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 Resumen del Trabajo: 

La Gene Ontology (GO) es un recurso clave en la investigación bioinformática, 
dado que el conocimiento biológico que incorpora se utiliza en diversas 
herramientas de amplia difusión que comparan o clasifican productos genéticos. 
Por tanto, los hallazgos que se incluyen en muchos informes de investigación 
están soportados por los resultados de diferentes herramientas basadas en la 
GO.   

No obstante lo anterior, la GO no es un recurso estático sino un proyecto en 
constante evolución, y esto suscita la cuestión del grado en que las conclusiones 
extraídas de una versión de la ontología son aún válidas cuando esa estructura 
cambia, bien en el nivel de la propia ontología y/o en el de la gran base de datos 
de anotaciones asociadas a la misma. Esa cuestión se hace aún más acuciante 
por la razón de que las versiones concretas de la GO o las herramientas 
utilizadas no se proporcionan en todos los estudios publicados, aun debiendo 
ser esto un requisito desde la perspectiva del paradigma de la investigación 
reproducible.  

El trabajo que aquí se presenta describe el diseño y desarrollo de una 
herramienta que permite evaluar cambios entre las versione de la GO, 
permitiendo dar un primer paso hacia una comprensión más profunda de la 
evolución de la GO y su impacto en las conclusiones soportadas por su uso. Se 
describe el diseño y uso de la biblioteca pygoa, y se acompaña de un análisis 
de versiones mensuales de la GO. El análisis se hace a nivel de la ontología 
(análisis terminológico), incluyendo métricas de ontologías, y también al nivel de 
la base de datos de anotaciones, e incluye la evolución de ciertas medidas de 
similaridad. 

Los resultados muestran que la GO es un recurso en evolución, con un 
crecimiento global dominado por la subontología de procesos biológicos. La 
base de datos de anotaciones amalgama las contribuciones de diferentes 
subproyectos con patrones cambiantes y se basa fundamentalmente en 
anotaciones obtenidas de forma automática. Se ha encontrado que el cambio en 
la estructura de la red de relaciones entre versiones tiene un impacto solo en 
una pequeña proporción de las métricas de contenido de información, que a su 
vez impactan en métricas de similaridad. Estos hallazgos apuntan a la necesidad 
de una exploración futura acerca del grado en que esos cambios podrían afectar 
a la salida de las herramientas basadas en la GO cuando utilizan diferentes 
versiones que a su vez podrían impactar en las conclusiones biológicas 
obtenidas de los estudios que las utilizan.  

 

  Abstract (in English, 250 words or less): 
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The Gene Ontology (GO) is a key resource in bioinformatics research as its 
embedded biological knowledge is used as the basis of various tools that are 
broadly used in comparing or classifying gene products. Consequently, the 
findings reported in many research are supported by the outcomes of different 
GO-based tools.  

However, the GO is not a static resource but an evolving project, and this raises 
the question on the extent to which conclusions drawn from a version of the 
ontology are still valid as it changes structure, both in the ontology itself and/or 
in the large database of associated annotations. That question becomes even 
more relevant since the concrete versions of the GO or the tools used are not 
reported in all the studies published, which should be required from the 
perspective of the reproducible research paradigm.  

The work presented here reports on the design and development of a tool that 
provides the means to assess changes in the GO across versions, which 
represents a first step towards a deeper understanding of the evolution of the GO 
and its impact in the conclusions supported by its use. The design and use of the 
pygoa library is reported along with an analysis across monthly snapshots of the 
GO. The analysis is done both at the level of the ontology (terminological 
database), including ontology metrics, and at the level of the annotation 
database, including the evolution of several similarity measures.  

Results show that the GO is an evolving resource, with an overall growth driven 
by the biological process subontology. The associations database amalgamates 
inputs from several contributors with changing patterns and relies fundamentally 
on computationally derived annotations. Changes in the network structure of 
relations across versions have been found to impact on a small fraction of 
information content metrics, and subsequently on similarity metrics. These 
deserve further exploration to assess the extent to which these changes may 
affect the output of GO tools using different versions of the ontology that might in 
turn affect the biological conclusions found.   

  Keywords (entre 4 y 8): 

Gene ontology, metrics, similarity, ontology evolution. 
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1. Introduction 

1.1 Motivation 

The Gene Ontology (GO) is a collaborative project that attempts to address the 
need for consistent descriptions of gene products across different databases. The 
project was founded in 1998, as a collaboration between three model organism 
databases, FlyBase (Drosophila), the Saccharomyces Genome Database (SGD) 
and the Mouse Genome Database (MGD), and has grown to a much larger 
coverage of organizations called the Gene Ontology Consortium (GOC).  

Typically, studies report the use of concrete GO tools, that in turn internally use 
the GO itself or its related annotation databases. However, the GO is an evolving 
resource, and reporting the use of a tool in some cases does not give full 
information on the version of the GO used, or it is difficult to trace and find out.   

The GO is not formally subject to release control, at least as it is made available 
in its Web site and associated repositories. Nonetheless, different timestamped 
versions or snapshots of the GO can be considered by comparing the different 
historical copies (typically made available monthly) or if required, by inspecting 
its CVS repository.  

The above described situation has an impact in both the reproducibility of studies 
and the intrinsically provisional nature of conclusions drawn from GO tools. 
Particularly, there are several levels or dimensions that need to be accounted for 
when assessing changes in the GO: 

I. Terminological level. The biological knowledge incorporated in the 
ontology itself changes with time, by addition or deprecation of terms or 
re-structuring of relations resulting from those changes. 

II. Annotation level. The database of annotations is constantly growing. In 
addition, the evidence levels associated with the annotations change as 
part of the manual curation process (du Plessis, Škunca, & Dessimoz, 
2011).  

Since the GO is an ever-evolving resource, there is a need to understand and 
analyse the potential impact of its evolution in the findings and conclusions 
derived from tools that use them internally. This evolution may put into question 
the validity of conclusions drawn from previous versions of the ontology. For 
example, changes in the ontology structure affect topological similarity measures 
used to compute similarities, and those similarities in turn are may be used to 
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assess, for example, the biological processes affected by an experimental 
condition in a high throughput study. A second concern is that the evolution of 
the GO makes the resource richer in some sense, and this opens new 
opportunities for attaining new insights from the same data, simply by using 
updated versions of the GO.  

Both concerns are the departure assumptions for the work presented here. 
However, the assessment of the impact of the GO evolution in concrete studies 
is out of the reach of the current work, as it would entail the re-execution of the 
pre-processing, analysis and interpretation workflow of concrete studies, and the 
current level of automation of reproducible studies is not consistent and lacks 
platforms for its execution. This entails that reproducing a study entails mostly 
manual work due to several missing resources in current studies, including: 

- Concrete information on versions of tools used, including common libraries 
and statistical tools (e.g. R libraries for statistical analysis) but also GO-
specific tools. 

- Detailed information on configuration parameters used in the workflow of 
the study.  

- Lack of executable workflow artefacts, that would ease reproducibility.  

The above makes difficult the actual assessment of the impact of GO evolution 
in concrete studies, but it is still possible to get insights and estimates of that 
potential impact, as a first step towards a future practice of re-execution of studies 
that only change the resources of the GO and automatically contrasts the 
provisional conclusions published with potentially new or updated insights. The 
impact of that future practice is large, from two perspectives: 

- Re-evaluating past studies as a form to productively search for new 
biological conclusions. 

- Changing the practices and habits of the use of the GO, so that re-
execution of studies can be triggered by changes in measures related to 
the GO that are considered as potentially relevant in that they may change 
the results provided by GO tools.  

While the actual impact of the evolution of the GO in the conclusions of studies 
is out of the scope of this work, here we report on a tool that is necessary towards 
that end. Concretely, this thesis reports the design and implementation of a 
Python library named pygoa that allows for the comparison of GO versions, and 
provides metrics and analytic functions to get insights on the potential impact of 
the evolution of the GO. The main aim of that library is that of easing and 
automating the analytics of GO versions, covering the first step towards the 
abovementioned long-term goals.  

 

1.2 Objectives 

The overall aims of the thesis are the following:  
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- O1: Design and develop a library that allows extracting features and 
metrics from the GO that can be used from broadly used data science 
stacks.  

- O2: Report on an analysis of those features and metrics across versions 
of the GO, analyzing its temporal evolution, trends and relation with known 
problems of the GO.  

 

These overall aims are further specified in the following specific objectives.  

 

- O1.1. Design and develop a framework to extract features and metrics 
from the GO compatible with SciPy, the scientific stack built around the 
Python ecosystem.  

- O1.2. Design and develop tools for the analysis of internal relationships 
inside the GO.  

- O2.1. Develop software for the analysis of GO versions along time 
including its annotation database.  

- O2.2. Evaluating potential known GO problems according to the analysis 
done, as for example: 

• the impact of relations across GO sub-ontologies.  
• potential biases related with evidence codes or other annotation 

related features. 
• differences across annotation databases (different projects).  

The two major languages and projects for data science that are built around open 
source communities are currently those of R and Python. Python was selected 
for the following reasons: 

- having available more mature ontology-processing libraries.  
- having better direct integration with medium and big-data frameworks than 

R.  
- possibility of direct and seamless use on top of hosted data science 

frameworks for bioinformatics as Galaxy1.  

Nonetheless, these are practical reasons and the library could have also be 
implemented on top of a R stack of libraries.   

 

1.3 Approach and methods 

The main outcome of the work reported is that of the software library and the 
associated analysis done with it. In consequence, the main steps for reaching 

                                            

1 https://galaxyproject.org/  
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that goal starts with an iterative approach to developing the library that drives the 
rest of the process.  

The main steps can be summarized as follows: 

- Study the structure, format and sharing means of a part of the GO.  
- Design and develop the base software for getting that data. 
- Reviewing the metrics, features or analytic tasks for that part that are 

potentially useful or applicable. 
- Including those metrics or features in the library.  
- Testing and analytics phase using the features implemented.  
-  

The selected platfrom is the Python scientific stack (SciPy2). Other GO Access 
libraries have been considered as candidates for ideas on how to structure the 
API. Concretely, BioPython was discarded as the GO access libraries do not 
seem to be in active development. Other libraries used in common GO tools are 
task-specific and do not support the retrieval of GO snapshots directly, so that 
they have also been discarded.  

The library has been made openly available under a MIT license to maximize 
possibilities of reuse and extension, which is critical for a longer-term impact of 
the kind of analysis done.   

1.4 Outcomes 

The main outcome of the project is the pygoa library itself. It is shared as open 
source under a permissive MIT license and can be found here: 

https://github.com/msicilia/pygoa  

The results of the analysis of versions across time that is reported in this 
document can be reproduced using the library. Notebooks are provided as 
examples in the Github repo.  

1.5 Structure of this document 

The rest of this document is structured as follows. 

- Chapter 2, Background, provides background information on the GO, its 
updating processes and how it is shared as an open resource.   

- Chapter 3, Data acquisition, describes the overall design principles for 
the library developed, discussing the strategies adopted for dealing with 
large files.  

                                            
2 https://www.scipy.org/  
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- Chapter 4, Ontology evolution, reports on the overall growth pattern of 
the GO terminology and then discusses findings related to ontology 
metrics. Then, it reports on the exploration of the use of graph models and 
the use of the clustering coefficient as an initial account of structural 
change in the ontology across versions. Finally, it reports on the study of 
changes in terminology-based information content and similarity 
measures.  

- Chapter 5, Annotation database evolution, discusses annotation-based 
information content metrics across time, complementing the analysis in the 
previous chapter. Then, it discussed findings on the distribution of the 
contributions of different sub-projects to the annotation database, and 
patterns in evidence codes.  

- Chapter 6, Conclusions and outlook, summarize the main findings and 
assesses the results with respect to the original aims. It also provides a 
short discussion on potential extensions to the work presented in the rest 
of the document.  

- Finally, references and glossary sections are provided at the end od the 
document. 

Code artefacts, including tets and examples, are provided in the associated 
Github repository (https://github.com/msicilia/pygoa), so that this document does 
not include the details on the interfaces and design of the library that are more 
likely to change in the future evolution of the code can be founde there.  
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2. Background 

2.1. The Gene Ontology as the result of a process 

The GO project develops and curates three structured ontologies that describe 
gene products in terms of their associated biological processes, cellular 
components and molecular functions. However, the actual work done 
encompasses three different sets of activities: 

1. the development and maintenance of the ontologies themselves.  

2. the annotation of gene products, i.e. recording associations between 
ontology elements and the genes and gene products in the collaborating 
databases 

3. the development of tools that facilitate the creation, maintenance and use 
of ontologies. 

While many other ontology engineering efforts cover both (1) and (2), annotation 
of non-ontology resources is not typically part of them.  

It should be noted that from the perspective of the GO consortium, the ontology 
itself (not the annotations) is considered as a common query and drill-down 
language across a system of decentralize databases.  

Groups or organizations external to the GOC can contribute to the GO by 
providing either proposals for changes in the ontology or annotations. All these 
are reviewed by editors of the ontology.  

2.2. Annotations and evidence in the GO 

Annotations are included in the GO by aggregating inputs from the different 
organizations or projects contributing to the GO3 as members of the GO 
Consortium. However, research groups in general may also contribute to the GO, 

                                            
3 http://www.geneontology.org/page/go-consortium-contributors-list  
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as documented in the contribution pages of the GO4. Edits proposed are reviewed 
by ontology editors and implemented where appropriate. 

The process of annotating results in the assignment of GO terms to gene 
products. It follows a number of policies and guidelines5 aimed at attaining 
homogeneous results.  The assignment of a term need to be classified with an 
evidence code that records the criterion or method used. Out of all the evidence 
codes available, only Inferred from Electronic Annotation (IEA) is not assigned by 
a curator but by automated means. Manually-assigned evidence codes fall into 
four general categories: experimental, computational analysis, author 
statements, and curatorial statements. Obviously, IEA annotations should be 
given different consideration to manual ones, as they are subject to a different 
kind of potential error. However, the evidence code is not in general an statement 
of quality, since it is possible to have high quality IEA annotation and maybe for 
example some bad quality annotations originated from other sources of 
uncertainty.   

2.3. Similarity of terms in the GO 

The GO is used as a source of biological knowledge in different kind of studies 
that involve identifying relevant genes or gene products in the results of 
experiments. This requires some form of measuring the semantic relations 
among GO elements based on the structure of the ontology and its annotations.  

This has led to several proposals for semantic similarity measures that have been 
included in different kind of tools, resulting in a number of related and overlapping 
efforts. These tools and proposals have been recently surveyed and classified by 
Mazandu, Chimusa and Mudler (2016) to provide a guidance on the current state 
of the art for users and researchers. That survey in turn is based on previous 
review studies by Pesquita et al. (2009) and Guzzi et al. (2012) so that we take it 
as the most comprehensive to date. The approach presented in that article is that 
of classifying similarity approaches based on the strategies used to compute the 
scores. This results in a classification in three groups of measures: 

• Information Content (IC) 

• Term semantic similarity 

• Functional similarity. 

Measures of IC are typically used as part of the computation of semantic similarity 
scores, and functional similarity builds on both.  

                                            
4 http://www.geneontology.org/page/contributing-go  
5 http://www.geneontology.org/page/annotation  
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2.4. GO tools 

There are a number of tools that are developed and maintained by the GOC, and 
many others that are external. 

2.5. Versions and usage of the GO in the tools 

The GO is not formally subject to release control. However, there are several 
ways of acquiring old versions of the ontology and its annotations.  

The most recent version of the ontology can be downloaded from direct links in 
the download page6, in OBO and OWL formats, and with two variants: 

- filtered or basic version, that omits the relationship that cross the three 
subontologies. 

- fully axiomatized version (in OWL), including import of additional external 
ontologies. 

Application or organism-specific subsets (“slims”) are also provided as direct 
downloads. 

When looking for older versions, the download page provides “non-
recommended” legacy downloads, that are maintained to support tools using 
those older versions.  

Older versions can be accessed via two resources: 

- An FTP archive of ontology file snapshots, deposited monthly7.  

- A Concurrent Version System (CVS) repository (including a Web interface 
for recent files, updated every thirty minutes).  

The CVS interface can be used to retrieve all revisions made by editors, often 
with day-to-day changes. 

Annotations are provided separately, with the most recent versions directly 
accessible via the downloads page. For older versions, the help system mentions 
several formats: 

1. Database dumps, in relational format, in the archive site8. 

2. CVS and SVN repositories for individual gene association files. 

                                            
6 http://www.geneontology.org/page/download-ontology  
7 ftp://ftp.geneontology.org/go/ontology-archive/  
8 http://archive.geneontology.org/full/ 
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3. FTP archive of snapshots of databases, provided by EBI9 and directly from 
GO pages10. 

In the FTP archive, the database is provided as three different resources: 

- Termdb: containing only the information on the GO terms and 
relationships. 

- Assocdb: containing both the GO vocabulary and associations between 
GO terms and gene products. This database is a superset of termdb. 

- Seqdb: containing the two above, plus the sequences associated with the 
annotated gene products. 

Association information is provided in MySQL dump or SQL sentences formats. 
Also, the Termdb is provided in OBO and OWL formats.

                                            

9 ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/old/  
10 ftp://ftp.geneontology.org/go/godatabase/archive/  
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3. Data acquisition 

3.1. Data sources 

From all the possible sources of copies of the terminological part of the GO, we 
have selected the FTP archive as a source. This is due to several practical 
reasons: 

- The level of time granularity is sufficient for the kind of use cases 
considered in this work. Monthly updates provide a good account of the 
changes in GO contents (terms or annotations). 

- The space of snapshots or versions considered is equally distributed in 
time. In the case of versions that can be obtained from the control version 
system, there is not a periodicity in the updates, which would make harder 
the analysis.  

- Getting the data does not require any library or pre-processing as in the 
case of using for example CVS interfaces. 

- Processing the data in the case of terminology files is straightforward as it 
is provided in OBO and OWL formats, for which there are parsing libraries 
available.  

- It is possible also to obtain monthly snapshots of the annotation database, 
matching thus the terminological and annotation view. 

In the case of the annotation database, the database format split into tables 
provided in the FTP archive has been used as source. The other alternative 
available were SQL dumps, but it was discarded as they require re-building a 
relational database first, which is a non-necessary step due to the kind of 
processing done. As explained below, the processing of the annotation database 
has been done using the Apache Hadoop framework, this is another reason why 
the flat table format was preferred over a reconstruction of the relational 
database.  

The main limitation of the current implementation is that the snapshots available 
before April 2004 are currently not processed, since they are not provided in the 
FTP in a format compatible with the OBO format parsed by the selected libraries 
(see below). This represents three years of missing data, as the older snapshots 
available are dated January 2001 (they are also provided in separate files for the 
three sub-ontologies). Future versions may extend till that date by parsing the 
older OBO format.  
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3.2. Selected technologies 

The library has been built on top of Python libraries, and particularly, providing 
the required translation mechanisms to the scientific python (SciPy) stack so that 
the features and metrics could be further processed using diverse SciPy libraries 
and interactive analytic environments as Jupyter11.  

3.2. Framework design 

3.2.1. Terminological	summaries	

The main ideas behind the framework design are described in the following 
diagram, boxes in grey are objects reused from other frameworks. Dashed arroes 
represent dependencies.  

 

 

Fig. 3.1. Main design elements of the pygoa library for the terminological part of the 
GO. 

Basically, the versions (called “snapshots” as they do not follow a release 
rationale but are states of the GO at some given points of time) are represented 
via GOSnapshot objects. These essentially extend Ontology objects (from the 
pronto library) with the specifics of getting automatically GO files. These are large 
objects, which makes impractical having large collections of them simultaneously 
in memory (e.g. a collection of snapshots across several years). Then, the 
GOSnapshotSummary object is simply a summary of features or counts coming 
from a snapshot. Summaries are efficient in memory and are thus used to deal 
with them for statistical purposes across time.  

                                            
11 http://jupyter.org/  
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The utility function to_df() convert the summaries into a pandas DataFrame 
object, that can then be used with the SciPy stack as any other dataset, for 
analytic purposes. This simple machinery allows for moving the needed data to 
a common analytic format. Libraries extracting metrics or features from 
snapshots may deal directly with ontology objects, with snapshots, or with 
collections or summaries. For example, ontology metric functions in the 
ontometrics package deal directly with ontology objects, as they are intended 
to obtain regular ontology metrics, not specific to the GO.  

3.2.2. Annotation	summaries	

The GO annotation database is a large database of matches of gene products 
with GO terms. Processing full snapshots of this database in memory is not 
practical, and this is the reason why two methods have been devised for getting 
information from it, namely: 

• Database summaries, which are concise quantitative summaries of the 
GO that are provided directly as text files in the FTP site of the GO. 

• Processing of the full database contents. For data not available in the 
summaries, the processing is done out-of-core. Concretely, the map-
reduce distributed computing framework provided by Apache Hadoop12 is 
used to pre-process the data.  

The use of Hadoop provides scalability for the current volumes of annotation data 
and also accommodates its future growth to any scale, as the pre-processing can 
be distributed over a cluster of computers easily. The drawback is that it requires 
an extra step to produce intermediate files that are of a size that can be handled 
in memory. 

The following Figure gives an overview of how this is integrated in the pygoa 
library.  

 

                                            
12 http://hadoop.apache.org/  
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Fig. 3.2. Main design elements of the pygoa library for the associations database of 
the GO. 

For consistency with the class design of the terminological part, there are 
GOAssocSnapshot and GOAssocSnaphotSummary classes, indicating 
reference to the database and extracted summary information respectively. 
However, in the current design, the association database is never brought into 
memory as it is impractical. As in the previous case, a function goass_to_df() 
is responsible to bridge summary information to the SciPy stack, again in the form 
of a DataFrame object.  

The main difference in this case is that all the pre-processing is done separately 
in modules in the pygoa.prep package. This includes utilities to download 
fragments of the database, but it notably implements the map-reduce tasks on 
top of the Apache Hadoop framework. The mrjob library13(maintained by Yelp) 
interfacing Python and Hadoop is used for that task. It should be noted that these 
processes can be executed equally in a local computer or in a cluster of 
computers, including commonly used cloud systems as Amazon EMR14.  

3.3. Summary of the extraction 

The extraction in the case of the terminological database (non-including 
annotations) proceeds by simple download and parsing of the entire ontology file. 
The growth rate of the ontology, as described later, does not appear to pose 
problems that call for solutions using out-of-core computation.  

However, in the case of the annotation database, growth rates follow a different 
rate and the current volumes require out-of-core computation and some form of 
parallel processing for the speed up of the acquisition and to guarantee future 
scalability as the database grows.  

In the remainder of this section, the overall measures on the ontology are 
presented, providing a ground for the rest of the results presented in the following 
chapters.  

3.3.1. Overall	ontology	evolution		

The following Figure depicts the growth of the GO terminology, measured as 
number of terms (nterms) and relations (nrelations). The number of terms 
are including obsolete terms, so that a corrected measure for terms is also 
provided (nterms-c). Deprecations of terms appear to be constant over time 
and not affecting significantly the growth pattern. It is also apparent that the 
number of relations grow at a higher rate, as it could be expected since typically 
the addition of a term results in adding more than one relation, and the 

                                            
13 https://pythonhosted.org/mrjob/  
14 https://aws.amazon.com/es/emr/  
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connectedness of the relations graph if constant would result in a higher growing 
rate. 

 

Fig. 3.2. Growth of the GO terminology across time (2004-2016) 

It should be noted that there are a few gaps in certain months, for which no 
ontology snapshot is available. Concretely, January 2012 is missing for the 
terminology files. 

If we look at the different sub-ontologies as depicted in the following plot, we can 
see that the biological process sub-ontology is accounting for most of the overall 
grow in number of terms. 

 

Fig. 3.3. Growth of the GO terminology across time (2004-2016), split by sub-ontology 
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This is unsurprising as the terminology for cell components and molecular 
functions may reasonably be expected to be more static, as discovering or 
refining new of their elements is rather uncommon, especially when compared 
with the discovery and refinement of biological processes.  

3.3.2. Overall	annotation	database	evolution		

The following plot depicts the data from annotation summaries in the GO FTP 
site. Data is not available for several dates, concretely: July, October and 
December 2004, October 2006, July 2007, February, May and September and 
November 2008, May, June and July 2009, February and December 2011, 
August and October 2013, March and June 2014 and January and all months 
from September 2016. However, the data is still spread enough for a meaningful 
analysis.   

The annotations database grows at a higher rate than the terms in the ontology, 
which is no surprise, as it encodes cases and not general knowledge. The 
following Figure depicts the relation of sizes of the annotation database and the 
number of terms in the ontology (which growth pattern has been discussed 
above). 
 

 
Fig. 3.5. Relative sizes of the GO association database and number of terms 

across time. 
 

The clear majority of GO annotations correspond to the code IEA (Inferred from 
Electronic Annotation), which corresponds to automated annotations not 
involving any form of curatorial intervention. The following Figure provides the 
percentage of IEA annotations with respect to the overall number. It is overall 
above 90% of annotations. This is an important fact, since the quality of the 
annotations thus depend on the algorithmic means to produce them.  
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Fig. 3.5. Proportion of IEA annotations to the overall number of annotations. 

 
It is also interesting to look at the different categories of annotations other than 
IEA. The following Figure depicts the number of aggregated experimental 
annotations, curatorial annotations, annotations taken from computational 
analysis and those coming from author statements.  

  

  
 

Fig. 3.6. Proportion of annotations by category across time. 
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As can be evidenced from the plots, there are kinds of evidence in each category 
that dominate the group. In the case of author statement evidences, Traceable 
Author Statements (TAS) dominate. This is sensible, as non-traceable author 
evidence is used when no traceable evidence is found, which is in most cases 
available. In the case of curatorial statements, most of the annotations are 
Inferred by Curator (IC) and only a small proportion accounts for “non-biological 
data available” (ND). This again is a logical consequence of the effort in curating 
the annotations and having lack of evidence only as exceptional. 

The case of computational analysis evidence is interesting, as most of the 
annotations belong to the “Inferred from Biological aspect of Ancestor (IBA)” 
code. The second largest group is “Inferred from Sequence or Structural 
Similarity” (ISS), however this is a generic group, that has three more specific 
codes: ISA, ISO or ISM, respectively representing inference from alignments, 
orthologues or sequence modelling methods.   
Finally, in the experimental evidence category, the larger group is Inferred from 
Genetic Interaction (IGI), with Inferred from Physical Interaction (IPI) and Inferred 
from Mutant Phenotype (IMP) as second and third. Notably, IPI has only in recent 
years become larger than IMP which may reflect a change in focus of 
experimental methods.  

The discussion so far provides an overall account of the size of the GO and its 
growth pattern. In the following a more detailed exploration of its features is 
discussed.  
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4. Ontology evolution 

4.1. Overall metrics 

The GO is different to many other application-oriented ontologies in its highly 
focused scope and its design as a means towards the end of annotating gene 
products. This entails that not every ontology metric of the many proposed in the 
literature are relevant or significant, and comparative studies (Sicilia et al., 2012) 
are not necessarily meaningful.   

No instance metrics has been included as the GO does not have instances in a 
strict sense (no “Instance” entries in the OBO files). The annotated gene 
product may in some non-strict sense be regarded as instances (metrics are 
provided in the next section), or leaf terms in the hierarchy of relationships could 
be considered as instances (this can be examined via the “number of leaf classes 
metric”). However, the latter is controversial, as there is not a strict consideration 
of what is an instance and a term in the GO. In consequence, no instance metrics 
have been included. 

All the metrics have been examined across time, to find relevant patterns in the 
evolution of the ontology.  
4.1.1.	Number	of	classes	and	overall	shape	of	the	tree	

The following Figure depicts the number of classes (noc) in contrast with the 
number of root classes (norc) and number of leaf classes (nolc).  
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Fig. 4.1. Number of (root, leaf) classes across time. 

Classes here have been interpreted as “terms”. It should be noted that, differently 
from the interpretation in other studies, here we consider that “root classes are 
so for every relation with a “bottomup” interpretation. This in our case includes 
both subsumption (“is_a”) and composition (“part_of”).  

The evolution of the GO shows a broadening of the tree in the leaves with the 
number of root classes growing at a much lower rate. This can be interpreted as 
a further specialization of the GO at a smooth rate over time. As mentioned 
above, this is mainly the result of an increase in biological process terms.   
4.1.2.	Property-related	metrics	

Another category of important metrics relates to properties and their relations. 
Here we have selected the following subset of metrics: 

- depth of subsumption (dos). 
- relationship richness (rr).  Defined as the ratio of the number of properties 

divided by the sum of the number of subclasses plus number of properties.  
- inheritance richness (ir). Average number of subclasses per class.  

These metrics give another view to the distribution of properties across terms. 
The depth of subsumption has grown moderately, from 14 to 16, which supports 
the idea that the grow of the GO is done in breadth.  

The following Figure depicts rr and ir across time.  
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Fig. 4.2. Properties, depth of subsumption, relationship and inheritance richness and 
across time. 

Inheritance richness has grown consistently with the increase in breadth of the 
hierarchy. However, relationship richness has declined over time, this represents 
an increase of the dominance of is-a relationship over other kind of relations in 
the ontology.  

4.2. Relational term analysis 

In addition to the metrics and overall quantitative insights, we have carried out an 
analysis based on network models of the GO terminology. The techniques and 
tools used are those coming from Social Network Analysis (SNA) methods 
(Wasserman and Faust, 1994).  

When examining connectivity, it is important first to note that the three sub-
ontologies present very different connectivity patterns, and they preserve along 
time. This can be appreciated in the following Figure that compares the snapshots 
of May 2004 and 2016. The apparent patterns appear similar, and this is also the 
case when examining snapshots in between these dates. 

The subgraph on the left corresponds to the biological process sub-ontology (the 
one with the largest growing rate), the one in the centre to the molecular function 
and the smaller one is the depiction of the cellular component sub-ontology. As it 
can be appreciated, there is a different pattern of interconnectedness for 
molecular functions, appearing to have a more clustered structure.  
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May 2004 

 

May 2016 

Fig. 4.3. Overall depictions of the GO three sub-ontologies in 2004 and 2016. 

The graphics were generated using Cytoscape 3.4.015 from the directed graph of 
all the relations. Isolated points correspond to deprecated terms.  The rendering 
was done using a force-directed layout. That layout positions graph elements 
based on a physics simulation of interacting forces, in which nodes repel each 
other, edges act as springs, and drag forces (similar to air resistance) are applied. 
4.2.1.	Structural	change:	clustering	across	versions.	

A key question on the evolution of the GO that may impact similarity measures is 
that of the patterns of connectedness in the network. In SNA, this can be analysed 
via the clustering coefficient of terms (nodes). Essentially, that coefficient 
measures the number of “triangles” among terms. More formally, we use the 
following definition of a clustering coefficient for a node u in an undirected graph. 

 

where T(u) is the number of triangles, and deg(u) is the degree of the node.  

                                            
15 http://www.cytoscape.org/ 
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Typically, distributions of clustering coefficients show an extremely uneven 
pattern, with most of the nodes having very low coefficients, and only a few of 
them having higher ones, as shown in the following Figure. 

 

Fig. 4.4. Example distribution of clustering coefficients for the September 2016 
snapshot of the GO.  

Computing average clustering coefficients may not be detailed enough to trigger 
potential changes in different versions. For that reason, we observe the 
distribution of clustering coefficients in the graph. Concretely, we measure the 
clustering coefficients, then systematically assess differences in their 
distributions across snapshots.  

The hypothesis is that the distribution of the coefficients, i.e. the overall structure 
of the ontology, does not change significantly across temporal versions. As the 
distribution of clustering coefficients is unknown, we have used a Kolmogorov-
Smirnov test for two samples. The null hypothesis is that the two independent 
samples are drawn from the same continuous distribution. The rationale for this 
is that the ontology is a representation of reality with some topological structure 
and the different versions can be considered samples. While the idea that two 
versions are independent samples may be controversial, still the test helps us 
measure the difference.  

The procedure for testing was that of using as samples the ontology snapshots 
as times ti and ti+1. This results in significant differences to be signals of 
changes that entail some important structural change. The following Figure 
depicts the resulting KS statistic and associated p-value. Also, the number of 
terms added between temporal snapshots and the increase in deprecated 
(obsolete) terms is also showed. 
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Fig. 4.5. Statistical differences of the distribution of clustering coefficients, and terms 
added or deprecated between dates. 

The plots do not appear to show a systematic relation of the number of updates 
(new terms or terms discarded) with significant differences in the clustering 
coefficient distribution. In consequence, it can be hypothesized that there are 
changes that have a larger impact in the topological relations in the ontology than 
others.  
4.2.2.	Topological	information	content	analysis		

The main method for assessing the relevance of gene products to terms in the 
GO (e.g. indicating a biological process that may be of interest) is that of using 
similarity measures. These typically use some form of measure of the semantic 
relatedness of terms in the GO, in some cases also involving the accumulated 
evidence in the association database. These similarities in many cases entail the 
computation of a subgraph of the ontology and then applying some quantifying 
function that can be considered as a topological measure.  

In any case, the differences in the network structure that have been described 
previously call for a more detailed analysis of the changes across versions of the 
similarity measures, as these are affected by the network structure of relations. 
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Quantifying that change is important towards the end of considering the extent to 
which the use of a GO-based tool may have significantly different outcomes when 
using a different version. Evidently, this is not conclusive of that impact, as it 
depends on many factors, including: 

- Metric related: the extent to which the similarity measure used is sensitive 
or robust to changes in the network structure of the GO. 

- Tool related: the extent to which the way the tool presents the results or 
enable filtering of most important associations does impact in the final 
conclusions of a study. 

- Study related: not every subset of the GO related to a biological object of 
interest has been historically subject to changes in the GO. This entails 
that not every study is a priori affected by changes between versions. 

Despite the complexity of the analysis, an initial account of the extent to which 
similarity measures may impact similarity measures is needed. Here we 
approach that analysis by considering topological measures only, as for now we 
are restricted to analysis using the terminological database. More concretely, we 
have implemented a generic form of similarity measure that enables extension to 
broaden this study to other proposed measures. The following Figure depicts how 
the main elements of the library that account for this. 

 

 

Fig. 4.6. Basic classes for defining semantic specificity and similarity measures  

The different measures just depend on the pronto.Term class, that provides 
the required ontology context and method for computing the metrics based on 
the structure of the ontology. The ic and similarity functions just dispatch 
the types of measures defined for a single term and two-term similarity 
computations. The similarity_generic function implements the generic IC-
based parametrizable formula discussed above, easing the implementation of 
variants of the measures by simply redefining the parameters.  
As a measure of a topology-based information content (IC) we have examined 
the S-metric by Wang et al. (2007): 
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Where a GO term A can be represented as DAGA = (A, TA, EA) where TA is the 
set of GO terms in DAGA, including term A and all of its ancestor terms in the GO 
graph, and EA is the set of edges (semantic relations) connecting the GO terms 
in DAGA. This metrics allows weighting the different relations and we used the 
weights we proposed in the original example of the paper, i.e., “is a” with value 
0.8 and “part of” with value 0.6. From the above definition, the  semantic value of 
GO term A, SV(A) is defined as: 
 

 
 
The computation of the SV metric to all the terms in the ontology across versions 
was used to examine the impact of changes in the GO in this semantic measure. 
 
We have computed SV for each term and snapshot from 2004 to 2016. The 
analysis showed that 1870 out of 20532 terms analyzed had changes in their SV. 
This accounts for only a 9% of the terms, which is a small fraction, but still relevant 
enough to deserve further attention. It should be noted that this is a measure of 
semantic specificity, and it is used in turn to compute similarities between pairs 
of terms.  
When looking at deprecated terms (the “is_obsolete” descriptor in GO OBO 
files) we found that around 58% of the terms that have changed their IC are 
marked as obsolete. The remaining 781 terms are the ones that persist in the 
ontology and changed their IC.  

When examining the position in the taxonomy of the elements that changed their 
IC, an interesting observation arises. Concretely, the average number of 
descendants (defined recursively and including is_a and part_of relations) 
varies significantly for that subset. Interestingly, the pattern is also dependent on 
the sub-ontology considered. The following Figures depict the differences.  
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Fig. 4.7. Number of descendants for non-obsolete terms that changed their IC.   

In both plots, the three plots in the first row correspond simply to a renaming in 
the files provided by the GO in older files.  

 

Fig. 4.8. Number of descendants for non-obsolete terms that did not change their IC.   
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It appears as evident that number of children is a determinant of IC change.  A 
Kruskal-Wallis H-test for null hypothesis that the population median of both 
groups are equal gives a p-value of zero, confirming the difference. 
The intuitive explanation for this is that the terms changing their IC across 
versions tend to be those up in the hierarchy, as they get affected by additions in 
the hierarchical tree. This is in principle an argument in favour of considering that 
changes in IC overall do not affect the outcomes of studies, as tools tend to 
attempt to find the most specific terms and annotation guidelines are also guided 
by maximum specificity. Also, this difference affects mainly the biological process 
sub-ontology, that accounts for most the changes in the ontology. 
	
4.2.3.	Topological	information	similarity	analysis		

A second aspect of interest is the analysis of the change in similarities across 
versions. In doing the analysis, we have used and computed systematically 
across the versions 2004-2016 the following similarity measures.  

Formula Function 

 

similarity_wang 

𝑆 𝑥, 𝑦 =
2	max	[𝐼𝐶 𝑡 𝑓𝑜𝑟	𝑡	𝑖𝑛	𝐴𝑥 ∩ 𝐴𝑦]

𝐼𝐶 𝑥 + 𝐼𝐶(𝑦)  
similarity_lin 

The formula by Wang uses the previously described IC measure. SA(t) is the S-
value of GO term t related to term A and SB(t) is the S-value of GO term t related 
to term B. The formula by Lin is implemented over the generic function described 
above (Lin, 1998) where Ax represents a set with the term plus all its ancestors 
(the subsumer of x). 

These metrics do not account for the annotation database, but are purely based 
on the network structure of the ontology.  

Examining the complete space of similarity pairs for the different versions of the 
GO was discarded for practical reasons of the volume of computation. For 
example, generating the full combination of similarity pairs only for a single 2007 
snapshot yields more than 134K million records, even when excluding the terms 
that have been discarded (made obsolete) along the time. Consequently, we 
have explored here the impact considering only the terms that changed their IC 
across versions (extracted from the analysis reported above) in relation to their 
neighbourhood, i.e. the terms that are adjacent to those in the graph of relations. 
While this does not give a complete picture of the impact, at least allows for 
having an initial impression of the impact of the changes in similarity measures. 

The procedure then was done as follows: 



19 

1. Identify the terms that changed their topological IC metric across versions 
(extracted from the previous analysis), excluding terms made obsolete 
(that may bias the analysis as they are expected to have high variation as 
they become isolated in the graph once discarded). 

2. Compute the subgraph of adjacent nodes for those terms.  
3. Systematically compute the similarities using the different models for each 

of the pairs from the previous steps. 

The results of the analysis when we take intervals of three years (2007, 2010, 
2013, 2016) yields a large proportion of change of the 3832 similarities 
considered. Concretely, it accounts for around 71% in the case of Wang’s metric, 
and near 75% in the case of Lin’s metric. Around 85% of the similarities that 
change do that with both metrics (remember that the Lin’s measures computed 
are based in the same IC account as Wang’s for this analysis). Unsurprisingly, a 
large proportion of related terms is affected by the change, and this in turn may 
propagate to a lesser extent to terms that are reachable via more than one of the 
steps to one of the terms that changed IC. 

The interpretation of the changes requires further analysis. It is important to note 
that the overall distribution of similarities in the sample analyzed do not appear to 
follow a unimodal distribution, as showed in the following plot for Lin’s measures 
(std=0.3). 

 

Fig. 4.9. Distribution of Lin’s similarities between terms changed and their adjacent 
(intervals of three years, 2007-2016).   

If we look at the trends per term for the case of Lin’s measure, we find that the 
variation of similarities is concentrated in a few terms, only 49 of all the term pairs 
(1.7%) have a standard deviation above 0.1.   

If we focus on those terms that account for most of the variation and build a graph 
model with all the relations, it results in a graph with 168 weakly connected 
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components, which can be interpreted as different independent significant 
changes. As can be appreciated in the following network plot16, there are many 
independent terms that are isolated from the rest, then a connected subnetwork 
which appear to feature several local subnetworks. 

The network diameter is 14, so considering that the minimum and maximum 
depth of subsumption (dosh) was between 13 and 16 along time, points out to a 
broad distribution of the changes across the graph.  Density of the graph is low 
(0,001) and average clustering coefficient is 0,057.  

 

Fig. 4.10. Graph of terms that changed Lin’s similarity (intervals of three years, 2007-
2016).   

The network analysis up to this point does not provide clear insights on the locality 
of the changes in the network. However, if we focus attention on those nodes with 
standard deviation above 0.1 (discussed before), we can obtain the plots in the 
following Figure. 

                                            
16 Generated using Gephi’s Force Atlas algorithm. 
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 Fig. 4.11. Graph of terms that changed Lin’s similarity with std>0.1 (intervals of three 
years, 2007-2016).  Overall view (left) and detailed subgraph (right).  

 
The element in the right of the previous one starts in the centre with 
GO:00003674, that is, “molecular function”, i.e. the root of the subontology of the 
same name. Then three of the four clusters have centres using the Force Atlas 
visualization.  They correspond to the following terms: 

- GO:0003824 is “catalytic activity” 
- GO:0005488 is “binding” 
- GO:0005198 is “structural molecule activity” 

 
As it can be appreciated, these terms cluster different forms of functions into 
groups. The other larger subgraphs account for the changes in the other 
subontologies. 
 
The analysis done suggests that it is possible to localize the terms with the largest 
changes in the structure and relate them to particular kinds of studies or biological 
conclusions.  
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5. Annotation database evolution 

In the previous sections, we have analysed the temporal evolution of the GO as 
a terminological knowledge base. However, it is in the associations database 
where the GO accumulates empirical evidence of high biological value. In this 
chapter, we turn our attention to that database, its evolution and composition.  

5.1. Overall analysis 

The overall temporal growth pattern was already discussed in Section 3. Here we 
focus on analysing how similarities derived from annotations vary over time. In 
doing so, we implemented a basic IC measure as follows: 

𝐼𝐶 𝐴 = −ln	(𝑝(𝐴)) 

Where p(A) is the relative frequency of the term A for the annotation-based family. 
As we are here not differentiating among different databases contributing to the 
GO, we take the relative frequencies of the complete database.  

Obtaining frequencies from annotation databases requires the off-line pre-
processing of the large association database files that can be obtained from the 
GO consortium. The resulting files provide information on the number of 
annotations per term and per evidence code for each of the GO snapshots 
considered. The period 2005-2013 has been used in this analysis, but it could be 
extended to later years using the same methods. 

The first important finding is that a total of 35,809 terms out of 39,264 have 
associated annotations in the period (considering the figures of the last year in 
the period), accounting for an 91% of the terms. However, the distribution of 
annotations across terms is unbalanced. The following plot depicts the 
distribution of the decimal logarithm of the total annotations for 2012 (similar 
empirical distributions can be appreciated for the rest of the years in the period). 
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Fig. 5.1. Empirical distribution of number of annotations per term, in logarithmic scale 
(2012).  

As the distribution appears stable, we can observe for a single snapshot the 
relation of annotations to other topological metrics in the ontology. However, there 
is not an apparent linear relationship between the number of annotations and 
measures of specificity as number of ancestors or descendants, as shown in the 
following Figure for the overall data and for the data per sub-ontology (obsolete 
terms removed). 

  

Fig. 5.2. Relationship of decimal logarithm of total annotations and number of 
ancestors of the term (2012). Total on the left, by sub-ontology on the right (linear 

model included in the plot) 

The linear relationship appears to be different in the case of the molecular 
function sub-ontology and it is positive (as expected since annotation ideally 
should be associated with the most specific terms possible), but it is nonetheless 
unclear when considering other year’s plots. The guidelines of the GO indicate 
that some terms are not intended to be associated to annotations, however, it is 
difficult so far to establish a relation.  
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To evaluate the changes in association-related IC measures, the first step was 
that of finding the impact of changes across versions in the period. A total of 5063 
terms had changes in the frequencies, accounting for 14% of the total. However, 
unlike in purely topological ICs, here it does not seem reasonable to count all as 
changes, since a small increase in annotations may change the overall 
frequency. 

Mean IC increases along versions, and more rapidly if we consider only terms 
that have their association-based IC changed. The following Figure depicts that 
increase. 

 

Fig. 5.3. Increase in mean association-based IC (2005-2013), split in groups of terms 
that change their IC in the period or not.  

Another important aspect in this analysis is the extent to which these association 
based measures overlap with the IC measures studied in previous sections. In 
principle, these can be considered as addressing two different aspects of 
information content, namely, the connection with actual empirical products and 
on the other hand, the relationship to encoded knowledge in the terminology. 
Interestingly, the overlap of terms that changed its annotation-based IC in the 
term considered and those previously studied that changed their topological IC 
overlap only in 23 cases, which accounts to a 0,3% only of the terms17. 

5.2. Contrast between databases 

The GO as a consortium has a decentralized approach to collecting associations. 
This entails that the association database is an aggregation of the contributions 
of different projects that specialize on an organism or have a concrete focus. This 
may be a source also of differences across the different contributing projects and 
here we provide the analysis of the contributions across time.  

                                            
17 This may not be accurate as the period considered for topological ICs is 
broader, but in general this accounts for a small proportion of the terms.  
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There is a total of 57 databases that have contributed to the GO in some moment. 
However, of those only 25 remain “active” in the sense that they appear in the 
latest version. This in some cases may be due to merging of some of them, but 
this also entails that tools should be aware of the underlying databases used and 
report them, as maybe in future versions they are no longer available as 
independent contributors.  

The following Figure depicts the contribution of the 25 active databases. As it can 
be appreciated, there is not a growing pattern in some of them. On the contrary, 
the contribution patterns over time are highly heterogeneous thus there is not a 
characterization of the evolution of these contributions.  

Also, it is noticeable that the contribution of databases is very uneven, with some 
of them being less than one hundred in size as NCBI_GP, and others like 
UniProtKB providing the bulk of the annotations.  
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Fig. 5.4. Contribution over time of the 25 databases that are listed in the summaries up 
to august 2016. 
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5.3. Evidence level analysis 

In Section 3, it was showed that IEA evidence codes dominated the overall 
database of annotations. Also, it was shown that the distribution of evidence 
codes between categories was also dominated by some kinds of evidence.  

The following diagram shows the empirical distributions of the dominant 
categories for experimental and author categories (curatorial are omitted as their 
relative frequency is much lower). 

  

 Fig. 5.5. Empirical distributions for the dominant categories of evidence codes for year 
2013. 

Both IDA and TAS show similar distributions. The case of the computational 
analysis codes is different, as up to 2013 there was a relative distribution differing 
significantly from the most recent period. The following Figure shows their 
distributions.  
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Fig. 5.5. Empirical distributions for the computational analysis code category of 
evidence codes for year 2013. 

With the exception of IBD, all of them show a kind of unbalanced distribution.  

Another interesting aspect is the potential relation of evidence kinds across 
different kind of terms, based on their position in the ontology. However, no 
regression model has been found that accounts for that relation. 
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6. Conclusions 

This section summarizes the main conclusions and outcomes from the work 
described in the rest of the document and assess their relation with the original 
objectives posed for the thesis work. Then, a discussion of future direction to 
continue the effort reported in this document is provided as outlook.  

6.1. Main outcomes 

6.1.1.	Overall	findings	

The analysis of the GO provides a picture of the ontology as a constantly evolving 
and growing resource. The terminology appears to follow a linear pattern of 
growth with an unsurprising higher rate in the case of relations when compared 
with the number of terms. Also, the biological process sub-ontology shows a more 
accelerated growth rate, than the other two. The associations database has been 
shown to be an amalgamation of contributions from different sub-projects that 
change their contribution proportion differently over time.  

Evidence codes are dominated by electronically produced annotations across 
time, and considering the remaining relatively small portion there are dominant 
codes in each of the categories. Noticeably, the proportion of annotations of the 
IBA type has grown from 2015 on at a much higher rate, becoming in that short 
period the most frequent category.    

From the analysis of ontology metrics, it is noticeable that relationship richness 
has declined over time, representing an increase of the dominance of is-a 
relationship over other kind of relations in the ontology. 

A graph based analysis of the relations in the ontology across time shows 
different network structures among sub-ontologies. Considering the distribution 
of clustering coefficients as an indicator of relational structure, it has been shown 
how there are statistically significant changes between consecutive monthly 
versions of the ontology at some particular points. This could be further explored 
as an indicator of important structural changes.  

The examination of terms for which topological information content (IC) measures 
change over time suggest that changes occur in higher levels of the hierarchy. 
Assuming this is true, that would be an argument in favor of the stability of such 
measures for the terms that are more specific. The changes in IC propagate to 
changes in the similarity of those terms with other ones. An analysis of terms 
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adjacent to those has shown that impact. However, when looking at the effect, it 
becomes apparent that only a few terms account for the majority of the variation, 
and some of them are related in the structure of the ontology. This opens 
opportunities to elaborate accounts of “evolution impact on terms” on particular 
sub-trees of terms. That would enable a practical account to signal potential 
needs of reinterpretation of studies that were based on terms that have 
significantly changed.  

The analysis of annotation-based ICs has shown that they account for a different 
kind of changes than that of topological ICs. Further, that specificity grows over 
time, which may be interpreted as an increasing discriminatory power of the 
ontology when considering the annotations.     
6.1.1.	Processing	tool	

The pygoa library provides a practical approach to obtaining snapshots of the 
GO and transforming them into formats widely used in the Python scientific stack. 
For example, summary ontology data (both for terminology and associations) can 
be easily transformed into pandas DataFrame objects, or they can be exported 
to the digraph format of the NetworkX library. This maximizes the reuse of 
existing analytic tools and allows data analyst to use the more convenient tool for 
each analytic need. 

The library has included pre-processing code for the case of the annotation 
database, which due to its size and growth pattern, falls into the requirement 
space of parallelizable computation. Concretely, the Apache Hadoop Map-
Reduce paradigm has been used to get the frequencies.  

6.2. Relation to original aims and lessons learned 

The following Table summarizes the main outcomes reported in relation to the 
originally stated objectives. 

Objective Where in the 
document 

Main outcomes 

O1.1. Design and develop 
a framework to extract 
features and metrics from 
the GO compatible with 
SciPy, the scientific stack 
built around the Python 
ecosystem.  

Described in chapters 4 
and 5 in its major usage 
for analytics. Code 
available in Github. 

The pygoa library, registered 
and made available open 
source. Use with SciPy 
libraries numpy, pandas and 
scipy.stats, and also with 
other libraries as networkx 
and mrjob (for 
preprocessing). 

O1.2. Design and develop 
tools for the analysis of 
internal relationships 
inside the GO.  

Described in chapters 4 
and 5. 

Libraries for ontology metrics, 
conversion to graph models, 
extracting term-related 
metrics and similarity and IC 
measures. 
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O2.1. Develop software 
for the analysis of GO 
versions along time 
including its annotation 
database.  

Usage reported in 
chapters 4 and 5. 

Tools for preprocessing GO 
files and systematically 
downloading and caching 
them.  

O2.2. Evaluating potential 
known GO problems 
according to the analysis 
done.  

Usage reported in 
chapters 4 and 5. 

An analysis of the impact of 
changes in sub-ontologies 
along relations has been 
described in 4.2.3. Evidence 
codes have been examined 
in 5.3 and differences across 
databases in 5.2. 

While all the objectives have been explicitly covered in the work done, many 
alternate paths or additional possibilities have been left unexplored, and some 
new have been suggested by the findings. In the next section, an acoount of 
some of them is provided.  

6.3. Outlook 

6.3.1.	Difficulties	found	in	data	wrangling	

Of the options available, monthly GO snapshots have been chosen as a solution 
balancing granularity and ease of retrieval. The alternative of using the CVS 
interface may have given finer temporal granularity at the expense of increased 
processing cost. However, the changes in the GO accumulate over time and the 
versions in the CVS are no releases semantically marking significant changes, 
but a series of small routine updates. This led us to assume that a monthly 
periodicity is enough for a realistic account of the changes in the GO. 

As with any project spanning across many years, there are some changes in 
formats, schemes and procedures that affect data acquisition. We have found 
and reported problems in obtaining earlier versions of the GO (e.g. due to using 
older versions of the OBO format), and small changes in the policy of naming 
files. Also, the monthly snapshots repository has some missing months.   

A way of caching versions was needed to avoid constant network retrieval of large 
files for the terminology of the GO. This has the drawback for the user of the 
library of consuming some additional disk space, reason why it was made 
optional. While for the terminological database, the size growth of the files does 
not appear to pose problems in the future, it is clearly a problem in the case of 
the annotation database.  

The volume and growth of the annotation database clearly required an approach 
for offline computation that could scale to clusters to cope with future changes. 
Here we devised a simple pre-processing workflow exploiting the broad 
availability of cloud services and software built on top of the Apache Hadoop 
framework. This has the drawback of requiring the development of custom 
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workflows for particular data requirements. For example, here we have 
implemented the workflow for getting annotation frequencies per term, but other 
possible analysis may for example attempt to extract references to sequences, 
and this would require custom workflows and an additional level of scaling.  

Another category of problems comes from the computational power required to 
do extensive longitudinal analysis of GO metrics. The clearest case is that of the 
computation of similarity changes across versions of the GO. The volume of 
computation required again requires moving to parallel processing paradigms. 
Here we have approached that using simple custom parallelism with IPython 
parallel18 and ad hoc strategies to get the information required for the analysis 
presented, but a more generic analytic workbench may be more optimal for 
comprehensive analytics. Possible frameworks for that may be Apache Spark19 
or Apache Flink20, but these have been considered out of the scope of our current 
presentation.  
6.3.2.	New	forms	of	release	management	for	the	GO	and	its	implications	

Following the emerging paradigm of replicable experiments, GO-based studies 
should be made computationally replicable when published, so that relevant 
changes in the ontology or the associations database could trigger re-execution 
of the experiments and eventually provide new insights or test the significance or 
relevant of previously obtained ones.  

The current release system of the GO is not systematic and a change into a more 
stable and consistent release effort may help in tool and paper authors document 
the concrete versions used.  

Ideally, a form of meaningful release management in the GO would provide the 
benefit of signalling potential changes in the ontology that may affect previous 
conclusions or may open new opportunities for biological discovery. However, 
determining what may be “significant” as a new release and what not is difficult 
and in need of additional research. The metrics and comparisons reported in this 
work could be used as a starting point to study potential measures of ontology 
evolution that when combined with reproducible research, could lead to a “re-
execution” of studies in an automated way, making the studies more valuable by 
being able of incorporating new knowledge embedded in the tools without a need 
of redoing the full path or workflow. It should be noted that re-execution may be 
done off-line, and only when some significant change is detected then the authors 
or curators of the results may enter into action. For example, in tools that provide 
GO-based processes most related to under-expressed genes in an experiment, 
that list could just be compared with the new outcomes.  

                                            
18 https://ipython.org/ipython-doc/3/parallel/  
19 http://spark.apache.org/  
20 https://flink.apache.org/ 
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6.3.3.	Beyond	the	analytics	presented	here	

The analytics presented here have been obtained in a process of exploratory 
study. As such, they have served only as a way of obtaining additional findings 
for further studies. These findings that are suggestive of further work include but 
are not limited to the following: 

1. Differences in the impact of changes in different similarity or IC measures 
point out to the need for a comparative robustness of different of such 
measures. 

2. Differences in number of children in terms changed across versions of the 
ontology point to studying the locality of changes relative to the graph 
structure as a promising direction. 

3. The identification of subgraphs in terms impacted by changes suggest 
studying the propagation of changes of similarity measures in particular 
subtrees of the ontology. 

Also, a number of predictive tasks have been suggested by the results in this 
work, including but not limited to the following: 

1. Is it possible to predict the GO terms that are in risk of being made 
obsolete? This could be done from the history of terms discarded, 
observing its structural position (knowledge-based view) or its associated 
annotations (use view). 

2. Is it possible to predict the growth of the GO in particular branches or 
subtrees? As the biological process sub-ontology accounts for most of the 
additions, a model of which subtrees are more likely to grow via “is a” or 
“part of” specialization may be derived.  

The second of the questions is related to the broader question of the extent to 
which the GO will at some point stop growing significantly in its terminological 
part. As the GO codifies biological knowledge, it can be hypothesized that there 
is a point in which our creation of subcategories for sub-parts or sub-processes 
may reach a limit, which is that of the material processes being described. 
Identifying that point is of paramount importance to research as it would mark the 
point in which the GO will become an overly static resource.   
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7. Glossary 

7.1. Acronyms 

• GO: Gene Ontology. 
• OBO: Open Biomedical Ontologies. 

7.2. Terms 

• clustering coefficient: in network analysis, a measure of the 
connectedness of a node in the graph with pairs of other nodes in the 
same graph.  

• information content: in our context, a measure of a term’s specificity in 
the context of an ontology.  

• ontology: a shared explicit specification of a conceptualization21. 
• ontology metric: a measure of an ontology elements that allows 

comparing ontologies and uses one or several features obtained from 
its distinctive characteristics: terms, relations, axioms. 

• similarity measure: in our context, a measure of the level of semantic 
relatedness of two terms in a ontology. 

 

 

                                            
21 Gruber, T. R. (1993). A translation approach to portable ontology specifications. 
Knowledge acquisition, 5(2), 199-220. 
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