AUC, is widely utilized for measuring
classifier performance with the following defined levels:

• 1.0: perfect prediction,

• 0.9: excellent prediction,

• 0.8: good prediction,

• 0.7: mediocre prediction, and

• ≤ 0.6: poor prediction.

B.2.3 Over–fitting and Under–fitting

Roughly speaking, under–fitting is when you had the opportunity to learn something but
did not do it. Over–fitting is when you pay too much attention to singularities of the training
data, and are not able to generalize well. This often means that the model is fitting noise,
rather than whatever it is supposed to have to fit.

B.2.4 Cross-validation

Cross-validation is a standard statistical method to estimate the generalization error of
a predictive model. Cross-validation is a model validation method that divides data into
two segments and one of them used to train the Machine Learning classifier and the other
segment is used to test it.

Figure B.2: Cross-validation using a training set and a test set.
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B.2.4.1 k-fold cross-validation

In k-fold cross-validation a training set is divided into k equal-sized subsets. Then the
following procedure is repeated for each subset: a model is built using the other (k − 1)

subsets as the training set, and its performance is evaluated on the current subset. This
means that each subset is used for testing exactly once. The result of the cross-validation is
the average of the performances obtained from the k rounds.

Figure B.3: k-fold cross-validation.

The disadvantage of this method is that the training phase has to be rerun from scratch
k times, which means that it takes k times as many computations to perform an evaluation.

B.3 Feature Selection and Dimensionality Reduction

Dimensionality reduction tries to remove irrelevant, weakly relevant, and redundant attributes.
Dimensionality reduction methods take an original data set and convert every instance from
the original Rd space into an Rd′ space, where obviously d′ < d .

Feature selection is considered successful if the dimensionality of the data is reduced
and the accuracy of a learning algorithm improves or remains the same [35].

B.3.1 Principal Component Analysis (PCA)

Note that, strictly speaking, PCA is not a feature selection but a feature extraction method.
The new attributes are obtained by means of a linear combination of the original attributes,
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and dimensionality reduction is achieved by keeping the components with highest variance.
Then, PCA tries to identify the components that characterize the data

Given a set of original variables x1, . . . , xn (the attributes of the problem), the PCA
algorithm finds a set of vectors z1, . . . , zp that are defined as linear combinations of the
original variables and that are uncorrelated between each other; they are called the principal

components (PC). Principal Components can be extracted using following steps:

• Each observation is subtracted from mean to produce a data set with zero mean values.

• Compute the covariance between dimensions. If the covariance is zero, it indicates
that the dimensions are independent of each other.

• Compute eigen–vectors and eigen–values.

• Determine principal component and attributes corresponding to each principal compo-
nent.

Algorithm 3 PCA algorithm
Given a data set X
µ = mean(X)
D = (X − µT

1 )T (X − µT
1 ) {compute covariance}

{λk, µk} ← top k eigen–values and eigen–vectors of D
return (X − µ1)U {project data using U}
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and Sahin Albayrak. An android application sandbox system for suspicious software
detection. In MALWARE’10, pages 55–62, 2010.

[8] Trond Boksasp and Eivind Utnes. Android apps and permissions: Security and
privacy risks, 2012.

[9] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral detection of
malware on mobile handsets. In Proceedings of the 6th International Conference on

56



Mobile Systems, Applications, and Services, MobiSys ’08, pages 225–238, New York,
NY, USA, 2008. ACM.

[10] Tony Bradley. Huge spike in mobile malware targets android, especially mobile pay-
ments. http://www.pcworld.com/article/2691668/report-huge-

spike-in-mobile-malware-targets-android-especially-

mobile-payments.html, 2014.

[11] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[12] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-
based malware detection system for android. In Proceedings of the 1st ACM Workshop

on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, pages 15–26,
New York, NY, USA, 2011. ACM.

[13] G. Canfora, F. Mercaldo, and C.A. Visaggio. A classifier of malicious android appli-
cations. In Availability, Reliability and Security (ARES), 2013 Eighth International

Conference on, pages 607–614, Sept 2013.

[14] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages
239–252, New York, NY, USA, 2011. ACM.

[15] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, September 1995.

[16] Bement Aberra Debelo, Wooguil Pak, and Young-June Choi. Sandroid: Simplistic
permission based android malware detection and classification. In Roberto Saracco,
Khaled Ben Letaief, Mario Gerla, Sergio Palazzo, and Luigi Atzori, editors, IWCMC,
pages 1683–1687. IEEE, 2013.

[17] Anthony Desnos. Androguard. https://code.google.com/p/

androguard/. Accessed: 2014-09-30.

[18] Gianluca Dini, Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra. Madam:
A multi-level anomaly detector for android malware. In Proceedings of the 6th

International Conference on Mathematical Methods, Models and Architectures for

Computer Network Security: Computer Network Security, MMM-ACNS’12, pages
240–253, Berlin, Heidelberg, 2012. Springer-Verlag.

57

http://www.pcworld.com/article/2691668/report-huge-spike-in-mobile-malware-targets-android-especially-mobile-payments.html
http://www.pcworld.com/article/2691668/report-huge-spike-in-mobile-malware-targets-android-especially-mobile-payments.html
http://www.pcworld.com/article/2691668/report-huge-spike-in-mobile-malware-targets-android-especially-mobile-payments.html
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/


[19] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine Learning, 29(2-3):103–130, November 1997.

[20] Ken Dunham, Shane Hartman, Manu Quintans, Jose Andre Morales, and Tim
Strazzere, editors. Android Malware and Analysis. Auerbach Publications, 2014.

[21] Karim O. Elish, Danfeng (Daphne) Yao, and Barbara G. Ryder. User-centric depen-
dence analysis for identifying malicious mobile apps, 2013.

[22] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. TaintDroid: An Information-flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[23] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study
of Android Application Security. In Proceedings of the 20th USENIX Conference on

Security, SEC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[24] William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile
Phone Application Certification. In Proceedings of the 16th ACM Conference on

Computer and Communications Security, CCS ’09, pages 235–245, New York, NY,
USA, 2009. ACM.

[25] William Enck, Machigar Ongtang, and Patrick Drew McDaniel. Understanding
Android Security. IEEE Security & Privacy, 7(1):50–57, 2009.

[26] Ali Feizollah, Nor Badrul Anuar, and Rosli Salleh. A Study Of Machine Learning
Classifiers for Anomaly-Based Mobile Botnet Detection. Malaysian Journal of

Computer Science, 26(4):251–265, 2013.

[27] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. In Proceedings of the 18th ACM Conference on

Computer and Communications Security, CCS ’11, pages 627–638, New York, NY,
USA, 2011. ACM.

[28] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm,
1996.

[29] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting. Annals of Statistics, 28:2000, 1998.

58



[30] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated
Security Certification of Android Applications. Technical Report CS-TR-4991,
Department of Computer Science, University of Maryland, College Park, November
2009.

[31] Dragos Gavrilut, Mihai Cimpoesu, Dan Anton, and Liviu Ciortuz. Malware detection
using machine learning. In IMCSIT, pages 735–741. IEEE, 2009.

[32] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks:
Automatically Detecting Potential Privacy Leaks in Android Applications on a Large
Scale. In Stefan Katzenbeisser, Edgar Weippl, L.Jean Camp, Melanie Volkamer, Mike
Reiter, and Xinwen Zhang, editors, Trust and Trustworthy Computing, volume 7344
of Lecture Notes in Computer Science, pages 291–307. Springer Berlin Heidelberg,
2012.

[33] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic Detection of
Capability Leaks in Stock Android Smartphones. In Proceedings of the 19th Annual

Symposium on Network and Distributed System Security, 2012.

[34] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural Network Design.
PWS Publishing Co., Boston, MA, USA, 1996.

[35] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

[36] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor.

Newsl., 11(1):10–18, November 2009.

[37] Hyo-Sik Ham and Mi-Jung Choi. Analysis of Android malware detection performance
using machine learning classifiers. In ICT Convergence (ICTC), 2013 International

Conference on, pages 490–495, Oct 2013.

[38] David J. Hand. Measuring classifier performance: a coherent alternative to the area
under the ROC curve. Machine Learning, 77(1):103–123, 2009.

[39] David J. Hand and Robert J. Till. A simple generalization of the area under the ROC
curve for multiple class classification problems. Machine Learning, 45(2):171–186,
2001.

59



[40] Peter Harrington. Machine Learning in Action. Manning Publications Co., Greenwich,
CT, USA, 2012.

[41] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[42] O. Henchiri and N. Japkowicz. A feature selection and evaluation scheme for
computer virus detection. In Data Mining, 2006. ICDM ’06. Sixth International

Conference on, pages 891–895, Dec 2006.

[43] Tin Kam Ho. Random decision forests. In Proceedings of the Third International

Conference on Document Analysis and Recognition (Volume 1) - Volume 1, ICDAR
’95, pages 278–, Washington, DC, USA, 1995. IEEE Computer Society.

[44] Chun-Ying Huang, Yi-Ting Tsai, and Chung-Han Hsu. Performance evaluation on
permission-based detection for android malware. In Jeng-Shyang Pan, Ching-Nung
Yang, and Chia-Chen Lin, editors, Advances in Intelligent Systems and Applications -

Volume 2, volume 21 of Smart Innovation, Systems and Technologies, pages 111–120.
Springer Berlin Heidelberg, 2013.

[45] Jeffrey O Kephart and William C Arnold. Automatic extraction of computer virus
signatures. 4th virus bulletin international conference, pages 178–184, 1994.

[46] Dong-uk Kim, Jeongtae KIm, and Sehun Kim. A malicious application detection
framework using automatic feature extraction tool on android market. In Proceedings

of the 3rd International Conference on Computer Science and Information Technology,
ICCSIT 2013, 2013.

[47] Taehyun Kim, Yeongrak Choi, Seunghee Han, Jae Yoon Chung, Jonghwan Hyun,
Jian Li, and J.W.-K. Hong. Monitoring and detecting abnormal behavior in mobile
cloud infrastructure. In Network Operations and Management Symposium (NOMS),

2012 IEEE, pages 1303–1310, April 2012.

[48] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid.
In Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining, pages 202–207. AAAI Press, 1996.

[49] Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect malicious executables in
the wild. In Proceedings of the Tenth ACM SIGKDD International Conference on

60



Knowledge Discovery and Data Mining, KDD ’04, pages 470–478, New York, NY,
USA, 2004. ACM.

[50] S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Tech-
niques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence

Applications in Computer Engineering: Real Word AI Systems with Applications

in eHealth, HCI, Information Retrieval and Pervasive Technologies, pages 3–24,
Amsterdam, The Netherlands, The Netherlands, 2007. IOS Press.

[51] P. Lantz, A. Desnos, and K. Yang. Droidbox: Android application sandbox. https:
//code.google.com/p/droidbox/.

[52] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
Review: Intrusion detection system: A comprehensive review. Journal of Network

and Computer Applications, 36(1):16–24, January 2013.

[53] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratan-
tonio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors. In Proceedings of the the 3rd

International Workshop on Building Analysis Datasets and Gathering Experience

Returns for Security (BADGERS), 2014.

[54] Wen Liu. Mutiple classifier system based android malware detection. In ICMLC,
pages 57–62, 2013.

[55] Xing Liu and Jiqiang Liu. A Two-Layered Permission-Based Android Malware Detec-
tion Scheme. In Mobile Cloud Computing, Services, and Engineering (MobileCloud),

2014 2nd IEEE International Conference on, pages 142–148, April 2014.

[56] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An Input Gener-
ation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013, pages 224–234, New York,
NY, USA, 2013. ACM.

[57] Glen McCluskey. Using Java Reflection. http://www.oracle.com/

technetwork/articles/java/javareflection-1536171.html. Ac-
cessed: 2014-11-30.
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