Sistema de cerca de transports

Alumne/a: Sergio Trillo Lozano
Dirigit per: Jordi Ceballos Villach

CURS 2004 – 05 (Setembre/Gener)
A la meva dona i els meus fills pel tems que no he pogut estar amb ells durant el llarg recorregut de la meva carrera i pel seu recolzament en tot moment.
RESUM

Aquest projecte va estar definit per a donar resposta a una necessitat concreta detectada al sector del transport. Aquesta necessitat és:

“trobar la millor forma d’enviar una mercaderia a qualsevol punt del mon des del punt de vista de costos i temps sense pensar en companyies i medis de transport”.

Per tal de fer aquest servei accessible a tothom sense limitacions d’espai horari ó ubicació física s’ha pensat en aprofitar els beneficis que aporta Internet, i per tant s’ha conceptualitzat com a un servei web. Aquesta decisió ha fet que sortissin els següents objectius secundaris de caràcter tècnic:

- Desenvolupar la solució sota una arquitectura J2EE.
- Fer servir estàndards de mercat.
- Fer servir un Framework que faciliti el desenvolupament i manteniment posterior.
- Independitzar la solució obtinguda de la infraestructura del sistema.

Aquest objectius han marcat definitivament l’arquitectura tècnica i els components que s’han fet servir.

Com a resultat del projecte s’ha desenvolupat un producte que s’ha hagut de limitar degut a la seva complexitat de forma que el resultat només serà un prototip amb una sèrie de limitacions funcionals que han restringit l’abast del projecte i l’han fet viable en el temps i disponibilitat establerts en el TFC.

Per a la implementació del servei de cerca s’ha treballat amb grafs i en concret s’ha utilitzat com a base una llibreria existent (JDSL 2.1 – Data Structure Library in Java) a partir de la qual s’ha millorat l’algorisme de Dijkstra per a la cerca de les n millors rutes.
Índex de continguts

1. Introducció .. 6
 1.1. Punt de partida ... 6
 1.2. Objectius ... 6
 1.3. Limitacions .. 7
 1.4. Enfocament i mètode seguit ... 8
 1.5. Planificació del projecte ... 10
 1.6. Productes obtinguts .. 12
2. Arquitectura tècnica .. 13
 2.1 Infraestructura .. 13
 2.2 Model – MVC (Model-Vista-Controlador) ... 14
 2.2.1 Capa del Model .. 16
 2.2.2 Capa de la Vista .. 17
 2.2.3 Capa del Controlador .. 18
 2.3 Persistència del Model ... 20
 2.4 Disseny de la base de dades ... 21
3. Abast Funcional ... 22
 3.1 Estructura i funcionalitats generals .. 23
 3.2 Administració General ... 29
 3.3 Administració Companyia .. 49
 3.4 Client .. 56
4. Conclusions .. 57
5. Glossari ... 58
6. Bibliografia ... 59

Índex de figures

Figura 1 - Càrrega de treball de cada fase segons la metodologia RUP 9
Figura 2 - Planificació .. 11
Figura 3 - Arquitectura de Model 1 ... 14
Figura 4 - Arquitectura de Model 2 ... 15
Figura 5 - Model de classes .. 16
Figura 6 - Classe general de persistència .. 17
Figura 7 - Estructura general del portal .. 18
Figura 8 - Extensió de la classe genèrica Action ... 19
Figura 9 - Diagrama E/R .. 21
Figura 10 - Pantalla de Login .. 22
Figura 11 - Estructura funcionalitats del portal .. 23
Figura 12 - Pantalla de paràmetres de la funcionalitat de cerca 24
Figura 13 - Pantalla de resultats de la cerca. .. 25
Figura 14 - Pantalla d'informació de la comanda generada. 26
Figura 15 - Pantalla de llistat de la consulta de comandes 27
Figura 16 - Pantalla de detall de la consulta de comandes 28
Figura 17 - Pantalla principal de l'administrador general 29
Figura 18 - Pantalla de llistat del manteniment d'usuaris. 30
Figura 19 - Pantalla de detall del manteniment d'usuaris 31
Figura 20 - Pantalla de confirmació d'eliminació d'un usuari 32
Figura 21 - Pantalla de llistat del manteniment de companyies 33
Figura 22 - Pantalla de detall del manteniment de companyies 34
Figura 23 - Pantalla de llistat del manteniment de ciutats 35
Figura 24 - Pantalla de detall del manteniment de ciutats 36
Figura 25 - Pantalla de llistat del manteniment de distàncies 37
Figura 26 - Pantalla de detall del manteniment de distàncies 38
Figura 27 - Pantalla de llistat del manteniment de mitjans de transport 39
Figura 28 - Pantalla de detall del manteniment de mitjans de transport 40
Figura 29 - Pantalla llistat mant. de mitjans de transport per companyia 41
Figura 30 - Pantalla detall mant. de mitjans de transport per companyia 42
Figura 31 - Pantalla llistat manteniment d'elements de transport 43
Figura 32 - Pantalla detall manteniment d'elements de transport 44
Figura 33 - Pantalla llistat manteniment de viatges ... 45
Figura 34 - Pantalla detall manteniment de viatges .. 46
Figura 35 - Pantalla llistat manteniment de comandes .. 47
Figura 36 - Pantalla detall manteniment de comandes .. 48
Figura 37 - Pantalla principal perfil administrador companyia 49
Figura 38 - Pantalla llistat mant. mitjans x companyia (admin. companyia) 50
Figura 39 - Pantalla detall mant. mitjans x companyia (admin. companyia) 51
Figura 40 - Pantalla llistat mant. d'elements transport (admin.companyia) 52
Figura 41 - Pantalla detall mant. d'elements transport (admin. companyia) 53
Figura 42 - Pantalla llistat mant. viatges (administrador companyia) 54
Figura 43 - Pantalla detall mant. viatges (administrador companyia) 55
Figura 46 - Pantalla principal del perfil client ... 56
1. Introducció

1.1. Punt de partida

Aquest projecte va estar definit per a donar resposta a una necessitat concreta detectada al sector del transport. Aquesta necessitat és:

“trobar la millor forma d’enviar una mercaderia a qualsevol punt del mon des del punt de vista de costos i temps sense pensar en companyies i medi de transport”.

Si, això mateix, donar resposta al que realment es busca eliminant al usuari final la tediosa tasca de cercar entre possibles mitjans de transport (vaixell, tren, avió, etc.) i centenars de proveïdors que donen aquest serveis. Al final, el que volem és una combinació entre el servei més ràpid i més econòmic i a això és a lo que ens ajudarà el nostre sistema.

Per tal de fer aquest servei accessible a tothom sense limitacions d’espai horari o ubicació física es va pensar en aprofitar els beneficis que aporta Internet i es va concebre com a un servei web.

El sistema pretén donar un servei similar al de reserva de vols via web però amb independència de companyies i medi de transport.

1.2. Objectius

L’objectiu principal d’aquest servei és un objectiu totalment operatiu:

“donar una solució per a trobar el millor servei de transport d’una mercaderia des de l’origen fins al destí sense haver de pensar primer en un medi de transport, després en un companyia i finalment demanar el servei, i això companyia per companyia fins que trobis el servei que mes s’adapta a les teves necessitats”.

Tal com s’indicava al punt anterior, es va decidir donar aquest servei via web per aprofitar les seves avantatges i per tant aquesta decisió va fer que sortissin uns objectius secundaris de caràcter tècnic que són:

- Desenvolupar la solució sota una arquitectura J2EE.
- Fer servir els estàndards de mercat.
- Fer servir un Framework que faciliti el seu desenvolupament i manteniment posterior.
- Independitzar la solució obtinguda de la infraestructura del sistema.

Aquest objectius van marcar definitivament l’arquitectura tècnica i els components que farem servir.
1.3. Limitacions

Degut a la complexitat del sistema i la limitació temporal i de dedicació del projecte es van definir una sèrie de limitacions per tal de garantir que es donés resposta als objectius plantejats però tenint en compte que el producte resultant serà un prototip no utilitzable al món real, ja que alguns elements han estat simplificats.

Amb aquesta filosofia s'ha limitat l'abast del projecte amb les següents restriccions:

- **Sistema geogràfic:** El sistema geogràfic constarà únicament de ciutats i per tant la seva representació serà un graf amb les ciutats com a vèrtexs i les distàncies entre ciutats connectades com a arestes. Per tant no tindrem les següents entitats: poblacions, províncies, països.

- **Multiidioma:** El sistema funcionarà únicament en Català, encara que es farà servir i18n (internacionalització).

- **Registre d’usuaris:** Els usuaris del sistema hauran d’estar enregistrats al sistema amb anterioritat, de forma que no hi haurà un sistema d’autoreregistre.

- **Sistema Tarifari:** Simplificarem el sistema tarifari a un preu per quilo i quilòmetre segons el mitjà de transport i la companyia.

- **Distàncies:** Les distàncies utilitzades al sistema per a calcular el cost total del transport seran les mateixes sigui quin sigui el mitjà de transport utilitzat. Això vol dir que si definim que entre Madrid i Barcelona n’hi ha 500 Km, s’aplicarà aquesta distància tant per un viatge en avió, com per un en tren o camió i fins i tot en vaixell (tenint en compte que això serà impossible).

- **Plantilles de viatges:** S’ha de tenir en compte que el sistema buscarà viatges en dies concrets de forma que els viatges estan definits per un dia i hora en concret. En un sistema real es definirien unes plantilles de viatges que acabarien generant viatges concrets. Per a simplificar el sistema s’han desestimat aquestes plantilles i la generació d’aquest viatges de forma automàtica.

- **Gestió de reserves i comandes:** El sistema de reserves generarà una reserva a cada companyia que surti a la comanda amb els diferents transports reservats. Totes aquestes reserves estaran associades a la mateixa comanda. A la gestió de comandes únicament es podrà mantenir l’estat del transport.
• **Capacitat / Disponibilitat:** Encara que el sistema emmagatzemarà les reserves, no es farà una gestió de capacitat / disponibilitat d’espai als diferents elements de transport. De forma que suposarem que la capacitat serà il·limitada.

• **Sistema de pagament:** El sistema no gestiona el pagament ni les dades de pagament de les reserves. L’únic que farà és donar informació del que costarà cada servei.

Tot i així finalment el temps previst per desenvolupar el projecte ha estat superat abastament pel temps realment necessari i he patit bastant sobre tot en tota la part de presentació (HTML, JAVASCRIPT) on crec que em falten coneixements i no he tingut el temps necessari per adquirir-los. També la part de la lògica necessària per a donar resposta el sistema de cerca ha estat força complexa amb la qual cosa crec que vaig desestimar el gran esforç que es necessitava pel seu desenvolupament. Aquest dos factors han estat els responsables d’aquesta sobrecàrrega de treball no previst que m’ha fet patir més del compta.

1.4. **Enfocament i mètode seguit**

Pel desenvolupament d’aquest projecte s'ha fet servir el mètode de desenvolupament per fases degut al sistema de seguiment plantejat per la pròpia UOC. D’aquesta forma s’ha pogut anar aprofundint en la definició i desenvolupament del projecte i s'ha pogut anar rectificant o enriquint el projecte amb les aportacions plantejades del consultor.

Pel desenvolupament de l’eina hem optat per seguir la metodologia “Rational Unified Process” en endavant RUP, que descriu les diferents etapes que s’han de seguir per tal de desenvolupar un projecte.

Un dels factors que ha fet que fos escollida aquesta metodologia és la seva orientació total a la programació orientada a objectes i el llenguatge de modelatge UML que s’ha fet servir durant tot el desenvolupament.

Encara que RUP és una metodologia iterativa formada per cicles i segons els requeriments de lliuraments del projecte sembla més fàcil fer un desenvolupament per fases, s'ha estimat adient fer servir aquesta metodologia per anar enriquint el projecte i fent millores sobre la definició encara que s’hagin lliurat documents. Per tant, el projecte inicial ha anat evolucionant fins l’estat final que es presenta a aquesta memòria.

Encara i així no hem pogut aplicat la fase de transició, ja que el projecte no s’ha lliurat al client, ni tindrà un cicle de vida normal amb les seves possibles millores o errors detectats.
Rational Unified Process

Segons la metodologia RUP el desenvolupament d'una eina està format per diferents cicles, cada un dels quals serveix per aconseguir una nova generació del producte. Aleshores cada un d’aquests cicles està dividit en quatre fases: Inici, Elaboració, Construcció i Transició.

Cada una de les fases té uns objectius definits que són:

- **Inici**: Establir la justificació econòmica i determinar l’abast.

- **Elaboració**: Estudiar el domini del problema o del domini, tenint en compte les necessitats d’informació, els requisits no funcionals i les possibles restriccions. I a partir de l’estudi establir l’arquitectura general del programari i fer-ne una planificació.

- **Construcció**: Desenvolupar el producte de manera iterativa i incremental, tenint en compte les necessitats d’informació que s’han de satisfer i desenvolupar l’arquitectura obtinguda en la fase d’elaboració.

- **Transició**: Lliurar el producte al client i començar la seva utilització, tot i que calgui fer retocs o afegir-ne noves funcions com a conseqüència d’errors detectats, de requisits aplaçats o passats per alt.

En cada una d’aquestes fases hi ha sis processos o fluxos de treball que s’han de dur a terme: modelatge del negoci, documentació dels requisits, anàlisi i disseny, implementació, test i desenvolupament. I a més a més, hi ha tres processos que fan de suport, que són la gestió del projecte, configuració i gestió dels canvis, i l’entorn. A la següent figura es mostra el cicle de vida de la metodologia RUP on es pot veure la carrega de treball de cada un dels processos per a cada fase.

![Figura 1 - Càrrega de treball de cada fase segons la metodologia RUP.](image-url)
1.5. Planificació del projecte

Les diferents fases del projecte han estat les següents:

- **Pla de treball**: És el document que descriu l’objectiu del projecte, el seu abast funcional, les seves limitacions, els requeriments tècnics i el pla de treball. La durada d’aquesta fase ha estat d’1 setmana i el seu lliurament va ser el dia 27 de setembre (PAC1).

- **Anàlisi**: Durant aquesta fase es va desenvolupar detalladament el disseny funcional del sistema. El document a lliurar a aquesta fase va ser el document funcional. La durada d’aquesta fase va ser de 3 setmanes i el seu lliurament va ser el dia 15 d’octubre.

- **Disseny tècnic**: Durant aquesta fase es va realitzar el disseny tècnic del sistema amb la definició del model de classes i el model de dades. El document a lliurar a aquesta fase va ser el document de disseny tècnic. La durada d’aquesta fase va ser d’una mica més de 2 setmanes i el seu lliurament va ser el dia 2 de novembre (PAC2).

- **Implementació**: Durant aquesta fase es va desenvolupar el projecte. El material a lliurar en aquesta fase va ser el codi font i l’aplicació instal·lable. La durada d’aquesta fase va ser de 6 setmanes i el seu lliurament va ser el dia 9 de desembre (PAC3).

- **Memòria i Presentació**: Durant aquesta fase s’ha realitzat aquest document, un manual d’instal·lació i una presentació. La durada d’aquesta fase ha estat de 4 setmanes i el seu lliurament serà el dia 10 de gener (Lliurament final).
Diagrama de Gantt

<table>
<thead>
<tr>
<th>Id</th>
<th>Nom tasca</th>
<th>Durada</th>
<th>Inici</th>
<th>Fi</th>
<th>oct '04</th>
<th>nov '04</th>
<th>dic '04</th>
<th>ene '05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pla de treball</td>
<td>6 días</td>
<td>20/09/04</td>
<td>27/09/04</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
</tr>
<tr>
<td>2</td>
<td>Lliurament Pla de treball</td>
<td>0 días</td>
<td>27/09/04</td>
<td>27/09/04</td>
<td>S5</td>
<td>S6</td>
<td>S7</td>
<td>S8</td>
</tr>
<tr>
<td>3</td>
<td>Anàlisi Funcional</td>
<td>14 días</td>
<td>28/09/04</td>
<td>15/10/04</td>
<td>S9</td>
<td>S10</td>
<td>S11</td>
<td>S12</td>
</tr>
<tr>
<td>4</td>
<td>Lliurament Anàlisi Funcional</td>
<td>0 días</td>
<td>15/10/04</td>
<td>15/10/04</td>
<td>S13</td>
<td>S14</td>
<td>S15</td>
<td>S16</td>
</tr>
<tr>
<td>5</td>
<td>Diseny Tècnic</td>
<td>12 días</td>
<td>18/10/04</td>
<td>02/11/04</td>
<td>S17</td>
<td>S18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lliurament Diseny Tècnic</td>
<td>0 días</td>
<td>02/11/04</td>
<td>02/11/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Implementació</td>
<td>27 días</td>
<td>03/11/04</td>
<td>09/12/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lliurament Implementació</td>
<td>0 días</td>
<td>09/12/04</td>
<td>09/12/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Memòria</td>
<td>22 días</td>
<td>10/12/04</td>
<td>10/01/05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Presentació</td>
<td>22 días</td>
<td>10/12/04</td>
<td>10/01/05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Lliurament Memòria i Presentació</td>
<td>0 días</td>
<td>10/01/05</td>
<td>10/01/05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 2 - Planificació.
1.6. **Productes obtinguts**

Com a resultat del desenvolupament del projecte i per a donar un servei que doni valor a tots els possibles actors que intervenen en el procés el sistema s’ha dividir en quatre blocs funcionals:

- **Entrada al sistema:** Part del sistema que conté les funcionalitats de Login i Logout. El sistema va ser dissenyat per treballar amb usuaris loginats de forma que el primer pas que hauran de fer tots els usuaris per poder treballar, sigui quin sigui el seu tipus d’usuari serà entrar al sistema amb una identificació i validació correcta.

- **Eina d’administració general:** Part del sistema que conté les funcionalitats de més alt nivell i configuració del sistema. Aquesta part només serà accessible pel tipus d’usuari “Administrador General”. Només els usuaris que pertanyin a aquest grup podran accedir.

- **Eina d’administració de companyies:** Part del sistema que conté les funcionalitats relatives a les companyies que donen servei a través del sistema. Aquesta part només serà accessible pel tipus d’usuari “Administrador Companyia”. Només els usuaris que pertanyin a aquest grup podran accedir. L’Administrador General té accés a totes aquestes funcionalitats dintre de l’eina d’administració general amb privilegis sobre totes les dades.

- **Serveis al Client:** Part del sistema que conté les funcionalitats que faran servir els clients. Aquesta part només serà accessible pel tipus d’usuari “Client”. Només els usuaris que pertanyin a aquest grup podran accedir.

Aquest quatre blocs funcionals condicionaràn la forma en que es presentarà el servei a cada actor, oferint més o menys funcionalitats segons el rol de cadascun, encara que el producte final només serà un “el sistema de cerca de transports”.
2. **Arquitectura tècnica**

L’arquitectura tècnica escollida havia de donar resposta als següents requeriments tècnics plantejats com a objectius:

- Desenvolupar la solució sota una arquitectura J2EE.
- Fer servir els estàndards de mercat.
- Fer servir un Framework que faciliti el seu desenvolupament i manteniment posterior.
- Independitzar la solució obtinguda de la infraestructura del sistema.

I per tant es va decidir escollir una arquitectura que donés resposta a totes elles basada en J2EE però sense aplicar totes les especificacions que incorpora. Només farem servir les següents especificacions del J2EE ja que la nostra aplicació no ha d’estar distribuïda i per tant no farem servir EJB (Enterprise Data Beans):

- Java 2 Platform.
- JSR-152 - Especificació de Servlets 2.4.
- JSR-152 - Especificació de JSP (Java Server Pages) 1.2.
- JSR-9XX – Especificació de JAXP 1.2, Suport d’esquemes XML.
- JSR-88 – API de desplegament.
- JDBC 3.0

2.1 **Infraestructura**

Així, amb qualsevol infraestructura que escollíssim que suportés aquestes especificacions garantirem que el nostre producte funcionés amb independència del sistema operatiu i la plataforma escollida.

En el nostre cas la infraestructura que s’ha escollit ha estat la següent:

- **RunTime Enviroment (Java 2)** - JRE j2re1.4.2_05 per a plataforma Windows.
- **Contenedor de Servlets i JSPs (Jakarta Tomcat)** - tomcat-4.1.18 per a plataforma Windows.
- **Gestor de Base de Dades (MySql)** - mysql-3.23.56 per a plataforma Windows.
2.2 Model – MVC (Model-Vista-Controlador)

Dintre de la tecnologia triada per al desenvolupament d’aquesta aplicació (J2EE) es poden trobar les següents aproximacions de disseny:

- Fer que les JSP s’encarreguin directament de tant la presentació de les dades, com de l’obtenció d’aquestes així com d’establir els diferents fluxos de navegació de l’aplicació.

- Focalitzar només la presentació en JSP i deixar en mans de beans la resta de la funcionalitat. Aquesta aproximació és coneguda com arquitectura de Model 1.

- Separar la presentació, l’obtenció de dades i el control del flux de l’aplicació en capes i delegar en JSPs, beans i servlets les diferents funcionalitats corresponents a les capes per a implementar una arquitectura MVC (Model-View-Controller), coneguda també com arquitectura de Model 2.

La primera aproximació no aporta absolutament res, tret de codi confús, no reaprofitable i de molt difícil manteniment i escalabilitat per lo qual és totalment descartable.

L’arquitectura de Model 1 ja representa una millora respecte a l’anterior. La seva organització es pot veure en el següent gràfic:

Figura 3 - Arquitectura de Model 1.
Les pàgines JSP accedeixen als objectes de negoci indirectament mitjançant els beans. Amb això s’està aïllant a les JSP dels canvis produïts als objectes de negoci (si no es canvia la definició dels beans).

El problema radica en què les pàgines JSP també són les responsables de generar el contingut, és a dir, d’instanciar els beans apropriats per a la seva presentació. Per fer-ho, el desenvolupador ha d’emprar Java dintre de les JSP (cosa que, encara que impossible, s’ha d’evitar al màxim). Aquest fet porta a que els desenvolupadors de software es veuen implicats tant en el desenvolupament d’objectes de negoci com en la generació de la presentació. Això incrementa la dificultat per aconseguir una divisió dintre de l’equip de treball (desenvolupadors de software i autors de planes). Aquesta divisió en projectes grans és molt important.

Finalment, l’arquitectura Model 2 produeix un resultat fàcil de mantenir i d’extendre. A l’igual que en l’arquitectura de Model 1 separa els objectes de negoci de la presentació, però a més, separa la generació del contingut de la presentació.

En el següent gràfic es pot veure un esquema de l’arquitectura Model 2:

Figura 4 - Arquitectura de Model 2.
En aquesta arquitectura les peticions són enviades a un *servlet* que accedeix als objectes de negoci per crear el contingut. Aquest contingut s’emmagatzema en un *bean* (patró de disseny *Value Object* o *Data Transfer Object*), el qual és accedit per una pàgina JSP que s’encarrega de la seva presentació. A més, el *servlet* s’encarrega del control del flux de l’aplicació.

El Model 2 és una arquitectura MVC on els objectes de negoci representen el Model, les pàgines JSP representen les Vistes (presentació) i els *servlets* representen els Controladors (i la generació dels continguts).

L’arquitectura de Model 2 serà la que s’utilitzarà per a la construcció de la nostra aplicació i en concret es farà servir el Framework Jakarta Struts per a implementar l’arquitectura MVC – Model 2.

2.2.1 Capa del Model

A continuació presentarem el disseny de les classes del sistema estructurat en les 3 capes del model MVC (Model-View-Controller).

Model

La capa del model està composta pels managers de persistència de cada servei i les seves classes d’entitat associades.

Les classes d’entitat contenen els mètodes get i set de cada atribut encara que per raons d’espai no es mostren al disseny.

Figura 5 - Model de classes.
Com ja s’ha comentat a l’apartat de Disseny 2.3 Persistència del Model n’hi haurà un manager de persistència genèric amb la següent signatura:

GenericPersistence

```java
GenericPersistence
+ add(): boolean
+ update(): boolean
+ remove(): boolean
+ exist(): boolean
+ findById(): Object
+ findById(): Object
+ findAll(): Object
```

Figura 6 - Classe general de persistència.

Aquesta classe fa ús de les classes de sessió i excepció d’Hibernate.

2.2.2 Capa de la Vista

La Capa de la Vista està composta per les diferents pantalles que conformen el sistema. Per a presentar-les s’ha fet servir HTML i JSPs (Java Server Pages).

L’estructura del portal es presentarà de la següent forma:
A la qual es presenta una capçalera, un menú que variarà segons el perfil de l’usuari loginat i un espai reservat per a la informació on apareixeran totes les pantalles, menys la de login.

Finalment la solució optada per a muntar aquesta estructura de portal ha estat la de construir un frameset i anar canviant el frame corresponent a la zona d’informació, encara que una possible millor alternativa hagués estat fer servir una llibreria de tags que incorpora Struts, anomenada tiles. Amb aquesta llibreria es poden definir templates que divideixen la pantalla en regions i on a cada regió se li pot assignar un JSP.

2.2.3 Capa del Controlador

Donat que s’utilitza el framework Struts per desenvolupar l’aplicació, aquesta és la part més depenent d’aquest framework. L’aplicació té un servlet que fa de controlador i és propi de Struts:

```java
org.apache.struts.action.ActionServlet
```

Es farà servir 1 únic mapping per cridar-lo que és el punt d’entrada a l’aplicació.

Per una altra banda, cadascun dels casos d’ús descrits al document d’anàlisi té associat una classe que s’encarregarà de la generació de continguts i control de flux.
Cadascuna d’aquestes classes associades hereta d’una classe comuna. Aquesta classe comuna, a la seva vegada, hereta de la classe org.apache.struts.action.Action. La raó d’aquesta classe *intermitja* és tenir un punt comú (mètode *initAction()*()) a totes les classes *Action* de l’aplicació per tal de fer tasques comunes, com l’obtenció del servei apropriat per a cada classe *Action*, assegurar-se que l’usuari és vàlid, gestió de l’idioma...

Per a cada classe *Action* de l’aplicació, la jerarquia de classes és la següent:

![Diagrama de jerarquia de classes](image)

Figura 8 - Extensió de la classe genèrica Action.

Per una altra banda, tots aquells casos d’ús que han implicat l’entrada de dades per part de l’usuari també tenen associada una classe que hereta de la classe org.apache.struts.action.ActionForm per fer les validacions necessàries a la part servidora.
2.3 Persistència del Model

Per a independitzar-nos del SGBD (Sistema Gestor de Base de Dades) i gestionar i persistir els objectes del model amb independència de model de persistència escollit s’ha fet servir Hibernate. Aquesta eina ens farà de pont entre els objectes i la persistència.

Aquest sistema tradueix sentències HQL (Orientades a objectes) en SQL (Orientades a entitats relacionades).

Mitjançant aquest sistema també estalviarem en temps de desenvolupament, ja que definint via XML, en un format predefinit per Hibernate, definirem la composició de cada classe del model i amb aquestes definicions el sistema serà capaç de generar-nos totes les classes del model i els scripts de generació de la BBDD.

D’aquesta forma només s’ha hagut d’implementar a la capa de persistència els managers, però aquí també ens ha estalviat força la nostra feina, ja que al tenir les definicions dels objectes i com es persisteixen als XML es pot treballar directament amb els objectes i persistir-los d’una forma molt simple. Tant és així que una vegada tens un objecte creat amb una simple instrucció “save(objecte)” pots informar al sistema per que et persisteixi la informació d’aquest objecte.

Per a profitar al màxim les avantatges d’aquest sistema s’ha generat un manager genèric que conté les accions més comunes i generals per a totes les entitats (add, update, remove, exist, finbyid, findbyoid, findall) de forma que heretant d’aquesta classe la resta de managers només s’han d’implementat els mètodes específics.

Per últim, al model s’han fet servir OIDs (Object Identificators) per a identificar de forma única e interna els objectes del sistema. Addicionalment s’ha afegit un identificador de cada entitat que serà conegut pels usuaris. Aquest identificadors d’usuari és una clau alternativa i per tant única. D’aquesta forma els identificadors d’usuari poden canviar sense afectar a les claus foranies.
2.4 Disseny de la base de dades

Encara que la implementació de la capa de persistència i del seu model de dades ha estat pel SGBD (Sistema Gestor de Bases de Dades) MySql, a nivell de disseny presentarem el model conceptual en format Entity/Relationships.

Model Conceptual – Diagrama ER

Finalment aquest ha estat el model de dades que s’ha dissenyat pel sistema:

Figura 9 - Diagrama E/R

Com a tall d'exemple de la independència del sistema respecte al SGBD i la plataforma, el sistema que s’ha muntat com a exemple ha estat instal·lat a una màquina Sun Solaris amb base de dades Oracle i l’únic que s’ha hagut de fer adicionalment és generar els scripts de base de dades amb Hibernate per Oracle en comptes de MySql.
3. Abast Funcional

El “Servei de cerca de Transports” és un sistema que ha de fer conviure a diferents actors que el faran servir d’una forma molt diferent encara que la forma de presentar el servei a cadascun d’ells serà la mateixa.

És per això que el primer pas que s’haurà de fer per a entrar al sistema serà el de login (tenint en compte que tots els actors estan enregistrats amb anterioritat).
Una vegada loginat, el sistema tindrà prou informació per a presentar-li el portal amb les opcions adients segons el seu perfil.

Això és el que es farà des de la pantalla de login:

Una vegada loginat haurem entrat com un dels següents perfils:

- Administrador general
- Administrador companyia.
- Client.
A continuació descriurem la estructura i funcionalitats generals que podran fer tots perfils:

3.1 Estructura i funcionalitats generals

Qualsevol usuari que es logini al portal podrà fer una sèrie d'accions comunes. Per a facilitar l’ús del portal les descriurem per zones:

![Figura 11 - Estructura funcionalitats del portal.](image)

Barra d’utilitats

Dintre de la barra d’utilitats trobarem les següents funcionalitats:

Inici - Amb aquesta funcionalitat, estiguem on estiguem dintre del portal, anirem a la plana d’inici.

Sortir - Amb aquesta funcionalitat, estiguem on estiguem dintre del portal, sortirem a la pantalla de login.
Eines d’administració

A la part superior del menú esquerre es troba l’espai on sortiran les eines d’administració que tindrà disponibles el perfil en concret i que descriurem en detall per a cadascun d’ells.

Serveis d’usuari

A la part inferior del menú esquerre es troba l’espai on sortiran els serveis que poden fer servir els usuaris. En concret només n’hi ha dos serveis i seran els mateixos per a tothom:

Cerca i reserva - Aquest és el servei central del projecte i objectiu principal d’aquest. Es tracta del servei que podran fer servir els usuaris per a cercar la millor combinació de transports per enviar una mercaderia a una destinació concreta.

Al entrar en aquest servei el primer que apareixerà serà la pantalla de paràmetres:

Figura 12 - Pantalla de paràmetres de la funcionalitat de cerca.
A aquesta pantalla s’haurà d’informar de la ciutat d’origen i destí del transport a realitzar, el dia i hora de sortida desitjats, els mitjans de transport que es volen fer servir (vaixell, tren, avió, camió, etc.), els quilos que es volen transportar, un preu màxim (opcional) i un ordre de priorització per presentar els millors resultats segons preu o temps.

Amb totes aquestes dades, i pulsant el botó de cerca, el sistema trobarà els millors resultats que seran presentats de la següent forma:

Figura 13 - Pantalla de resultats de la cerca.

Procés de cerca

El sistema trobarà el camí de menys pes segons el temps o preu i calculant els temps perduts entre cada enllaç. El que no tindrà en compte el sistema serà un temps mínim d’enllaç necessari per a agafar o desestimar un viatge.

Per exemple, Si volem anar des de Barcelona a Toledo i el sistema troba la següent ruta com a òptima:

- Barcelona – San Sebastián per avió
- San Sebastián – Toledo per tren

I resulta que arriba a San Sebastián a les 13:00 i les 13:30 surt el tren de San Sebastián, el sistema tindrà en compte aquesta mitja hora perduda però no
tindrà en compte si per fer arribar la mercaderia de l’avió al tren fa falta més de mitja hora. En contret el sistema estima que el temps per fer aquest traspàs és zero.

Per a realitzar el procés de cerca es genera un graf dirigit amb les ciutats com a vèrtexs i els viatges com a arestes amb pes segons (temps o cost) i mitjançant l’algorisme de Dijkstra millorat per a trobar els n camins millors es fa la cerca i es presenta com a una llista ordenada de millor a pitjor opció.

Una vegada aquí podrem optar per tornar a la pantalla de paràmetres mitjançant el botó “Tornar a cercar” o seleccionar la ruta desitjada marcant sobre la “X” de Selecció.

Si seleccionem una ruta es generaran les reserves dels viatges a cada companyia i es generarà una comanda amb totes aquestes reserves amb data del dia de la comanda i estat “PENDENT” i es mostrarà una pantalla amb la comanda generada:

Una vegada aquí només podrem optar per tornar a cercar o pulsant sobre qualsevol altre opció podrem entrar a qualsevol altre funcionalitat.

En un sistema real s’hauria d’enllaçar en aquest punt per a informar al proveïdor de la reserva però en aquest prototip ho deixarem aquí.
Consulta Comandes - Mitjançant aquest servei els usuaris podran consultar en tot moment les seves comandes amb el seu estat de forma que podran saber en quin estat es troben cadascuna d’elles.

Al entrar en aquest servei el primer que apareixerà serà una pantalla amb la llista de comandes ordenades per companyia / data. Depenent del tipus d’usuari podran veure més o menys informació:

- Administradors generals: Totes les comandes de totes les companyies.
- Administradors companyies: Només les comandes de la seva companyia.
- Clients: Només les comandes de la seva companyia.

La pantalla de la llista de comandes és la següent:

Figura 15 - Pantalla de llistat de la consulta de comandes.

Totes les pantalles amb llistes tindran la funcionalitat de paginació per poder avançar o retrocedir de pàgina, saber el número total de pàgines i la pàgina actual.
En aquest llistat podem veure la següent informació:

- Companyia.
- Data de la comanda.
- Ciutat i data, hora origen.
- Ciutat i data, hora destí.
- Temps total des de la sortida fins l’arribada.
- Preu total del transport.
- Estat de la comanda (PENDENT, ANUL.LADA, SERVIDA).

Seleccionant la comanda desitjada marcant sobre la “X” de Seleccionar enllaçarem amb la pantalla de detall de la comanda.

Figura 16 - Pantalla de detall de la consulta de comandes.

On podrem veure a part dels totals, un detall de cada viatge utilitzat amb la següent informació:

- Ciutat, data i hora d’origen i destí de cada viatge.
- Mitjà de transport utilitzat (Avió, Vaixell, Camió, Tren, etc.)
- Companyia que dona el servei i identificació de l’element de transport utilitzat.
- Preu d’aquest viatge.

Si posem el punter sobre els identificadors veurem les seves descripcions.
3.2 Administració General

Qualsevol usuari amb el perfil “Administrador General” tindrà accés a totes les funcionalitats del sistema i a totes les dades sense cap restriccio.

El portal que es presentarà al entrar com a Administrador General serà el següent:

![Servi-Trans el Servei Web del Transport](image)

Figura 17 - Pantalla principal de l’administrador general.

Les funcionalitats d’administració disponibles per a aquest perfil seran:
Administració d'usuaris

A través d'aquesta funcionalitat es mantindran tots els usuaris del sistema. Aquest serà l’únic perfil que podrà administrar usuaris. Al entrar en aquesta funcionalitat sortirà la llista d’usuaris del sistema.

![Pantalla de llista del manteniment d'usuaris.](image)

Figura 18 - Pantalla de llista del manteniment d'usuaris.

Tot usuari pertany a una companyia i té assignat un tipus d’usuari.

Si es polsa sobre el botó “Afegir” s’obrirà la pantalla d’afegir usuari:
Aquesta pantalla s’haurà d’informar un identificador d’usuari que haurà de ser únic al sistema, un nom, una clau d’accés (que serà encriptada a la base de dades), un tipus d’usuari i una companyia de les disponibles.

Si el polsa sobre el botó de “Cancel·lar” es tornarà al llistat.

Si en comptes d’afegir seleccionem un usuari per a modificar-lo marcant sobre la icona identificada amb una “E” s’obrirà una pantalla amb les dades de l’usuari:

Per a modificar un registre serà igual però amb les dades ja informades. Només tindrem com a cas especial la clau d’accés que haurà de tornar-se a informar per a garantir que no hi ha forma de desencriptar el password, si no que el sistema en el moment de fer el login encriptarà la clau donada pel usuari i la compararà amb la que hi hagi a la base de dades però mai es desencriptarà.

Si en comptes de seleccionar un usuari per a modificar-lo, el seleccionem per a eliminar-lo, ho farem polsant sobre la icona “X” de la llista accedint a la pantalla de confirmació de supressió:
Figura 20 - Pantalla de confirmació d’eliminació d’un usuari.

Si polsem sobre el botó “Eliminar” eliminarem el registre, sempre que no hi hagi dades relacionades que no ho impedeixin. Si polsem sobre el botó “Cancelar” tornarem al llistat.

NOTA:
Tota la resta de manteniments segueixen el mateix patró de funcionament, així que ens estalviarem la definició detallada de cadascuna de les funcionalitats per no estar repetint constantment el mateix i només en parlarem del elements diferencials de cada funcionalitat.
Administració de Companyies

A través d’aquesta funcionalitat es mantindran les companyies del sistema, tant les que faran de proveïdores, com les que faran de clients. Aquest serà l’únic perfil que podrà administrar companyies. Al entrar en aquesta funcionalitat sortirà la llista de companyies del sistema.

Figura 21 - Pantalla de llistat del manteniment de companyies.

Les companyies estaran ubicades a unes ciutats i estaran compostes de la següent informació:
Els usuaris hauran de pertànyer a una companyia i els mitjans i elements de transport també.
Administració de Ciutats

A través d’aquesta funcionalitat es mantindran les ciutats que tinguin disponibles viatges entre elles. Aquest serà l’únic perfil que podrà administrar ciutats i serà la seva responsabilitat administrar-les quan qualsevol companyia proveidora ho demani.

Al entrar en aquesta funcionalitat sortirà la llista de ciutats del sistema.

Figura 23 - Pantalla de llistat del manteniment de ciutats.

Les ciutats es faran servir per a definir distàncies entre elles i per a definir viatges, de forma que en el moment de realitzar la cerca es busquin els viatges adients per formar la millor ruta i per a calcular el temps i cost de cada trajecte i el total.
La informació de detall de les ciutats serà la següent:

Figura 24 - Pantalla de detall del manteniment de ciutats.
Administració de Distàncies

A través d’aquesta funcionalitat s’administraran les distàncies existents entre les ciutats. Per a simplificar el sistema s’ha estimat que la distància entre dues ciutats serà la mateixa sigui quin sigui el mitjà de transport utilitzar, això sí, s’haurà de definir tant d’anada, com de tornada.

Aquest serà l’únic perfil que podrà administrar les distàncies. Al entrar en aquesta funcionalitat sortirà la llista de distàncies definides al sistema.

Figura 25 - Pantalla de llistat del manteniment de distàncies.

Aquestes distàncies es definiran en Quilòmetres i podran ser diferents entre l’anada i la tornada.
La informació de detall d'una distància serà la següent:

![Figura 26 - Pantalla de detall del manteniment de distàncies.](image-url)
Administració de Mitjans de transport

A través d’aquesta funcionalitat s’administraran els diferents mitjans de transport que podran existir al sistema (tren, Avió, Vaixell, Camió, etc.) L’administrador general serà el responsable d’administrar aquesta informació i serà el responsable de donar d’alta nous mitjans a sol·licitud dels proveïdors.

Al entrar en aquesta funcionalitat sortirà la llista de mitjans definits al sistema:

![Figura 27 - Pantalla de llistat del manteniment de mitjans de transport.](image-url)
La informació de detall d'un mitjà de transport serà la següent:

Figura 28 - Pantalla de detall del manteniment de mitjans de transport.
Administració de Mitjans de transport per Companyia

A través d’aquesta funcionalitat s’administraran els diferents mitjans de transport dels quals dona servei una companyia proveïdora.

En principi serà responsabilitat de cada companyia proveïdora el mantenir aquesta informació, però l’administrador general tindrà accés a aquest manteniment per si cal modificar qualsevol dada o per ajudar a l’administrador de la companyia per realitzar aquesta tasca.

Al entrar en aquesta funcionalitat sortirà la llista de mitjans definits per a cada companyia:

Figura 29 - Pantalla llistat mant. de mitjans de transport per companyia.
La informació de detall d’un mitjà de transport d’una companyia serà la següent:

Figura 30 - Pantalla detall mant. de mitjans de transport per companyia.

On s’ha d’informar de la companyia, el mitja i un Preu x Quilo i Quilòmetre que es farà servir per a calcular el cost dels viatges que faci servir aquest mitjà d’aquesta companyia en un trajecte que tindrà una distància definida entre dues ciutats.
Administració d’elements de transport d’una Companyia

A través d’aquesta funcionalitat s’administraran els diferents elements de transport d’una companyia. Els elements de transport són els diferents avions, vaixells, camions, etc. de que disposa una companyia per a oferir el servei de transport. Aquest elements de transport estaran identificats per una matrícula.

En principi serà responsabilitat de cada companyia proveïdora el mantenir aquesta informació, però l’administrador general tindrà accés a aquest manteniment per si cal modificar qualsevol dada o per ajudar a l’administrador de la companyia per realitzar aquesta tasca.

Al entrar en aquesta funcionalitat sortirà la llista d’elements de transport definits de totes les companyies:

![Figura 31 - Pantalla llistat manteniment d’elements de transport.](image)
La informació de detall d’un elements de transport d’una companyia serà la següent:

Figura 32 - Pantalla detall manteniment d’elements de transport.

L’identificador de l’element serà la matrícula. S’haurà de definir quin tipus de mitjà és a quina companyia pertany i unes característiques bàsiques.
Administració de Viatges d'una Companyia

A través d’aquesta funcionalitat s’administraran els diferents viatges que tingui una companyia donats d’alta. Els viatges d’una companyia seran els serveis que oferirà aquesta utilitzant els elements de transport que tingui definits entre dues ciutats que estiguin connectades mitjançant una distància definida i amb unes dates / hores de sortida i arribada.

En un sistema real aquest viatges es generarien automàticament fent servir unes plantilles que definirien si una companyia té un trajecte específic cada dia a una hora, o cada setmana, o mes, de forma que quedin tots els trajectes periodificats i amb un procés de generació que programi tots els trajectes. Però només aquest sistema de programació ja podria haver estat un projecte sencer, de forma que es va optar per simplificar el sistema tenint en compte que cada trajecte de cada dia (en aquest prototip) s’haurà d’introduir a mà.

En principi serà responsabilitat de cada companyia proveïdora el mantenir aquesta informació, però l’administrador general tindrà accés a aquest manteniment per si cal modificar qualsevol dada o per ajudar a l’administrador de la companyia per realitzar aquesta tasca.

Al entrar en aquesta funcionalitat sortirà la llista de viatges definits de totes les companyies:

Figura 33 - Pantalla llistat manteniment de viatges.
La informació de detall d'un viatge d'una companyia serà la següent:

![Figura 34 - Pantalla detall manteniment de viatges.](image)

On haurem de identificar el viatge, l'element de transport que farà servir la companyia, la ciutat, data i hora de sortida, la ciutat, data i hora d'arribada i uns possibles comentaris.
Administració de Comandes

A través d’aquesta funcionalitat s’administraran els estats de les comandes generades pels clients a través del servei de cerca i reserva.

Per a simplificar el sistema, només podrà administrar aquesta informació l’administrador general tindrà, ja que l’estat està a nivell de comanda i una comanda pot estar composta de diverses reserves de proveïdors diferents.

Al entrar en aquesta funcionalitat sortirà la llista de comandes de tots els clients del sistema:

Figura 35 - Pantalla llistat manteniment de comandes.

A aquesta llista podrem veure la mateixa informació que a la consulta de comandes però amb la diferència que a més de poder consultar el detall, podrem accedir a modificar el seu estat pulsant el botó “E” de la llista. Amb la qual cosa accedirem a la pantalla de modificació de l’estat de la comanda:
Figura 36 - Pantalla detall manteniment de comandes.

Des de aquesta pantalla es podrà modificar l'estat de la comanda amb els següents possibles estats: PENDENT, ANUL·LADA, SERVIDA.

Una vegada modificada, els clients podran veure com a canviat l'estat.
3.3 Administració Companyia

Qualsevol usuari amb el perfil “Administrador Companyia” tindrà accés als serveis, a la barra d’utilitats i a les eines d’administració de les dades referents al servei que presta la seva companyia mitjançant el portal.

El portal que es presentarà al entrar com a Administrador Companyia serà el següent:

![Figura 37 - Pantalla principal perfil administrador companyia.](image)

Les funcionalitats d’administració disponibles per a aquest perfil seran:
Administració de Mitjans de transport per Companyia

A través d’aquesta funcionalitat s’administraran els diferents mitjans de transport dels quals dona servei aquesta companyia proveïdora.

Al entrar en aquesta funcionalitat sortirà la llista de mitjans definits per a aquesta companyia:

![Imatge de la funcionalitat d’administració de mitjans de transport](image)

Figura 38 - Pantalla llistat mant. mitjans x companyia (admin. companyia).
La informació de detall d'un mitjà de transport d'una companyia serà la següent:

![Figura 39 - Pantalla detall mant. mitjans x companyia (admin. companyia).](image)

On s’ha d’informar de la companyia, el mitjà i un Preu x Quilo i Quilòmetre que es farà servir per a calcular el cost dels viatges que facin servir aquest mitjà d’aquesta companyia en un trajecte que tindrà una distància definida entre dues ciutats.
Administració d’elements de transport d’una Companyia

A través d’aquesta funcionalitat s’administraran els diferents elements de transport d’aquesta companyia. Els elements de transport són els diferents avions, vaixells, camions, etc. de que disposa aquesta companyia per a oferir el servei de transport. Aquest elements de transport estaran identificats per una matrícula.

Al entrar en aquesta funcionalitat sortirà la llista d’elements de transport definits per a aquesta companyia:

Figura 40 - Pantalla llistat mant. d’elements transport (admin.companyia).
La informació de detall d'un element de transport d'una companyia serà la següent:

Figura 41 - Pantalla detall mant. d'elements transport (admin. companyia).

L'identificador de l'element serà la matrícula. S'haurà de definir quin tipus de mitjà és, a quina companyia pertany i unes característiques bàsiques.
Administració de Viatges d'una Companyia

A través d'aquesta funcionalitat s'administraran els diferents viatges que tingui la companyia donats d'alta. Els viatges d'una companyia seran els serveis que oferirà aquesta utilitzant els elements de transport que tingui definits entre dues ciutats que estiguin connectades mitjançant una distància definida i amb unes dates / hores de sortida i arribada.

En un sistema real aquest viatges es generarien automàticament fent servir unes plantilles que definirien si una companyia té un trajecte específic cada dia a una hora, o cada setmana, o mes, de forma que quedin tots els trajectes periodificats i amb un procés de generació que programi tots els trajectes.

Però només aquest sistema de programació ja podria haver estat un projecte sencer, de forma que es va optar per simplificar el sistema tenint en compte que cada trajecte de cada dia (en aquest prototip) s'haurà d'introduir a mà.

Al entrar en aquesta funcionalitat sortirà la llista de viatges definits d'aquesta companyia:

![Figura 42 - Pantalla llistat mant. viatges (administrador companyia).](image-url)

<table>
<thead>
<tr>
<th>Accions</th>
<th>Id. Viatge</th>
<th>Origen</th>
<th>Data</th>
<th>Hora</th>
<th>Destí</th>
<th>Data</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>X</td>
<td>Omega</td>
<td>01-gen-2005</td>
<td>18:00</td>
<td>Barcelona</td>
<td>01-gen-2005</td>
<td>10:00</td>
</tr>
</tbody>
</table>

1/1
La informació de detall d’un viatge d’una companyia serà la següent:

Figura 43 - Pantalla detall mant. viatges (administrador companyia).

On haurem de identificar el viatge, l’element de transport que farà servir la companyia, la ciutat, data i hora de sortida, la ciutat, data i hora d’arribada i uns possibles comentaris.
3.4 Client

Qualsevol usuari amb el perfil “Client” tindrà accés als serveis, a la barra d’utilitats i no tindrà accés a cap de les eines d’administració.

El portal que es presentarà al entrar com a Client serà el següent:

Figura 44 - Pantalla principal del perfil client.

Els serveis disponibles per a aquest perfil ja han estat definits al punt 3.1 Estructura i funcionalitats generals.

Aquest perfil no tindrà accés a cap eina d’administració.
4. Conclusions

Tant a nivell funcional com a nivell tècnic s’han satisfet els objectius plantejats però tenint en compte que el producte resultant ha estat només un prototipus que hauria de ser àmpliament millorat per a convertir-se en un servei que pogués arribar a ser pràctic en el món real.

Encara que el problema plantejat és viable, si el número de ciutats i viatges fos molt elevat el sistema s’hauria de limitar per a donar com a resultat les N millors rutes amb un N petit, ja que si no el sistema deixaria de ser eficient degut a que per a cada millor ruta s’executa l’algorisme de Dijkstra i es repeteix el procés per a cada aresta d’aquesta ruta traient-la i seleccionant com a millor següent ruta la millor d’aquestes i així successivament.

Encara que els sistema estigués totalment desenvolupat, crec que costaria molt que els proveïdors volguessin donar els seus serveis mitjançant aquesta eina a no ser que hi hagués una organització molt poderosa que tingués la suficient força com per a impulsar un projecte tan ambiciós i que fos capaç d’arrossegar a aquestes grans companyies donant algun valor afegit a canvi.

Tal com està dissenyada la solució es pot desenvolupar una interfície per a qualsevol altre dispositiu tal com Palm, WAP, etc.

També no seria gens complicat generar un Web Service per a donar aquest servei a tercers.
5. Glossari

Servlet: Els servlets són la plataforma escollida per a la tecnologia Java per a estendre i millorar els servidors HTTP. Per tant, podem definir un servlet com un programa escrit en Java que s'executa en el marc d'un servei de Xarxa (en un servidor HTTP, per exemple), i que rep i respon a les peticions d'un o més clients.

HTTP (HyperText Transfer Protocol): Protocol de Transferència de Hipertexte. Protocol usat per a la transferència de documents WWW.

JSP (Java Server Page): Pàgina de Servidor Java. Una pàgina JSP és un tipus especial de pàgina HTML que conté uns petits programes (també anomenats scripts) que són executats en servidors abans de ser enviats a l'usuari per a la seva visualització en forma de pàgina HTML. Habitualment aquest programes realitzen consultes a bases de dades i els resultats d'aquestes consultes determinen la informació que s'envia a cada usuari específic. Els fitxers d'aquest tipus porten el sufix .jsp.

XML (eXtensible Markup Language): Llenguatge Extensible de Marcat. Sistema desenvolupat per a promoure l'ús del llenguatge SGML a la xarxa. XML no és un llenguatge si no un metallenguatge, és a dir, serveix per a crear llenguatges. No és una extensió ni un component d'HTML.

HTML (HyperText Markup Language): Llenguatge de Marcat de Hipertext. Llenguatge en el que s'escriuen les pàgines a les que s'accedeix a través de navegadors WWW. Admet components hipertextuals i multimèdia.

J2EE (Java 2 Enterprise Edition): És un grup d’especificacions dissenyades per Sun que permeten la creació d’aplicacions empresarials, amb els següents serveis: accés a base de dates (JDBC), utilització de directoris distribuïts (JNDI), accés a mètodes remots (RMI/CORBA), funcions de correu electrònic (JavaMail), aplicacions Web(JSP y Servlets)...etc. Aquí es important notar que J2EE és només una especificació, això permet que diversos productes siguin dissenyats al voltant d’aquestes especificacions.

EJB (Enterprise Java Beans): Són components de software implementats en Java i que estan dissenyats sota les especificacions del J2EE.

I18n: Especificació que defineix com ha d’estar dissenyat un producte per tenir suport Multiidioma.
6. Bibliografia

JDBC™ 3.0 API (JDBC specification). Disponible a la URL: http://java.sun.com/products/jdbc

