
An evaluation of modern Android
Libraries and Frameworks
TFM-Desenvolupament d’Aplicacions en Dispositius Mòbils
Josep Rodríguez López - joseprl89@uoc.edu



Agenda

1. Introduction
2. App demo
3. Development methodology
4. Studied frameworks



Introduction



Introduction

● Motivation
● Goals
● Approach



Frameworks studied

● Dagger2
● Mosby
● RxAndroid
● Realm
● Android support design libraries
● Butterknife
● Retrofit
● Glide



App demo



App demo

http://www.youtube.com/watch?v=4cWmFYdxxFg


Development methodology



- SDLC
- Testing
- Release process

Development 
methodology

Software development lifecycle

● Kanban
● User stories
● Git flow



- SDLC
- Testing
- Release process

Development 
methodology

● Test script written in Gherkin
● Feature testing
● End to End testing



- SDLC
- Testing
- Release process

Development 
methodology

Release 
branch Testing Fix Code impact 

analysis

RELEASED



Studied frameworks



Mosby

● Provides a framework to enforce an MVP architecture on your app.
● Heavylifts some of the difficulties of handling rotation in activities.
● Splits an activity/fragment into:

○ Interface for the view
○ Interface for the presenter
○ Implementation for the presenter
○ Activity implementing the view interface



Retrofit

● Converts an annotated interface into a fully functional REST client.
● Removes a LOT of boilerplate.
● Highly customisable

○ Sometimes it’s difficult to tell where to customise for a specific purpose.

● Supports RxAndroid



RxAndroid

● Provides a stream of events to perform modifications functionally on
● Plethora of operations
● Simplifies complex tasks
● Plenty of support

○ documentation
○ several ports to other platforms/languages
○ RxMarbles



Butterknife

● Removes a lot of cumbersome boilerplate code
○ @Bind
○ @OnClick, @OnLongClick,...
○ Butterknife.bind

● Does not support all listeners Android provides
○ OnSeekBarChangeListener



Glide

● Eases the process to load URL’s into image views
● Has a really nice declarative API 

○ Glide.withContext(...)
○ .loadImage(...)
○ .withPlaceholder(...)
○ .intoImageView(...)

● Also caches the images downloaded



Realm

● DBMS for Android & iOS
● Nice API
● Small limitations

○ Models must inherit Realm class
○ Your class is overridden on runtime



Dagger2

● Works by defining a component and module to provide the dependencies.
● Not as “magic” as expected.
● Injecting dependencies via initialisers is simpler unless the class has 

several dependencies.
● Components can grow big and it can be non-trivial how to split them.



Android support design libraries

● Helps a lot on bringing the Material design look and feel to the app.
● This functionality should be on the Android SDK.



Conclusions



Conclusions

● Objectives met
○ Inadequate evaluation of Dagger2

● Future work



Thanks.
Josep Rodríguez López


