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Multivariate Microaggregation with Fixed Group
Size Based TSP

Armando Maya, Agustı́ Solanas

Abstract—Microaggregation is a clustering problem with cardi-
nality constraints that originated in the area of statistical disclo-
sure control for microdata. Microdata consist of sets of records
containing information on individual respondents or business
entities. To protect the anonymity of respondents (individuals,
organizations), the access to microdata is restricted.
Microaggregation is a statistical disclosure control technique for
microdata disseminated in statistical databases. The principle of
microaggregation is to aggregate original database records into
small group that preserve their statistical properties.
In recent years, a large number of heuristic methods have been
developed to optimize the solution, achieving a balance between
information loss and privacy protection of respondents. In this
article, we propose a new heuristic technique for multivariate
microaggregation. For this purpose, the solution to the traveling
salesman problem (TSP) is used. The adaptations required
to characterize the multivariate microaggregation problem are
explained and justified. In addition, a real data set is used to
compare the information loss and output data quality with the
most relevant previous proposals.

Keywords—Microaggregation, Traveling salesman problem, Pri-
vacy, Statistical disclosure control

I. INTRODUCTION

The aim of statistical disclosure control (SDC) is to ensure
that statistical outputs provide as much value as possible to
the users while protecting the confidentiality of information
concerning individuals or entities. SDC methods modify, sum-
marize or perturb the data and there are a range of different
methods that can be used to protect different outputs. SDC
methods can be pre-tabular (applied to the underlying micro-
data) or post-tabular (applied to tables). Microaggregation is a
family of methods for statistical disclosure control (SDC) of
microdata, that is a perturbative data protection method. Given
the original data file, it consists of constructing clusters from
the data (each cluster should have between k and 2k elements)
and then replacing each original data by the centroid of the
corresponding cluster. The original records in the data set are
partitioned into several groups in such a way that records in
the same group are very similar to each other. The number
of records in each group must be at least k. This parameter k
can be considered a security parameter: the larger k, the more
secure the microaggregation. The resulting clustering of the
data set is known as k-partition.
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A. Basics of microaggregation
Microaggregation is a family of perturbative SDC methods

originally designed for continuous numerical data. Formally,
microaggregation can be defined as follows. Consider a micro-
data set V with p continuous numerical attributes and n records
(i.e., the result of observing p attributes on n individuals). With
these records, groups are formed with ni records in the i-th
group (ni ≥ k and n =

∑g
i=1 ni), where g is the number

of resulting groups. Optimal microaggregation is defined as
the one yielding a k-partition maximizing the within-groups
homogeneity. The sum of squares criterion is commonly used
for measuring the homogeneity in clustering. In terms of
sums of squares, maximizing within-groups homogeneity is
equivalent to finding a k-partition minimizing the within-
groups sum of squares SSE defined [12] as:

SSE =

g∑
i=1

ni∑
j=1

(xi,j − x̂i)(xi,j − x̂i)′ (1)

The total sum of squares [12] is:

SST =

n∑
i=1

(xi − x̂)(xi − x̂)′ (2)

Based on SSE, the microaggregation problem consists of
finding a k-partition with minimum SSE. Whereas, that the
sizes of groups in the optimal k-partition lie between k and 2k-
1. A measure L of information loss [10] standardized between
0 and 1 can be obtained from:

L =

(
SSE

SST

)
(3)

Optimal microaggregation is an NP-hard problem [2], for
multivariate records. For univariate data, a polynomial-time
optimal algorithm is know. This algorithm has complexity
O(k2n) and solves optimal univariate microaggregation
as a shortest-path problem on a graph. Most of datasets
are multivariate, therefore typically, microaggregation is
multivariate and heuristic.

In microaggregation [6], the main types of heuristics are
two:

• Fixed-size. These heuristics yield k-partition where all
groups have size k, except perhaps one group which has
size between k and 2k-1. See, figure 1.

• Variable-size. These heuristics yield k-partitions where
all groups have sizes varying between k and 2k-1. The
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Fig. 1: Fixed-sized clustering with k=3

Fig. 2: Variable-sized clustering with k=3

challenge is how to enforce cardinality constraints on
groups without substantially increasing SSE. As shows,
figure 2.

Fixed-size microaggregation heuristics are computationally
very efficient, however variable-size heuristics have lower
information loss, increasing computational complexity,
resulting in O(n3).

B. Privacy benefits of microaggregation
The records in an original dataset [2] [11] can be classified

in four categories:

• Identifiers. These are attributes that unambiguously
identify the respondent. Examples are full name, social
security number,etc. These data must be pre-processed
and eliminated.

• Key attributes. Also called quasi-identifiers are a set of
attributes that can be linked with external information
to identify the respondents. Examples are age, gender,
job, zipcode, etc.

• Confidential outcome attributes. These are attributes
which contain sensitive information on the respondent.
For example, salary, religion, political affiliation, health
condition, etc.

The usual practice in SDC is for the data protector to apply
microaggregation to a restricted set of attributes rather than
to entire records in a dataset.
A dataset is said to satisfy k-anonymity for k > 1 if, for each
combination of values of key attributes, at least k records
exist in the dataset sharing that combination, in this case, a
snooper attempting re-identification with an identified external
source can only hope to map an identified record in source to
a group of k records in microaggreagated dataset.

Microaggregation was proposed at Eurostat in the early
nineties, and has since then been used by the British Office
for National Statistics and other national agencies [4].

Example1 In this example we can see the use of microaggre-
gation for k-anonymaity [2] [3]. The Table 1 show an original
microdata set, for 11 companies in a certain town, the company
name, the surface and the number of employees.
The 3-anonymous version of the dataset in Table I is Table
II. The identifier ”company name” has been deleted and
optimal bivariate microaggregation with k=3 was used on the
key attributes ”Surface” and ”Number of employees”. Both
attributes were standardized to have mean 0 and variance 1
before microaggregation, in order to give them equal weight.

TABLE I: Example1: original dastaset

Company Name Surface(m2) Number Employees

Com1 790 55
Com2 710 44
Com3 730 32
Com4 810 17
Com5 950 3
Com6 510 25
Com7 400 45
Com8 330 50
Com9 510 5
Com10 760 52
Com11 50 12
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Finally, we can see in Table II, that the 11 records were
microaggregated into three groups.

TABLE II: Example1: 3-anonymous version of dastaset.

Surface(m2) Number Employees

747.5 46
747.5 46
747.5 46

756.67 8
756.67 8
322.5 33
322.5 33
322.5 33

756.67 8
747.5 46
322.5 33

In example 1, there are two attributes that can make a
graphical representation in R2. In Fig.3 shows the results of
three groups created.

Fig. 3: Optimal 3-partition of dataset

C. Contribution and plan of this paper

In this paper we present a new method based on a problem
from graph theory called Traveling Salesman Problem,
that can be used over numerical dataset to group elements
into similar groups for microaggregating a multivariate
microdata. We will compare the results of the algorithms
in terms of information loss and disclosure risk. In Section
II the proposed algorithm is described. Section III presents
experimental results. Finally, Section IV is a conclusion and
future work.

II. THE PROPOSED METHOD

The proposed method is based on a well-known and impor-
tant NP-hard combinatorial optimization problem, the traveling
salesman problem (TSP) [8]. The TSP is to find a shortest
possible tour that visits each city exactly once for a given list
of cities an back to starting city. The innovation of our method
lies in the representation as a graph theoretic problem to find
clusters of records, in the dataset. This is done through TSP.

A. Formulations of the TSP

In this section, we briefly summarize two important
formulations of the TSP [8] [5]. On the one hand, we will
describe as a permutation problem and on the other hand can
also be formulated as a graph theoretic problem.

• Combinatorial optimization problem. The goal is to
find the shortest tour that visits each city in a given
list exactly once and then returns to the starting city.
Formally, the TSP can be stated as follows. The distances
between n cities are stored in a distance matrix D with
elements di,j where i, j = 1, ..., n and the diagonal
elemnets di,i are zero. A tour can be represented by a
cyclic permutation π of {1,2,...,n} where π(i) represents
the city that follows city i on the tour. Therefore, the TSP
is then the optimization problem to find a permutation
π that minimizes the length of the tour denoted by:

n∑
i=1

di,π(i) (4)

For this challenge, the tour length of (n − 1)!
permutation vectors have to be compared. This results
in a problem which is very hard to solve, we know that
is NP-complete [8].

• Graph theory problem. The TSP is formulated by a
complete graph G = (V,E), where the cities correspond
to the node set V = {1, 2, ..., n} and each edge ei ∈ E
has an associated weight wi representing the distance
between the nodes it connects. The goal is to find a
Hamiltonian cycle, i.e, a cycle which visits each node
in the graph exactly once, with the least weight in the
graph. This formulation leads to procedures involving
minimum spanning trees for tour construction or edge
exchanges to improve existing tours.

Finding the exact solution to a TSP with n cities requires
to check (n − 1)! possible tours [8]. However, solving TSPs
is an important part of applications in many areas including
vehicle routing, computing wiring, machine sequencing and
scheduling, frequency assignment in communication networks.
Applications in statistical data analysis include ordering and
clustering objects. For example, clustering and ordering using
TSP solves is currently becoming popular in biostatistics [7].
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B. Heuristics for the TSP

The NP-hardness of the TSP already makes it more time
efficient for small-to-medium size TSP instances to rely on
heuristics in case a good but not necessarily optimal solution
is sufficient (for example, figure 4). TSP heuristics typically
fall into two groups:

• Tour construction heuristics which create tours from
scratch, for instance, nearest neighbor algorithm and
the insertion algorithms are tours constructors.

• Tour improvement heuristics which use simple local
search heuristics to improve existing tours.

Fig. 4: Hamiltonian cycle heuristic solution to records in
example 1

C. The shortest Hamiltonian path

The problem of finding the shortest Hamiltonian path
through a graph (i.e., a path which visits each node in the
graph exactly once, see figure 5) can be transformed into the
TSP with cities an distances representing the graphs vertices
and edge weights, respectively.
Finding the shortest Hamiltonian path through all cities
disregarding the endpoints can be achieved by inserting a
”dummy city” which has a distance of zero to all other cities.
The position of this city in the final tour represents the cutting
point for the path. The path starts with the first city in the list
after the ”dummy” city and ends with the city right before it.
Before it, the distance matrix between cities can be modified
to solve related shortest Hamiltonian path starting with a
given city. All distances to the selected city are set to zero,
forcing the evaluation of all possible paths starting with this
city and disregarding the way back from the final city in the
tour. Note that, the distance to return from the last city in the

path to the start city does not contribute to the path length.

Fig. 5: Hamiltonian path heuristic solution to records in
example 1

D. Rearrangement clustering
The TSP can be used to obtain a clustering object [5]. The

idea is that objects in clusters are visited in consecutive order
and from one cluster to the next larger jumps are necessary.
This type of clustering is called rearrangement clustering [1]
and suggests to automatically find the cluster boundaries of
k clusters by adding k dummy cities which have constant
distance c to all other cities and are infinitely far from each
other. In the optimal solution of the TSP, the dummy cities
must separate the most distant cities and thus represent
optimal boundaries for k clusters.

TABLE III: Example1: 3 Hamiltonian paths solution.

Start City Hamilton Paths

Com1 1 2 3 4 5 6 7 8 9 10 11
Com8 8 7 6 2 10 1 5 4 3 9 11
Com10 10 2 6 7 8 11 9 3 4 5 1

Analyzing table 3, we can see that there are patterns that
repeat. In mathematics, a n-tuple is a sequence of n elements
[9], where n is non-negative integer. Continuing with example
1 where k-partition is 3-partition, the clustering problem is
defined as finding tuples of k elements with greater frequency,
in TSP solution. We can see, that the 3-tuple (3,4,5) appears
in all paths. In the paths that start in Com10, the tuple is
inverted as (5,4,3) but indicates proximity or a data clustering.
It is also noted that the same applies to the 3-tuple (6,7,8),
which appears on all Hamiltonian paths.
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Algorithm 1 Multivariate Microaggregation with Fixed Group
Size Based TSP
Require: D dataset with n p-dimensional data points
Require: k Minimum cardinality constraint
Ensure: M Microaggregated Dataset

1: Compute Distances Matrix(D)
2: for i = 1 to n do
3: di = Compute Dummy city(i,D)
4: Hpath(i) = Compute TSP Starting In(di)
5: end for
6: for i = 1 to n do
7: for j = 1 to n do
8: Ni,j = Search Neighbords inPaths(Hpath(i), j)
9: end for

10: end for
11: while Points To Assign > (2k − 1) do
12: maxi,j = The position of maximum value(Ni,j)
13: gcluster = Build Group From Max(maxi,j)
14: for i = 1 to (k − 2) do
15: row maxi,j = The position max row value(Ni,j)
16: col maxi,j = The position max col value(Ni,j)
17: if (row maxi,j > col maxi,j) then
18: gcluster = Extend The Group(row maxi,j)
19: else
20: gcluster = Extend The Group(col maxi,j)
21: end if
22: end for
23: Ni,j = Delete Assigned Points(gcluster, Ni,j)
24: end while
25: Assign Remaining Points(Ni,j , gcluster)
26: M = Compute centroid Dataset(D, gcluster)
27: return M

E. The new fixed-size microaggregation heuristic
A multivariate dataset consisting of n records and p

numerical attributes can be represented as n points x1, ..., xn
in Rp. In our case, each record is represented by a city and
its attributes are the position where the city is in the graph.
The new fixed-size heuristic proposed in this paper, described
in Algorithm 1, is as follows:

• Find a Hamiltonian path Hpath(n) traversing all
n points of the dataset, starting in city n. Let the
πHpath(n) be the permutation of {1, ..., n} expressing
the order in which the points are traversed by Hpath(n).

• Search the neighbors that are visited in order, resulting
a simmetryc matrix Ni,j where the term i, j represents
the number of times that i appears at a distance of
(k − 1) in the paths to j.

• The group generation starts searching the maximum
value in Ni,j , that representing two neighboring cities
that appear along the path. To find a k-partition, we
search the maximum value in row and maximum value
en column, select the largest and add it to the group.

This last step is done in (k− 2) times. At this moment,
we have a k-partiton of the dataset int a number of
groups.

• Compute the groups centroid. The centroids of
the groups forming the matrix M, that is the
microaggregated dataset.

Note that, if there are between k and 2k − 1 unassigned
points a new cluster is formed with these points, if there are
less points to be clustered, they are assigned to their closest
cluster. Therefore, as all clusters have k points, this does not
affect the size constraint imposed by microaggregation (i.e. in
an optimal k-partition, each cluster must contain a number of
points between k and 2k − 1).

F. Running example

The new method, described in Algorithm 1, is illustrated by
the next toy example. Let be D our data set from Example 1,
considering k = 3. The algorithm operates in the next steps:

• Find a Hamiltonian path Hpath(n) traversing all n points
of the dataset, starting in city n. The result is shown in
table IV.

TABLE IV: Hamiltonian paths on toy example.

Start City Hamilton Paths

Com1 1 3 4 6 7 11 10 8 9 5 2
Com2 2 1 3 5 4 6 9 8 10 11 7
Com3 3 1 2 5 4 6 7 11 10 8 9
Com4 4 6 7 11 10 8 9 5 2 1 3
Com5 5 2 1 3 4 6 9 8 10 11 7
Com6 6 5 2 1 3 4 7 11 10 8 9
Com7 7 8 10 11 4 3 1 2 5 6 9
Com8 8 10 11 7 9 5 2 1 3 4 6
Com9 9 6 5 2 1 3 4 11 10 8 7
Com10 10 11 8 7 9 6 4 3 1 2 5
Com11 11 10 8 7 9 6 4 5 2 3 1

• Search the neighbors that are visited in order, resulting a
simmetryc matrix Ni,j where the term i, j represents the
number of times that i appears at a distance of (k − 1)
in the paths to j. For instance, we can see in table V,
that Company 1 appears in 11 paths close to Company 2.

• The group generation starts searching the maximum
value in Ni,j , that representing two neighboring cities
that appear along the path. To find a k-partition, we
search the maximum value in row and maximum value
en column, select the largest and add it to the group.
The table VI shows the result.
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TABLE V: Hamiltonians paths on the toy example.

Neighborhood at a distance of (k-1)

Com1 Com2 Com3 Com4 Com5 Com6 Com7 Com8 Com9 Com10 Com11
Com1 - 11 11 8 11 0 1 0 1 1 1
Com2 11 - 10 2 10 3 2 0 4 1 1
Com3 11 10 - 9 3 5 1 1 1 0 3
Com4 8 2 9 - 3 8 4 1 4 2 3
Com5 11 10 3 3 - 6 2 1 6 1 2
Com6 0 3 5 8 6 - 7 4 7 1 3
Com7 1 2 1 4 2 7 - 6 5 10 9
Com8 0 0 1 1 1 4 6 - 10 11 8
Com9 1 4 1 4 6 7 5 10 - 6 3
Com10 1 1 0 2 1 1 10 11 6 - 11
Com11 1 1 3 3 2 3 9 8 3 11 -

TABLE VI: Generated group

Group Record 1 Record 2 Record 3

Group 1 Com1 Com2 Com3
Group 2 Com10 Com8 Com11
Group 3 Com6 Com4 Com5

Remaining Points Com7 Com9

The figure 6 represents the generated group with the dataset
from example 1.

Fig. 6: Generated group with MF-TSP

The proposed method can leave some records unassigned at
the end of the main loop. Thus, it is necessary to assign these
records to a group before ending the algorithm. The remaining
records are assigned to their closest group. Adding last points
result, we can see in table VII.

TABLE VII: Addition of the last records

Group Record 1 Record 2 Record 3 Record 4

Group 1 Com1 Com2 Com3 -
Group 2 Com10 Com8 Com11 Com7
Group 3 Com6 Com4 Com5 Com9

In the last step, compute the groups centroids. The groups
centroids forming the matrix M, that is the microaggregated
dataset. The table VIII shows the centroids:

TABLE VIII: Toy example: 3-anonymous version of dastaset.

Surface(m2) Number Employees

743.33 43.66
743.33 43.66
743.33 43.66

695 12.5
695 12.5
695 12.5
385 39.75
385 39.75
695 12.5
385 39.75
385 39.75
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III. EXPERIMENTAL RESULTS

In this section we present the experimental results of our
proposed method. We have used a real microdata set called
”Census”. That microdata set contains 1,080 records with 13
numerical attributes.

Our method falls into the category of fixed-size microaggre-
gation heuristics. Therefore, to study the information loss pa-
rameter we have varied the value of k in the range [3, 4, 5, 10],
we compared the results with those obtained with the MDAV
and V-MDAV methods, for the same values of k. After mi-
croaggregating the data sets, we have analyzed the information
loss introduced by each method.

From table IX, we can see that the results obtained by
MDAV and V-MDAV are very similar, but our method has a
greater information loss for any value of k, the error introduced
grows proportionally to k. After analyzing these results, we can
conclude that our method get good results for k = 3.

TABLE IX: Experimental results. Information loss caused by
MDAV,V-MDAV and our method

Dataset Method k = 3 k = 4 k = 5 k = 10

Census MDAV 5,66 7,51 9,01 14,07
V-MDAV 5,69 7,52 8,98 14,07
MF-TSP 6,00 9,24 11,6 25,49

IV. CONCLUSION AND FURTHER WORK

MF-TSP, a new heuristic method for multivariate microag-
gregation has been proposed in this article. MF-TSP is a
fixed group size method, the level of privacy required is
controlled by a parameter k (minimum group size). Once k
has been chosen, the data protector is interested in minimizing
information loss, in our case that happens whit k = 3. A
number of research issues remain open and will be addressed
in future work,
• Modify the neighborhood search method based on a

window [2k − 1] to a new method.
• Modify the algorithm to a variable-size microaggrega-

tion method.
• Study groups formed comparing the result with MDAV.
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