PERSPECTIVES FOR KETS SKILLS IN EUROPE

Advanced Materials

KETs HLG - WG 7 - KETs Skills and Education Workshop on “Perspectives for KETs Skills in Europe” Brussels, June 10th 2014

Josep A. Planell
President UOC
Advanced Materials have a leading role to play in most of the Horizon 2020 societal challenges

- Health, demographic change and well-being;
- Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the Bioeconomy;
- Secure, clean and efficient energy;
- Smart, green and integrated transport;
- Climate action, environment, resource efficiency and raw materials;
- Europe in a changing world - inclusive, innovative and reflective societies;
- Secure societies – protecting freedom and security of Europe and its citizens
Figure d Labour force by level of qualification, 2000-20, EU-27+

Source: Cedefop (IER estimates).
20th Century is Outdated

21st Century Transformation to Life, Work and Society
“The leaders of EU should recognize that high quality instruction is as medular for universities as pioneering research. While they coincide that researchers require a wide and long training, there is the prevalent hypothesis that great teachers are just born as such, and that high quality education just happens: such vision causes difficulties in education at all levels”

Mary McAleese, Ireland past-president and president of the High Level Group on Modernization of Higher Education of the EU

(La Vanguardia, 15th February 2014)

It is usually taken for granted that a group of students sitting in an amphitheater, in front of a professor with high expertise in the matter, and teaching his own knowledge, is sufficient warranty for high quality education.
● Are universities the only knowledge providers?

● Universities hold the monopoly to award “official” or accredited degrees that play a useful role as a lower filter in the selection processes of companies.

● Should universities provide disciplinary contents or training and competences or skills to solve problems?

● Do universities satisfy employability requirements from the point of view of the demand?
● Internet plays a disruptive role in the future of face to face universities

● Internet provides services while universities provide products (degrees)

● Does a long-life learner care for a training product or a service?

● Academic Professors (strong in research and disciplinary contents holders) or “activities” instructors?
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Characterisation</td>
<td>MSE 302</td>
<td>6</td>
</tr>
<tr>
<td>Materials Modelling</td>
<td>MSE 317</td>
<td>6</td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Art of Research/ Research Teaching</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Research Essay</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Research Project</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic and Glasses</td>
<td>MSE308</td>
<td>6</td>
</tr>
<tr>
<td>Electronic Structure and Optoelectronic Behaviour</td>
<td>MSE310</td>
<td>6</td>
</tr>
<tr>
<td>Electroceramics</td>
<td>MSE411</td>
<td>6</td>
</tr>
<tr>
<td>Metals Processing</td>
<td>MSE305</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Alloys</td>
<td>MSE307</td>
<td>6</td>
</tr>
<tr>
<td>Polymers and Composites</td>
<td>MSE309</td>
<td>6</td>
</tr>
<tr>
<td>High Performance Alloys</td>
<td>MSE409</td>
<td>6</td>
</tr>
<tr>
<td>Advanced Structural Ceramics</td>
<td>MSE413</td>
<td>6</td>
</tr>
<tr>
<td>Surfaces and Interfaces</td>
<td>MSE415</td>
<td>6</td>
</tr>
<tr>
<td>Nanomaterials I</td>
<td>MSE312</td>
<td>6</td>
</tr>
<tr>
<td>Nanomaterials II</td>
<td>MSE412</td>
<td>6</td>
</tr>
<tr>
<td>Nuclear Materials</td>
<td>MSE414</td>
<td>6</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>MSE315</td>
<td>6</td>
</tr>
<tr>
<td>Advanced Biomaterials</td>
<td>MSE417</td>
<td>6</td>
</tr>
<tr>
<td>Tissue Engineering</td>
<td>MSE418</td>
<td>6</td>
</tr>
<tr>
<td>Advanced Thin Film Manufacturing Technologies</td>
<td>MSE410</td>
<td>6</td>
</tr>
<tr>
<td>Equilibrium in materials</td>
<td>DTC</td>
<td>6</td>
</tr>
<tr>
<td>Transformations of matter</td>
<td>DTC</td>
<td>6</td>
</tr>
<tr>
<td>Electronic structure of materials</td>
<td>DTC</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1 Summary of compulsory, research based and options courses available for 2012-2013.
Perspectives for KETs Skills in Europe
June 10th 2014

Semesters 1 & 2
General Curriculum in Materials Science in one of the two universities (60 ECTS)

Year 1
- Grenoble
- Augsburg

Semester 3
Specialization in one of the following universities (30 ECTS)
- Augsburg
- Darmstadt
- Aveiro
- Liège
- Louvain
- Bordeaux
- Grenoble

Year 2
- Materials Interfaces: Surfaces, Composites and Coatings
- Functional Ceramics: Processing, Characterization and Properties
- Nanomaterials and Hybrids
- Nanomaterials and Modelling
- Engineering of Materials and Nanostructures
- Advanced Hybrid Materials and Ceramics by Design
- Materials for Micro- and Nano-Technologies

Semester 4
Research Master Thesis (30 ECTS)
(6 months inside a laboratory of the EMMI Network or in related industries)
UdS - Saarland University, Germany
LTU - Luleå Technical University, Sweden
UPC - BarcelonaTech, Spain
UL - Université de Lorraine, France
Required programme courses (7,5 ECTS credits):
- FYSN11: Physics experiments in research and society
- FYSN15: Experimental tools
- FYSN17: Quantum mechanics
- FYST19: Physics and chemistry of surfaces
- FYST20: Spectroscopy and the quantum description of matter

Programme elective courses (15 ECTS credits)
- FYSN14: Lasers
- FYST21: Light-matter interaction
- FYST42: Scanning probe microscopy
- FYST24: Physics of low-dimensional systems
- FYST25: Solid-state theory
- FYST35: Crystal growth and semiconductor epitaxi
- FYST39: Nanoelectronics
- FYST40: Nanomaterials- thermodynamics and kinematics
- FYST42: Scanning probe microscopy
- KEMM37: Scattering methods
- KEMM17: Magnetic resonance – spectroscopy and imaging.
- KEMM28: Molecular quantum mechanics
- KOO 095: Functional Materials
- KOO 045: Materials Chemistry
- KOO 105: Materials Analysis at the Nanoscale
- FYST31: Advanced Processing of Nanostructures
- MAXM06: Introduction to synchrotron based science
- MAXM16: Experimental methods and instrumentation for synchrotron radiation research

Programme elective courses (15 ECTS credits)
- KEMM07: Surface and colloid chemistry – advanced course
- KEMM09: Optical methods in molecular spectroscopy
Study curriculum
Studies in the programme consist of six modules, for a total of 120 ECTS credits:
1. Advanced module in Materials (20 cr)
2. Advanced module in Engineering Physics (20 cr)
3. Special module (20 cr)
4. Methodological principles (10 cr)
5. Elective studies (credits to obtain the total of 120 cr)
6. Master’s thesis (30 cr)

In modules F330-3 and F331-3 each student focuses on either theoretical/computational or experimental research.
The study modules are presented in detail below.

F330-3 Advanced Module in Materials A3 (20 cr)
Of the special assignments, one is to be done during the summer after the 1st year.
Tfy-3.4311 Materials physics II (5 cr), periods I-II
Tfy-3.4361 Advanced statistical physics (5 cr) (NB: not lectured in fall 2013)
Tfy-3.4343 Nanophysics (5 cr) (NB: not lectured in fall 2013)
Tfy-3.4331 Surface physics (5 cr), periods III-IV
Tfy-125.4313 Microscopy of nanomaterials (5 cr), periods III-IV
Tfy-125.4314 Microscopy of nanomaterials, laboratory course (5 cr), period IV
Tfy-105.5111 Special assignment, computational physics (10 cr)
Tfy-125.5111 Special assignment, physics (10 cr)

F331-3 Advanced Module in Engineering Physics A3 (20 cr)
The module contains studies that provide background in physical sciences. The course selection allows to focus either on a theoretical or experimental track.
Tfy-3.4411 Experimental methods in physics (5 cr), periods I-II
S-104.3610 Nanotechnology (5 cr), period II
Tfy-3.4323 Quantum physics (5 cr), periods III-IV
Tfy-3.4423 Computational physics (5 cr), periods III-IV
Tfy-3.5111 Special assignment, physics (10 cr)

F300-C Special Module in Engineering Physics (20 cr)
This module may contain courses in mathematics, computer science, and various aspects of materials research. An individual study plan will be made with the supervisor.
See also the list of special courses lecture in 2012-2013.

F901-M Methodological Principles (10 cr)
The module contains a selection of methodological courses related to the theme of the programme. These include:
Tfy-0.4800 Physics research seminar (4 cr)
Tfy-3.4510 Special course in physics (3-10 cr)
Tfy-3.4520 Special course in theoretical physics (3-10 cr)

F901-W Elective Studies
Any Kie-98.xx language courses that fulfill the requirements for obligatory foreign language studies for a total of 3 ECTS credits, including both oral and written skills. In addition, the student can select any Aalto University courses to complete 20 ECTS credits. The course choices may contain courses relevant for eventual PhD studies.
See also the list of special courses lecture in 2012-2013.

F901-D Master’s Thesis (30 cr)
The Master’s thesis is a written report of a 6-month independent research project on a topic related to the programme. The topic of the thesis is agreed upon by the student and the supervising professor. The work is carried out as full-time research in either one of the groups at the Department of Applied Physics, in a research group collaborating with one the groups at the department or in an industrial company whose field of operation is related to the programme.

Sep 02, 2013
Institute-wide Task Force on the Future of MIT Education
Preliminary Report November 21, 2013
Some ideas for discussion

- Advanced Materials skills should probably be provided by the knowledge generators (associated to universities looking for accreditation?).

- Universities should probably create enterprise/industrial advisory committees in order to improve employability of their egressed learners.

- On-line learning is probably the most convenient educational approach for long-life learners. (MOOCs experience to be considered).

- On-line learning can personalize education and provide the service that the long-life learner is looking for.

- KETs training, both at the vocational and the higher educational levels, could be provided on-line, blended with face-to-face experimental training wherever knowledge is generated.