Acústica

Ones mecàniques i so

Marc Figueras Atienza

PID_00159122
Els textos i imatges publicats en aquesta obra estan subjectes –llevat que s’indiqui el contrari– a una llicència de Reconeixement-Compartir igual (BY-SA) v.3.0 Espanya de Creative Commons. Podeu modificar l’obra, reproduir-la, distribuir-la o comunicar-la públicament sempre que en citeu l’autor i la font (FUOC. Fundació per a la Universitat Oberta de Catalunya), i sempre que l’obra derivada quedi subjecta a la mateixa llicència que el material original. La llicència completa es pot consultar a http://creativecommons.org/licenses/by-sa/3.0/es/legalcode.ca.
Índex

Introducció ... 5

Objectius .. 6

1. Acústica ... 7
 1.1. Les ones acústiques ... 7
 1.2. Característiques del so 9
 1.2.1. Els ultrasons .. 12
 1.2.2. Els infrasons ... 13
 1.3. Què hem après? ... 13

2. Percepció d’estímuls físics 15
 2.1. Una descripció fenomenològica: la llei de Weber-Fechner ... 15
 2.2. Fisiologia de l’òrbita humana 16
 2.3. Percepció del so ... 17
 2.3.1. Nivell d’intensitat sonora i decibels 18
 2.3.2. Sensació sonora i fons 20
 2.4. Acústica musical ... 21
 2.5. Què hem après? ... 23

3. Problemes resolts ... 24
 3.1. Enunciats ... 24
 3.2. Solucions ... 24

Resum .. 29

Exercicis d’autoavaluació 30

Solucionari ... 31

Glossari .. 31

Bibliografia ... 31
Introducció

Al mòdul “Ones” heu estudiat amb força detall les ones de manera general; heu vist com es pot descriure qualsevol mena d’ona i quines són les seves característiques principals.

Un pas lògic en aquest moment és començar a estudiar casos particulars amb més detall. Equipats amb els coneixements del mòdul “Ones” podeu passar a estudiar ara els diversos tipus d’ones i veure quines propietats específiques tenen. Això és el que fareu en aquest mòdul i en els següents. Començareu amb un estudi més detallat de les ones acústiques o sonores, és a dir, el so i, posteriorment, en els mòduls següents, fareu el mateix amb un altre tipus d’ones: les ones electromagnètiques i, en particular, la llum.

Les ones acústiques ens són especialment interessants perquè nosaltres, els éssers humans, som capaços de detectar i analitzar de manera natural ones acústiques d’unes determinades freqüències. Això ho aconseguim amb l’òrgan de l’oïda, que és un instrument molt fi per a analitzar intensitats i freqüències. De fet, és tan acurat en aquest aspecte que la nostra comunicació natural, la parla, es fa mitjançant ones acústiques. Això dóna peu a que valgui la pena fer un estudi, bàsicament qualitatiu, de com funciona l’oïda humana i de com els éssers humans percebem, en general, els estimuls físics que ens arriben.
Objectius

Els objectius que ha d’aconseguir l’estudiant una vegada treballats els continguts d’aquest mòdul són:

1. Saber quina mena d’ones són les ones acústiques i com es propaguen.
2. Conèixer i poder interpretar l’equació d’ones per a les ones sonores.
3. Relacionar el que s’estudia en aquest mòdul amb el que s’ha estuïtat, de manera més general, al mòdul “Ones”.
4. Poder caracteritzar una ona sonora mitjançant els seus paràmetres bàsics, com l’altura, la intensitat i el timbre.
5. Tenir una idea qualitativa dels ultrasons i els infrasons.
6. Saber com els èsers humans percebem els estímuls físics i com es pot caracteritzar aquest procés mitjançant lleis fenomenològiques.
7. Tenir uns coneixements bàsics sobre l’anatomia i la fisiologia de l’oïda humana.
8. Tenir clar el significat de les magnituds intensitat, nivell d’intensitat sonora i intensitat percebuda.
9. Tenir clara la interpretació física de la magnitud corresponent al nivell d’intensitat sonora: el decibel, i saber les limitacions que té per a expressar la sensació del so i com es pot corregir.
1. Acústica

Ara que ja estem equipats amb prou coneixements sobre les ones, podem passar a estudiar amb més detall un tipus particular d’ones: les ones acústiques o sonores, és a dir, el so.

1.1. Les ones acústiques

Les ones acústiques són ones mecàniques longitudinals que es poden propagar en sòlids i en fluids. Les ones mecàniques transversals no poden propagarse en fluids, però sí en sòlids i, de vegades, també es coneixen amb el nom d’ones acústiques. En aquest estudi, però, ens limitarem a les ones acústiques longitudinals, que són les més habituals.

Es consideren com a so les ones mecàniques longitudinals amb una freqüència compresa entre 20 i 20.000 Hz i una intensitat superior a uns 10^{-12} W/m2, que són les que pot detectar l’òïda humana. Les ones mecàniques de freqüències superiors són els ultrasons, mentre que les de freqüències inferiors són els infrasons.

Per a estudiar les ones acústiques començarem fent-nos les preguntes següents: què passa quan es produeix un so? què vol dir exactament *produir un so*? quins són els elements importants per a descriure la propagació del so? com es produeix el fenomen?

Bàsicament el que passa quan es produeix un so és que un objecte en un punt de l’espai es mou i aquest moviment provoca una pertorbació en l’aire que l’envolta. Ara bé, si l’objecte es mou lentament, l’aire simplement flueix al seu voltant i no provoca cap pertorbació que es propagui. L’objecte s’ha de moure ràpidament, de fet prou ràpid com perquè l’aire no tingui temps de fluir al voltant de l’objecte. Aquesta pertorbació es propaga en forma d’ona i eventualment pot arribar a algun dispositiu que la detecti, com per exemple la nostra oïda.

Molt bé, però de quin tipus de pertorbació estem parlant? En el cas del so es tracta d’un desplaçament de l’aire (o, més ben dit, de les molècules dels compostos que formen l’aire): les molècules de l’aire es desplacen i s’acumulen en una zona, després tornen a “desacumular-se” i així successivament, en un

Composició de l’aire atmosfèric

L’aire normal atmosfèric és una barreja de diversos compostos químics. En concret, està format per un 78% de molècules de nitrogen (N_2), un 21% de molècules d’oxigen (O_2), un 1% d’argó (Ar) i entre un 1% i un 4% de molècules d’aigua (H_2O), a més de moltes altres molècules en quantitats molt petites.
moviment vibratori. Aquest desplaçament de l’aire està associat a un canvi de densitat i a un canvi de pressió. Per això dèiem fa un moment que l’objecte que provoca el so s’ha de moure prou ràpidament: si no ho fa, l’aire simplement flueix al seu voltant i no hi ha cap canvi de densitat ni de pressió al voltant de l’objecte.

A la figura 1 podeu veure un dispositiu simple que genera ones mecàniques longitudinals en un fluid, com el so. Tenim un pistó que es pot moure endavant i endarrere en un tub. A la figura 1a el pistó està en repòs i no passa res. A la figura 1b el pistó es mou endavant ràpidament i provoca un augment sobtat de densitat i de pressió a la zona immediatament adjacent del fluid (sota el diuix del tub podeu veure una gràfica que indica la pressió del fluid en funció de la distància \(x \) al pistó). En les figures següents 1c, 1d i 1e podeu veure que aquest augment de pressió i de densitat es va propagant pel fluid i, alhora, crea una zona de menor pressió i densitat al darrere. Hem creat un pols i, si tingués la freqüència adequada, podriem sentir-lo com una mena de cop, una petita “explosió”. Si el pistó seguís movent-se endavant i endarrere generariem una ona més o menys harmònica i podriem sentir un so més o menys continu.

A partir de tot el que acabem de dir podem trobar l’equació d’ones per al so. Com que la derivació d’aquesta equació d’ones implica diversos conceptes de termodinàmica que no estan directament relacionats amb el moviment on-
dulatori i ens durien massa lluny en el nostre estudi, la deixem com a lectura complementària.

El resultat del càlcul de l'equació d'ones per al so és:

\[
\frac{\partial^2 p}{\partial x^2} = \frac{\rho}{B} \frac{\partial^2 p}{\partial t^2}
\]

(1)

on \(B\) és el mòdul de compressibilitat del medi per on es propaga l'ona, \(p\) és la pressió i \(\rho\) (la lletra grega rho minúscula) és la densitat del medi.

El mòdul de compressibilitat

El mòdul de compressibilitat, o mòdul de volum, \(B\), es defineix com la pressió necessària per a produir un canvi unitari de volum. Per a l'acer, per exemple, \(B \approx 160\) GPa i per a l'aigua \(B \approx 2.2\) GPa, mentre que per a l'aire, en un procés adiabàtic (és a dir, sense intercanvi de calor), \(B = 0,142\) GPa.

Si recordeu del mòdul “Ones” l’equació que ens relaciona la velocitat de propagació de les ones, \(v\), amb les característiques del medi per on es propaga, aquesta velocitat serà:

\[
v = \sqrt{\frac{B}{\rho}}
\]

(2)

A la taula 1 us donem uns quants valors de la velocitat del so en diferents medis, per tal que us pogueu fer una idea de les velocitats implicades.

<table>
<thead>
<tr>
<th>Medi</th>
<th>Velocitat del so (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire (0 °C)</td>
<td>332</td>
</tr>
<tr>
<td>Aire (20 °C)</td>
<td>344</td>
</tr>
<tr>
<td>Heli (20 °C)</td>
<td>1.020</td>
</tr>
<tr>
<td>Aigua destil·lada (20 °C)</td>
<td>1.480</td>
</tr>
<tr>
<td>Aigua de mar (20 °C)</td>
<td>1.470</td>
</tr>
<tr>
<td>Ëtanol (20 °C)</td>
<td>1.165</td>
</tr>
<tr>
<td>Òli d’oliva (20,5 °C)</td>
<td>1.381</td>
</tr>
<tr>
<td>Plom</td>
<td>1.200</td>
</tr>
<tr>
<td>Coure</td>
<td>3.500</td>
</tr>
<tr>
<td>Ferro</td>
<td>5.000</td>
</tr>
<tr>
<td>Alumini</td>
<td>5.200</td>
</tr>
<tr>
<td>Titani</td>
<td>6.070</td>
</tr>
<tr>
<td>Poliestirè</td>
<td>1.800</td>
</tr>
<tr>
<td>PVC tou</td>
<td>80</td>
</tr>
<tr>
<td>Formigó</td>
<td>3.100</td>
</tr>
</tbody>
</table>

1.2. Característiques del so

Tal com ja hem comentat al subapartat 1.1., es consideren com a so les ones mecàniques longitudinals amb una freqüència d’entre 20 i 20.000 Hz i una
intensitat superior a uns \(10^{-12}\) W/m\(^2\), que són les que pot detectar l’oïda humana. Les ones mecàniques de freqüències superiors són els ultrasons, mentre que les de freqüències inferiors són els infrasons.

Un so d’una freqüència determinada es pot caracteritzar a partir d’uns paràmetres, que normalment són la intensitat, el to i el timbre. Vegem cadascuna d’aquestes magnituds:

- La intensitat d’un so, també anomenada a vegades volum, és la potència per unitat d’àrea de l’ona sonora corresponent a aquell so en el punt on es mesura. Els éssers humans poden detectar ones sonores a partir d’una intensitat de \(10^{-12}\) W/m\(^2\), mentre que quan s’arriba al voltant de 1 W/m\(^2\) comença la sensació de dolor en l’oïda humana. A la figura 2 podeu veure representades dues ones sonores de la mateixa freqüència però diferent amplitud i, per tant, diferent potència i intensitat.

- El to o altura indica la freqüència fonamental del so. En funció de l’altura, els sons s’ordenen de més greus o baixos (freqüències petites) a més aguts o alts (freqüències grans). A la figura 3 podeu veure representades dues ones sonores de la mateixa intensitat però diferent freqüència i, per tant, diferent to o altura.

- El timbre, també anomenat qualitat i algunes vegades color, indica tots aquells factors que componen un so i que permeten distingir-lo d’altres sons que tenen la mateixa altura i intensitat. Per exemple, un piano i una trompeta poden estar emetent exactament la mateixa nota i amb la mateixa intensitat, però els dos sons són clarament diferents i podem dir quin és quin; això és degut al timbre de cadascun dels sons. Sovint es diu que el timbre és una característica “calaix de sastre”, on s’inclouen molts factors. Certament, el factor més determinant en el timbre són els diferents harmò-
nics que formen un so (vegeu la figura 4), però també hi intervenen el grau de soroll que conté, el procés temporal en la generació del so (per exemple, si triga molt o poc a arribar a la intensitat màxima) i altres elements més subtils que s’estudien en acústica.

Figura 3. Altura del so

![Figura 3. Altura del so](image)

Dues ones sonores de diferent altura: l’ona superior és més aguda (frequència més alta) i la inferior més greu (frequència més baixa).

Figura 4. Timbre de diferents instruments

Representació de l’amplitud relativa dels diversos harmònics presents en el so de tres instruments diferents:

a. un diapasó, que sempre dóna un so “pur”, sense cap harmònic, només amb la fre-
quiència fonamental;
b. un clarinet;
c. un oboè.

Figura 4
Fixeu-vos que aquests dos instruments, com qualsevol altre generator de so, no emeten només a la freqüència fonamental, sinó que també, en més o menys amplitud, als diversos harmònics. Básicament és el diferent contingut d’harmònics el que dona a cada so la seva particularitat i permet distingir-lo d’un altre, malgrat que s’emetin amb la mateixa altura i la mateixa intensitat.

Una vegada caracteritzat el so, mitjançant la sèrie de paràmetres que acabem de veure, potser val la pena aturar-se un moment a comentar alguna cosa sobre els ultrasons i els infrasons que, malgrat que no els puguem sentir, tenen característiques equivalents als sons audibles.

1.2.1. Els ultrasons

Els ultrasons, com ja hem comentat, són ones sonores amb una freqüència superior a 20 MHz. Actualment els ultrasons s’utilitzen en moltes aplicacions industrials, però sobretot, ens és especialment familiar el seu ús en medicina, en les ecografies.

En les ecografies s’utilitzen ultrasons d’entre 1 i 20 MHz, que s’emeten cap al pacient i es detecten les ones reflectides en cada part de l’interior del cos (el procés de formació de la imatge ecogràfica final és més complex, però aquí no entrem a detallar-lo). És possible que molts hàgui vist alguna ecografia d’un fetus, que són les més habituals, però la tècnica també s’utilitza en cardiològia, en gastroenterologia i en urologia, entre altres camps.

En el cas dels ultrasons, val la pena comentar breument l’energia que transporten, perquè, com veurem, pot arribar a ser molt superior a l’energia transportada pels sons audibles. L’energia transportada per una ona és proporcional al quadrat de la seva freqüència, d’acord amb la relació:

\[
e = \frac{1}{2} \rho \omega^2 A^2
\]

on \(e\) és la densitat d’energia, \(\rho\) és la densitat del medi, \(\omega\) és la freqüència angular i \(A\) és l’amplitud de l’ona. A partir d’aquesta expressió podeu veure que els ultrasons, que tenen freqüències \((\omega)\) més altes que els sons audibles, transporten molta més energia \((e)\), ja que \(\omega\) està elevada al quadrat. Quan s’utilitzen ultrasons per a ecografia s’ha de procurar no utilitzar gaire energia, per tal de no danyar els teixits; llavors es compensa la gran energia provocada per la major freqüència dels ultrasons disminuint-ne l’amplitud \((A)\). Aquesta energia, però, també es pot utilitzar al nostre favor de manera terapèutica, i no només diagnòstica, per a tractar determinats problemes mèdics. Un exemple n’és l’ús d’ultrasons (ara ja d’amplitud força més alta) per a trencar i desfer pedres al ronyó, tècnica anomenada *litotripsia*.

D’altra banda, molts animals són capaços de generar i captar ultrasons (recordeu que posar la frontera entre so i ultrason a 20.000 Hz és simplement conveniència nostra, no hi ha cap mena de diferència intrínseca entre un so i
un ultrasò, excepte la freqüència). El més conegut és segurament el rat-penat, que té un límit superior d’audició als 110.000 Hz i utilitza hàbilment els ultrasons com a eina de localització i orientació. Altres menys coneguts són els ratolins, que arriben a captar 90.000 Hz, i diversos mamífers marins, com el subordre dels Odontoceti (dofins, orques, marsopes i catxalots) que també utilitzen l’ecolocalització, com els rats penats.

1.2.2. Els infrasons

Els infrasons són les ones acústiques de freqüències inferiors a 20 Hz i, dins del camp de la infracústica, s’estudien fins a freqüències tan baixes com 0,001 Hz. Malgrat que les seves aplicacions no són tan conegudes com les dels ultrasons, s’utilitzen sovint en geologia per a fer prospeccions del terreny i per a seguiments de terratrémerols. Un gran avantatge dels infrasons és que, a diferència dels ultrasons, poden arribar a grans distàncies amb molt poca dissipació.

Els infrasons es generen molt sovint en la natura quan es produeixen allaus, terratrémerols o erupcions volcàniques, i també en els salts d’aigua i durant el trencament d’icebergs. Cal destacar que es coneix una vibració d’infrasons d’uns 0,2 Hz que es detecta al mar i que sembla que està produïda per interaccions complexes entre les ones superficials dels oceans. També és molt interessant un tipus d’infrasa d’uns 3 a 7 mHz, descobert fa uns 10 anys i detectable arreu del planeta, que sembla estar produït per la transferència d’energia de l’atmosfera cap a les masses continentals mitjançant, també, les ones superficials oceaniques. Però a banda de les fonts naturals d’infrasons, també hi ha fonts artificials, com les explosions químiques i nuclears, les grans màquines dièsel, les turbines eòliques i els grans altaveus de subgreus (els **subwoofers**).

Molts animals, com ara balenes, elefants i hipopòtams, entre d’altres, també utilitzen infrasons per a comunicar-se. En els éssers humans, diversos experiments assenyalen que infrasons d’entre 10 i 19 Hz (just per sota del llindar d’audició, doncs) provoquen una sensació desagradable i, fins i tot, de por. El fet que la freqüència de 18 Hz provoqui ressonàncies mecàniques al globus ocular humà també sembla estar relacionat amb visions i allucinacions en determinades circumstàncies.

1.3. Què hem aprènès?

En aquest apartat hem vist el primer exemple d’una aplicació concreta de tot allò estudiat al mòdul “Ones”. Els diversos conceptes estudiats en aquell mòdul els hem començat a utilitzar aquí per a un cas concret, el de les ones mecàniques longitudinals. Encara més, hem vist que un tipus concret d’aquestes ones, les que tenen una freqüència d’entre 20 i 20.000 Hz i una intensitat superior a 10^{-12} W/m2, és precisament el que anomenem so.
Una vegada ben establerta una definició clara de so, hem passat a veure les característiques amb què el podem estudiar: l’altura, la intensitat i el timbre, que hem comentat breument. Finalment, amb la intenció de tenir una visió una mica més general de les ones mecàniques longitudinals, hem fet una introducció als ultrasons i als infrasons, que no podem sentir directament amb la nostra oïda però que podem detectar per altres mitjans.

Tot aquest estudi, però, ha quedat encara poc relacionat amb la percepció que nosaltres, els éssers humans, tenim del so. Això és el que farem a continuació. Ara que ja sabem què és el so i com el podem descriure, veurem com el percebem nosaltres i com podem quantificar aquesta percepció.
2. Percepció d’estímuls físics

Fins ara hem estat parllant del so i les seves característiques, però encara cal determinar com nosaltres, els éssers humans, percebem aquest so. Si dupliquem la intensitat (i, per tant, la potència) d’un so nosaltres el sentirem (el percebrem) el doble de fort? o potser no tant? o potser més? En altres paraules, la relació entre un estímul físic i la sensació que ens produeix és lineal o té un altre comportament?

2.1. Una descripció fenomenològica: la llei de Weber-Fechner

L’experiència posa de manifest que la relació entre la magnitud d’un estímul i la sensació percebuda no és lineal, sinó que en molts casos aquesta relació és logarítmica. Això vol dir que un canvi en la sensació percebuda no és proporcional a un canvi absolut de l’estímul, sinó a un canvi relatiu; és a dir, que, com més fort sigui l’estímul, més gran ha de ser la seva variació perquè nosaltres en percebem un canvi.

Matemàticament això es pot expressar de la manera següent: si S és la sensació i ΔS la seva variació, i si I és l’estímul i ΔI la seva variació, es compleix

$$\Delta S \propto \frac{\Delta I}{I}$$ \hspace{1cm} (4)

La integració d’aquesta relació ens dóna la relació logarítmica entre estímul i sensació percebuda:

$$S = A \ln \frac{I}{I_0}$$ \hspace{1cm} (5)

on A és una constant que cal determinar en cada cas concret i I_0 és una intensitat de l’estímul que es pren com a referència (per exemple, la intensitat mínima a partir de la qual es comença a percebre la sensació). Aquesta relació es coneix com a llei de Weber-Fechner i ens està dient que si duplico l’estímul no el notaré “el doble de fort”, si triplico l’estímul no el notaré “el triple de fort”, sinó bastant menys. En concret, l’equació 5 ens diu que la sensació és proporcional al logaritme de l’estímul: si duplico la intensitat de l’estímul només el notaré “més fort” en un factor logarítmic de dos, $\ln 2$; si triplico la intensitat de l’estímul el notaré més fort només en un factor logaritme de tres, $\ln 3$; etc.
La llei de Weber-Fechner estableix que els éssers humans perceben les sensacions de manera que una variació de la sensació equival a un canvi relatiu de l’estimul; és a dir, que existeix una relació logarítmica entre estimul i sensació percebuda.

Cal tenir present que, malgrat la denominació de llei, només es tracta d’una relació empírica aproximada, sense caràcter absolutament general. Descriu prou bé les sensacions que peremben associades a l’altura dels sons i a la intensitat dels sons i també, fora ja del camp de l’acústica, descriu bé les sensacions associades al pes i a la lluminositat.

Aquesta dependència logarítmica és la causa que la unitat de sensació d’intensitat sonora, el decibel, sigui logarítmica, com veurem amb més detall en el subapartat 2.3., igual que també passa amb l’escala de magnituds visuals en astronomia.

Ara que ja hem vist, de manera general, com els éssers humans peremben els estimuls físics, ens ocuparem del cas particular que estem estudiant en aquest mòdul, el so. I per això començarem estudiant breument l’òrgan que ens permet percebre el so: l’oïda.

2.2. Fisiologia de l’oïda humana

Molts éssers vius disposen d’òrgans que els permeten detectar les ones mecàniques. Cada espècie és capaç de sentir un determinat interval d’intensitat i de freqüència. Les freqüències de les ones mecàniques que detecta l’oïda humana són les freqüències sonores o acústiques i estan compreses entre 20 Hz i 20 kHz, aproximadament, com ja hem vist.

S’ha de tenir present que l’oïda és un instrument d’anàlisi de freqüències i d’intensitats que transmet aquesta informació al cervell, que és l’òrgan on s’interpreten els sons rebuts a l’oïda. És en aquest sentit que podem dir que qui realment “sent” és el cervell; per això, en algunes malalties es produeixen els anomenats acúfens o tinnitus, sensacions sonores interpretades pel cervell però que no corresponen a cap estimul físic.

Internament, l’oïda de tots els mamífers és molt semblant, malgrat les considerables diferències externes. En tots els casos es pot dividir en tres parts (vegeu la figura 5):

1) l’oïda externa, formada pel pavelló auditiu, el conducte auditiu i la membrana timpància;
2) l’oïda mitjana, formada per un conjunt d’ossets: el martell, l’enclusa i l’estrep;
3) l’oïda interna, amb la còclea i els conductes semicirculars.
Les ones sonores entren a l’orella pel pavelló auditiu i segueixen pel conducte auditiu. El so arriba a la membrana timpàntica, connectada als tres ossets anomenats martell, enclusa i estrep, que transmeten les vibracions a la finestra coclear situada a la base de la còclea. Els tres ossets actuen com un fíltre passabaix, ja que per sobre de 20.000 Hz no poden transmetre les vibracions. La còclea està plena de líquid i la membrana basilar s’hi disposa longitudinalment, amb un gran nombre de fibres. Els diferents components de freqüència d’un so provoquen ressonàncies en diferents punts de la membrana basilar, ja que la longitud de les fibres augmenta progressivament a mesura que ens endinsem per la còclea. Aquesta vibració de les fibres permet transmetre al cervell informació sobre la intensitat i la composició de freqüències del so.

2.3. Percepció del so

Ja hem vist que, segons la llei de Weber-Fechner la nostra percepció de la intensitat sonora és logarítmica, amb la forma de l’equació 5:

\[S = A \ln \frac{I}{I_0} \] (6)
on recordeu que A és una constant que cal determinar en cada cas concret i I_0 és una intensitat de l’estímul que es pren com a referència. Per a determinar les constants A i I_0 suposem que l’origen de les sensacions, $S = 0$, correspon a la intensitat mínima que podem percebre, l’anomenat llindar d’audició. El problema és que aquesta intensitat mínima és diferent per a cada freqüència audible (per a freqüències baixes la intensitat mínima audible és força més elevada que per a freqüències altes). Per convenció, doncs, s’ha decidit estableix com a I_0 el llindar d’audició per a una freqüència de 1.000 Hz, que és:

$$I_0 = 10^{-12} \text{ W/m}^2$$ (7)

2.3.1. Nivell d’intensitat sonora i decibels

L’elecció de la constant A en l’equació 5 és absolutament arbitrària i, així, també per convenció es defineix el nivell d’intensitat sonora, N_I, com

$$N_I = 10 \log \frac{I}{I_0}$$ (8)

la unitat de mesura de la qual és el decibel (dB). A vegades també s’utilitza, en lloc de la intensitat, la pressió sonora, p, que dóna lloc a la definició del nivell de pressió sonora com

$$N_P = 20 \log \frac{p}{p_0}$$ (9)

la unitat de mesura de la qual també és el decibel (dB) i en què la pressió llindar s’escull com a $p_0 = 20 \mu$Pa. De vegades, per a distingir els dos casos, s’escriu dB(SPL)* quan els decibels es refereixen al nivell de pressió sonora i dB(SIL)** quan els decibels es refereixen al nivell d’intensitat sonora.

Fixeu-vos que la pressió correspon a l’amplitud de l’ona sonora i que, per tant, la intensitat és proporcional al quadrat de la pressió (recordeu que les intensitats sempre són proporcionals als quadrats de les amplituds), és a dir,

$$I \propto p^2$$ (10)

Com que $\log p^2 = 2 \log p$, veiem que les equacions 8 i 9 són equivalents.

A la taula 2 mostrem alguns nivells d’intensitat sonora de diversos sons habituels.
Exemple. Nivell d’intensitat sonora

El nivell d’intensitat sonora que produeix un cotxe de carreres en el punt on estan situats els espectadors més propers a la pista és de 89 dB. El nivell d’intensitat sonora d’un altre cotxe en el mateix punt és de 92 dB. Quin és el nivell d’intensitat sonora que reben els espectadors quan els dos cotxes passen junts per aquest mateix punt?

Solució

Els nivells d’intensitat sonora no els podem sumar directament. El que podem sumar són les intensitats i llavors, amb la intensitat total, trobar el nivell d’intensitat sonora total. Fem-ho!

Acabem de veure que el nivell d’intensitat sonora s’expressa segons l’equació 8:

\[N_I = 10 \log \frac{I}{I_0} \]

En aquest cas, de totes les variables de l’equació, coneixem:

- el nivell d’intensitat de cadascun dels cotxes, que indicarem amb \(A \) i \(B \):
 - \(N_{IA} = 89 \text{ dB} \)
 - \(N_{IB} = 92 \text{ dB} \)
- la intensitat de referència (per definició, recordeu l’equació 7): \(I_0 = 10^{-12} \text{ W/m}^2 \).

D’aquí podem aïllar \(I \):

\[\frac{N_I}{10} = \log \frac{I}{I_0} \Rightarrow I = I_0 \cdot 10^{N_I/10} \]

i substituint els valors per a cada cotxe, trobem:

- \(I_A = 7,9 \cdot 10^{-4} \text{ W/m}^2 \)
- \(I_B = 1,6 \cdot 10^{-3} \text{ W/m}^2 \)

Ara sí que podem sumar intensitats, per a obtenir la intensitat total produïda pels dos cotxes conjuntament, \(I_T \):

\[I_T = 2,39 \cdot 10^{-3} \text{ W/m}^2 \]

I amb aquest resultat ja podem calcular el nivell d’intensitat sonora total en decibels, \(N_{IT} \):

\[N_{IT} = 10 \log \frac{I_T}{I_0} = 93,8 \text{ dB} \]
2.3.2. Sensació sonora i fons

Ja hem comentat que la sensació sonora depèn de la freqüència, però el ni-
vell d’intensitat sonora és únic: per a una intensitat determinada obtenim un
nivell d’intensitat únic. En canvi, nosaltres no percebem la mateixa sensació
sonora per a un mateix nivell d’intensitat sonora a diferents freqüències. Per
exemple, els sons molt greus han de ser realment molt intensos perquè els no-
tem tan molestes com un so més agut molt menys intens. En altres paraules,
els aguts molesten més que els greus i aquests, perquè molestin tant com un
agut, han de ser molt intensos.

Per aquesta raó es defineix la unitat anomenada fon (símbol phon), que me-
sura el nivell d’intensitat percebuda, la sensació sonora, de manera que 1 fon
és igual a 1 dB(SPL) a una freqüència de 1.000 Hz. Així, a una freqüència de
1.000 Hz, 20 fons equivalen a 20 dB(SPL), 65 fons equivalen a 65 dB(SPL), etc.

Fixeu-vos en la figura 6. En l’eix de les x representem la freqüència d’un so en
hertz i en l’eix de les y, el nivell de pressió sonora en decibels. Per la definició
de nivell d’intensitat o de nivell de pressió, la sensació que nosaltres percebem
i el nivell de pressió sonora es corresponen (són iguals) per a una freqüència
de 1.000 Hz. Per a altres freqüències tindrem la mateixa sensació percebuda
a nivells d’intensitat o de pressió diferents. Les corbes que es mostren a la
gràfica són les corbes d’igual intensitat percebuda o corbes isòfones, és a
dir, les corbes amb un mateix valor de fons. Per exemple, si resseguiem la corba
correspondent a 60 fons veiem que percebem amb la mateixa sensació sonora
(“sentim igual de fort”) un so de 2.000 Hz a 60 dB que un so de 30 Hz a 100
dB i que un so de 10.000 Hz a 73 dB.

Figura 6

Corbes d’igual intensitat percebuda o corbes isòfones, segons la norma ISO
226:2003. Cada una d’aquestes corbes representa una mateixa sensació sonora
(un mateix valor de fons) en els èssers humans. Així, percebem igual de fort (amb
un valor de 20 fons) un so de freqüència 20 Hz i 90 dB(SPL) i un so de freqüència 3.000
Hz i 20 dB(SPL). La corba grisa correspon a una versió anterior de la norma ISO per
a 40 fons.
Aquestes corbes s’obtenen a partir d’experiments amb un gran nombre de persones amb audició normal, ja que pot haver-hi lleugeres diferències en la percepció de les intensitats en funció de diverses característiques fisiològiques. Actualment les corbes estan normativitzades segons la norma internacional ISO 226:2003, i substitueixen les corbes utilitzades fins el 2003, que es coneixen com a corbes de Fletcher-Munson i corbes de Robinson-Dadson.

En acústica solen utilitzar-se també alguns tipus especials de decibel que intenten reproduir aproximadament les corbes isòfones. Són els dB(A), dB(B) i dB(C), que s’utilitzen per a mesurar el nivell d’intensitat o el nivell de pressió però amb uns factors de ponderació que aproximem el valor obtingut a la sensació sonora. Aquests factors de ponderació són expressions matemàtiques relativament complexes i queden més enllaç dels objectius del mòdul.

2.4. Acústica musical

Per a especificar les característiques del so tal com les percep l’èsser humà no és gaire adequat utilitzar sempre els valors de freqüència, ja que la capacitat que tenim per a detectar canvis de freqüència depèn de la mateixa freqüència, igual que passa amb la intensitat. Una possibilitat, seguint la llei de Weber-Fechner, però ara aplicada a freqüències i no a intensitats sonores, és utilitzar una relació logarítmica per a determinar l’altura d’un so. En aquest sentit, si no es vol utilitzar directament la freqüència, doncs, es pot definir una nova unitat de mesura d’altura d’un so, el savart, de manera logarítmica com

\[
s = 1.000 \, \log \frac{f}{f_0}
\]

on \(s \) és el valor de l’altura del so en savarts, \(f \) és la freqüència i \(f_0 \) és una freqüència de referència. Tot i així, normalment no s’utilitza una freqüència de referència \(f_0 \), sinó que només es fa servir per a diferències d’altura. El savart no es fa servir gaire actualment, ja que s’utilitza molt més una altra unitat de mesura, el cent, que es defineix com

\[
c = 1.200 \, \log_2 \frac{f}{f_0}
\]

Amb aquesta definició, si una freqüència és el doble d’una altra, difereixen en 1.200 cents, com podeu comprovar:

\[
c = 1.200 \, \log_2 \frac{2f}{f} = 1.200 \, \log_2 2 = 1.200
\]

Aquestes unitats de mesura, però, són força tècniques. Tradicionalment s’ha utilitzat un sistema basat en els intervals entre sons tal com els percebem els humans, i que s’ha anat desenvolupant amb la teoria musical. L’interval entre
Acústica

dos sons és el quocient entre les freqüències d’aquests sons. Quan un so té una freqüència doble que un altre so, els dos sons estan separats per un interval d’una **octava**. Per exemple, si un so té una freqüència de 400 Hz, el so situat una octava per sobre té una freqüència de 800 Hz, i el so situat una octava per sota té una freqüència de 200 Hz. És a dir, que el quocient de freqüències de dos sons separats una octava és 2:1 (i, per tant, difereixen en 1.200 cents, com acabem de veure).

Les octaves adicionals d’una nota es produeixen a freqüències que són un múltiple 2^n de l’original, és a dir, a freqüències 2, 4, 8, 16, etc. superiors o a freqüències 1/2, 1/4, 1/8, 1/16, etc. inferiors a l’original. Així, 50 Hz és dues octaves per sota dels 200 Hz (quotient $1 : 4 = 1 : 2^2$), mentre que 1.600 Hz és 3 octaves per sobre (quotient $8 : 1 = 2^3 : 1$). L’octava es pot considerar l’interval més simple en música, però aquesta “simplicitat” és clarament una qüestió antropocèntrica, ja que l’oïda humana tendeix a sentir ambdues notes com a “iguals”; no hi ha cap raó física per a la naturalitat de l’interval d’octava. Totes les notes separades per octaves reben el mateix nom en la notació musical occidental, és a dir, una nota una octava més alta que un *la* també és un *la*.

A partir d’aquesta relació, l’octava es divideix en 12 parts iguals, anomenades semitons. L’interval entre dos semitons dóna un quocient igual a $\sqrt[12]{2} \approx 1,0594630943593$, que correspon exactament a 100 cents. Aquest interval no és una relació senzilla entre nombres ENTERS i és una creació relativament moderna en la teoria musical: es tracta de l’escala anomenada *d’igual temprament* o *temprada*. Tradicionalment, en música s’han fet servir intervals que sempre corresponen a quocients de nombres ENTERS: l’*escala natural*, que podeu veure a la taula 3.

Taula 3. L’escala natural

<table>
<thead>
<tr>
<th>Interval</th>
<th>Quocient de freqüències</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octava</td>
<td>2:1</td>
<td>do – do</td>
</tr>
<tr>
<td>Setena major</td>
<td>15:8</td>
<td>do – si</td>
</tr>
<tr>
<td>Sisena major</td>
<td>5:3</td>
<td>do – la</td>
</tr>
<tr>
<td>Quinta perfecta</td>
<td>3:2</td>
<td>do – sol</td>
</tr>
<tr>
<td>Quarta perfecta</td>
<td>4:3</td>
<td>do – fa</td>
</tr>
<tr>
<td>Tercera major</td>
<td>5:4</td>
<td>do – mi</td>
</tr>
<tr>
<td>Segona major, to major</td>
<td>9:8</td>
<td>do – re</td>
</tr>
<tr>
<td>Segona menor, to menor</td>
<td>10:9</td>
<td>re – mi</td>
</tr>
<tr>
<td>Semitò</td>
<td>16:15</td>
<td>mi – fa</td>
</tr>
<tr>
<td>Unísom</td>
<td>1:1</td>
<td>–</td>
</tr>
</tbody>
</table>

El problema amb l’escala natural és que si comencem l’escala amb el *do* obtenim els intervals que apareixen a la taula anterior, però si comencem l’escala amb el *sol*, per exemple, i volem respectar els mateixos intervals, les notes no coincideixen. A la figura 7 hem representat les notes de l’escala de do major (la mateixa que hem posat d’exemple a la taula) i hem indicat quina és la relació de freqüències entre cada una i la següent. Fixeu-vos que entre el *do* i el *re* hi ha un interval de 9:8, mentre que entre el *sol* i el *la* l’interval és de 10:9. Si
comencem ara l’escala en el sol i respectem l’interval de 9:8 entre la primera i la segona notes, que és el que cal respectar per a construir l’escala natural, ja no tindrem el la original de l’escala de do major, que és a 10:9 del sol, sinó “un altre” la que és a la distància correcta de 9:8!

Figura 7. L’escala natural

![Diagrama de l’escala musical]

Amb instruments de longitud variable, com molts dels de corda (la família del violí i la de la guitarra, per exemple), aquesta situació no és un problema gaire important, però amb instruments de longitud fixa, com el piano, resulta impossible arreglar-ho, ja que no podem canviar la longitud de la corda per a adaptar-nos exactament a una escala o una altra i fer que en un cas entre el sol i el la hi hagi una relació de 9:8 i en l’altre cas una relació de 10:9. Per aquesta raó es va crear l’escala ben temprada o d’igual temprament, que és la que hem comentat abans, i en la qual tots els intervals entre notes consecutives són exactament iguals (i per tant, en concret, un to menor i un to major són iguals).

2.5. Què hem aprèt?

Aquest apartat l’hem dedicat bàsicament a qüestions de percepció dels estimuls per part dels éssers humans. El punt important és tenir clar que, en molts casos, la relació entre les magnituds físiques i les sensacions que ens provoquen quan les detectem amb els nostres sentits és una relació logarítmica. És a partir d’aquest fet que es defineixen les unitats de mesura del nivell d’intensitat sonora (el decibel) i de la sensació sonora (el fon), aquesta última amb l’afegitó del fet que la nostra oïda té sensibilitats diferents a freqüències diferents.
3. Problemes resolts

3.1. Enunciats

1. El nivell d'intensitat sonora d'una conversa normal entre persones a 1 metre de distància és d'aproximadament 65 dB. Quina és, doncs, la potència amb què parlem habitualment els éssers humans?

2. En un concert el nivell d'intensitat sonora mitjà resulta ser de 105 dB a una distància de 20 m de l'escenari. Quina és la potència sonora que s'emet des de l'escenari? (Suposeu que l'emissió només és en la mitja esfera sobre l'escenari.)

3. a) El do central de l'escala musical té una freqüència de 262 Hz. Quina és la longitud d'ona d'aquesta nota en l'aire? b) Quina és la longitud d'ona en l'aire, del do situat una octava per sobre del do central?

4. Demostreu que si dupliquem la intensitat d'un so, el seu nivell d'intensitat sonora augmenta en 3 dB.

5. Tenim tres fonts sonores (A, B i C) que produeixen uns nivells d'intensitat sonora de 70, 73 i 80 dB, respectivament. Quan les tres fonts emeten juntes, les intensitats de les fonts se sumen.

 a) Trobeu el nivell d'intensitat sonora quan les tres fonts emeten juntes.
 b) Per a reduir el nivell d'intensitat sonora pensem a eliminar les dues fonts menys intenses. Serà gaire útil fer això? (És a dir, disminuirà gaire el nivell d'intensitat sonora resultant?)

6. 38 persones que han anat a una festa estan parlant amb la mateixa intensitat. Si a la festa només hi hagués una persona, el nivell d'intensitat sonora seria de 72 dB. Quin és el nivell d'intensitat sonora quan totes les 38 persones parlen alhora?

3.2. Solucions

1. Sabem que el nivell d'intensitat sonora s'expressa com a (equació 8):

 \[N_l = 10 \log \frac{I}{I_0} \]
 \[
\]
on coneixem:

- el nivell d’intensitat: \(N_I = 65 \) dB,
- la intensitat de referència (per definició, recordeu l’equació 7): \(I_0 = 10^{-12} \) W/m\(^2\).

D’aquí aïllem \(I \):

\[
\frac{N_I}{10} = \log \frac{I}{I_0} \Rightarrow I_0 \cdot 10^{\frac{N_I}{10}} = I
\]

i obtenim \(I = 3,16 \cdot 10^{-6} \) W/m\(^2\). Aquesta és la intensitat a 1 metre de distància.

Ara recordeu que la intensitat és la potència per unitat d’àrea, per tant, per a saber la potència, \(P \), cal multiplicar aquesta intensitat que acabem d’obtenir per l’àrea, \(S \), sobre la qual es reparteix. Si no hi ha cap impediment, les ones sonores que emetem es reparteixen de forma esfèrica al voltant nostre, és a dir, sobre una superfície igual a la superfície d’una esfera, que és \(4\pi r^2 \). Per tant, com ens diuen que aquest valor de la intensitat era a 1 m de distància, \(r = 1 \) i així:

\[
P = I \cdot S = 3,16 \cdot 10^{-6} \cdot 4\pi 1^2 = 3,97 \cdot 10^{-5} \text{ W} \tag{20}
\]

2. Aquest problema és pràcticament igual que l’anterior. Sabem que el nivell d’intensitat sonora s’expressa com a (equació 8):

\[
N_I = 10 \log \frac{I}{I_0}
\]

on coneixem:

- el nivell d’intensitat: \(N_I = 105 \) dB,
- la intensitat de referència: \(I_0 = 10^{-12} \) W/m\(^2\).

D’aquí obtenim \(I = 0,0316 \) W/m\(^2\). Aquesta és la intensitat a 20 metres de distància. Recordeu que la intensitat és la potència per unitat d’àrea, per tant, per saber la potència, \(P \), cal multiplicar aquesta intensitat que acabem d’obtenir per l’àrea, \(S \), sobre la qual es reparteix. Com que ens han dit que el so s’emet només en mitja esfera, l’àrea serà \(4\pi r^2/2 \). Per tant:

\[
P = I \cdot S = 0,0316 \cdot \frac{4\pi 20^2}{2} = 79,4 \text{ W} \tag{22}
\]
3.

a) La longitud d’ona la podem calcular sabent que es compleix la relació següent:

\[v = \lambda f \] \hspace{1cm} (23)

on \(v \) és la velocitat de propagació, \(\lambda \), la longitud d’ona i \(f \), la freqüència. D’aquesta expressió sabem:

- la velocitat de propagació: \(v = 340 \text{ m/s} \),
- la freqüència: \(f = 262 \text{ Hz} \).

Per tant, podem trobar la longitud d’ona:

\[\lambda = \frac{v}{f} = 1,3 \text{ m} \] \hspace{1cm} (24)

b) Com ja hem vist en el subapartat 2.4., una nota que és una octava per sobre d’una altra té una freqüència doble. Així doncs, si la freqüència del do central és 262 Hz, la del do que està una octava per sobre serà el doble, 524 Hz. I com que la velocitat de propagació no canvia, la longitud d’ona serà la meitat, és a dir 0,65 m.

4. Per a demostrar aquest fet, considerem novament que el nivell d’intensitat sonora s’expressa com (equació 8):

\[N_l = 10 \log \frac{I}{I_0} \] \hspace{1cm} (25)

i volem saber quin és el canvi en el nivell d’intensitat sonora per a una intensitat que és el doble de l’original, és a dir, igual a \(2I \). El nivell d’intensitat sonora per a una intensitat de \(2I \) serà:

\[N_l(2I) = 10 \log \frac{2I}{I_0} \] \hspace{1cm} (26)

Ara convé recordar la propietat dels logaritmes que el logaritme del producte és igual a la suma de logaritmes, és a dir, que:

\[\log a \cdot b = \log a + \log b \] \hspace{1cm} (27)

Així, podem expressar l’equació 26 com

\[N_l(2I) = 10 \left(\log 2 + \log \frac{I}{I_0} \right) \] \hspace{1cm} (28)
El logaritme decimal de 2 és aproximadament 0,3, per tant:

\[N_I(2I) = 10 \left(0,3 + \log \frac{I}{I_0} \right) = 3 + 10 \log \frac{I}{I_0} \]

(29)

I precisament el segon terme de la suma és el nivell d’intensitat sonora original, per a una intensitat \(I \):

\[N_I(2I) = 3 + N_I \]

(30)

Que és el que volíem demostrar: el nivell d’intensitat sonora per a una intensitat doble és 3 dB més alt que l’original.

5.

a) Com que ens diuen que les tres intensitats se sumen però ens donen els nivells d’intensitat sonora de cadascuna, primer caldrà calcular la intensitat de cada font. Novament partim de l’equació 8:

\[N_I = 10 \log \frac{I}{I_0} \]

(31)

on coneixem:

- el nivell d’intensitat de cada font: 70 dB, 73 dB i 80 dB.
- la intensitat de referència: \(I_0 = 10^{-12} \) W/m\(^2\).

D’aquí aïllem \(I \):

\[N_I = 10 \log \frac{I}{I_0} \Rightarrow I_0 \cdot 10^{N/I_{10}} = I \]

(32)

i obtenim, per a cada font, A, B i C:

- \(I_A = 10^{-5} \) W/m\(^2\),
- \(I_B = 2 \cdot 10^{-5} \) W/m\(^2\),
- \(I_C = 10^{-4} \) W/m\(^2\).

La intensitat total, doncs, serà la suma: \(I_T = 1,3 \cdot 10^{-4} \) W/m\(^2\). Ara que ja sabem la intensitat total, calculem el nivell d’intensitat sonora:

\[N_I = 10 \log \frac{I}{I_0} = 81,14 \text{ dB} \]

(33)

b) Fixeu-vos que les tres fonts juntes ens donen un nivell d’intensitat sonora de 81,14 dB, només una mica més que la font més potent, que ella sola ja ens
dóna 80 dB. Per tant, eliminar les dues fonts més dèbils no ens redueix gairebé gens el nivell d’intensitat sonora.

Aquesta qüestió ens serveix per a adonar-nos que les relacions logarítmiques, com la que defineix el nivell d’intensitat sonora, són poc intuitives i ens poden despistar força. Segurament, sabent que les tres fonts produeixen 70, 73 i 80 dB esperariem que el nivell d’intensitat sonora total fos bastant alt, però resulta que només és de 81,14 dB; és a dir, les dues fonts més dèbils contribueixen molt poc a augmentar el nivell de la font més potent.

6. Per a resoldre aquest exercici podríem calcular la intensitat corresponent a aquests 72 dB d’una persona, multiplicar-la per 38 i llavors calcular el nou nivell d’intensitat sonora total. Però no cal. Igual que hem fet en l’exercici 4, sabem el nivell d’intensitat sonora per a una intensitat determinada, I, i volem saber quin és el canvi en el nivell d’intensitat sonora per a una intensitat que és 38 vegades l’original, és a dir, igual a $38I$. El nivell d’intensitat sonora per a una intensitat de $38I$ serà:

$$N_I(38I) = 10\log \frac{38I}{I_0} \quad (34)$$

Recordant novament la propietat dels logaritmes que el logaritme del producte és igual a la suma de logaritmes, podem expressar l’equació 34 com

$$N_I(38I) = 10\left(\log 38 + \log \frac{I}{I_0} \right) \quad (35)$$

El logaritme decimal de 38 és aproximadament 1,58; per tant:

$$N_I(38I) = 10\left(1,58 + \log \frac{I}{I_0} \right) = 15,8 + 10 \log \frac{I}{I_0} \quad (36)$$

Com que el segon terme és el nivell d’intensitat sonora d’una sola persona, que ens diuen que és igual a 72 dB, tenim finalment que:

$$N_I(38I) = 15,8 + 72 = 87,8 \text{ dB} \quad (37)$$
Resum

En aquest mòdul hem completat el primer estudi detallat d’un tipus d’onà concret: les ones mecàniques longitudinals i, més específicament, el so, les ones sonores o acústiques, que no són més que les ones mecàniques longitudinals que podem detectar amb el nostre òrgan de l’oïda: l’orella. L’estudi ha estat volgudament qualitatiu, amb una complexitat matemàtica inferior al cas general que hem vist en el mòdul “Ones”.

En primer lloc, hem definit exactament què és el so i les característiques amb què el podem estudiar: l’altura, la intensitat i el timbre. Vist això, hem passat a fixar-nos més en com percebem nosaltres aquests sons. El punt clau aquí ha estat veure que la relació entre les magnituds físiques i les sensacions que ens provoquen quan les detectem amb els nostres sentits és una relació logarítmica, que podem expressar matemàticament amb la llei de Weber-Fechner. Tanmateix, cal tenir ben present que aquesta relació logarítmica entre estímul i sensació és una relació aproximada, prou vàlida en molts casos però no és en absolut universal.

A partir de la constatació d’aquesta relació logarítmica sembla assenyat intentar establir unitats de mesura que segueixin la nostra percepció logarítmica dels estíuls. D’aquesta manera s’arriba a la definició de decibel. Tot i així, encara es presenta un problema: els éssers humans no percebem la mateixa sensació amb una mateixa intensitat a diferents freqüències (dit d’una altra manera, no som igual de sensibles a totes les freqüències audibles). Per a això es defineix una altra unitat, el fon, que intuitivament podem considerar igual al decibel però adaptada (augmentada o disminuïda) a la nostra sensibilitat a cada freqüència diferent.
Exercicis d’autoavaluació

1. Un so de 100 dB té una intensitat...
 a) doble que un de 50 dB.
 b) doble que un de 97 dB.
 c) 1.000 vegades més gran que un de 50 dB.
 d) 100 vegades més gran que un de 50 dB.

2. Quan la densitat del medi augmenta, la velocitat de propagació del so en aquest medi...
 a) augmenta.
 b) disminueix.
 c) no canvia.
 d) Totes les respostes anteriors són falses.

3. Les ones sonores són ones...
 a) electromagnètiques.
 b) polaritzades.
 c) mecàniques.
 d) planes.

4. El so es propaga a 340 m/s en l’aire i a 1.500 m/s en l’aigua. Si produïm un so de 256 Hz sota l’aigua, la seva freqüència en l’aire serà...
 a) la mateixa, però la longitud d’ona serà més curta.
 b) més alta, però la longitud d’ona serà la mateixa.
 c) més baixa, però la longitud d’ona serà més llarga.
 d) més baixa, però la longitud d’ona serà la mateixa.
 e) la mateixa, i la longitud d’ona també serà la mateixa.

5. Si dupliquem la distància entre un emissor acústic i un receptor, el nivell d’intensitat sonora en el receptor disminueix, aproximadament, en...
 a) 2 dB.
 b) 3 dB.
 c) 6 dB.
 d) una quantitat que no podem determinar perquè no tenim prou dades.
Solucionari

1. b; 2. c; 3. c; 4. a; 5. c

Glossari

altura *f* Freqüència fonamental d’un so.

escala *f* Successió de notes que formen la base d’un sistema musical determinat.

infrasò *m* Ona mecànica longitudinal d’una freqüència inferior a la mínima freqüència detectable per l’òïda humana, uns 20 Hz.

interval *m* Quocient entre les freqüències de dos sons.

llindar d’audició *m* Intensitat mínima de les ones sonores que pot detectar l’òïda humana.

octava *f* Interval entre dues notes en què una té una freqüència doble que l’altra.

òïda *f* Sentit dels éssers vius amb què es perceben els sons.

orella *f* Aparell dels éssers vius que constitueix l’òrgan de l’òïda.

qualitat *f*

so *m* Ona mecànica longitudinal detectable per l’òïda humana, amb una freqüència compresa entre 20 i 20.000 Hz i una intensitat superior a uns 10^{-12} \text{W/m}^2.

temprament *m* Procés d’afinació d’un instrument musical que sacrifica els intervals exactes de l’escala natural per adaptar-se als requeriments d’un instrument.

timbre *m* Conjunt de factors que fa que es distingeixin dos sons de la mateixa altura i intensitat.

ultrasò *m* Ona mecànica longitudinal d’una freqüència superior a la màxima freqüència detectable per l’òïda humana, uns 20.000 Hz.

Bibliografia

