
A hybrid algorithm combining metaheuristic 
with Monte Carlo simulation for solving the 

Stochastic Flow Shop problem 

Esteban Peruyero, Ángel A. Juan, Daniel Riera
Open University of Catalonia

Abstract

In this paper, a hybrid simulation-based algorithm is proposed for the Stochastic  

Flow  Shop  Problem.  The  main  idea  of  the  methodology  is  to  transform  the  

stochastic problem into a deterministic problem and then apply simulation to the  

latter.  In order to achieve this goal,  we rely on Monte Carlo Simulation and a  

adapted version of a deterministic heuristic.

This approach aims to provide flexibility and simplicity due to the fact that it is not  

constrained by any previous assumption and relies in well-tested heuristics. 

Keywords: Stochastic Flow Shop Problem, metaheuristic, hybrid algorithms, Monte  

Carlo simulation

1. Introduction

In this paper, a hybrid simulation-based algorithm is proposed for the Stochastic 

Flow Shop Problem (SFSP), a variation of the Flow Shop Problem (FSP). The FSP is 

a well-known scheduling problem in which a set of independent jobs with random 

processing  times  have  to  be  executed  in  a  set  of  machines  in  a  determined 

sequence. There are some costs associated with the running of theses jobs that 

could be considered, such as preemption o allocation costs. The classical goal is to 

determine the sequence or sequences with the best running performance. In this 

non-deterministic version of the Flow Shop Problem, the time needed for each job 

for being executed is unknown and follows certain probability distribution. So, the 

proposed method will treat to expose a new hybrid algorithm which aims to be as 

adaptive and efficient at least as the works to date.



The study of the SFSP is within the current popularity of introducing randomness 

into combinatorial problems. It allows to describing new problems in new realistic 

scenarios where some information cannot be obtained previously.

It is important to remark the FSP as a relevant topic for current research, so a large 

set  of  efficient  optimization,  heuristic  and  metaheuristic  methods  have  been 

developed. As it has happened with other combinatorial problems, a large number 

of different approaches and methodologies have been developed to deal with it. 

These  approaches  range  from  pure  optimization  methods  (such  as  linear 

programming)  for  dealing  with  small-sized  problems  to  use  of  heuristic  and 

metaheuristics  to  provide  near-optimal  solutions  for  medium  and  large-sized 

problems.  Usually,  the  main  criterion  to  minimize  is  the  makespan,  but  other 

criteria different to total time employed to process the list of jobs should also be 

considered in order to provide the decision-maker a large set of near-optimal and 

efficiently  obtained  options  where  he/she  could  choose  according  to  specific 

necessities.

The  main  difference  between  the  FSP  and  the  SFSP  is  that  in  the  former  job 

processing times are known beforehand, while in the latter the actual processing 

time of each job has a stochastic nature, i.e. the statistical distribution is known 

beforehand, but its exact value is revealed only when the job is to be launched. So, 

while  in  the  deterministic  problem  the  performance  measure  is  usually  the 

makespan, in the non deterministic version this measure is not representative. This 

is due to the fact that we do not know the execution times of the jobs involved, so it 

has no sense to talk in terms of concrete values but in terms of probability. So, we 

must  consider  the  expected  makespan  to  have  a  valid  way  of  measuring  the 

performance. As a result, our final target is to minimize the expected makespan of 

the obtained sequences.

Besides, there are a large set of methods developed for the FSP. This is not the case 

of the SFSP. These methods need to be efficient to provide near optimal solutions to 

small and medium instances of the problem in a reasonable time.

The rest of this work is structured as follows: in  section 2 the SFSP is presented 

with a detailed formulation and section 3 provides a literature review in order to 

expose an overview of the state of the art. In section 4 the main ideas of our 

approach are explained,  and section  5 discusses the advantages offered by our 

methodology over the existing to date.  Section 6 shows numerical experiments 

that illustrate our methodology, with a discussion of its results in the Section 7. 



Section 8 describes future  work to  perform on related topics.  Finally,  section  9 

summarizes the main contributions of this paper.

2. Basic notation and assumptions

The SFSP is a well-known scheduling problem that can be formally  described as 

follows:  a set  J  of  n  independent  jobs have to  be processed on a set  M of m 

independent machines. Each job j∈ J requires a stochastic processing time pij  n 

every machine  i∈M .  This  stochastic  processing time is  defined by a certain 

distribution (e.g. normal, exponential, triangular, etc.). The classical goal is to find a 

sequence  for  processing  the  jobs  so  a  given  criterion  is  optimized.  The  most 

common used criterion is  the minimization of the maximum completion time or 

makespan, denoted by Cmax.

The described problem is usually denoted as Fm|prmu|Cmax, which means that it is a 

flow-shop permutation  problem with  m machines with  the aim to  minimize  the 

makespan.

In addition to this definitions, it is assumed that:

• all the jobs are processed in all the machines in the same order.

• there is unlimited storage between the machines, and non-preemption.

• machines are always available.

• each machine can process only one job a time.

• a job cannot be processed more than once for machine.

• job  processing  times  are  independent  and  exponentially  distributed 

variables.

At this point, it is interesting to notice that our approach does not require to assume 

any concrete distribution for the stochastic variable whereas it is in most previous 

stochastic flow shop approaches.

3. State of the art and related work

The FSP is a NP-complete problem (Rinooy kan 1976) which consists, as mentioned, 

in running a set of J jobs in a set of M machines with the goal of minimizing total 

execution  time  or  makespan.  We  focus  on  the  stochastic  version,  where  job-

processing times follow probability distributions.  The first publication about flow 

shop scheduling with random processing times appears in Markino (1965), where a 

problem with two machines and two jobs is presented.



Many works have focused on the importance of considering uncertainty in real world 

problems, specifically in the case of  scheduling-related problems. Thus, Al-Fawzan 

et  al.  (2005)  analyzes  the  Resource  Constrained  Project  Scheduling  Problem 

(RCPSP)  focusing  on  makespan  reduction  and  robustness.  Jensen  (2001)  also 

introduces  the  concepts  of  neighborhood-based  robustness  and  tardiness 

minimization.  Ke (2005) proposes a mathematical  model  for  achieving a formal 

specification of the Project Scheduling Problem.

Allaoui (2006) studied makespan minimization and robustness related to the SFSP, 

suggesting how to measure the robustness. Proactive and reactive scheduling are 

also characterized in his work. An example of reactive scheduling can be found on 

Honkonp (1997), where  performance is evaluated using several methodologies. On 

the other hand,  robustness in  proactive scheduling is  analyzed in Ghezail  et al. 

(2010), who propose a graphical representation of the solution in order to evaluate 

obtained schedules.

As  the  concept  of  minimum  makespan  from FSP  is  not  representative  for  the 

stochastic  problem,  Dodin  (2006)  proposes  an  optimally  index  to  study  the 

efficiency of the SFSP solutions. The boundaries of the expected makespan are also 

analyzed mathematically.

A  theoretical  analysis  of  performance evaluation  based on markovian  models  is 

performed in Gougand et al. (2005), where a method to compute expected time for 

a sequence using performance evaluation  is proposed. A study of the impact of 

introducing different types of buffering among jobs is also provided in this work.

On the other hand, Integer and linear programming has been employed together 

with probability distributions to represent the problem in Janak 2007.  

Many heuristics and metaheuristics have been proposed in order to solve the PFSP 

due to the impossibility of finding exact solutions efficiently. For example, Johnson 

(1954)  suggested a  simple  heuristic  to  solve  the  two machines  problem,  while 

Campbell et al. (1970) built a heuristic for PFSP with more than two machines.

NEH is considered the best performing heuristic, it was introduced by Nawaz et al. 

(1983).   Later,  Tailard  (1990)  reduced  NEH  complexity  by  introducing  a  data 

structure to avoid the calculation of the makespan.

Moreover, Ruiz (2005) proposed an Iterated Greedy (IG) algorithm for the PFSP 

built on a two-step methodology.

Some successful works have been published about dealing with indeterminacy in 

other combinatorial problems as the Vehicle Routing Problem (VRP), with Stochastic 

Demands (VRPSD). The VRPSD is a variation of the VRP, where the demands to 

serve are unknown and follow certain probability distributions.  



In some recent works, Juan et al. (2009a, 2009b, 2010a) describes the application 

of simulation technologies to solve Vehicle Routing Problems. Thus, in Juan et al. 

(2011), the stochastic problem is transformed into a deterministic instance using 

the  concept  of  safety-stocks  as  a  confidence  margin  over  the  variance  of  the 

demands.  This  subsequent  deterministic  problem  is  solved  employing  proven 

efficient heuristics. Then, simulation is applied in order to evaluate the probability of 

failure of the obtained sequences. 

Simulation has been applied in the SS-GNEH (Juan et al. 2010b) to solve the FSP in 

, where the NEH algorithm is modified to have some random behavior building a 

GRASP-like methodology.  

In the stochastic variant, simulation based approaches usually rely on performance 

evaluation as in Gougard (2003). Dodin (2006) performs simulations to prove its 

empirical analysis of the boundaries of the makespan.

Moreover,  Honkonp (1997) relies on the use of simulation for reactive scheduling 

while  Ghezail  et  al.  (2010)  graphical  representation  that  has  been  mentioned 

previously.

4. Proposed methodology

The main idea behind the methodology is that the initial stochastic problem (SFSP) 

will be transformed into a deterministic version (FSP), where well-known heuristics 

exist.  Because well-tested meta-heuristics exists for the FSP, such as SS-GNEH, we 

will apply it in order to get some efficient solutions for this deterministic problem.

The transformation is achieved by assigning the expected value associated to the 

probability  distribution  that  described the stochastic  job processing time, to the 

deterministic.

As any feasible solution for the deterministic instance is also a potential solution for 

the SFSP, we can extrapolate it to the stochastic scenario. Then,  we estimate the 

expected makespan for  the  stochastic  problem by using  the direct  Monte  Carlo 

method. So the obtained solution will be simulate in the probabilistic scenario.  The 

simulation  will  be run as many times as we need to get  an estimation reliable 

enough.

The specific steps describing the proposed methodology are the following:

1. Consider a SFSP instance defined by a set J of jobs and a set of M machines with 

stochastic processing times for each job in each machine.



2. Consider  for  each  job  with  processing  time  pij the  expected  value  for  the 

corresponding probability distribution: p*ij = E[pij].

3. Let be FSP* the resulting problem defined by the deterministic demands p*ij .

4. Generate some efficient  random solutions for the FSP* by applying a proven 

heuristic such as SS-GNEH.

5. For each feasible solution generated, run some simulations in order to obtain an 

estimation of the expected makespan (the more simulations we perform, the more 

exact estimation is obtained).

6. Store the best stochastic and deterministic solutions

7. Calculate a more exact expected makespan estimation for both solutions

8. Test  that  the  stochastic  solution  is  the  best,  change  for  the  deterministic 

otherwise

9. Output the solution 

The graphical representation of this process is as follows:



4.1 Algorithm Pseudo-code

The pseudo-code 1 shows the main procedure of our test execution, which drives 

the methodology.



procedure Main 
for each instance from test2run 
begin
  solution = StochasticSSGNEH.solve(instance)
end
lowerBound = getBestDeterministicSolution() 
SimulateStochastic(GetBestDeterministicSolution(), 100000) //Compute 
Upper-bound
getBestStochasticSolution() 
ShowSolutions

First  inputs  are  entered  in  the  program and  each  test  is  run  for  solving  each 

problem instance using  proposed methodology.  After  that,  the lower and  upper 

bounds are calculated in order to test the efficiency of the obtained solution.  At 

last, solution is provided to the output.

StochasticSSNGEH.solve(instance)
  //For each feasible solution generated during the SSGNEH calculus
  solution = SSGNEH.solve(instance) // Deterministic algorithm
  solution.stochasticCost = getStochasticCost(solution, 1000) 
  storeBestDeterministicSolution(solution) //Current best 
deterministic solution
  storeBestStochasticSolution(solution) //Current best stochastic 
solution
  improveEstimation()
return solution

Pseudo-code 2 offers the main procedure of our methodology, where the stochastic 

cost is estimated for each feasible solution obtained by the SS-GNEH when solving 

the deterministic problem.  We run the necessary simulations in order to obtain a 

first  and  efficient  approximation  of  this  cost.   Once  the  cost  is  estimated  it  is 

compared to the cost of the best stored solution, if it is better, we choose this latter 

solution as candidate.  This steps will be performed for all the solutions provided by 

the deterministic problem associated.

Pseudo-code 3 provides the details of the Monte Carlo simulation of the stochastic 

scenario.   Here, we will  iterate  over all  jobs and all  machines to  construct  the 

distribution associated to each permutation.  To do that we will  rely on the SSJ 

library  for  stochastic  simulation.   Next,  we  generate  random  values  from  the 

distribution for constructing a probabilistic scenario.

Once we have obtained values for all pairs of job and machines we calculate the 

cost of the given solution and, after running as many simulations as we the number 

we passed in parameters we return the mean from all values.



getStochasticCost(solution, simulations)
for i from 1 to simulations do
begin
  for each job in solution.jobs
  begin
    for each machine in solution.machines
    begin
      dist = ExponentialDistributionFromMean(solution.cost(job, 
machine))
      ExponentialGen gen = new ExponentialGen(dist)
      stochasticTimes.cost(job, machine) = dist.nextDouble
    end
  end
  makespan = calcost(stochasticTimes) //calcost is the same cost 
calculation algorithm adapted to double values
  makespanSum = makespanSum + makespan; 
end
return makespanSum/simulations

Pseudo-code 4 exemplifies the way of improving the solution quality. First we run 

stochastic  simulations  both  for  the  best  deterministic  solution  and  the  best 

stochastic  solution  stored.   We  do  that  as  many  times  as  we  need  to  get  a 

estimation reliable enough.  Finally, we compare the expected makespans to test 

that the proposed best solution stays between the bounds.  If it is no so, we correct 

it.

improveEstimation()
 if (SimulateStochastic(GetBestDeterministicSolution(), 100000) < 
SimulateStochastic(GetBestStochasticcSolution()) 
then
   storeBestStochasticSolution(GetBestDeterministicSolution())
 end

5. Advantages and contribution of our approach

Despite the idea of solving a stochastic problem by solving a related deterministic 

problem is  not  completely  new (see the  state  of  art  section),  it  has  not  been 

developed for solving the SFSP. In fact, most of the works to date have focused in 

the  theoretical  aspects  of  the  stochastic  scheduling.  By  contrast,  the  proposed 

method provides a practical approach to the solution, with some potential benefits. 

The potential benefits of our approach are:

• While previous approaches rely on theoretical  chance-constrained models, 

our approach suggests a more practical perspective.  This allows us to deal 

with more realistic scenarios.



• By  using  Monte  Carlo  simulation  in  our  methodology,  it  allows  to  build 

models based in different random variables while previous approaches use to 

assume a particular behavior.  More exactly, any probability distribution for 

describing  the  job  processing  times  could  be  implemented  with  no 

restriction.

Thus,  as  far  as  we  know,  the  presented  methodology  offers  some  unique 

advantages over the existing to date for solving the SFSP. In fact, some of these 

potential benefits are:

• The methodology is valid for any statistical distribution with a known mean, 

both  theoretical  -e.g.  Normal,  Log-normal,  Weibull,  Gamma,  etc.-  and 

experimental. 

• The methodology reduces the complexity of the SFSP -where no efficient 

methods are known yet- to the FSP, where mature and extensively tested 

heuristics have been developed. This increases the credibility of the provided 

final solution.

• Because it  is  based on simulation,  the  methodology can be  extended to 

consider  a  different  distribution  for  each  job  processing  time,  possible 

dependencies among jobs, etc.  

• The methodology can be applied to SFSP instances of virtually any size, so 

complexity attached to size can be managed by efficient SFSP metaheuristics 

and Monte Carlo simulation.

In summary, the benefits provided by our methodology can be summarized in two 

points: simplicity and flexibility.  It is simple because is parameter-free and does 

not need fine tunning and flexible because it can be adapted to other probabilistic 

scenarios of virtually any size or admit more variables.

6. A numerical experiment

Described  methodology  has  been  implemented  as  a  Java  application.   Java 

language was selected because of being an object oriented language that facilitates 

the rapid development of a prototype.  A standard personal computer Intel(c) 7i 

CPU a t 2.6 GHz and 3 GB RAM was used to perform all  test, which where run 

directly from the Eclipse IDE.

There is  a  lack  of  specific  benchmarks  for  the  SFSP,  this  could  be  due  to  the 

mentioned fact that most works about the problem have been mainly theoretical. 

So we have decided to use a benchmark created for the deterministic FSP.  



In order to test our heuristic with that deterministic test we assume that, in each 

test instance, the processing time for each job is considered as the mean of the 

probabilistic distribution associated to that job in the stochastic case. After that, we 

generate random values based on the resulting distribution function.

We have tested 90 instances from Taillard tests (1993) with different seeds and we 

have  generate  probabilistic  values  based  on  triangular  distributions.  For  each 

instance, we  have  considerate the solution given by the NEH heuristic,  the best 

solution obtained with the SS-GNEH heuristic for the deterministic case  and the 

best solution obtained for the deterministic scenario.

In addition, to generate probabilistic values, we use a triangular distribution defined 

with the parameter =1/E x , being E(x) the expected value. This distribution 

and the probabilistic generation of random values are implemented using the SSJ 

library  for  stochastic  simulation  that  can  be  found  in 

http://www.iro.umontreal.ca/~simardr/ssj/.

Before discussing the results of the methodology, we will focus in one instance of 

the  tests  to  illustrate  our  methodology.   Given  tai001_20_5  instance  from the 

Taillard tests with the following processing times:

Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 54 79 16 66 58

2 83 3 89 58 56

3 15 11 49 31 20

4 71 99 15 68 85

5 77 56 89 78 53

6 36 70 45 91 35

7 53 99 60 13 53

8 38 60 23 59 41

9 27 5 57 49 69

10 87 56 64 85 13

11 76 3 7 85 86

12 91 61 1 9 72

13 14 73 63 39 8

14 29 75 41 41 49

15 12 47 63 56 47

16 77 14 27 40 87

17 32 21 26 54 58

18 87 86 75 77 18

19 68 5 77 51 68

http://www.iro.umontreal.ca/~simardr/ssj/


20 94 77 40 31 28

First, we solve this deterministic instance using the SS-GNEH algorithm,  in the first 

iteration we obtain the permutation of jobs:

 3,15,6,19,14,9,17,18,5,7,8,16,4,11,13,1,2,10,20,12

With the associated cost 1279.

After that, we convert it to a stochastic case by considering these processing times 

as the mean of associated probabilistic distribution functions.  So, we obtain the 

following stochastic instance:

Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 54 79 16 66 58

2 83 3 89 58 56

3 15 11 49 31 20

4 71 99 15 68 85

5 77 56 89 78 53

6 36 70 45 91 35

7 53 99 60 13 53

8 38 60 23 59 41

9 27 5 57 49 69

10 87 56 64 85 13

11 76 3 7 85 86

12 91 61 1 9 72

13 14 73 63 39 8

14 29 75 41 41 49

15 12 47 63 56 47

16 77 14 27 40 87

17 32 21 26 54 58

18 87 86 75 77 18

19 68 5 77 51 68

20 94 77 40 31 28

Next, we apply Monte Carlo Simulation in order to obtain the expected makespan of 

this job ordination.  To achieve that, we  generate random processing times based 

on the constructed probability  distribution (triangular distribution as it  has been 

stated) obtaining the following values:



Job Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

1 53.952316644188
64

9.5543248590763
63

4.0598198283469
91

21.437067621716
718

8.3490954601264
42

2 10.851787267698
429

91.460056769749
44

35.837638859000
35

146.08657218939
328

18.461884218872
605

3 3.0081763388665
252

74.078892936058
18

2.5904531998378
104

387.37039921251
807

16.076462561126
057

4 46.192910414844 0.8149869032398
733

40.636353639872
894

40.695167559803
36

122.12764384230
167

5 94.562946920758
98

1.1772624863448
413

55.260163551225
42

2.6845595432183
68

22.531359012907
842

6 29.033858900786
257

3.3387275950179
99

55.707495886166
69

53.680221591405
92

9.6515409760194
4

7 5.6135407117047
08

3.2676925492616
085

68.659793009468
32

76.289193105274
36

123.77580750894
643

8 133.19271923095
39

15.179903613315
757

11.996223935475
877

19.538318354179
047

13.294782802073
815

9 26.188254555213
46

47.513074471646
4

160.84541592595
713

85.441358016844
38

44.749508551404
45

10 68.972098947363
96

53.439719287521
63

69.875857451882
14

3.4468622162152
41

98.976245941413
96

11 20.530964355405
11

23.430624201722
324

1.5795915612903
546

315.28867284935
02

82.868280270012
28

12 29.071211748509
57

31.391331640945
022

17.297742306435
15

309.15581777055
96

40.639925084991
61

13 9.2887025539540
97

173.82359494129
724

9.9766572665323
3

277.60993359429
38

9.4069543231754
41

14 197.19307601188
643

0.2046532114187
86

18.564442931524
002

79.494589648374
77

2.2999123787184
05

15 28.898575955178
63

11.916628000834
773

98.291276703511
19

8.4164417342996
26

3.2180761986050
38

16 7.9001750537592
44

66.124718700783
2

17.127595253307
533

202.17297185734
25

18.960013984275
502

17 21.827587127837
15

0.0400051972441
8818

101.56883829078
609

62.580178844182
704

14.068610008992
977

18 143.44762013909
87

139.36158099887
038

34.154855080851
895

94.316425867253
93

5.4491531895991
54

19 41.837844341648
83

0.4146954457302
1266

26.593006064417
743

21.204220278958
33

30.918277881247
05

20 25.631890535301
313

20.568620521375
948

0.4261491289961
6536

11.570901789733
627

110.69251455482
81

Subsequently, we calculate the total cost of a problem with the obtained solution 

and generated processing times values to obtain the cost of 2519.1844962101795. 

If we repeat this calculation 1000 times, we obtain a  first  approximation to the 

expected makespan: 1796.8382775738291.

We store both deterministic and stochastic values (as we are in the first iteration it 

is  the best solution until  now) and run next iteration to obtain another feasible 

solution from SS-GNEH:

9,17,8,3,6,19,15,1,2,13,4,14,11,5,18,16,10,7,20,12



We follow the same procedure to compare the new obtained costs (a deterministic 

cost  of  1286  and  a  stochastic  cost  of  1774.8112823703784) with  the  previous 

obtained values and we store the best solution both cases.

By performing this procedure 100000 times we are able to obtain an estimated best 

deterministic solution, and a estimated best stochastic solution.  Now, a more exact 

value of the expected makespan of both solutions can be calculated by running 

previous simulation more number of times.

If we find that when the cost estimation is improved, the best stochastic solution 

cost is greater than the the best deterministic solution stochastic cost (which could 

be expected because of the nature of the random-based calculation), we correct it 

by taking the best deterministic solution as the the best stochastic one too.

At the end of the calculations, we would obtain the output with the best solutions 

found and its calculated and estimated costs:



***************************************************
*       RESULTS FROM SIMSCHEDULING PROJECT         *
***************************************************

--------------------------------------------
               NEH Solution                 
--------------------------------------------

Sol ID : 1
Sol deterministic costs: 1286
Sol time: 0h 0m 0s (0.002992901 sec.)
List of jobs: 
3
17
9
8
15
14
11
16
13
19
6
4
5
18
1
2
10
7
20
12

--------------------------------------------
Our best deterministic solution (provided by the SS-GNEH) 
--------------------------------------------

Sol ID : 8
Sol deterministic costs: 1278
Sol stochastic costs: 1770.877998309444
Sol time: 0h 0m 0s (0.172264997 sec.)
List of jobs: 
9
3
17
6
15
14
11
13
5
4
19
8
18
7
16



7. Results

In this section, we will study the result obtained in the test simulation.  Because we 

have run 15 executions of each instance with different seeds, we provide average 

values for each instance from all the executions. 

In addition, we have presented them in a table that shows the following values:

• The number of the Taillard's test instance

• The jobs in the problem

• The machines in the problem

• The deterministic cost associated to the NEH solution

• The deterministic cost associated to the SS-GNEH solution as the  average 

lower bound 

• The average stochastic cost of the SS-GNEH solution as the upper bound.  

• The average stochastic cost of the best stochastic solution 

• The average gap of the stochastic solution with the lower bound. 

• The average gap between the upper and the lower-bounds is provided in 

order to study the variance between these bounds.

Table 1 shows the results for the first 30 instances. These instances consider cases 

with 20 jobs.

Test Jobs Machines NEH
Avg 

Lower bound
Avg

Upper bound
Stochastic 

Cost
Avg
Gap

Avg 
Bounds 

Gap
1 20 5 1286 1278.00 1784.96 1766.74 0.28% 0.40%
2 20 5 1365 1359.00 1864.06 1843.80 0.26% 0.37%
3 20 5 1140 1081.00 1561.79 1544.15 0.30% 0.44%
4 20 5 1325 1293.00 1875.93 1860.61 0.31% 0.45%
5 20 5 1305 1235.00 1731.05 1712.15 0.28% 0.40%
6 20 5 1228 1195.00 1697.49 1681.71 0.29% 0.42%
7 20 5 1278 1239.00 1746.46 1706.60 0.27% 0.41%
8 20 5 1223 1206.00 1756.02 1743.60 0.31% 0.46%
9 20 5 1291 1230.00 1761.61 1753.02 0.30% 0.43%

10 20 10 1151 1108.00 1605.16 1592.43 0.30% 0.45%
11 20 10 1680 1582.00 2423.04 2418.56 0.35% 0.53%
12 20 10 1729 1659.00 2573.74 2566.62 0.35% 0.55%
13 20 10 1557 1496.00 2344.98 2332.82 0.36% 0.57%
14 20 10 1439 1377.00 2126.28 2113.61 0.35% 0.54%
15 20 10 1502 1419.00 2217.42 2206.66 0.36% 0.56%
16 20 10 1453 1397.00 2148.26 2140.91 0.35% 0.54%
17 20 10 1562 1484.00 2239.79 2230.97 0.33% 0.51%
18 20 10 1609 1538.00 2372.59 2365.00 0.35% 0.54%
19 20 10 1647 1594.00 2439.49 2404.94 0.34% 0.53%
20 20 20 1653 1591.00 2482.14 2476.15 0.36% 0.56%
21 20 20 2410 2297.00 3595.50 3575.87 0.36% 0.57%



22 20 20 2150 2099.00 3298.44 3281.61 0.36% 0.57%
23 20 20 2411 2329.00 3639.60 3617.91 0.36% 0.56%
24 20 20 2262 2223.00 3460.68 3442.83 0.35% 0.56%
25 20 20 2397 2291.00 3602.36 3582.25 0.36% 0.57%
26 20 20 2349 2226.00 3479.58 3457.01 0.36% 0.56%
27 20 20 2362 2273.00 3557.57 3533.57 0.36% 0.57%
28 20 20 2249 2202.00 3454.92 3445.28 0.36% 0.57%
29 20 20 2306 2237.00 3504.33 3494.48 0.36% 0.57%
30 20 5 2277 2179.00 3387.19 3382.62 0.36% 0.55%

Table 2 shows the results for the instances 31 to 60. These are larger instances with 

50 jobs.  We can intuitively observe that the gap takes similar values as in the 30 

first instances. Nevertheless, we can notice that the gaps are reduced  for the first 

test with fewer machines.

Test Jobs Machines NEH
Avg 

Lower bound
Avg

Upper bound
Stochastic 

Cost
Avg
Gap

Avg 
Bounds 

Gap
31 50 5 2733 2724.00 3522.70 3459.28 0.21% 0.29%
32 50 5 2843 2834.00 3731.96 3694.60 0.23% 0.32%
33 50 5 2625 2621.00 3427.64 3388.20 0.23% 0.31%
34 50 5 2782 2751.00 3638.33 3592.25 0.23% 0.32%
35 50 5 2868 2863.00 3703.07 3618.92 0.21% 0.29%
36 50 5 2835 2829.00 3742.09 3693.47 0.23% 0.32%
37 50 5 2736 2725.00 3597.94 3560.16 0.23% 0.32%
38 50 5 2690 2683.00 3537.44 3487.79 0.23% 0.32%
39 50 5 2571 2552.00 3377.34 3341.84 0.24% 0.32%
40 50 10 2786 2782.00 3622.38 3564.36 0.22% 0.30%
41 50 10 3136 3025.00 4506.76 4482.79 0.33% 0.49%
42 50 10 3021 2909.00 4334.14 4317.21 0.33% 0.49%
43 50 10 2952 2864.00 4279.23 4274.24 0.33% 0.49%
44 50 10 3183 3063.00 4537.90 4512.48 0.32% 0.48%
45 50 10 3128 2997.00 4478.06 4457.64 0.33% 0.49%
46 50 10 3158 3006.00 4487.17 4467.46 0.33% 0.49%
47 50 10 3277 3124.00 4605.84 4566.63 0.32% 0.47%
48 50 10 3123 3042.00 4467.61 4437.44 0.31% 0.47%
49 50 10 3002 2902.00 4324.26 4299.90 0.33% 0.49%
50 50 10 3257 3090.00 4604.51 4582.18 0.33% 0.49%
51 50 20 4013 3893.00 6182.12 6159.07 0.37% 0.59%
52 50 20 3921 3725.00 5914.06 5905.13 0.37% 0.59%
53 50 20 3890 3684.00 5846.34 5829.94 0.37% 0.59%
54 50 20 3926 3759.00 5952.62 5932.24 0.37% 0.58%
55 50 20 3822 3647.00 5820.71 5803.73 0.37% 0.60%
56 50 20 3914 3723.00 5848.38 5832.61 0.36% 0.57%
57 50 20 3952 3736.00 5909.25 5897.86 0.37% 0.58%
58 50 20 3916 3732.00 5898.40 5888.76 0.37% 0.58%
59 50 20 3952 3780.00 5980.83 5973.08 0.37% 0.58%
60 50 20 4016 3786.00 5996.64 5985.04 0.37% 0.58%



At last, table 3 shows the results for the instances 61 to 90. These are the largest 

instances with 100 jobs. We can see that, following the tendency suggested by the 

former table, the gaps keep reducing for low number of machines.  In contrast, the 

gap increases for larger number of machines.

Test Jobs Machines NEH
Avg 

Lower bound
Avg

Upper bound
Stochastic 

Cost
Avg
Gap

Avg 
Bounds 

Gap
61 100 5 5516 5493.00 6809.01 6717.21 0.18% 0.24%
62 100 5 5284 5268.00 6545.44 6496.53 0.19% 0.24%
63 100 5 5195 5175.00 6443.60 6382.25 0.19% 0.25%
64 100 5 5023 5014.00 6236.39 6171.95 0.19% 0.24%
65 100 5 5261 5250.00 6522.29 6458.81 0.19% 0.24%
66 100 5 5139 5135.00 6360.45 6305.33 0.19% 0.24%
67 100 5 5259 5246.00 6442.84 6415.35 0.18% 0.23%
68 100 5 5105 5094.00 6335.86 6281.29 0.19% 0.24%
69 100 5 5489 5448.00 6756.58 6710.72 0.19% 0.24%
70 100 5 5332 5322.00 6622.95 6576.24 0.19% 0.24%
71 100 10 5825 5771.00 7983.92 7937.18 0.27% 0.38%
72 100 10 5400 5349.00 7420.98 7386.03 0.28% 0.39%
73 100 10 5755 5679.00 7764.55 7715.57 0.26% 0.37%
74 100 10 5924 5791.00 8080.19 8045.43 0.28% 0.40%
75 100 10 5612 5478.00 7593.95 7560.71 0.28% 0.39%
76 100 10 5355 5308.00 7318.32 7271.01 0.27% 0.38%
77 100 10 5677 5596.00 7649.66 7605.66 0.26% 0.37%
78 100 10 5705 5630.00 7775.75 7752.52 0.27% 0.38%
79 100 10 5975 5880.00 8056.98 8005.56 0.27% 0.37%
80 100 10 5903 5848.00 7991.28 7936.59 0.26% 0.37%
81 100 20 6538 6281.00 9527.45 9517.08 0.34% 0.52%
82 100 20 6446 6263.00 9460.01 9432.26 0.34% 0.51%
83 100 20 6552 6343.00 9565.22 9548.23 0.34% 0.51%
84 100 20 6547 6333.00 9523.62 9485.02 0.33% 0.50%
85 100 20 6614 6389.00 9669.60 9643.86 0.34% 0.51%
86 100 20 6645 6481.00 9747.78 9722.86 0.33% 0.50%
87 100 20 6573 6337.00 9639.99 9623.97 0.34% 0.52%
88 100 20 6747 6493.00 9848.87 9835.94 0.34% 0.52%
89 100 20 6601 6355.00 9641.51 9623.66 0.34% 0.52%
90 100 20 6670 6503.00 9716.32 9694.36 0.33% 0.49%

In order to discuss these results, some visual support could be helpful.  Thus, graph 

1 provides the graphical representation of the calculated gaps, a quick view shows 

that best results are obtained in instances 31-40 and 61-70 where the number of 

machines is lower. We can observe that  the gap seems to be greater the more 

machines there are.  In contrast, it appears to generate quite similar values for 

same number of machines, no matter how many jobs are involved.  So, it could 

suggest that this approach has potential power with problems with a large numbers 

of jobs.



On the  other  hand,  graph  2,  provides  a  graphical  representation  of  the  result 

comparatively with upper and lower-bounds.  Here, we can clearly see that  the 

obtained solution is always closer to the upper-bound than to the lower-bound.  So, 

it seems to be some margin in order to improve the quality of the methodology.
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8. Conclusions and future work

In this paper we have presented a probabilistic approach for solving the Stochastic 

Flow Shop Problem. This methodology combines Monte Carlo simulation with well 

tested methodologies for the Flow Shop Problem. The one of the basic ideas of our 

methodology  is  to  decompose  the  SFSP  into  several  FSP  in  order to  obtain  an 

estimation of the expected makespan for an efficient solution to the deterministic 

case by using simulation. This approach does not require any previous assumption 

and is feasible for any probabilistic function.

As  a  future  work,  some  ideas  are  proposed.  First,  qualitative  studies  can  be 

performed in order to compare robustness or different optimality measures. Next, 

the development of an approach which uses parallelization to perform the different 

scenarios  of  the  simulation  in  different  threads.  We  think  this  could  improve 

performance  and  help  to  achieve  more  exact  estimations  of  the  expected 

makespan. The use of C/C++ versions of the code could reduce the computation 

times.  Also,  the  study  of  the  use  of  a  security  margin  when  transforming  the 

stochastic problem into deterministic instances could improve the robustness and 

efficiency of the obtained solutions.
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