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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados y conclusiones del trabajo.

Durante el proyecto, un entorno de desarrollo para vehiculos autonomos
ha sido desarrollado, conjuntamente con dos modelos de Deep Learning
que hacen uso de el, uno para deteccion de objetos y el otro para regresion
del angulo del volante.

El entorno de desarrollo ha sido implementado sobre el famoso videojuego
Grand Theft Auto V, mientras que los modelos de Deep Learning han sido
desarrollados usando la popular libreria Tensorflow.

La  tesis  ha  tenido  exito  global  y  diversas  universidades  y  centros  de
investigacion hacen uso del entorno de desarrollo para llevar a cabo su
propia investigacion. El proyecto tiene mas de 260 estrellas y 70 ‘forks’ en
GitHub.

  Abstract (in English, 250 words or less):

During this thesis, a development environment for self-driving vehicles has
been developed, along with two Deep Learning models that make use of it,
one for object detection and the other for steering angle regression.

The development environment has been built in top of the famous game
Grand Theft Auto V, while the Deep Learning models have been developed
by using the popular Tensorflow library.

The  thesis  has  had  worldwide  success  and  several  universities  and
research centers are using the development environment to conduct their
own research. The project has more than 260 stars and 70 forks on GitHub.
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1. Introduction

1.1 Context and justification of the thesis

Self-driving vehicles are the promised technology of the near future, with
some  people  arguing  that  together  with  AI  they  will  ignite  the  fourth
industrial revolution.

Their development has been trending in Silicon Valley for more than 10
years, leaded at the beginning by Stanford University (fig. 1) and followed
by Google. In the past few years, several  companies have joined the
race,  including  Uber,  Tesla,  NVIDIA,  Drive.ai,  Cruise  Automation  and
Auro  Robotics  along  the  most  of  the  common traditional  automakers
such  as  Mercedes,  Audi,  Nissan,  Toyota,  BMW and  General  Motors.
Most of them, setting their autonomous driving headquarters in the San
Francisco Bay Area, California.

Just as it happened with the development of the digital revolution, the
self-driving car revolution is being concentrated in just one place and it is
difficult for other countries to keep pace with it. This is mostly, not for a
lack of talent but for a lack of resources. Reducing the cost of developing
self-driving cars could greatly speed-up development, not only in Silicon
Valley but also in the rest of the world and democraticize the access to
this technology.

For self-driving vehicles to become a reality, several things have to fall
into place. Some of them are already there, but others are still pending:
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Illustration 1: Stanley, one of the very first self-driving cars



Done:
 Enough computational power
 Good deep learning and traditional robotic algorithms

To do:
 Availability of data to train self-driving models
 Reduction of the cost of hardware
 User acceptance (prove it is safer than a human driver)

The main enabling technology behind self-driving cars is Deep Learning,
which  is  in  itself  an  extension  of  Machine  Learning  that  uses  bigger
models  and  much  more  data  to  fit  its  models.  This  enables  this
algorithms  to  learn  from  very  unstructured  and  high  variability  data
(enormous state  space),  like  are  the  frames taken by  a  camera in  a
vehicle dashboard, the number of different scenarios and situations you
can encounter while driving is overwhelming: multiple shapes and colors
of  cars,  erased lane  lines,  different  weather  conditions,  weird  looking
pedestrians...  In a very general sense, self-driving cars are learning to
drive by seeing humans do it and by learning to detect objects, traffic
signs, lane lines and other important features which previously had to be
hand  labeled  and  stored  in  a  dataset  consisting  of  thousands  if  not
millions of samples.
Collecting,  parsing and hand-labeling this  amount  of  data requires an
immesurable amount of resources (fig.  2) and this is why this is still a
major point to solve by all the self-driving vehicle industry. And not only
that, when a control algorithm is developed, the only way of testing it is
by loading it in the vehicle and drive it on the street, which is also a time
and money consuming activity, especially for trucks.

Moreover, self-driving vehicles are not only relying on vision, but also in
other sensors such as Lidar and/or Radar, this gives the system much
more accuracy on its location and distance and relative velocity to other
objects  by  applying  Data  Fusion  algorithms  such  as  the  Unescented
Kalman Filter. Still, human drivers don’t make use of radars to drive and
still are able to reliably compute the distance to other vehicles and figure
out where they are located, with this premise some engineers argue that
self-driving vehicles should one day be able to drive by using cameras
only,  just  as  humans  do,  further  reducing  the  cost  of  self-driving
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Illustration 2: Example of and-labeled object detection images



technology, just as Tesla is trying to prove. For comparison, the price of a
camera is on the hundreds, while the price of a Lidar sensor is on the
tens of thousands, this is two orders of magnitude.

Finally,  there  is  the  political  counterpart  that  must  allow  self-driving
vehicles to be sold and used by the public. This probably won’t happen
until  it  is  proven  that  a  self-driving  vehicle  is  safer  than the  average
human, and probably, by a large margin.

The aim of this project is to solve the first and second TO-DO’s and let
the third be solved by society itself.

To  solve  this  issues,  an  open-source  development  platform  for  self-
driving vehicles will be developed, and we will also show that it can be
successfully used to train self-driving deep learning models for instance.
Moreover, once trained, this models can be plugged-in the open-source
tool to test them before loading them into production.

This tool will allow for automated dataset generation, which means that
the user will be able to collect an infinite amount of labeled data without
even  being  present.  Moreover,  the  tool  will  allow  to  simulate  input
commands  such  as  steering  angle,  throtle  and  brake  to  see  how
algorithms  behave  in  a  simulated  environment  without  the  need  of
loading them into the vehicle to test them.

Finally,  being  open-source  it  will  hopefully  speed-up  the  research  in
vision-based localization algorithms all around the globe, without being
restricted  by  the  cost  of  testing  this  algorithms in  a  real  vehicle  with
expensive hardware.

1.2 Objectives of the thesis

 Develop a self-driving vehicle development environment
 Try to guarantee it is easy to use and build a community of users

around it
 Prove that developing and testing self-driving models is possible

with this tool. Particularly, develop an object-detection and auto-
steering model.

1.3 Followed strategy and methods

For the tool to be useful, it needs to somehow capture the variability of
the real word driving scenarios, this includes among other things: 

 Urban and inter-urban driving
 Different  type,  size  and  model  of  vehicles,  pedestrians  and

animals
 Traffic signs and lights
 Unexpected behaviour of other vehicles, animals or pedestrians
 Different weather conditions

3



 Time cycle
 Variability of lane width and pavement state and texture
 Traffic density

Developing a virtual world that includes all this possible scenarios (and
more) is an impossible task for the resources given for the project, luckily
this  world  already  exists  and it  is  called  Grand  Theft  Auto  V,  a  very
famous  videogame  that  allows  the  player  to  freely  move  around  a
ficticious  region  called  Los  Santos,  based  on  the  real  Los  Angeles,
California.

The player can not only walk, but also drive any kind of vehicle, from
bicycles to aeroplanes, in montain, sea or urban areas under different
weather and light conditions in a very decent replica of the west-coast
US infrastructure.

The project takes benefit of the videogame, which is for now considered
the most realistic simulation of the real-world ever created, to get all the
necessary information to build the tool on top of it.

To do so, it will make use of a third-party library created by Alexander
Blade to access the internal memory registers of the game, which will
allow to use C++ code to call internal native methods and get and set
information  such  as  surrounding vehicle  positions,  current  speed  and
throttle  level  in  order  to  build  our  development  environment,  that  will
allow us to set-up scenarios, collect labeled datasets and programatically
drive the vehicle.

1.4 Thesis plan

See attached Gantt chart

1.5 Briefing of the obtained products

In  this  project  an  open-source  self-driving  vehicle  development
environment  has  been  developed  with  the  aim  of  speeding  up  the
development  of  vision-based  self-driving  vehicles,  reducing  the  cost
associated and democratizing the access to it.

The tool allows the user to automatically collect labeled datasets and test
his models in the simulation.

Since  its  release,  the  development  environment  has  been  forked  70
times  and  starred  250  on  GitHub.  Its  users  include  universities,
companies,  research  centers  and  self-driving  technology  aficionado
groups from all around the globe, including Spain, China, Taiwan, South
Korea,  Russian  Federation,  India,  US,  Germany,  UK,  Japan,  The
Netherlands...

Some of them are actively using it for research and have built self-driving
models that run in the game.
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1.6 Briefing of other chapters in the memory

The chapter 2 includes the main content of  this memory, which is an
explanation of the developed environment and agents. 

Next,  chapter  3  discusses the results  and impacts of  the project  and
finally in chapter 4 I reflect my personal conclutions.

Chapters 5 and 6 correspond to the glossary of terms and bibliography
respectively.
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2. Development process

2.1 The initial idea

It was a sunny workday of July 2016, at that time I was working as a
project  engineer in the electronics department of  Applus+ IDIADA, an
Spanish  company  that  offers  engineering  services  to  OEM  car
manufacturers.

At that time I was assigned to R&D European projects so I had the luxury
of  travelling  a  lot  around  Europe.  One  of  these  projects,  the  i-Game
project [2], brought my attention, it was about organising a contest of self-
driving  vehicles,  where  participating  universities  could  build  their  own
automated cars and try to solve typical self-driving scenario cases such
as  platoong  forming,  lane  merge  and  intersection  speed  adjustement
without traffic lights!

The contest, the Grand Cooperative Driving Challenge was successfully
celebrated in the Netherlands (fig. 3). I was so amazed by the technology
behind  self-driving  vehicles  and  the  enourmous  social  and  economic
implications it would have that I decided at that moment that my thesis
had to somehow be related to this.
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Illustration 3: A colleague and I at the GCDC



Since  I  was  a  child  I  always  had  a  passion  for  computer  science,
concretely for the field of AI, the brain is the ultimate general-purpose
computing machine, knowing how it works and building such a system is
the dream of any Alan Turing contemporary.

The drawback is that this is still  a long distant achievement, however,
self-driving  vehicles  are  the  nearest  intersection  of  AI  and  social
disruption,  so  before  trying  to  build  an  Artificial  General  Intelligence
agent,  the  most  reasonable  and  pragmatic  step  is  to  invest  time  on
discovering how vehicles could drive themselves.

When thinking about my Master’s thesis I wondered how I would be able
to  get  the resources necessary  to  develop a  self-driving  car,  and my
conclusion was that it would take me much more time than what I had to
deliver my thesis. Still, I wanted to really make an input to the field and I
thought that actually, thousands if not millions of people in the world may
have the same issue as me. The goal was clear, democratize the access
to self-driving technology.

Nowadays you don’t need a car to drive one, videogames let you do so it
in fairly realistic conditions, if we could simulate self-driving technology in
one of these games it would allow anybody with a computer to develop
and  try  new  algorithms  in  the  comfort  of  their  sofa,  surprisingly  no
company had introduced yet  such features  in  any commercial  driving
game, I had to!

2.2 Maximizing the contribution

From the very beginning I thought of using the Torcs open-source racing
game  for  the  purpose  [3],  this  game  however  presents  several
drawbacks: 

1. Low quality graphics, which could make it difficult to transfer to the
real-world the models developed in the game.

2. Close racing tracks, the number of tracks are very limited as well
as the number of vehicles.

3. Very  little  variability,  being  a  close  track  game  there  are  no
elements such as pedestrians or traffic signs, moreover, there is
no control on the weather for example.

Briefly  speaking,  Torcs  was  an  easy  and  limited  environment  to
effectively develop state-of-the-art self-driving technology (fig. 4).
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This thesis could have consisted on developing a model that successfully
completed a Torcs track in record time as it was my very first initial idea.
However that wouldn’t had any visible contribution to the field of AI nor to
the  self-driving  community.  Instead,  I  decided  to  invest  my  time  on
developing a more useful tool.

This is when Grand Theft Auto V came to my mind, there is no actual
game as complex as this one (fig.  5),  and although it  is not a driving
game, still the game let’s you hit anybody and steal his car to drive it with
fairly realistic physics. Moreover, it is just super fun to spend time on it,
so it would be a wonderful experience to write my thesis around it.
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Illustration 5: Example GTAV screenshot



GTAV  is  the  ideal  candidate  for  such  task,  it  has  day/night  cycles,
hundreds  of  different  cars,  unpredictable  weather,  pedestrians,  traffic
signs and whole urban and inter-urban scenarios to drive in, all of that
with stunning graphics and textures. The only unfortunate issue is that
the game is propietary, so there is no direct evident direct access to the
game’s internal engine, a necessary requirement to get the output we
need from the game

The solution comes thanks to the great modding community, as it will be
explained in the following chapter.

2.3 Methods and tools

GTAV  has  a  strong  modding  community  [4],  these  are  game’s
aficionados that have built hacking tools, software and new textures that
let you modify the game almost in any way.

The most famous of this tools is called ScriptHookV  [5] , a DLL plugin
that fakes a game’s shared library to access its internal registers, which
includes  both  variables  and  functions.  At  the  same  time,  this  library
allows  to  load  external  ASI  plugins  that  make  use  of  the  public  API
provided  by  ScriptHookV,  this  means  you  can  write  your  own  C++
including the ScriptHookV header and call any of its methods and access
any of its published variables, compile it and load it within the game.

In this particular case, I use ScriptHookV to gather information from the
game, such as position of the surrounding vehicles and pedestrians or
deviation from the center of the lane and then I provide a JSON API to
the external world via socket connection.

I do this, instead of building the whole tool in the plugin itself, to give the
user  platform  and  language  freedom  of  choice.  GTAV  only  runs  on
Windows, so that would constrain the researcher to develop his agent
using  this  OS  only,  also  ScriptHookV  is  C++  only.  For  instance,
implementing  the  sockets  allows  the  researcher  to  have  the  game
running on a Windows machine and the AI model implemented in Python
running in a separate Linux machine.  Moreover,  the JSON messages
allow  to  dynamically  change  the  self-driving  environment  parameters
without needing to restart the game every time.

On the agent side, I’ve been using Python  [6] to develop the models.
Python is the most common language used in the field of AI and Deep
Learning in particular, and it is also the language I am more comfortable
with nowadays. To develop the Deep Learning features, I’ve been using
Keras  [7] on top of Google’s Tensorflow [8], also one of the most used
libraries in the Deep Learning communities and that provides a wonderful
Python API.
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The tools used are then:

Environment side:
 Grand Theft Auto V (PC version)
 Visual Studio Express 2012
 ScriptHookV
 Standard Microsoft C++ libraries

Agent side:
 Python 3.1 (For the external interaction with the environment)
 Tensorflow 1.1 
 Keras 2.0

2.5 Implementation details (Environment side)

The  code  for  DeepGTAV  can  be  found  in  my  GitHub  repo:
https://github.com/ai-tor/DeepGTAV

DeepGTAV works the following way:

Once the game starts, DeepGTAV opens a TCP connection on port 8000
and waits for TCP clients to connect.
Clients connected to DeepGTAV are allowed to send messages to GTAV
to  start  and  configure  the  research  environment  (Start and  Config
messages), send driving commands to control the vehicle (Commands
message) and to stop the environment to fallback to normal gameplay
(Stop message).

When  the  environment  has  been  started  with  the  Start  message,
DeepGTAV will start sending the data gathered from the game back to
the client in JSON format, so the client can use it to generate a dataset,
run it through a self-driving agent and many other possible applications.

The data sent back to the client and initial conditions of the environment
will depend on the parameters sent by the client with the Start or Config
messages. Thins that can be configured for instance are:  frame rate,
frame width  and  height,  weather,  time,  type  of  vehicle,  driving  style,
wether to get surrounding vehicles or peds, type of reward function and
many more...

Here follows a list of the messages used to control DeepGTAV:

Start:

This is the message that needs to be sent to start DeepGTAV, any other
message  sent  prior  to  this  won’t  make  any  effect.  Along  with  this
message, several fields can be set to start DeepGTAV with the desired
initial conditions and requested Data transmission.
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When this message is sent, the environment starts, the game camera is
set to the front center of the vehicle and Data starts being sent back to
the client until the client is disconnected or a Stop message is received.

Here follows an example of the Start message:

{"start": {

  "scenario": {

    "location": [1015.6, 736.8],

    "time": [22, null],

    "weather": "RAIN",

    "vehicle": null,

    "drivingMode": [1074528293, 15.0]

  },

  "dataset": {

    "rate": 20,

    "frame": [227, 227],

    "vehicles": true,

    "peds": false,

    "trafficSigns": null,

    "direction": [1234.8, 354.3, 0],

    "reward": [15.0, 0.5],

    "throttle": true,

    "brake": true,

    "steering": true,

    "speed": null,

    "yawRate": false,

    "drivingMode": null,

    "location": null,

    "time": false    

  }

}}

The  scenario  field  specifies  the  desired  initial  conditions  for  the
environment.  If  any of its fields or itself  is  null  or  invalid the relevant
configuration will be randomly set.

The dataset field specifies the data we want back from the game. If any
of  its  fields  or  itself  is  null  or  invalid,  the  relevant  Data  field  will  be
deactivated, except for the frame rate and dimensions, which will be set
to 10 Hz and 320x160 by default.
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Config:

This  message  allows  to  change  at  any  moment  during  DeepGTAV’s
execution, the initial configuration set by the Start message.

Here follows an example of the  Config message (identical to the  Start
message):

{"config": {

  "scenario": {

    "location": [1015.6, 736.8],

    "time": [22, null],

    "weather": "RAIN",

    "vehicle": null,

    "drivingMode": [1074528293, 15.0]

  },

  "dataset": {

    "rate": 20,

    "frame": [227, 227],

    "vehicles": true,

    "peds": false,

    "trafficSigns": null,

    "direction": [1234.8, 354.3, 0],

    "reward": [15.0, 0.5],

    "throttle": true,

    "brake": true,

    "steering": true,

    "speed": null,

    "yawRate": false,

    "drivingMode": null,

    "location": null,

    "time": false    

  }

}}

In this case, if any field is null or invalid, the previous configuration is
kept. Otherwise the configuration is overriden.

Commands:

As simple as it seems, this message can be sent at any moment during
DeepGTAV’s execution to control the vehicle. Note that you will only be
able to control  the vehicle if  drivingMode is  set to manual  during the
Start or Config message:
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{"commands": { 
"throttle": 1.0, 
"brake": 0.0, 
"steering": -0.5 

}}

Stop:

Stops the environment and allows the user to go back to  the normal
gameplay. Simply disconnecting the client produced the same effect.

{"stop": {}}

The relevant project files are organized in the following manner:

Rewarders: Directory including classes to obtain a reward function to
use  for  example  in  Reinforcement  Learning  agents,  the  rewards  are
always in the interval [-1,1].

Rewarder: Abstract class that implements the structure of all
rewarders
LaneRewarder: The closer the vehicle is to the center of the
lane the greater the reward, in the case the vehicle is driving
agains traffic, the reward is negative.
SpeedRewarder:  Rewards  mantaining  a  certain  defined
speed, if the speed is lower than the set speed, the reward is
positive, otherwise it is negative (conservative reward)
GeneralRewarder: It is a weighted sum of the LaneRewarder
and the SpeedRewarder. It defines an aggressivity parameter
(a)  such  that  reward  =  a*SpeedRearder  +  (1  –
a)*LaneRewarder. The greater the aggressivity the agent will
tend to overtake other vehicles to mantain velocity.

bin: Contains the compiled .ASI plugin and game save files

lib:  Contains external  libraries used during the development,  such as
rapidjson [9] and ScriptHookV

Project files: Files such as DeepGTAV.sdf and DeepGTAV.vccproj are
files generated automatically by Visual Studio to store the configuration
of the project.

Scenario:  The  scenario  class  represents  the  user  environment
configuration, such as weather,  time and type of  car.  It  also provides
useful methods to fill  the JSON message with the game’s information
requested by the user.

ScreenCapturer: Utility class to manage the game screen capture
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Server:  Class  that  manages  the  socket  connection  with  the  agent,
interfaces between the agent and the scenario by receiving, parsing and
sending the JSON messages

script: Main file, it instantiates a Server class and runs indefinetly

Most  of  the implementation details  of  the environment are out  of  the
scope  of  this  project  as  they  are  more  related  to  classical  computer
science than to AI. Nevertheless, it is worth mentioning some of them, as
deep reverse engineering hacking had to be applied to be able to obtain
the features needed by self-driving agents, such as the lane reward, the
throttle, brake and steering angle of the vehicle and the bounding boxes
around the game’s objects for automated data-set generation.

Lane reward:  The position  of  the  lane lines  can’t  be  obtained using
internal game’s memory neither methods, and without their position it is
mathematically impossible to know how centered is the vehicle in the
lane.

To obtain those I had to use an external tool called OpenIV  [10] that
allows to decrypt the game’s installation files and check if I could find any
kind of map with information about the lanes. What I found was a XML
file were road nodes and the links between them were listed. The nodes
are sparsed all around GTAV’s roads and they have certain properties,
including the width of the road, the type of the road (highway, narrow-
road, etc...),  the number of lanes in the direction of the road, and the
number of lanes in the other direction. The direction of the road happens
to be the direction of the directed graph formed by the node links.

The width of the road is not a measure of distance but an enumeration,
and it also depends on the type of road, this means that the distance in
meters for a highway road with width zero,  is not the same than the
distance in meters for a normal road with the same width parameter. So
it was not enough to deduce the meaning of this properties, it was also
necessary to do some trial and error to map their combination to real
distances.

Knowing the real width distance of the road and the number of lane lines,
it was straight forward by using some linear algebra to deduce how far
was our vehicle from each of the lane lines, and also, by knowing the
direction of the link joining the two closest nodes and the direction of our
car with respect to the world coordinates it was also easy to know if we
are going in the wrong way.

Details of the implementation can be seen in LaneRewarder.cpp

The following video, created by an OpenAI engineer shows the result of
this  implementation,  which  was  merged  with  OpenAI’s  DeepDrive
project: https://www.youtube.com/watch?v=6zIClaSCTcc
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Vehicle’s  throttle,  brake  and  steering:  When  manually  driving  a
vehicle (using  the keyboard or a game controller) it is fairly easy to get
vehicle’s  throttle,  brake and steering by reading the  controller  inputs,
however this is not the case when the vehicle is driven by the game’s
internal  AI,  because  it  directly  inputs  the  variables  into  the  game’s
internal  registers.  It  was important  to  get  this  values even when the
game’s  AI  was  driving,  because  that  would  allow  to  automatically
generate regression values without needing the user to drive for hours.

There is no method in ScriptHookV’s API to access this variables. In this
case I had to rely in another tool called CheatEngine  [11] to read the
game’s memory pointers. Again, by trial and error, I  looked for values
that  changed  when  the  vehicle  was  accelerating  or  turning,  until  I
eventually found the pointer addresses of the correct values and read
them in the C++ code.

Details of the implementation can be seen in Scenario.cpp

Bounding boxes:  Like in the Lane Reward, this is something that still
hadn’t been done before and it is a feature that has been integrated in a
lot of other projects due to its applicability. Bounding boxes of objects
allow  to  train  object-detection  algorithms  that  are  able  to  locate  and
classify objects in an image, a major problem in computer vision. For the
case of self-driving vehicles we were interested in doing so for vehicles
and pedestrians.

In  this  case,  through  ScriptHookV’s  methods  it  is  possible  to  know
dimensions, position and orientation vectors of objects, this means that
by correctly understanding this data it is possible to easily compute the
top-right and bottom-left corners of a 3D bounding box surrounding the
objects.

Details of the implementation can be seen in Scenario.cpp

I made a video of this feature to announce its release, it can be seen in
the following link: https://www.youtube.com/watch?v=StR9tuaIwYw

2.6 Implementation details (Agent side)

The  code  for  VPilot  can  be  found  in  my  GitHub  repo:
https://github.com/ai-tor/VPilot

VPilot makes use of DeepGTAV with three main purposes:

1.  Provide  an  example  to  DeepGTAV  users  on  how  to
communicate with the environment, in this case using Python.
2. Use DeepGTAV to store and object-detection and regression
dataset
3.  Use  the  trained  Deep  Learning  model  with  the  generated
dataset along with DeepGTAV to test it

The project structure goes as follows:
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deepgtav: Implements utility classes to easily interface with DeepGTAV
client: Implements a socket client class that understands
DeepGTAV  messages  and  implements  methods  to
send/receive them and to store them in a Pickle Python file
to generate a dataset
messages: Implements  the  codification/decodification  of
the DeepGTAV JSON messages.

models:  Includes  the  object-detection  and  steering  regression  Deep
Learning models

CROWD: Object detection model based on SSD [12]
NASA: Steering  regression  model  based  on  NVIDIA’s
PilotNet [13]

dataset: Starts a DeepGTAV session and starts capturing a dataset to be
used by the models
drive: Starts a DeepGTAV session and starts sending the commands
generated by the models back to the game to see the result

Again, I will focus on explaining the inner workings of the code that relate
to AI, these are basically the two deep learning models: CROWD (Cheap
Real-Time Object  Window Detector)  and NASA (Neural  Auto-Steering
Algorithm)

CROWD

Cheap  Real-Time  Object  Window  Detector  is  an  end-to-end  Deep
Learning object detection model. Object detection is a common problem
in  computer  vision,  which  given  an  arbitrary  image  as  input,  tries  to
identifity  objects,  surround them with  bounding boxes and classify  its
type accordingly (fig. 6).

Note  the  difference  between  a  traditional  classification  problem  and
object detection. The latter case is much more complicated, because we
aren’t just classifying an image in different categories, we are also trying
to  deduce  the  number  of  different  objects  in  an  image,  their  precise
location and their category. This usually makes object detection models
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much bigger and computationally more expensive compared to simple
classification architectures.

This is another issue, because object detection algorithms in self-driving
vehicles have to run in real-time (min 10 Hz) in order to be useful. Till
recently, object detecion models have been splitted in two steps. First,
locate the objects in the image (region proposal) and second, classify
those objects (classification). These are the cases for instance of RCNN,
Fast-RCNN and Faster-RCNN  [14].  Although version after version the
computational cost of these models has been reduced and so they have
been able to run faster, still at prediction time the best frame rate was of
5 Hz for Faster-RCNN.

This trend changed when SSD (Single Shot Detector) was introduced,
which is the base model architecture we are taking for CROWD. SSD is
end-to-end, which means that is not a two step process, but both region
proposal and classification are trained at the same time in a single neural
network  architecture.  This  is  extremely  beneficious,  because  weights
from region proposal and classification are shared within the layers thus
reducing  by  orders  of  magnitude  the  number  of  neural  network
parameters.  In  the  case  of  SSD,  we reach  frame rates  of  50  Hz on
NVIDIA’s Geforce 1080 Ti.

The ideas that made this possible are basically two: 

 The use of Fully Convolutional Neural Networks: They replace the
traditional fully-connected layers, typically used in the last layers
of classification, with convolutional layers, thus making the models
fully  convolutional.  Convolutions represent  a  saving in  terms of
network parameters because the kernel weights in convolutions
are shared espatially across the input dimensions. [15]

 The  introduction  of  priors  (or  anchors):  These  are  a  set  of
manually defined bounding boxes prior to training. The predicted
bounding boxes are then computed relatively to this prior boxes.
This  helps  reduce  the  search  space  during  training  of  such
models,  thus  making  them feasible  in  what  respect  to  training
time.

Finally,  the loss function (the output  of  which is used to compute the
network  gradients  and  update  the  weights)  also  differs  from  the
classification problem, as in this case we don’t only need to account by
the error in the classification but also in the object localization.

After  SSD,  other  similar  architectures  such  as  YOLO  [16] and
SqueezeDet  [17] also  appeared,  however  there  are  no  major  break-
throughts  among  these,  just  small  differences  in  what  respects  to
architecture configuration and loss functions.

A major common property among these models is that all of them are
builded on top of an already trained classification neural network in the
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ImageNet dataset [18], in the case of SSD and YOLO, this architecture is
VGG-16  [19], while in SqueezeDet it is SqueezeNet. Using pre-trained
weights  in  part  of  the  neural  network  also  helps  to  speed-up
convergence, as models such as VGG-16 can take weeks to be fully
trained on the ImageNet dataset. Building on top of it, can reduce the
training of object detection from weeks to days (fig. 7).

In our case, we use a pre-trained SSD on the PASCAL VOC dataset [20]
and re-train it using the DeepGTAV dataset, the training takes only a few
hours! For  that  purpose,  the official  SSD Caffe architecture has been
ported to Keras according to the official  paper for the purpose of our
project.

During training we add intensive data augmentation to improve overall
performance  and  reduce  overfitting.  Basically  we  randomly  change
brightness, contrast, saturation and lighting while also randomly shifting
the image vertically and horizontally.

The resulting code is structured as follows:

models/SSD
SSD: Implements the Keras model according to the original paper
utils:  Implements  useful  methods such as loss  function,  Keras
visualization callbacks and data augmentation
utilities/ImageTransformer:  Implements  image  utilities  for  the
data augmentation

crowd:  Implements  basic  methods  around  SSD  and  utils  to  setup
training and testing of the model and provide an API for VPilot.

train: Starts a model training session

NASA

Neural Auto-Steering Algorithm is a regression model that maps from an
input  200x66  RGB (or  YUV)  image  to  a  steering  angle.  Thus,  when
trained,  the  neural  network  should  be  able  to  recognize  the  most
important features in a road to compute the necessary steering angle to
stay within the lane and take curves.
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This is a much simpler problem than object detection, but still, it requires
some important tricks to guarantee generalization. For instance, if  the
neural  network  is  simply  trained  with  images  and  steering  angles
captured from a vehicle driving in the center of the lane, the model won’t
have a clue what to do when the vehicle deviates a bit from the center of
the lane, because it has never seen such a case. It is important then, to
also teach the neural network to recover. To do so, images are randomly
shifted and rotated to simulate this deviation, and the steering angle is
adjusted  so  that  the  vehicle  returns  to  the  center  of  the  lane  in  two
seconds.

NASA is  based on NIVIDIA’s  PilotNet  (fig.  8)  but  we include a some
improvements to the original implementation:

 We change the ReLu activations by ELU activations, which are
shown to solve the «dead neuron» problem [21]

 We add  Batch  Normalization  after  each  convolutional  layer,  to
speed-up convergence [22]

 We make  use of  Dropout  in  the  final  fully-connected layers  to
improve generalization (reduce overfitting) [23]

NASA’s code structure is very similar to that of CROWD:

models/PilotNet
PilotNet: Implements the Keras model according to the original  
paper
utils:  Implements  useful  methods  such  as  Keras  visualization
callbacks and data augmentation
utilities/ImageTransformer:  Implements  image  utilities  for  the
data augmentation
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nasa:  Implements  basic  methods  around  PilotNet  and  utils  to  setup
training and testing of the model and provide an API for VPilot.

train: Starts a model training session
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3. Results and impact

In  this  project  an  open-source  self-driving  vehicle  development
environment (DeepGTAV) has been developed with the aim of speeding
up the development of  vision-based self-driving vehicles, reducing the
cost associated and democratizing the access to it.

DeepGTAV is available on GitHub with detailed instructions of installation
and  usage,  along  with  companion  libraries  to  interface  with  it  using
Python.

Moreover,  two  Deep  Learning  models  have  been  implemented  and
successfully trained to make use of this data, one for road understanding
(object detection) and another for auto-steering. In both models we adapt
them to our self-driving platform, we make improvements and show the
potential of the tool.

The tool allows the user to automatically collect labeled datasets and test
his models in the simulation. Among other things, it is possible to:

 Set the weather
 Set the location
 Set the time
 Set the vehicle to use
 Set the frame rate of dataset recording
 Set the type of driving style (in automated mode)
 Set the type of objects to be labeled
 Get 3D bounding boxes for the objects
 Get ego information about the vehicle
 Get reward score (for reinforcement learning models)

Moreover, it is possible to control the vehicle without the need of a game
controller, so an agent can send the commands to the game as it was a
car so that it can be quickly tested inside the game.

Since  its  release,  the  development  environment  has  been  forked  70
times  and  starred  260  on  GitHub.  Its  users  include  universities,
companies and research centers  from all  around the  globe,  including
Catalonia, China, Taiwan, South Korea, Russian Federation, India, US,
Germany, UK, Japan, The Netherlands...

Some of them are actively using it for research and have built self-driving
models  that  run  in  the  game.  Here  follows  a  list  of  known active
DeepGTAV users:

 Centre de Visió per Computador (Catalonia)

 Huawei (Canada)

 National Sun Yat-sen University (Taiwan)
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 ETH Zürich (Switzerland)

 Linnaeus University (Sweden)

 Texas Instruments (India)

 University of Modena and Reggio Emilia (Italy)

 Panasonic R&D Center (Singapore)

 University of Wisconsin-Madison (US)

 Autobon.ai (US)

 OpenAI (US)

 Uber/OTTO (US)

 Clemson University (US)

 University of Pennsylvania (US)

During  the  development  of  DeepGTAV,  I  had close collaboration  with
OpenAI to bring the environment to life inside Universe. Unfortunately,
the project had to be taken down soon after it was released, due to legal
actions from Rockstar (company behind GTAV)

Luckily, DeepGTAV could continue its development thanks to the fact that
it is a non-profit open-source project.

At a personal level, due to the repercussion of this project I eventually got
several job interviews, mostly from Silicon Valley but I finally accepted a
job offer from a company that is building self-driving trucks, from Illinois,
Chicago.

As  of  today,  there  is  still  no  simulation  environment  for  self-driving
vehicles as big as it is DeepGTAV, although probably will start to exist in
the  next  few  months  to  come,  now  that  the  industry  has  seen  the
importance  of  tools  like  this.  In  the  field  of  self-driving  drones,  for
example, Microsoft recently built an open-source environment.
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4. Conclutions

The initial idea of this project was to use Deep Learning to build a self-
driving agent that could drive autonomously in a videogame. I planned to
do so using Torcs, but seeing that it was already solved I decided to use
GTAV, a much more challenging environment.

I didn’t expect at all such an impact in the self-driving community when I
first  released DeepGTAV, more than 50 bug reports and improvement
suggestions have been filled as of today and at the same time I was
receiving proposals of collaboration and job offers from around the globe,
especially the US.

This forced me to deviate from the initial plan. I expected to invest around
70% of the project’s time to Deep Learning and about 30% in building the
environment, eventually it finished being the complete opposite. In this
case,  I  unfortunately  have  to  say  say  that  the  objectives  of  the  final
project haven’t been met, although I feel very happy for the contribution I
have made to  the field of  self-driving cars.  I  guess I  was at the right
moment at the right place [24].

The project gave me the opportunity to closely work with the self-driving
car community, first collaborating with Elon Musk’s OpenAI and second
by getting a job as a Deep Learning engineer at a self-driving truck start-
up in Illinois, Chicago. From where I am currently writing this words.

This has also helped me to learn much more about Deep Learning and
the  self-driving  technology,  which  helped  me  to  write  the  two  Deep
Learning models presented in this project in a record time.

In the future I would like to finish what I  couldn’t  with this project,  by
improving  my models  and deep dive  into  the  world  of  Reinforcement
Learning, an area of Deep Learning that has still lot to deliver, especially
in what regards to Artificial General Intelligence.
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5. Glossary of terms

AI: Artificial Intelligence
AGI: Artificial General Intelligence
API: Application Programming Interface
ASI: Assembler Include
CROWD: Cheap Real-time Object Window Detector
ELU: Exponential Linear Unit
GTAV: Grand Theft Auto V
JSON: JavaScript Object Notation
NASA: Neural Auto-Steering Algorithm
OEM: Original Equipment Manufacturer
RCNN: Regions with CNN features
R&D: Research and Development
ReLU: Rectifier Linear Unit
SSD: Single-Shot Multibox Detector
TCP: Transmission Control Protocol
VOC: Visual Object Classes
XML: eXtensible Markup Language
YOLO: You Only Look Once
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