
A hybrid algorithm combining metaheuristic
with Monte Carlo simulation for solving the

Stochastic Flow Shop problem

Esteban Peruyero, Ángel A. Juan, Daniel Riera
Open University of Catalonia

Abstract

In this paper, a hybrid simulation-based algorithm is proposed for the Stochastic

Flow Shop Problem. The main idea of the methodology is to transform the

stochastic problem into a deterministic problem and then apply simulation to the

latter. In order to achieve this goal, we rely on Monte Carlo Simulation and a

adapted version of a deterministic heuristic.

This approach aims to provide flexibility and simplicity due to the fact that it is not

constrained by any previous assumption and relies in well-tested heuristics.

Keywords: Stochastic Flow Shop Problem, metaheuristic, hybrid algorithms, Monte

Carlo simulation

1. Introduction

In this paper, a hybrid simulation-based algorithm is proposed for the Stochastic

Flow Shop Problem (SFSP), a variation of the Flow Shop Problem (FSP). The FSP is

a well-known scheduling problem in which a set of independent jobs with random

processing times have to be executed in a set of machines in a determined

sequence. There are some costs associated with the running of theses jobs that

could be considered, such as preemption o allocation costs. The classical goal is to

determine the sequence or sequences with the best running performance. In this

non-deterministic version of the Flow Shop Problem, the time needed for each job

for being executed is unknown and follows certain probability distribution. So, the

proposed method will treat to expose a new hybrid algorithm which aims to be as

adaptive and efficient at least as the works to date.

The study of the SFSP is within the current popularity of introducing randomness

into combinatorial problems. It allows to describing new problems in new realistic

scenarios where some information cannot be obtained previously.

It is important to remark the FSP as a relevant topic for current research, so a large

set of efficient optimization, heuristic and metaheuristic methods have been

developed. As it has happened with other combinatorial problems, a large number

of different approaches and methodologies have been developed to deal with it.

These approaches range from pure optimization methods (such as linear

programming) for dealing with small-sized problems to use of heuristic and

metaheuristics to provide near-optimal solutions for medium and large-sized

problems. Usually, the main criterion to minimize is the makespan, but other

criteria different to total time employed to process the list of jobs should also be

considered in order to provide the decision-maker a large set of near-optimal and

efficiently obtained options where he/she could choose according to specific

necessities.

The main difference between the FSP and the SFSP is that in the former job

processing times are known beforehand, while in the latter the actual processing

time of each job has a stochastic nature, i.e. the statistical distribution is known

beforehand, but its exact value is revealed only when the job is to be launched. So,

while in the deterministic problem the performance measure is usually the

makespan, in the non deterministic version this measure is not representative. This

is due to the fact that we do not know the execution times of the jobs involved, so it

has no sense to talk in terms of concrete values but in terms of probability. So, we

must consider the expected makespan to have a valid way of measuring the

performance. As a result, our final target is to minimize the expected makespan of

the obtained sequences.

Besides, there are a large set of methods developed for the FSP. This is not the case

of the SFSP. These methods need to be efficient to provide near optimal solutions to

small and medium instances of the problem in a reasonable time.

The rest of this work is structured as follows: in section 2 the SFSP is presented

with a detailed formulation and section 3 provides a literature review in order to

expose an overview of the state of the art. In section 4 the main ideas of our

approach are explained, and section 5 discusses the advantages offered by our

methodology over the existing to date. Section 6 shows numerical experiments

that illustrate our methodology, with a discussion of its results in the Section 7.

Section 8 describes future work to perform on related topics. Finally, section 9

summarizes the main contributions of this paper.

2. Basic notation and assumptions

The SFSP is a well-known scheduling problem that can be formally described as

follows: a set J of n independent jobs have to be processed on a set M of m

independent machines. Each job j∈ J requires a stochastic processing time pij n

every machine i∈M . This stochastic processing time is defined by a certain

distribution (e.g. normal, exponential, triangular, etc.). The classical goal is to find a

sequence for processing the jobs so a given criterion is optimized. The most

common used criterion is the minimization of the maximum completion time or

makespan, denoted by Cmax.

The described problem is usually denoted as Fm|prmu|Cmax, which means that it is a

flow-shop permutation problem with m machines with the aim to minimize the

makespan.

In addition to this definitions, it is assumed that:

• all the jobs are processed in all the machines in the same order.

• there is unlimited storage between the machines, and non-preemption.

• machines are always available.

• each machine can process only one job a time.

• a job cannot be processed more than once for machine.

• job processing times are independent and exponentially distributed

variables.

At this point, it is interesting to notice that our approach does not require to assume

any concrete distribution for the stochastic variable whereas it is in most previous

stochastic flow shop approaches.

3. State of the art and related work

The FSP is a NP-complete problem (Rinooy kan 1976) which consists, as mentioned,

in running a set of J jobs in a set of M machines with the goal of minimizing total

execution time or makespan. We focus on the stochastic version, where job-

processing times follow probability distributions. The first publication about flow

shop scheduling with random processing times appears in Markino (1965), where a

problem with two machines and two jobs is presented.

Many works have focused on the importance of considering uncertainty in real world

problems, specifically in the case of scheduling-related problems. Thus, Al-Fawzan

et al. (2005) analyzes the Resource Constrained Project Scheduling Problem

(RCPSP) focusing on makespan reduction and robustness. Jensen (2001) also

introduces the concepts of neighborhood-based robustness and tardiness

minimization. Ke (2005) proposes a mathematical model for achieving a formal

specification of the Project Scheduling Problem.

Allaoui (2006) studied makespan minimization and robustness related to the SFSP,

suggesting how to measure the robustness. Proactive and reactive scheduling are

also characterized in his work. An example of reactive scheduling can be found on

Honkonp (1997), where performance is evaluated using several methodologies. On

the other hand, robustness in proactive scheduling is analyzed in Ghezail et al.

(2010), who propose a graphical representation of the solution in order to evaluate

obtained schedules.

As the concept of minimum makespan from FSP is not representative for the

stochastic problem, Dodin (2006) proposes an optimally index to study the

efficiency of the SFSP solutions. The boundaries of the expected makespan are also

analyzed mathematically.

A theoretical analysis of performance evaluation based on markovian models is

performed in Gougand et al. (2005), where a method to compute expected time for

a sequence using performance evaluation is proposed. A study of the impact of

introducing different types of buffering among jobs is also provided in this work.

On the other hand, Integer and linear programming has been employed together

with probability distributions to represent the problem in Janak 2007.

Many heuristics and metaheuristics have been proposed in order to solve the PFSP

due to the impossibility of finding exact solutions efficiently. For example, Johnson

(1954) suggested a simple heuristic to solve the two machines problem, while

Campbell et al. (1970) built a heuristic for PFSP with more than two machines.

NEH is considered the best performing heuristic, it was introduced by Nawaz et al.

(1983). Later, Tailard (1990) reduced NEH complexity by introducing a data

structure to avoid the calculation of the makespan.

Moreover, Ruiz (2005) proposed an Iterated Greedy (IG) algorithm for the PFSP

built on a two-step methodology.

Some successful works have been published about dealing with indeterminacy in

other combinatorial problems as the Vehicle Routing Problem (VRP), with Stochastic

Demands (VRPSD). The VRPSD is a variation of the VRP, where the demands to

serve are unknown and follow certain probability distributions.

In some recent works, Juan et al. (2009a, 2009b, 2010a) describes the application

of simulation technologies to solve Vehicle Routing Problems. Thus, in Juan et al.

(2011), the stochastic problem is transformed into a deterministic instance using

the concept of safety-stocks as a confidence margin over the variance of the

demands. This subsequent deterministic problem is solved employing proven

efficient heuristics. Then, simulation is applied in order to evaluate the probability of

failure of the obtained sequences.

Simulation has been applied in the SS-GNEH (Juan et al. 2010b) to solve the FSP in

, where the NEH algorithm is modified to have some random behavior building a

GRASP-like methodology.

In the stochastic variant, simulation based approaches usually rely on performance

evaluation as in Gougard (2003). Dodin (2006) performs simulations to prove its

empirical analysis of the boundaries of the makespan.

Moreover, Honkonp (1997) relies on the use of simulation for reactive scheduling

while Ghezail et al. (2010) graphical representation that has been mentioned

previously.

4. Proposed methodology

The main idea behind the methodology is that the initial stochastic problem (SFSP)

will be transformed into a deterministic version (FSP), where well-known heuristics

exist. Because well-tested meta-heuristics exists for the FSP, such as SS-GNEH, we

will apply it in order to get some efficient solutions for this deterministic problem.

The transformation is achieved by assigning the expected value associated to the

probability distribution that described the stochastic job processing time, to the

deterministic.

As any feasible solution for the deterministic instance is also a potential solution for

the SFSP, we can extrapolate it to the stochastic scenario. Then, we estimate the

expected makespan for the stochastic problem by using the direct Monte Carlo

method. So the obtained solution will be simulate in the probabilistic scenario. The

simulation will be run as many times as we need to get an estimation reliable

enough.

The specific steps describing the proposed methodology are the following:

1. Consider a SFSP instance defined by a set J of jobs and a set of M machines with

stochastic processing times for each job in each machine.

2. Consider for each job with processing time pij the expected value for the

corresponding probability distribution: p*ij = E[pij].

3. Let be FSP* the resulting problem defined by the deterministic demands p*ij .

4. Generate some efficient random solutions for the FSP* by applying a proven

heuristic such as SS-GNEH.

5. For each feasible solution generated, run some simulations in order to obtain an

estimation of the expected makespan (the more simulations we perform, the more

exact estimation is obtained).

6. Store the best stochastic and deterministic solutions

7. Calculate a more exact expected makespan estimation for both solutions

8. Test that the stochastic solution is the best, change for the deterministic

otherwise

9. Output the solution

The graphical representation of this process is as follows:

4.1 Algorithm Pseudo-code

The pseudo-code 1 shows the main procedure of our test execution, which drives

the methodology.

procedure Main
for each instance from test2run
begin
 solution = StochasticSSGNEH.solve(instance)
end
lowerBound = getBestDeterministicSolution()
SimulateStochastic(GetBestDeterministicSolution(), 100000) //Compute
Upper-bound
getBestStochasticSolution()
ShowSolutions

First inputs are entered in the program and each test is run for solving each

problem instance using proposed methodology. After that, the lower and upper

bounds are calculated in order to test the efficiency of the obtained solution. At

last, solution is provided to the output.

StochasticSSNGEH.solve(instance)
 //For each feasible solution generated during the SSGNEH calculus
 solution = SSGNEH.solve(instance) // Deterministic algorithm
 solution.stochasticCost = getStochasticCost(solution, 1000)
 storeBestDeterministicSolution(solution) //Current best
deterministic solution
 storeBestStochasticSolution(solution) //Current best stochastic
solution
 improveEstimation()
return solution

Pseudo-code 2 offers the main procedure of our methodology, where the stochastic

cost is estimated for each feasible solution obtained by the SS-GNEH when solving

the deterministic problem. We run the necessary simulations in order to obtain a

first and efficient approximation of this cost. Once the cost is estimated it is

compared to the cost of the best stored solution, if it is better, we choose this latter

solution as candidate. This steps will be performed for all the solutions provided by

the deterministic problem associated.

Pseudo-code 3 provides the details of the Monte Carlo simulation of the stochastic

scenario. Here, we will iterate over all jobs and all machines to construct the

distribution associated to each permutation. To do that we will rely on the SSJ

library for stochastic simulation. Next, we generate random values from the

distribution for constructing a probabilistic scenario.

Once we have obtained values for all pairs of job and machines we calculate the

cost of the given solution and, after running as many simulations as we the number

we passed in parameters we return the mean from all values.

getStochasticCost(solution, simulations)
for i from 1 to simulations do
begin
 for each job in solution.jobs
 begin
 for each machine in solution.machines
 begin
 dist = ExponentialDistributionFromMean(solution.cost(job,
machine))
 ExponentialGen gen = new ExponentialGen(dist)
 stochasticTimes.cost(job, machine) = dist.nextDouble
 end
 end
 makespan = calcost(stochasticTimes) //calcost is the same cost
calculation algorithm adapted to double values
 makespanSum = makespanSum + makespan;
end
return makespanSum/simulations

Pseudo-code 4 exemplifies the way of improving the solution quality. First we run

stochastic simulations both for the best deterministic solution and the best

stochastic solution stored. We do that as many times as we need to get a

estimation reliable enough. Finally, we compare the expected makespans to test

that the proposed best solution stays between the bounds. If it is no so, we correct

it.

improveEstimation()
 if (SimulateStochastic(GetBestDeterministicSolution(), 100000) <
SimulateStochastic(GetBestStochasticcSolution())
then
 storeBestStochasticSolution(GetBestDeterministicSolution())
 end

5. Advantages and contribution of our approach

Despite the idea of solving a stochastic problem by solving a related deterministic

problem is not completely new (see the state of art section), it has not been

developed for solving the SFSP. In fact, most of the works to date have focused in

the theoretical aspects of the stochastic scheduling. By contrast, the proposed

method provides a practical approach to the solution, with some potential benefits.

The potential benefits of our approach are:

• While previous approaches rely on theoretical chance-constrained models,

our approach suggests a more practical perspective. This allows us to deal

with more realistic scenarios.

• By using Monte Carlo simulation in our methodology, it allows to build

models based in different random variables while previous approaches use to

assume a particular behavior. More exactly, any probability distribution for

describing the job processing times could be implemented with no

restriction.

Thus, as far as we know, the presented methodology offers some unique

advantages over the existing to date for solving the SFSP. In fact, some of these

potential benefits are:

• The methodology is valid for any statistical distribution with a known mean,

both theoretical -e.g. Normal, Log-normal, Weibull, Gamma, etc.- and

experimental.

• The methodology reduces the complexity of the SFSP -where no efficient

methods are known yet- to the FSP, where mature and extensively tested

heuristics have been developed. This increases the credibility of the provided

final solution.

• Because it is based on simulation, the methodology can be extended to

consider a different distribution for each job processing time, possible

dependencies among jobs, etc.

• The methodology can be applied to SFSP instances of virtually any size, so

complexity attached to size can be managed by efficient SFSP metaheuristics

and Monte Carlo simulation.

In summary, the benefits provided by our methodology can be summarized in two

points: simplicity and flexibility. It is simple because is parameter-free and does

not need fine tunning and flexible because it can be adapted to other probabilistic

scenarios of virtually any size or admit more variables.

6. A numerical experiment

Described methodology has been implemented as a Java application. Java

language was selected because of being an object oriented language that facilitates

the rapid development of a prototype. A standard personal computer Intel(c) 7i

CPU a t 2.6 GHz and 3 GB RAM was used to perform all test, which where run

directly from the Eclipse IDE.

There is a lack of specific benchmarks for the SFSP, this could be due to the

mentioned fact that most works about the problem have been mainly theoretical.

So we have decided to use a benchmark created for the deterministic FSP.

In order to test our heuristic with that deterministic test we assume that, in each

test instance, the processing time for each job is considered as the mean of the

probabilistic distribution associated to that job in the stochastic case. After that, we

generate random values based on the resulting distribution function.

We have tested 90 instances from Taillard tests (1993) with different seeds and we

have generate probabilistic values based on triangular distributions. For each

instance, we have considerate the solution given by the NEH heuristic, the best

solution obtained with the SS-GNEH heuristic for the deterministic case and the

best solution obtained for the deterministic scenario.

In addition, to generate probabilistic values, we use a triangular distribution defined

with the parameter =1/E x , being E(x) the expected value. This distribution

and the probabilistic generation of random values are implemented using the SSJ

library for stochastic simulation that can be found in

http://www.iro.umontreal.ca/~simardr/ssj/.

Before discussing the results of the methodology, we will focus in one instance of

the tests to illustrate our methodology. Given tai001_20_5 instance from the

Taillard tests with the following processing times:

Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 54 79 16 66 58

2 83 3 89 58 56

3 15 11 49 31 20

4 71 99 15 68 85

5 77 56 89 78 53

6 36 70 45 91 35

7 53 99 60 13 53

8 38 60 23 59 41

9 27 5 57 49 69

10 87 56 64 85 13

11 76 3 7 85 86

12 91 61 1 9 72

13 14 73 63 39 8

14 29 75 41 41 49

15 12 47 63 56 47

16 77 14 27 40 87

17 32 21 26 54 58

18 87 86 75 77 18

19 68 5 77 51 68

http://www.iro.umontreal.ca/~simardr/ssj/

20 94 77 40 31 28

First, we solve this deterministic instance using the SS-GNEH algorithm, in the first

iteration we obtain the permutation of jobs:

 3,15,6,19,14,9,17,18,5,7,8,16,4,11,13,1,2,10,20,12

With the associated cost 1279.

After that, we convert it to a stochastic case by considering these processing times

as the mean of associated probabilistic distribution functions. So, we obtain the

following stochastic instance:

Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 54 79 16 66 58

2 83 3 89 58 56

3 15 11 49 31 20

4 71 99 15 68 85

5 77 56 89 78 53

6 36 70 45 91 35

7 53 99 60 13 53

8 38 60 23 59 41

9 27 5 57 49 69

10 87 56 64 85 13

11 76 3 7 85 86

12 91 61 1 9 72

13 14 73 63 39 8

14 29 75 41 41 49

15 12 47 63 56 47

16 77 14 27 40 87

17 32 21 26 54 58

18 87 86 75 77 18

19 68 5 77 51 68

20 94 77 40 31 28

Next, we apply Monte Carlo Simulation in order to obtain the expected makespan of

this job ordination. To achieve that, we generate random processing times based

on the constructed probability distribution (triangular distribution as it has been

stated) obtaining the following values:

Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 53.952316644188
64

9.5543248590763
63

4.0598198283469
91

21.437067621716
718

8.3490954601264
42

2 10.851787267698
429

91.460056769749
44

35.837638859000
35

146.08657218939
328

18.461884218872
605

3 3.0081763388665
252

74.078892936058
18

2.5904531998378
104

387.37039921251
807

16.076462561126
057

4 46.192910414844 0.8149869032398
733

40.636353639872
894

40.695167559803
36

122.12764384230
167

5 94.562946920758
98

1.1772624863448
413

55.260163551225
42

2.6845595432183
68

22.531359012907
842

6 29.033858900786
257

3.3387275950179
99

55.707495886166
69

53.680221591405
92

9.6515409760194
4

7 5.6135407117047
08

3.2676925492616
085

68.659793009468
32

76.289193105274
36

123.77580750894
643

8 133.19271923095
39

15.179903613315
757

11.996223935475
877

19.538318354179
047

13.294782802073
815

9 26.188254555213
46

47.513074471646
4

160.84541592595
713

85.441358016844
38

44.749508551404
45

10 68.972098947363
96

53.439719287521
63

69.875857451882
14

3.4468622162152
41

98.976245941413
96

11 20.530964355405
11

23.430624201722
324

1.5795915612903
546

315.28867284935
02

82.868280270012
28

12 29.071211748509
57

31.391331640945
022

17.297742306435
15

309.15581777055
96

40.639925084991
61

13 9.2887025539540
97

173.82359494129
724

9.9766572665323
3

277.60993359429
38

9.4069543231754
41

14 197.19307601188
643

0.2046532114187
86

18.564442931524
002

79.494589648374
77

2.2999123787184
05

15 28.898575955178
63

11.916628000834
773

98.291276703511
19

8.4164417342996
26

3.2180761986050
38

16 7.9001750537592
44

66.124718700783
2

17.127595253307
533

202.17297185734
25

18.960013984275
502

17 21.827587127837
15

0.0400051972441
8818

101.56883829078
609

62.580178844182
704

14.068610008992
977

18 143.44762013909
87

139.36158099887
038

34.154855080851
895

94.316425867253
93

5.4491531895991
54

19 41.837844341648
83

0.4146954457302
1266

26.593006064417
743

21.204220278958
33

30.918277881247
05

20 25.631890535301
313

20.568620521375
948

0.4261491289961
6536

11.570901789733
627

110.69251455482
81

Subsequently, we calculate the total cost of a problem with the obtained solution

and generated processing times values to obtain the cost of 2519.1844962101795.

If we repeat this calculation 1000 times, we obtain a first approximation to the

expected makespan: 1796.8382775738291.

We store both deterministic and stochastic values (as we are in the first iteration it

is the best solution until now) and run next iteration to obtain another feasible

solution from SS-GNEH:

9,17,8,3,6,19,15,1,2,13,4,14,11,5,18,16,10,7,20,12

We follow the same procedure to compare the new obtained costs (a deterministic

cost of 1286 and a stochastic cost of 1774.8112823703784) with the previous

obtained values and we store the best solution both cases.

By performing this procedure 100000 times we are able to obtain an estimated best

deterministic solution, and a estimated best stochastic solution. Now, a more exact

value of the expected makespan of both solutions can be calculated by running

previous simulation more number of times.

If we find that when the cost estimation is improved, the best stochastic solution

cost is greater than the the best deterministic solution stochastic cost (which could

be expected because of the nature of the random-based calculation), we correct it

by taking the best deterministic solution as the the best stochastic one too.

At the end of the calculations, we would obtain the output with the best solutions

found and its calculated and estimated costs:

* RESULTS FROM SIMSCHEDULING PROJECT *

--
 NEH Solution
--

Sol ID : 1
Sol deterministic costs: 1286
Sol time: 0h 0m 0s (0.002992901 sec.)
List of jobs:
3
17
9
8
15
14
11
16
13
19
6
4
5
18
1
2
10
7
20
12

--
Our best deterministic solution (provided by the SS-GNEH)
--

Sol ID : 8
Sol deterministic costs: 1278
Sol stochastic costs: 1770.877998309444
Sol time: 0h 0m 0s (0.172264997 sec.)
List of jobs:
9
3
17
6
15
14
11
13
5
4
19
8
18
7
16

7. Results

In this section, we will study the result obtained in the test simulation. Because we

have run 15 executions of each instance with different seeds, we provide average

values for each instance from all the executions.

In addition, we have presented them in a table that shows the following values:

• The number of the Taillard's test instance

• The jobs in the problem

• The machines in the problem

• The deterministic cost associated to the NEH solution

• The deterministic cost associated to the SS-GNEH solution as the average

lower bound

• The average stochastic cost of the SS-GNEH solution as the upper bound.

• The average stochastic cost of the best stochastic solution

• The average gap of the stochastic solution with the lower bound.

• The average gap between the upper and the lower-bounds is provided in

order to study the variance between these bounds.

Table 1 shows the results for the first 30 instances. These instances consider cases

with 20 jobs.

Test Jobs Machines NEH
Avg

Lower bound
Avg

Upper bound
Stochastic

Cost
Avg
Gap

Avg
Bounds

Gap
1 20 5 1286 1278.00 1784.96 1766.74 0.28% 0.40%
2 20 5 1365 1359.00 1864.06 1843.80 0.26% 0.37%
3 20 5 1140 1081.00 1561.79 1544.15 0.30% 0.44%
4 20 5 1325 1293.00 1875.93 1860.61 0.31% 0.45%
5 20 5 1305 1235.00 1731.05 1712.15 0.28% 0.40%
6 20 5 1228 1195.00 1697.49 1681.71 0.29% 0.42%
7 20 5 1278 1239.00 1746.46 1706.60 0.27% 0.41%
8 20 5 1223 1206.00 1756.02 1743.60 0.31% 0.46%
9 20 5 1291 1230.00 1761.61 1753.02 0.30% 0.43%

10 20 10 1151 1108.00 1605.16 1592.43 0.30% 0.45%
11 20 10 1680 1582.00 2423.04 2418.56 0.35% 0.53%
12 20 10 1729 1659.00 2573.74 2566.62 0.35% 0.55%
13 20 10 1557 1496.00 2344.98 2332.82 0.36% 0.57%
14 20 10 1439 1377.00 2126.28 2113.61 0.35% 0.54%
15 20 10 1502 1419.00 2217.42 2206.66 0.36% 0.56%
16 20 10 1453 1397.00 2148.26 2140.91 0.35% 0.54%
17 20 10 1562 1484.00 2239.79 2230.97 0.33% 0.51%
18 20 10 1609 1538.00 2372.59 2365.00 0.35% 0.54%
19 20 10 1647 1594.00 2439.49 2404.94 0.34% 0.53%
20 20 20 1653 1591.00 2482.14 2476.15 0.36% 0.56%
21 20 20 2410 2297.00 3595.50 3575.87 0.36% 0.57%

22 20 20 2150 2099.00 3298.44 3281.61 0.36% 0.57%
23 20 20 2411 2329.00 3639.60 3617.91 0.36% 0.56%
24 20 20 2262 2223.00 3460.68 3442.83 0.35% 0.56%
25 20 20 2397 2291.00 3602.36 3582.25 0.36% 0.57%
26 20 20 2349 2226.00 3479.58 3457.01 0.36% 0.56%
27 20 20 2362 2273.00 3557.57 3533.57 0.36% 0.57%
28 20 20 2249 2202.00 3454.92 3445.28 0.36% 0.57%
29 20 20 2306 2237.00 3504.33 3494.48 0.36% 0.57%
30 20 5 2277 2179.00 3387.19 3382.62 0.36% 0.55%

Table 2 shows the results for the instances 31 to 60. These are larger instances with

50 jobs. We can intuitively observe that the gap takes similar values as in the 30

first instances. Nevertheless, we can notice that the gaps are reduced for the first

test with fewer machines.

Test Jobs Machines NEH
Avg

Lower bound
Avg

Upper bound
Stochastic

Cost
Avg
Gap

Avg
Bounds

Gap
31 50 5 2733 2724.00 3522.70 3459.28 0.21% 0.29%
32 50 5 2843 2834.00 3731.96 3694.60 0.23% 0.32%
33 50 5 2625 2621.00 3427.64 3388.20 0.23% 0.31%
34 50 5 2782 2751.00 3638.33 3592.25 0.23% 0.32%
35 50 5 2868 2863.00 3703.07 3618.92 0.21% 0.29%
36 50 5 2835 2829.00 3742.09 3693.47 0.23% 0.32%
37 50 5 2736 2725.00 3597.94 3560.16 0.23% 0.32%
38 50 5 2690 2683.00 3537.44 3487.79 0.23% 0.32%
39 50 5 2571 2552.00 3377.34 3341.84 0.24% 0.32%
40 50 10 2786 2782.00 3622.38 3564.36 0.22% 0.30%
41 50 10 3136 3025.00 4506.76 4482.79 0.33% 0.49%
42 50 10 3021 2909.00 4334.14 4317.21 0.33% 0.49%
43 50 10 2952 2864.00 4279.23 4274.24 0.33% 0.49%
44 50 10 3183 3063.00 4537.90 4512.48 0.32% 0.48%
45 50 10 3128 2997.00 4478.06 4457.64 0.33% 0.49%
46 50 10 3158 3006.00 4487.17 4467.46 0.33% 0.49%
47 50 10 3277 3124.00 4605.84 4566.63 0.32% 0.47%
48 50 10 3123 3042.00 4467.61 4437.44 0.31% 0.47%
49 50 10 3002 2902.00 4324.26 4299.90 0.33% 0.49%
50 50 10 3257 3090.00 4604.51 4582.18 0.33% 0.49%
51 50 20 4013 3893.00 6182.12 6159.07 0.37% 0.59%
52 50 20 3921 3725.00 5914.06 5905.13 0.37% 0.59%
53 50 20 3890 3684.00 5846.34 5829.94 0.37% 0.59%
54 50 20 3926 3759.00 5952.62 5932.24 0.37% 0.58%
55 50 20 3822 3647.00 5820.71 5803.73 0.37% 0.60%
56 50 20 3914 3723.00 5848.38 5832.61 0.36% 0.57%
57 50 20 3952 3736.00 5909.25 5897.86 0.37% 0.58%
58 50 20 3916 3732.00 5898.40 5888.76 0.37% 0.58%
59 50 20 3952 3780.00 5980.83 5973.08 0.37% 0.58%
60 50 20 4016 3786.00 5996.64 5985.04 0.37% 0.58%

At last, table 3 shows the results for the instances 61 to 90. These are the largest

instances with 100 jobs. We can see that, following the tendency suggested by the

former table, the gaps keep reducing for low number of machines. In contrast, the

gap increases for larger number of machines.

Test Jobs Machines NEH
Avg

Lower bound
Avg

Upper bound
Stochastic

Cost
Avg
Gap

Avg
Bounds

Gap
61 100 5 5516 5493.00 6809.01 6717.21 0.18% 0.24%
62 100 5 5284 5268.00 6545.44 6496.53 0.19% 0.24%
63 100 5 5195 5175.00 6443.60 6382.25 0.19% 0.25%
64 100 5 5023 5014.00 6236.39 6171.95 0.19% 0.24%
65 100 5 5261 5250.00 6522.29 6458.81 0.19% 0.24%
66 100 5 5139 5135.00 6360.45 6305.33 0.19% 0.24%
67 100 5 5259 5246.00 6442.84 6415.35 0.18% 0.23%
68 100 5 5105 5094.00 6335.86 6281.29 0.19% 0.24%
69 100 5 5489 5448.00 6756.58 6710.72 0.19% 0.24%
70 100 5 5332 5322.00 6622.95 6576.24 0.19% 0.24%
71 100 10 5825 5771.00 7983.92 7937.18 0.27% 0.38%
72 100 10 5400 5349.00 7420.98 7386.03 0.28% 0.39%
73 100 10 5755 5679.00 7764.55 7715.57 0.26% 0.37%
74 100 10 5924 5791.00 8080.19 8045.43 0.28% 0.40%
75 100 10 5612 5478.00 7593.95 7560.71 0.28% 0.39%
76 100 10 5355 5308.00 7318.32 7271.01 0.27% 0.38%
77 100 10 5677 5596.00 7649.66 7605.66 0.26% 0.37%
78 100 10 5705 5630.00 7775.75 7752.52 0.27% 0.38%
79 100 10 5975 5880.00 8056.98 8005.56 0.27% 0.37%
80 100 10 5903 5848.00 7991.28 7936.59 0.26% 0.37%
81 100 20 6538 6281.00 9527.45 9517.08 0.34% 0.52%
82 100 20 6446 6263.00 9460.01 9432.26 0.34% 0.51%
83 100 20 6552 6343.00 9565.22 9548.23 0.34% 0.51%
84 100 20 6547 6333.00 9523.62 9485.02 0.33% 0.50%
85 100 20 6614 6389.00 9669.60 9643.86 0.34% 0.51%
86 100 20 6645 6481.00 9747.78 9722.86 0.33% 0.50%
87 100 20 6573 6337.00 9639.99 9623.97 0.34% 0.52%
88 100 20 6747 6493.00 9848.87 9835.94 0.34% 0.52%
89 100 20 6601 6355.00 9641.51 9623.66 0.34% 0.52%
90 100 20 6670 6503.00 9716.32 9694.36 0.33% 0.49%

In order to discuss these results, some visual support could be helpful. Thus, graph

1 provides the graphical representation of the calculated gaps, a quick view shows

that best results are obtained in instances 31-40 and 61-70 where the number of

machines is lower. We can observe that the gap seems to be greater the more

machines there are. In contrast, it appears to generate quite similar values for

same number of machines, no matter how many jobs are involved. So, it could

suggest that this approach has potential power with problems with a large numbers

of jobs.

On the other hand, graph 2, provides a graphical representation of the result

comparatively with upper and lower-bounds. Here, we can clearly see that the

obtained solution is always closer to the upper-bound than to the lower-bound. So,

it seems to be some margin in order to improve the quality of the methodology.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

Avg
Lower bound
Avg
Upper bound
Stochastic
Cost

8. Conclusions and future work

In this paper we have presented a probabilistic approach for solving the Stochastic

Flow Shop Problem. This methodology combines Monte Carlo simulation with well

tested methodologies for the Flow Shop Problem. The one of the basic ideas of our

methodology is to decompose the SFSP into several FSP in order to obtain an

estimation of the expected makespan for an efficient solution to the deterministic

case by using simulation. This approach does not require any previous assumption

and is feasible for any probabilistic function.

As a future work, some ideas are proposed. First, qualitative studies can be

performed in order to compare robustness or different optimality measures. Next,

the development of an approach which uses parallelization to perform the different

scenarios of the simulation in different threads. We think this could improve

performance and help to achieve more exact estimations of the expected

makespan. The use of C/C++ versions of the code could reduce the computation

times. Also, the study of the use of a security margin when transforming the

stochastic problem into deterministic instances could improve the robustness and

efficiency of the obtained solutions.

9. References

Allaoui, H.; Lamouri, S.; Lebbar, M., 2006, A robustness framework for a stochastic
hybrid flow shop to minimize the makespan, In Proceedings of the International
Conference on Service Systems and Service Management, 1097-1102.

Al-Fawzan, M.; Haouari, M , 2005, A bi-objective model for robust resource-
constrained project scheduling, International Journal of Production Economics.

Campbell, H.G., Dudek, R.A., and M.L. Smith, 1970. A heuristic algorithm for the n
job, m machine sequencing problem. Management Science 16, B630- B637 .

Dodin, B., 2006, Determining the optimal sequences and the distributional
properties of their completion times in stochastic flow shops, Computers &
Operations Research 23(9), 829-843.

Ghezail, F.; Pierreval, H.; Hajri-Gabouj, S. , 2010, Analysis of robustness in
proactive scheduling: a graphical approach, Computers & Industrial Engineering
58, 193-198.

Gourgand, M.; Grangeon, N.; Norre, S. , 2003, A contribution to the stochastic flow
shop scheduling problem , European Journal of Operational Research 151, 415-
433 .

Gourgand, M.; Grangeon, N.; Norre, S. , 2005, Markovian analysis for performance
evaluation and scheduling in m machine stochastic flow-shop with buffers of any
capacity, European Journal of Operational Research 161, 126-147.

Honkomp, S.; Mockus, L.; Reklaitis, G. , 1887, Robust scheduling with processing
time uncertainty, Computers & Chemical Engineering 21, 1055-1060.

Janak, S.; Lin, X.; Floudas, C. , 2007, A new robust optimization approach for
scheduling under uncertainty II. Uncertainty with known probability
distribution, A new robust optimization approach for scheduling under
uncertainty II. Uncertainty with known probability distribution.

Jensen, M. T., 2001, Improving robustness and flexibility of tardiness and total
flow-time job shops using robustness measures, Applied Soft Computing 1, 35-
52.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly 1, 61-68

Juan, A., Faulin, J., Ruiz, R., Barrios, B., Caballe, S., 2009a. The SR-GCWS hybrid
algorithm for solving the capacitated vehicle routing problem. Applied Soft
Computing 10, 215-224.

Juan, A., Faulin, J., Ruiz, R., Barrios, B., Gilibert, M., Vilajosana, X., 2009b. Using
oriented random search to provide a set of alternative solutions to the
capacitated vehicle routing problem. In: Chinneck, J.; Kristjansson, B;
Saltzman, M. (Eds) “Operations Research and Cyber-Infrastructure” OR/CS
Interfaces Series 47, 331- 346. Springer, New York, USA.

Juan, A., Faulin, J., Jorba, J., Riera, D., Masip; D., Barrios, B., 2010a. On the Use of
Monte Carlo Simulation, Cache and Splitting Techniques to Improve the Clarke
and Wright Savings Heuristics. Journal of the Operational Research Society,
doi:10.1057/jors.2010.29.

Juan, A.; Ruiz, R.; Mateo, M.; Lourenço, H. , 2010b, A simulation-based approach
for solving the flow-shop problem, A simulation-based approach for solving the
flow-shop problem.

Juan, A.; Faulin, J.; Marull, J.; Jorba, J.; Marques, J. , Under Revision, Using
Parallel & Distributed Computing for Solving Real-time Vehicle Routing Problems
with Stochastic Demands, Annals of Operations Research.

Juan, A.; Faulin, J.; Grasman, S.; Riera, D.; Marull, J.; Mendez, C. , In press, Using
Safety Stocks and Simulation to Solve the Vehicle Routing Problem with
Stochastic Demands, Transportation Research Part C, DOI
10.1016/j.trc.2010.09.007 .

Ke, H.; Liu, B. , 2005, Project scheduling problem with stochastic activity duration
times, Applied Mathematics and Computation 168, 342-353.

Nawaz, M., Enscore, E.E., and I. Ham, I., 1983. A heuristic algorithm for the m-
machine, n-job flowshop sequencing problem. OMEGA 11, 91-95.

Rinnooy Kan, A.H.G., 1976. Machine Scheduling Problems: Classification,
Complexity and Computations. Springer.

Rubén Ruiz, Concepción Maroto, 2005, A comprehensive review and evaluation of
permutation flowshop heuristics, European Journal of Operational Research 165
(2005) 479–494.

Taillard, 1990, Some efficient heuristic methods for the flow shop sequencing
problem, European Journal of Operational Research 47 (1990) 65-74.

Taillard, 1993, Benchmarks for Basic Scheduling Problems, European Journal of
Operational Research 64 (1993) 278-285.

	9. References

