Bootstrapping A Statistical Speech Translator From A Rule-Based One

Manny Rayner
University of Geneva, TIM/ISSCO,
40 bvd du Pont-d’Arve
CH-1211 Genève, Switzerland
Emmanuel.Rayner@unige.ch

Paula Estrella
FaMAF, U. Nacional de Córdoba
5000 - Córdoba, Argentine
pestrella@famaf.unc.edu.ar

Pierrette Bouillon
University of Geneva, TIM/ISSCO,
40 bvd du Pont-d’Arve
CH-1211 Genève, Switzerland
Pierrette.Bouillon@unige.ch

Abstract

We describe a series of experiments in which we start with English → French
and English → Japanese versions of an
Open Source rule-based speech transla-
tion system for a medical domain,
and bootstrap corresponding statistical
systems. Comparative evaluation re-
vails that the rule-based systems are
still significantly better than the statis-
tical ones, despite the fact that consid-
erable effort has been invested in tun-
ing both the recognition and translation
components; also, a hybrid system only
marginally improved recall at the cost
of a loss in precision. The result sug-
gests that rule-based architectures may
still be preferable to statistical ones for
safety-critical speech translation tasks.

Index Terms: Speech translation, rule-based pro-
cessing, statistical processing, bootstrapping, in-
terlingua, evaluation

1 Introduction

This paper describes a continuation of a series of
experiments centered around MedSLT (Bouillon
et al., 2008a), an Open Source medical speech
translator designed for doctor-patient commu-
nication which uses a rule-based architecture; the
purpose of the experiments has been to com-
pare this architecture with more mainstream sta-
tistical ones. The original motivation for using
rule-based methods comes from considerations
regarding the tradeoff between precision and re-
call. Specifically, medical speech translation is a
safety-critical domain, where precision is much
more important than recall. It is also important
to note that this is a domain where substantial quan-
tities of training data are unavailable. The ques-
tion is how to use the very limited amounts of data
at our disposal to best effect. This is by no means
an uncommon scenario in limited-domain speech
translation, and could in fact be regarded as the
norm rather than the exception.

It is intuitively not unreasonable to believe that
rule-based methods are better suited to the re-
quirements outlined above, but the well-known
methodological problems involved in performing
comparisons between rule-based and statistical
systems have made it hard to establish this point
unambiguously. In an earlier study (Rayner et al.,
2005), we presented head-to-head comparisons
between MedSLT and an alternative which com-

tained statistical recognition and an ad hoc transla-
tion mechanism based on hand-coded surface
patterns, showing that the rule-based system per-
formed comfortably better. It was, however, clear
from comments we received that the community
viewed these results sceptically. The basic criti-
cism was that the robust processing components
were too much of a straw-man: more powerful
recognition or translation engines might conceiv-
ably have reversed the result.

In the new series of experiments, our basic
goal has been to start with the rule-based com-
ponents and the corpus data used to construct
them, and then use the same resources, together
with mainstream tools, to bootstrap statistical pro-
cessing components. In (Hockey et al., 2008), we adapted and improved methods originally described in (Jurafsky et al., 1995) to bootstrap a statistical recogniser from the original rule-based one. More recently, in (Rayner et al., 2010) we used similar methods to bootstrap statistical machine translation models.

In this current paper, we combine the results of the previous two sets of experiments to build a fully bootstrapped statistical speech translation system, which we then compare with the original rule-based one, and also with a hybrid system which combines rule-based and statistical processing. Interestingly, although (Rayner et al., 2010) demonstrated that a bootstrapped statistical machine translation system is able to add substantial robustness to the original rule-based one when both are run on text data, this robustness does not carry over to speech translation.

The rest of the paper is organised as follows. Section 2 presents background on the MedSLT system; Section 3 summarises the earlier experiments on bootstrapped statistical recognition and machine translation; Section 4 describes the new experiments; and Section 5 concludes.

2 Background: the MedSLT System

MedSLT (Bouillon et al., 2008a) is a medium-vocabulary interlingua-based Open Source\(^1\) speech translation system for doctor-patient medical examination questions, which provides any-language-to-any-language translation capabilities for all languages in the set \{English, French, Japanese, Arabic, Catalan\}. In what follows, however, we will only be concerned with the pairs English → French and English → Japanese, which we take, respectively, as representative of a close and distant language-pair.

Both speech recognition and translation are rule-based. Speech recognition runs on the commercial Nuance 8.5 recognition platform, with grammar-based language models built using the Open Source\(^2\) Regulus compiler. As described in (Rayner et al., 2006), each domain-specific language model is extracted from a general resource grammar using corpus-based methods driven by a seed corpus of domain-specific examples. The seed corpus, which typically contains between 500 and 1500 utterances, is then used a second time to add probabilistic weights to the grammar rules; this substantially improves recognition performance (Rayner et al., 2006, §11.5).

At run-time, the recogniser produces a source-language semantic representation in AFF (Almost Flat Functional Semantics; Bouillon et al., 2008a)). This is first translated by one set of rules into an interlingual form, and then by a second set into a target language representation. The interlingua and target representation are also in AFF form. A target-language Regulus grammar, compiled into generation form, turns the target representation into one or more possible surface strings, after which a set of generation preferences picks one out.

In parallel, the interlingua is also translated, using the same methods, into the source-language ("backtranslated"). The backtranslation is shown to the source-language user, who has the option of aborting processing if they consider that speech understanding has produced an incorrect result. If they do not abort, the target language string is displayed and realised as spoken output. This mode of operation is absolutely essential in a safety-critical application like medical examination. Since translation errors can have serious or even fatal consequences, doctors will only consider using systems with extremely low error rates, where they can directly satisfy themselves that the system has at least correctly understood what they have said before attempting to translate it. This also motivates use of restricted-domain, as opposed to general translation.

The space of well-formed interlingua representations in MedSLT is defined by yet another Regulus grammar (Bouillon et al., 2008a); this grammar is designed to have minimal structure, so checking for well-formedness can be performed very quickly. During speech recognition, the well-formedness check is used as a knowledge source to enhance the language model for the source language. The speech recogniser is set to generate N-best recognition hypotheses, and hypotheses which give rise to non-wellformed interlingua can safely be discarded. Use of

\(^1\) LGPL license: https://sourceforge.net/projects/medslt/

\(^2\) LGPL license: https://sourceforge.net/projects/regulus/
<table>
<thead>
<tr>
<th>English</th>
<th>does the pain usually last for more than one day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng interlingua gloss</td>
<td>YN-QUESTION pain last PRESENT usually duration more-than one day</td>
</tr>
<tr>
<td>French</td>
<td>la douleur dure-telle habituellement plus d’un jour</td>
</tr>
<tr>
<td>Jap interlingua gloss</td>
<td>more-than one day duration pain usually last PRESENT YN-QUESTION</td>
</tr>
<tr>
<td>Japanese</td>
<td>daitai ichinichi sukunakutomo itami wa tsuzuki masu ka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English</th>
<th>does it ever appear when you eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng interlingua gloss</td>
<td>YN-QUESTION you have PRESENT ever pain sc-when you eat PRESENT</td>
</tr>
<tr>
<td>French</td>
<td>avez-vous déjà eu mal quand vous menez</td>
</tr>
<tr>
<td>Jap interlingua gloss</td>
<td>eat PRESENT sc-when ever pain have PRESENT YN-QUESTION</td>
</tr>
<tr>
<td>Japanese</td>
<td>kore madeni tabemono wo taberu to itami mashita ka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English</th>
<th>is the pain on one side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng interlingua gloss</td>
<td>YN-QUESTION you have PRESENT pain in-loc head one side-part</td>
</tr>
<tr>
<td>French</td>
<td>avez-vous mal sur l’un des côtés de la tête</td>
</tr>
<tr>
<td>Jap interlingua gloss</td>
<td>head one side-part in-loc pain have PRESENT YN-QUESTION</td>
</tr>
<tr>
<td>Japanese</td>
<td>atama no kataguwa wa itami masu ka</td>
</tr>
</tbody>
</table>

Table 1: English MedSLT examples: English source sentence, English-format interlingua gloss, rule-based translation into French, Japanese-format interlingua gloss and rule-based translation into Japanese.

The English MedSLT examples, “YN-QUESTION pain last PRESENT usually duration more-than one day” presents these elements in the order given here, which is approximately that of a normal English rendition of the sentence. In contrast, the Japanese MedSLT examples, “more-than one day duration pain usually last PRESENT YN-QUESTION” makes concessions to standard Japanese word-order, in which the sentence normally ends with the verb (here, tsuzuki masu), followed by the interrogative particle ka.

Similarly, in the second example from Table 1, we see that the English-format gloss puts “sc-when” (“subordinating-conjunction when”) before the representation of the subordinate clause; the Japanese-format gloss puts “sc-when” after, mirroring the fact that the corresponding Japanese particle, to, comes after the subordinate clause tabemono wo taberu. This is literally “food OBJ eat”, i.e. “(you) eat food”; note that the Japanese-format interlingua suppresses the personal pro-

3 AFF representations and glosses have been slightly simplified for presentational reasons.
noun "you", again following normal Japanese usage. In Section 3.2, we will demonstrate how useful the different forms of the interlingua turn out to be. The basic point is to be able to split up statistical translation into pieces where source and target always have similar word order.

All the experiments described in the rest of the paper were carried out using the 870-utterance recorded speech corpus from (Rayner et al., 2005); this was collected using a protocol in which subjects played the doctor role in simulated medical examinations carried out using the MedSLT prototype. A transcribed version of the data can be found online at http://medslt.cvs.sourceforge.net/viewvc/*checkout*/medslt/MedSLT2/corpora/acl2005_transcriptions.txt?revision=1.1. A brief examination of the corpus shows that it is fairly noisy. We estimate that about 65–70% of it consists of clearly in-domain and well-formed sentences, depending on the exact definitions of these terms\(^4\), with much of the remaining portion being out-of-domain or dysfluent.

The next section presents the results of earlier experiments, in which statistical components were bootstrapped by using the rule-based ones to create training data.

3 Previous experiments

3.1 Bootstrapping statistical language models

As described in Section 2, the Regulus platform constructs grammar-based language models in a corpus-driven way. This, in principle, enables a fair comparison between grammar-based and statistical language modelling, since the "seed corpus" used to extract the specialised grammar can also be used to train a statistical language model (SLM). There are, however, several ways to implement this idea. The simplest method is to use the seed corpus directly as a training corpus for the SLM. A more subtle approach is described in (Jurafsky et al., 1995; Jonson, 2005); one can randomly sample the grammar-based language model to generate arbitrarily large amounts of corpus data, which are then used as input to the SLM training process. In (Hockey et al., 2008), we showed that a statistical recogniser trained from a sufficiently large randomly generated corpus outperforms the one generated from the seed corpus\(^5\). A further refinement is to filter the randomly generated corpus by keeping only examples which, when translated into interlingua gloss form, result in well-formed representations. These improvements yielded a cumulative reduction in Word Error Rate, measured over the whole 870-utterance data set, from 27.7% to 23.6%. The best bootstrapped statistical recogniser was, however, still inferior to the grammar-based one, which scored 22.0%.

3.2 Bootstrapping statistical translation models

In (Rayner et al., 2010), we adapted the methods from Section 3.1 to bootstrap Statistical Machine Translation (SMT) models from the original rule-based ones; a similar experiment, with a large-vocabulary system, is reported in (Dugas et al., 2008). As above, we started by using the source-language grammar to randomly generate a large corpus of data. We then passed the result through English → French and English → Japanese versions of the interlingua-based translation components, saving the source, target and interlingua gloss representations. A straightforward way to create the SMT models would be to use the aligned source/target corpora as training data. Here, however, we again showed that it was possible to get much better performance by exploiting the structure of the interlingua.

The interlingua gloss was saved both in the English-based and the Japanese-based formats (cf. Table 1). We then used the common combination of Giza++, Moses and SRILM (Och and Ney, 2000; Koehn et al., 2007; Stolcke, 2002) to train separate SMT models for the pairs English → English-format interlingua, English-format interlingua → French, and Japanese-format interlingua → Japanese; for comparison purposes, we also trained models for English → French and English → Japanese. All the models were tuned using MERT (Och, 2003) on a held-out portion of data. We experimented with several differ-

\(^4\)61% of the corpus is within the coverage of the current English grammar.

\(^5\)The seed corpus used here contains 948 examples.
<table>
<thead>
<tr>
<th>Version</th>
<th>Dataset</th>
<th>Judge1</th>
<th>Judge2</th>
<th>Unanimous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based</td>
<td>All data</td>
<td>261-43</td>
<td>259-43</td>
<td>247-33</td>
</tr>
<tr>
<td>Rule-based</td>
<td>Only good backtrans.</td>
<td>69-25</td>
<td>71-27</td>
<td>62-20</td>
</tr>
<tr>
<td>Hybrid</td>
<td>All data</td>
<td>29-180</td>
<td>30-181</td>
<td>25-177</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Only good backtrans.</td>
<td>18-12</td>
<td>19-15</td>
<td>15-12</td>
</tr>
</tbody>
</table>

Table 2: Comparisons between different versions of the English → French and English → Japanese MedSLT systems. The result NN-MM indicates that the judge(s) in question considered that the first version gave a clearly better result NN times, and the second version a clearly better result MM times. Differences significant at $P < 0.05$ according to the McNemar test are marked in **bold**.

Different ways of combining these resources. The best method turned out to be the following pipeline:

1. Translation from English to English-format interlingua using SMT, with the decoder set to produce N-best output (N was set to 15);
2. Rescoring of the N-best output to choose the highest well-formed string, where one was available;
3. If the target is Japanese, reformulation from English-format interlingua to Japanese-format interlingua;
4. Translation from the appropriate format of interlingua to the target language using SMT.

As shown in the paper, this combination massively decreases the error rate for the difficult pair English → Japanese, compared to the naive method of training a single SMT model. The key advantage is that SMT translation, which is very sensitive to differences in word-order, only has to translate between languages with similar word-orders. Even in the relatively easy pair English → French, a substantial performance gain was achieved by interposing the N-best rescoring step. On in-coverage input, both bootstrapped interlingua-based SMT systems were able to reproduce the translations of the original rule-based systems on about 79% of the data; the corresponding figures when the naive method was used were 67% for English → French and 27% for English → Japanese. In cases where the bootstrapped SMT output differed from the RBMT one, hand-examination showed that the SMT version was hardly ever better, and was often worse (Rayner et al., 2009).

The bootstrapped SMT systems are thus not quite as good as the original RBMT ones on in-coverage data. The payoff, of course, is that the bootstrapped system are also able to translate out-of-coverage sentences. When evaluated on the out-of-coverage portion of the test set (358 text utterances), 81 sentences (23%) produced a backtranslation judged to be correct. Of these 81 sentences, 76 (94%) were judged to produce good translations for French, and 71 (88%) for Japanese.

4 Combining recognition and translation

The preceding sections have shown how we were able to use Open Source resources to bootstrap good robust versions of the original speech recognition and machine translation components, using only the original, very small training set of 948 sentences. We now describe how we combined these modules to compare a full bootstrapped statistical speech translation system against the original rule-based one; we also compare the rule-based system with a hybrid version which com-
bines rule-based and statistical processing.

We took the best versions of the bootstrapped statistical recogniser from Section 3.1 and the bootstrapped statistical translation models from Section 3.2, ran the 870-utterance speech corpus from (Rayner et al., 2005) through them, and compared the results with those obtained from the original speech translation system (grammar-based recognition and rule-based translation). In both configurations, we also produced rule-based backtranslations (cf. Section 2), in order to be able to simulate normal use of the system.

The material was annotated by human judges in the following way. The English → English backtranslations were evaluated by a native English judge; they were asked to mark the backtranslation as good if they were sufficiently sure of its correctness that they would have considered, in a real medical examination dialogue, that the system had understood and should be allowed to pass its translation on to the patient.

The English → French and English → Japanese translations were evaluated by two native speakers of French and two native speakers of Japanese respectively, who were all fluent in English. They were presented with a spreadsheet containing three columns, in which the first column was the source English sentence, and the other two were the output of the orginal rule-based system and the output of the bootstrapped system. If one of the system's produced no output, for whatever reason, this was marked as "NO TRANSLATION". The order of presentation of the two systems was randomised, so that the judge did not know, for any given line, which version was shown in the second column and which in the third. If there were two translations, the judges were instructed to mark one of them if they considered that it was clearly superior to the other. If one of the translations was null they were instructed to mark the non-null translation as preferable if they considered that it would be useful in the context of the medical speech translation task.

We used the data and the judgments to compare the rule-based systems, the bootstrapped statistical systems, and a hypothetical hybrid system which produces the result from the bootstrapped system if the rule-based system produces no translation or no backtranslation, and otherwise produces the result from the rule-based system. The results are summarised in Table 2; we present figures for each comparison both on the complete dataset, and also on the subset for which backtranslation produced a result judged as good. The last three columns give the results first for each judge separately, then for the cases where the two judgements coincide.

Although statistical processing, as usual, adds robustness, we can see that it suffers from two major problems. As lines 1 and 5 show, the statistical system, without backtranslation, is much worse than the rule-based one, since it frequently produces incorrect translations due to bad recognition. (The statistical system almost always produces a translation; the rule-based one fails to do so about on about 30% of the data, since rule-based recognition most often fails altogether on out-of-coverage data, as opposed to producing a nonsensical result). With backtranslation added, lines 2 and 6 at least demonstrate that this first problem disappears, and the result is closer. However, we still have the second problem; there are long-distance dependencies which the statistical algorithms are unable to learn. For example, in French, both judges agreed that there were 62 cases where rule-based processing gave a better result than statistical, mostly due to more accurate recognition or translation. There were 20 cases which went the opposite way, with statistical processing better than rule-based: in most of these, rule-based processing gave no result, and statistical a good result. For both language pairs, the figures suggest that the lack of long-distance constraints is more important than the added robustness.

The results from (Rayner et al., 2010) led us to hope that the hybrid system would add robustness to the rule-based system without compromising accuracy; (Seneff et al., 2006) reports a similar result when the text component of a speech translation system is evaluated in isolation. Combination with the speech recognition front-end, with its concomitant noisy input, unfortunately appears to change the picture. Without backtranslation (lines 3 and 6), the hybrid system is inferior to the rule-based one for the reasons we have already seen.

When backtranslation is included (lines 4 and 8), we do indeed see a very small gain in re-
call, but this comes at the price of a substantial loss of precision. Examination of the cases where
the rule-based system diverges from the hybrid one shows disturbing examples where the rule-
Based system produces no output, and the hybrid one an output which is meaningful but in-
correct. For instance, “Do you take medicine for your headaches?” produced no translation in the
rule-based English → French system, but Avez-vous vos maux de tête quand vous prenez des médicaments? ("Do you have headaches when you take medicine?") in the hybrid one; a mis-
take which would certainly worry any doctor who used the system!

5 Summary and conclusions

We have described a series of experiments in which we started with a rule-based speech transla-
tion system for a medical speech translation system, and used it to bootstrap a corresponding sta-
tistical system. The rule-based system is still better than the statistical one, despite the fact that
considerable ingenuity has been invested in tuning both the recognition and translation compo-
nents.

The naïve hybrid system gave a small improvement in recall, but at an unacceptable cost in pre-
cision. It is conceivable that a more subtle way of creating the hybrid system may still succeed in
adding useful robustness. At the moment, though, the evidence at our disposal suggests that rule-
based systems are more appropriate for the kind of task, and that any gain from adding robust
methods is at best likely to be small.

We are well aware that our result is at odds with the currently prevailing wisdom, namely that sta-
tistical methods are preferable to rule-based ones, and the obvious question is why this should be.
We think there are two main reasons. First, most academic papers are written about systems that
have been created to address a shared task. These tasks typically use large training sets that repre-
sent a substantial investment in time and effort. When building real world applications, it is un-
usual to be given a large training set at the start of the project; it is much more common to have no
training set at all.

The second reason is that medical speech translation applications are safety-critical. Mistran-
lations can have serious consequences, and this needs to be reflected in the evaluation metric. A
metric which maximizes BLEU score or recall, typical of most current evaluations, is inappropri-
ate. No doctor we have talked to would consider BLEU a useful metric.

In both respects, the application we describe is closer to real world ones than is common in the
literature, and we therefore think it reasonable to claim that our results should not be dismissed as
irrelevant; we suspect that similar problems will emerge in many other real world applications.
The Open Source framework we have used make it easy for sceptical researchers to check the de-
tails of our methods and data.

References

Bouillon, P., Flores, G., Georgescul, M., Hal-
imi, S., Hockey, B., Ishara, H., Kanzaki, K.,
Nakao, Y., Rayner, M., Santaholma, M., Star-
lander, M., and Tsourakis, N. (2008a). Many-
to-many multilingual medical speech transla-
tion on a PDA. In Proceedings of The Eighth
Conference of the Association for Machine
Translation in the Americas, Waikiki, Hawaii.

Bouillon, P., Halimi, S., Nakao, Y., Kanzaki,
K., Ishara, H., Tsourakis, N., Starlander, M.,
Hockey, B., and Rayner, M. (2008b). Devel-
oping non-European translation pairs in a
medium-vocabulary medical speech translation
system. In Proceedings of LREC 2008, Mar-
akesh, Morocco.

Can we relearn an RBMT system? In Proceed-
ings of the Third Workshop on Statistical Ma-
chine Translation, pages 175–178, Columbus,
Ohio.

Hockey, B., Rayner, M., and Christian, G.
(2008). Training statistical language models
from grammar-generated data: A comparative
case-study. In Proceedings of the 6th Inter-
national Conference on Natural Language Pro-
cessing, Gothenburg, Sweden.

Jonson, R. (2005). Generating statistical lan-
guage models from interpretation grammars in
dialogue systems. In Proceedings of the 11th
EACL, Trento, Italy.

Stolcke, A. (2002). SRILM - an extensible language modeling toolkit. In Seventh International Conference on Spoken Language Processing, ISCA.