

Development, optimization, and
integration of molecular fitting tools

and models in UCSF Chimera

Desarrollo, optimización e integración de herramientas y

modelos de ajuste molecular en Chimera

Pablo Solar Rodríguez
Universitary Master’s Degree in BioInformatics and BioStatistics
BioInformatics – Structural and Computational Biology

Brian Jiménez García
Pablo Chacón – José Ramón López Blanco

24th May 2017

LICENCIA (LICENSE)

GNU Free Documentation License (GNU FDL)

Copyright © 2017 PABLO SOLAR RODRÍGUEZ.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation
License".

 FINAL WORK SHEET

Título del trabajo:
Development, optimization and integration of
molecular fitting tools and models in Chimera

Nombre del autor: Pablo Solar Rodríguez

Nombre del consultor/a: Brian Jiménez García

Nombre del PRA: M. Jesús Marco Galindo

Fecha de entrega (mm/aaaa): 05/2017

Titulación::
Máster Universtario en BioInformática y
BioEstadística

Área del Trabajo Final:
BioInformática – Biología Computacional y
Estructural

Idioma del trabajo: Inglés

Palabras clave
Chimera, fitting, computational biology,
structural biology, plugin, ADP_EM, iMODFIT

 Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados i conclusiones del trabajo.

El TFM se encuadra en el campo de la bioinformática estructural y se centra en el
desarrollo de herramientas computacionales para interpretar información 3D de
proteínas y ácidos nucleicos proveniente de distintas fuentes experimentales como
son la crio-microscopía electrónica (EM) y la cristalografía de rayos X.

El ajuste macromolecular o fitting es la forma estándar de interpretar la información
contenida en un mapa de crio-microscopía electrónica de una determinada
macromolécula con las estructuras atómicas disponibles de sus componentes. Se trata
de un complicado puzzle donde se encajan estructuras a resolución atómica dentro de
un mapa de densidad electrónica a menor resolución. Aunque existen diversas
aproximaciones para llevar a cabo el ajuste molecular, son herramientas en desarrollo
que es necesario perfeccionar y adaptar al usuario (López‐Blanco/Chacón 2015).

El objetivo general de este TFM es la mejora y adaptación de los métodos de ajuste
desarrollados por el grupo receptor del doctor P. Chacón, así como su integración
dentro del programa UCSF Chimera a través de la realización de unos plugins.
Concretamente, las herramientas ADP_EM, Situs e iMODFIT.

Al final, se obtendrán una serie de plugins para Chimera desarrollados en Python para
las diferentes herramientas y métodos de ajuste molecular desarrollados por el grupo,
que se harán públicos a la comunidad científica.

 Abstract (in English, 250 words or less):

This project lies within the field of structural biology and will be focused on
computational tools development to integrate 3D information of proteins and nucleic
acids from different experimental sources such as cryo-electron microscopy (EM) or X-
ray crystallography.

Fitting is the standard way of interpreting the information contained in cryo-electron-
microscopy maps of macromolecular structures by means of the available atomic
structural components. Multiresolution fitting is a complicated jigsaw puzzle in which
the low-resolution 3D EM density map of a macromolecule complex acts as a fuzzy
frame to guide the assemblage of interlocking atomic-resolution pieces. Although
there are several approaches to perform fitting, those are tools in development phase
that needs to be improved and better adapted to the users (López-Blanco, J. R. and
Chacón, P. (2015)).

The main objective of this project is the improvement and adaptation of these fitting
tools developed by P. Chacón’s team, as well as its integration in UCSF Chimera
program. Specifically, ADP_EM, Situs e iMODFIT tools.

At last, some Chimera plugins will be obtained based on the different fitting tools and
models developed by the group.

Index

1. Overview ... 1

1.1 Project Context and Justification .. 1

1.2 Project Objectives ... 2

1.2.1 General Objectives.. 2

1.2.2 Specific Objectives .. 3

1.3 Approach and Methods ... 4

1.3.1 Software and Technology .. 4

1.3.2 Hardware .. 7

1.4 Project Planning ... 8

1.4.1 Initial Tasks .. 8

1.4.2 Final Tasks ... 9

1.4.3 Initial Tasks Timing ... 10

1.4.4 Final Tasks Timing .. 11

1.4.5 Project Calendar Comparison ... 12

1.4.6 Project Milestones .. 13

1.4.7 Risk Analysis .. 14

1.5 Brief Summary of the Products Obtained .. 15

1.6 Short description of memory chapters .. 18

2. Macromolecular Fitting Tools .. 20

2.1 Macromolecular Fitting ... 20

2.1.1 Rigid Fitting ... 21

2.1.2 Flexible Fitting .. 23

2.2 ADP_EM Rigid Fitting Tool ... 24

2.3 iMODFIT Flexible Fitting Tool ... 29

3. Results ... 36

3.1 Chimera ... 36

3.2 ADP_EM Plugin for Chimera .. 37

3.3 iMODFIT Plugin for Chimera .. 47

3.4 Plugins Testing ... 56

3.5 Dissemination of the Plugins .. 61

3.6 Conclusions .. 63

3.7 Acknowledgements .. 65

4. Glossary ... 66

5. Bibliography ... 67

6. Appendants .. 69

6.1 ADP_EM Relevant Code .. 69

6.2 iMODFIT Relevant Code .. 77

List of Figures

Figure 1: Initial Project Calendar. .. 12

Figure 2: Final Project Calendar. ... 12

Figure 3: Rigid and flexible macromolecular fitting. .. 20

Figure 4: 6-Dimensional direct search. .. 22

Figure 5: Normal vibration modes... 23

Figure 6: Radial and spherical sampling. .. 27

Figure 7: Modelling the atomic structure using ADP_EM. .. 27

Figure 8: ADP_EM Workflow. ... 28

Figure 9: iMODFIT Workflow. ... 32

Figure 10: Flexible fitting of the thermosome into an experimental EM map at 10Å. . 33

Figure 11: Flexible fitting of the GroEL into an experimental EM map at 10 Å 34

Figure 12: Flexible fitting of the RepB in the presence of DNA using iMODFIT............ 35

Figure 13: A snapshot of the UCSF Chimera program. ... 36

Figure 14: ADP_EM entry menu in Chimera. .. 38

Figure 15: ADP_EM basic GUI in Chimera... 38

Figure 16: ADP_EM GUI status just before perform fitting 40

Figure 17: ADP_EM fitting process shown by the log window. 41

Figure 18: ADP_EM expert GUI in Chimera. ... 42

Figure 19: ADP_EM process finished. .. 42

Figure 20: ADP_EM Results panel with all the calculated solutions dropped down. 43

Figure 21: ADP_EM Solution 1 fitted into the map. ... 44

Figure 22: ADP_EM Solution 8 fitted into the map. ... 44

Figure 23: ADP_EM Solution 10 fitted into the map. ... 45

Figure 24: Copies of solutions 1, 8 and 10 and molecule positioned in solution 17. 45

Figure 25: A snapshot of the user guide. .. 46

/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352780
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352781
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352782
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352784
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352785
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352786
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352793
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352797
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352799

Figure 26: Objects loaded (A) and objects moved (B). ... 46

Figure 27: Solution 16 of the moved molecule from Figure 25b. 47

Figure 28: iMODFIT entry menu in Chimera. .. 48

Figure 29: iMODFIT simplest GUI in Chimera. ... 48

Figure 30: iMODFIT GUI status just before start fitting. ... 50

Figure 31: iMODFIT fitting process shown by the log window. 50

Figure 32: iMODFIT expert GUI in Chimera. ... 51

Figure 33: iMODFIT process finished. .. 51

Figure 34: iMODFIT Results panel. .. 52

Figure 35: iMODFIT showing the original molecule. .. 53

Figure 36: iMODFIT showing the fitted molecule. ... 53

Figure 37: iMODFIT showing the fitted molecule and its copy in the Model Panel. 54

Figure 38: iMODFIT showing the original molecule and the fitted copy. 54

Figure 39: Frame 9 of the trajectory movie generated by iMODFIT. 55

Figure 40: Frame 1 of the trajectory movie generated by iMODFIT. 55

Figure 41: A snapshot of the user guide. .. 56

Figure 42: Snapshot of the ADP_EM Chimera plugin the receiving group web. 62

Figure 43: : Snapshot of the iMODFIT Chimera plugin the receiving group web. 63

/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352805
/Users/Solar/Desktop/TFM/Memoria/Memoria.docx#_Toc483352807

 1
2

1. Overview

1.1 Project Context and Justification

Advances in current biology and medicine depend on understanding
the actions and interactions of large molecular complexes. The
characterization of these macromolecules can only be approached
with the coordinated application of different complementary
experimental techniques.

The hybrid methods allow combining computationally and in an
automatic and reproducible way the structural information
provided by the experimental techniques. It is a challenge in how
computational methods would assist on characterizing, at atomic
level of the different functional states of the macromolecules in
solution and, therefore, to understand the molecular mechanisms
of the main actors of the different biological functions.

In this context, one of the most interesting and fruitful fields of
current structural bioinformatics focuses on the development of
different methodologies for integrating structural information into
different resolutions. The relevance and timeliness of this field has
aroused my interest. I think it is an ideal framework to apply the
knowledge acquired in the Master and it will guide my professional
training towards the field of research in one of the most powerful
research groups of this area at national and international level, like
Pablo Chacón’s group.

Thus, according to everything described above, this project lies
within the field of structural biology and will be focused on
computational tools development to integrate 3D information of
proteins and nucleic acids from different experimental sources such
as cryo-electron microscopy or X-ray crystallography.

Fitting is the standard way of interpreting the information
contained in electron-microscopy (EM) maps of macromolecular

2

structures by means of the available atomic structural components.
Multiresolution fitting is a complicated jigsaw puzzle in which the
low-resolution 3D EM density map of a macromolecule complex
acts as a fuzzy frame to guide the assemblage of interlocking
atomic-resolution pieces. Although there are several tools to
perform fitting, they are in development phase that need to be
improved and better adapted to the users (López-Blanco, J. R. and
Chacón, P. (2015)).

The main objective of this project is the improvement and
adaptation of these fitting tools developed by P. Chacón’s receiving
group, as well as its integration in UCSF Chimera program.
Specifically, ADP_EM, Situs and iMODFIT tools.

At last, some Chimera plugins will be obtained based on the
different fitting tools and models developed by the group and
published to the scientific community (dissemination).

1.2 Project Objectives

 1.2.1 General Objectives

Two main objectives will be defined in this project: training
objective and fitting tools development objective. This section
describes the objectives from a global and conceptual perspective.

The training objective will serve to get familiarized with the
computational techniques of structural integration, specifically the
fitting methods developed by the receiving team.

Once the brief training period has been completed, the main and
most important objective would be the development, improvement,
and adaptation of the molecular fitting methods developed by the
receiving group (Lopéz-Blanco, J. R. and P. Chacón (2013), Chacón,
P. and W. Wriggers (2002), Garzón, J. I., J. Kovacs, R. Abagyan and P.
Chacón (2007)), like ADP_EM, iMODFIT, or Situs.

3

 1.2.2 Specific Objectives

Training Objectives

1. Familiarization with theory and software of molecular fitting
tools developed by the group, particularly with packages:

• Situs (http://situs.biomachina.org)

• ADP_EM (http://chaconlab.org/methods/fitting/adpem)

• iMODFIT (http://chaconlab.org/methods/fitting/imodfit)

2. Familiarization with other bioinformatics fitting approaches

like:

• mdff (http://www.ks.uiuc.edu/Research/mdff/)

• gEMfitter (http://gem.loria.fr/gEMfitter/)

• Integrative Modeling (https://integrativemodeling.org/)

• Rosseta (https://www.rosettacommons.org/)

Development Objectives

1. Development, improvement, optimization, and the

integration of ADP_EM, iMODFIT, and Situs into UCSF
Chimera. It is intended to improve de efficiency and usability
of these tools trough code improvements (C and C++) and,
specifically, develop Chimera plugins in Python for Chimera
program, which is the most used visualization tool in the field
of electron microscopy.

o ADP_EM is a priority while iMODFIT and Situs plugins
would be implemented as long as the project’s timing
and needs allow.

http://situs.biomachina.org/
http://chaconlab.org/methods/fitting/adpem
http://chaconlab.org/methods/fitting/imodfit
http://www.ks.uiuc.edu/Research/mdff/
http://gem.loria.fr/gEMfitter/
https://integrativemodeling.org/
https://www.rosettacommons.org/

4

2. Depending on the project’s timeline progress, integration of
other molecular fitting programs such as geMfitter and
COLORES (Situs) will be explored.

3. At last, the obtained Chimera plugins will be properly
released to the scientific community.

1.3 Approach and Methods

The field of application is such a specific field that requires prior
training. For this reason, in a first stage a strategy has been
combined into a brief training to understand and get familiar with
the problem of molecular fitting with the introduction to the
approaches used in the field. This stage will also be useful to identify
which tools could be improved and the way to do it.

In the second stage, the fitting tools will be developed and
improved through computational knowledge based in C/C++ and
Python.

The technologies, software, and hardware required and used to
perform both stages will be detailed in the following sections.

 1.3.1 Software and Technology

• Products and plugins will be developed in Python mostly
which is the base programming language where Chimera is
built. Python version will be the latest and updated version
supported by the development computers and frameworks.
Syntactic analysis will be used to ensure the quality of the
code created.

• It may be necessary the use of C and C++ to create shared
libraries and pipes that allow a bidirectional communication
between Chimera plugins and the fitting processes like

5

ADP_EM or iMODFIT. This point is open due to variations in
development requirements.

• C and C++ compilers that will be used for the fitting tools
processes will be Intel Parallel Studio XE which offers, apart
from speed and management compilation, some useful APIs
like Fourier transforms that are necessary in this project, as it
will be seen in later chapters.

• Changes and versions of products during the development
phase will be handled through Git repository in the internal
intranet that the receiving group is actually using for their
works.

• Chimera plugins development, the main objective of this
project, use Python in order to be dynamically used by users.
This is, that one user can load a plugin in Chimera from any
folder location, i.e. independently of the administrative
permissions.

• All products obtained will a simple, friendly user guide with
detailed installation instructions.

• All products obtained will be published to the public trough
the official media of the receiving group. In addition, they will
be deployed in an online repository like GitHub so that they
are use as much as possible.

o It is also intended to contact the official developers of

Chimera to include the products natively in the
program, if they consider them fit and robust enough.

• In the first stage of development, plugins will be coded for
Linux and Mac OS X, trying to adapt them to Windows
platforms too, but this will depend on project deadlines,
requirements and changes.

• Plugins developed should be compatible with previous and
future versions of Chimera, as long as Chimera standards do
not change.

6

• Since the plugins will handle several atomic structures in form

of PDBs and EM density maps of biological macromolecules, a
developed code quality will be necessary to ensure a good
flow and memory management, as well as the own session of
Chimera. It will also be necessary to take care of the
computational cost and the complexity of the code developed
in the products.

• A priori it is not possible to establish a usual testing strategy
for the plugins developed since it is necessary to restart
Chimera every time modifications are to check them. Thus,
two phases of testing can be established:

o Development phase testing: basic and simple tests

about the correct functionality of different
requirements that are demanded to the plugins.

o Post-development phase testing: overload and stress

testing with real data that will check the performance
of the plugins in professional tasks.

• Products and plugins obtained should be developed with

quality enough to be improved in a future with new
functionalities in a simple, fast, secure and robust way.

• Support and development will be in constant supervision and
change.

7

 1.3.2 Hardware

This project will be carried out in a MacBook Pro 15” with the
following characteristics:

Memory

Installed RAM: 8 GB (2x4GB)

Max. Amount: 8.0 GB

Nr. of Slots: 2

RAM Speed: 1600 MHz

RAM Type: DDR3, SDRAM

Processor

CPU speed: 2.3 GHz

CPU Type: Quad Core i7

Cores: 4

Bus Speed: 5 GT/s DMI

Cache: 6 MB L3 cache

64-bit: Yes

Turbo Boost: Up to 3.3 GHz

Graphics

Display Size: 15.4-inch

Graphics Card: NVIDIA GeForce GT 650M
Intel HD Graphics 4000

Card Memory: 1 GB (GT650)

Max. Resolution: 1440 x 900

BLU / Coating: LED TFT, Glossy.

Storage and Media

Hard Drive: 500 GB, 5400 rpm.

Drive Brand: Hitachi or Toshiba

Drive Bus: Serial-ATA

Optical Drive: This unit has an 8x SuperDrive built in.

Optical Bus: Serial-ATA

Other Media: -

Networking

AirPort: Built-in Airport Extreme (802.11 a/b/g/n).

Ethernet: 10/100/1000BASE-T (RJ-45)

Bluetooth: Built-in Bluetooth 4.0

Infrared: For use with Apple Remote only.

Modem: None

Operating System and Software

Original OS: 10.7.4 Lion

Maximum OS: Latest release of Mac OS X

Minimum OS: OS X 10.7.3 Build 11D2097

http://www.appleserialnumberinfo.com/Desktop/SerialPages/Ports/EthernetMacBookPro.php
http://www.appleserialnumberinfo.com/Desktop/SerialPages/OS/LatestOSX.php

8

1.4 Project Planning

The planning has been subject to changes that were a consequence
of variations or modifications suffered by the different products
that were developed, either by internal or external requirements.

In this section, tasks and its deadlines variations, calendars, Gantt
charts and project milestones will be exposed.

 1.4.1 Initial Tasks

1. Training with molecular fitting theory and software developed
by the receiving group:

a. Situs 2 days

b. ADP_EM 14 days

c. iMODFIT 3 days

2. Familiarization with other bioinformatics fitting approaches:

a. gEMfitter 1 day

b. mdff 1 day

c. Integrative Model 1 day

d. Rosetta 1 day

3. Improvement and adaptation of ADP_EM and iMODFIT.
Chimera plugins development:

a. Chimera plugins definition 4 days

b. ADP_EM Chimera plugin GUI 5 days

c. ADP_EM fitting process in Chimera 8 days

d. ADP_EM plugin tests and results 6 days

4. Development of other approaches like iMODTFIT or Situs:

9

a. Subject to availability and changes 10 days

i. if it not possible, ADP_EM plugin will be
perfected

5. Project Memory creation and presentation 10 days

a. Project Memory creation 7 days

b. Project presentation 5 days

 1.4.2 Final Tasks

1. Training with molecular fitting theory and software developed
by the receiving group:

a. Situs 1 day

b. ADP_EM 17 days

c. iMODFIT 3 days

2. Familiarization with other bioinformatics fitting approaches:

a. gEMfitter 0,5 day

b. mdff 0,5 day

c. Integrative Model 0,5 day

d. Rosetta 0,5 day

3. Improvement and adaptation of ADP_EM and iMODFIT.
Chimera plugins development:

a. Chimera plugins definition 4 days

b. ADP_EM Chimera plugin GUI 8 days

c. ADP_EM fitting process in Chimera 12 days

d. ADP_EM plugin tests and results 9 days

10

4. Development of other approaches like iMODTFIT or Situs and
project memory and presentation:

a. Subject to availability and changes 10 days

i. if it not possible, ADP_EM plugin will be
perfected

ii. Project Memory creation 7 days

iii. Project presentation 5 days

 1.4.3 Initial Tasks Timing

Stage Task Step
Step
Days

Task
Days

Stage
Days

Total
Days

Training

1

a 2

19

23

66

b 14

c 3

2

a 1

4
b 1

c 1

d 1

Chimera
Development

3

a 4

23
33

b 5

c 8

d 6

4 - 10 10

Memory and
Presentation

5
a 7

10 10
b 5

11

 1.4.4 Final Tasks Timing

Stage Task Step
Step
Days

Task
Days

Stage
Days

Total
Days

Training

1

a 1

21

23

66

b 17

c 3

2

a 0,5

2
b 0,5

c 0,5

d 0,5

Chimera Development 3

a 4

33 33
b 8

c 12

d 9

Other approaches,
Memory and
Presentation

4 a 10 10 10

12

 1.4.5 Project Calendar Comparison

Figure 1: Initial Project Calendar.

Figure 2: Final Project Calendar.

13

 1.4.6 Project Milestones

Project Starting 22.02.2017

Training Stage Starting 22.02.2017

 Situs 22.02.2017-22.02.2017

 iMODFIT 23.02.2017-27.02.2017

 UOC PEC1 Starting 01.03.2017

 ADP_EM 28.02.2017-22.03.2017

 UOC PEC2 Ending 15.03.2016

 Other approaches 23.03.2017-24.03.2017

Training Stage Ending 24.03.2017

UOC PEC2 Starting 16.03.2017

Chimera Development Stage Starting 27.03.2017

 Chimera plugins definition 27.03.2017-30.03.2017

 ADP_EM Chimera plugin GUI 31.03.2017-11.04.2017

UOC PEC2 Ending 05.04.2017

UOC PEC3 Starting 06.04.2017

 ADP_EM fitting process in Chimera 12.04.2017-27.04.2017

 ADP_EM plugin tests and results 28.04.2017-10.05.2017

Chimera Development Stage Ending 10.05.2017

UOC PEC3 Ending 10.05.2017

Others, Memory and Presentation Stage Starting 11.05.2017

UOC PEC4 Starting 11.05.2017

 Other approaches 11.05.2017-24.05.2017

14

 Memory 11.05.2017-19.05.2017

 Presentation 18.05.2017-24.05.2017

Others, Memory and Presentation Stage Ending 24.05.2017

UOC PEC4 Ending 24.05.2017

 1.4.7 Risk Analysis

During the development phase, some risks had to be taken into
account that could have affected the achievement of the project
and its final outcome:

• Changes/modifications of the theoretical approaches of the
processes involved: methods, fittings, etc. E.g., introducing a
new set of theoretical basis into the fitting methods that were
initially not taken into account.

• Changes/modifications of the practical approaches of the
processes involved. E.g., introducing new GUI functionalities
in the ADP_EM plugin that were initially not taken into
account.

• Changes/modifications in the different tools used during the
development of the project. E.g., a new version of Chimera
that might have caused compatibility issues and forced to
redo some parts of the project.

• Computational limitations of the different used resources.
E.g., different tests during the testing phase might have had a
high computational cost and caused a delay this stage.

• Limitations of Chimera that have entailed a rethinking and/or
delay before not foreseen. For example, modifications made
to different plugins required restarting Chimera every time to
check them. This affected directly to the development stage.

15

Therefore, it is reiterated that the project, and specifically during its
development phase, was subject to all kinds of changes, both
practical and theoretical, that were resolved as progress was made
in the achievement of the different products.

1.5 Brief Summary of the Products Obtained

Training Stage

• In-depth level knowledge, theoretical and practical, as well as
different application situations of the ADP_EM molecular fitting
model.

• Medium level knowledge and practical application of the
iMODFIT molecular fitting model.

• General knowledge and practical application of the Situs
molecular fitting model.

• Basic knowledge and practical application of the gEMfitter
molecular fitting model.

• Basic knowledge and practical application of the mdff molecular
fitting model.

• Basic knowledge and practical application of the Rosetta
molecular fitting model.

Development Stage

• A complete dummy Chimera plugin without any kind of
functionality, developed in Python, which can be loaded and
integrated in Chimera. In addition, this product can be used as a
template to create new plugins in Chimera.

16

• A complete Chimera plugin for the ADP_EM molecular fitting
model and process with the following functionalities:

o Ability to host the plugin in any user folder and allow its
loading inside Chimera dynamically, regardless of the
chosen directory.

▪ The plugin consists of a directory with the necessary

Python files to be loaded in Chimera through a
native loading dialog.

▪ An executable C-version of ADP_EM to run the

process inside the plugin in Chimera.

o Ability to load density maps and atomic structures from
any location, allowing independent operation of the plugin
and not forcing the user to have to host these resources
within the plugin directory.

o Graphic User Interface (GUI) with all the options needed to

execute the ADP_EM process.

▪ This GUI is capable of interacting with other native
modules and plugins already existing in Chimera,
such as the Volume Viewer module that is related
with density maps.

o Validation of all the inputs introduced by the user in the
GUI.

o Calling to ADP_EM with all the inputs validated to perform

exhaustive fitting calculations.

o Generation of all the fitting solutions from the ADP_EM
binary output (6-dimensions = 3 rotational + 3
translational for each solution).

o Visualization of the different solutions in Chimera, directly

accessible from the plugin's own GUI. In addition, the user

17

can interact with the solutions and save them for later
analysis.

• An executable C version of the ADP_EM molecular fitting tool
optimized and adapted to be used in Chimera. This version is
included inside the own directory of the plugin.

o Any changes that have to be made in the Chimera plugin

will not affect the fitting tool itself and vice versa, any
modifications that have to be made to the ADP_EM
process will not affect the plugin.

o This ADP_EM version is capable of communicating

bidirectionally with Chimera in real time effectively.

• A complete Chimera plugin for the iMODFIT molecular fitting
model and process.

o Ability to host the plugin in any user folder and allow its
loading inside Chimera dynamically, regardless of the
chosen directory.

▪ The plugin consists of a directory with the necessary

Python files to be loaded in Chimera through a
native loading dialog.

▪ An executable C-version of iMODFIT to run the

process inside the plugin in Chimera.

o Ability to load density maps EM and atomic structures
from any location, allowing independent operation of the
plugin and not forcing the user to have to host these
resources within the plugin directory.

o Graphic User Interface (GUI) with all the options needed to

execute the iMODFIT process.

▪ This GUI is capable of interacting with other native
modules and plugins already existing in Chimera,

18

such as the Volume Viewer module that is related
with maps of density or MD Movie.

o Validation of all the inputs introduced by the user in the
GUI.

o Calling to iMODFIT with all the inputs validated to perform

exhaustive fitting calculations.

o Generation of all the fitting solutions from the iMODFIT
process raw files.

o Visualization of the different solutions in Chimera, directly

accessible from the plugin's own GUI. In addition, the user
can interact with the solutions and save them for later
analysis.

• An executable C version of the iMODFIT molecular fitting tool,
optimized and adapted to be used in Chimera. This version is
included inside the own directory of the plugin.

o Any changes that have to be made in the Chimera plugin

will not affect the fitting tool itself and vice versa, any
modifications that have to be made to the iMODFIT
process will not affect the plugin.

o This iMODFIT version is capable of communicating

bidirectionally with Chimera in real time effectively.

1.6 Short description of memory chapters

Below are described the theoretical and practical chapters related
to this work, which will be further detailed in later sections:

19

• Macromolecular Fitting: this chapter puts the molecular
fitting into context, why it is used, and what major
experimental techniques exist.

o Rigid Fitting: it explains the rigid fitting method, why

and when it is used, what the underlying idea is, and
what mathematical theories it applies (such as Fast
Rotational Matching [FRM]) and introduces ADP_EM.

o Flexible Fitting: it explains the flexible fitting method,

why and when it is used, what the underlying idea is,
what techniques it applies (such as Normal Mode
Analysis [NMA]) and introduces iMODFIT.

• ADP_EM Rigid Fitting Tool: this chapter introduces the
ADP_EM method with the mathematical theory on which it is
based. In particular, it explains how the search space is
rotationally accelerated using Fast Rotational Matching
(FRM) with spherical harmonics along with a small example.
In addition, it outlines the process workflow scheme.

• iMODFIT Flexible Fitting Tool: it details the iMODFIT method
and the mathematical theory on which it is based. It explains
how the Normal Mode Analysis (NMA) in Internal
Coordinates (IC) is used and how the different graining
models are applied. In addition, it outlines the process
workflow scheme.

Finally, the Results section is presented, which details the plugins
developed for the methods presented in these chapters along with
all the associated features.

20

2. Macromolecular Fitting Tools

2.1 Macromolecular Fitting

Density maps obtained by electron microscopy can be interpreted
using available atomic structures. By fitting these structures inside
low/medium resolution maps it is possible to obtain quasi-atomic
information in order to unravel the functioning of macromolecular
complexes (Wriggers, W. and Chacon, P. (2001)).

When available atomic structures and maps are in the same
conformation, it is enough to find the correct orientation between
them using a rigid fitting strategy. However, in multiple cases the
conformations observed in maps are significantly different from
those ones that are in crystals. In these situations, it is necessary to
employ a flexible fitting strategy to take into account the different
conformations.

Rigid

Flexible

Figure 3: Rigid and flexible macromolecular fitting.

When the density map (left) and the atomic structure (above) have roughly the
same conformation as the target map (right), the fit must be rigid. If the available
atomic structure has a different conformation (below) to that of the target map, the
setting must be flexible.

21

In this project, two macromolecular fittings are presented. The first
one is rigid-based, ADP_EM, and the second one is flexible-based,
iMODFIT.

 2.1.1 Rigid Fitting

A number of high performance fitting programs have been
developed over the last year to rigidly adjust atomic structures
within density maps when the conformations of both are similar. To
do this, there are several programs to carry out this task: SITUS
(Wriggers, W., Milligan, R.A. y McCammon, J.A. (1999)), EMFIT
(Rossmann, M.G. (2000)), DOCKEM (Roseman, A.M. (2000)),
FOLDHUNTER (Jiang, W., Baker, M.L., Ludtke, S.J. y Chiu, W. (2001)),
COLORES (Chacón, P. and W. Wriggers (2002)), COAN (Volkmann, N.
y Hanein, D. (2003)), 3SOM (Ceulemans, H. y Russell, R.B. (2004))
and ADP_EM (Garzon, J.I., Kovacs, J., Abagyan, R. y Chacon, P.
(2007a)). In general, these tools perform an automated search of
the all possible relative rotations and translations to maximize a
scoring function. This score, typically a score correlation function, is
calculated between the target experimental EM map and a
simulated probe map of the atomic structure (Wriggers, W. and
Chacon, P. (2001), Fabiola, F., Chapman, M.S. (2005)).

Despite its successful application, the exhaustive search performed
by the majority of these docking tools is a very time-consuming
process, and therefore they are not ready to support high-
throughput fitting process. In this context, the set of possible
positions between objects forms a vast search space. In the case of
fitting only two objects, it is necessary to explore a 6-Dimensional
space composed of a 3D translational space (spatial position of one
object with respect to another defined by three Cartesian values)
and a 3D rotational space (rotation of an object with respect to the
another defined by three angular values). The simplest approach to
this exploration (Figure 4), consisting of a systematic sampling of 6-
Dimensional space, is impracticable if relatively small search
intervals are used. Assuming a rigid fitting in which the rotational
interval of 6°, for each translation it will be necessary to explore
more than 105 rotations. If the maps also have dimensions of

22

100x100x100 cells or voxels, then the number of possible
translations can be 106 (the center of one of the maps is
superimposed on each voxel of the other). In summary, systematic
sampling in this case may require the exploration of approximately
one hundred billions of map positions relative to the other, with the
consequent computational cost.

Figure 4: 6-Dimensional direct search.

To increase efficiency, some methodologies have been developed to
accelerate the search for some of the degrees of freedom that make
up their space. The classical approach used to accelerate this search
is to calculate the correlation in the frequency space. Through the
combined use of the convolution theorem and Fast Fourier
Transform (FFT) calculation techniques it is possible to accelerate
the search in the translational space, requiring only a systematic
exploration of the rotational space. Thus, for each rotation, the
correlation in the translation space is calculated by:

Where 𝑀𝜆
𝐴 and 𝑀𝜆

𝐵 are the electron density matrices representing
three-dimensional maps. This type of fitting, called Fast
Translational Matching (FTM) (Katchalski-Katzir, E., Shariv, I.,
Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser, I.A. (1992)), has
already been successfully used in bioinformatics applications
(Wriggers, W. and Chacon, P. (2001), (Eisenstein, M. and Katchalski-

The 6-Dimensional search discreetly explores the maximum number of possible positions
and orientations of an object with respect to another. For each of these combinations the
correlation between the two objects is calculated. In a final step, the possible solutions are
ordered according to the correlation.

(1)

23

Katzir, E. (2004)). Alternatively, it is also possible to accelerate the
rotational space search by combining a suitable representation of
the rotational space and the use of spherical harmonics (Ritchie,
D.W. and Kemp, G.J. (2000), Kovacs, J.A. and Wriggers, W. (2002)).
This methodology, called Fast Rotational Matching (FRM), allows
obtaining a search that is better adapted, and therefore faster, to
the nature of the bioinformatics fittings described below. The
ADP_EM algorithm combines FTM and FRM while Situs only uses
FFT. The first one is described in later chapters.

 2.1.2 Flexible Fitting

Flexible fitting methods are used to
consider the conformational differences
between the atomic structures and the
density maps. Although the most
commonly used method to study the
flexibility of macromolecules are those
based on Molecular Dynamics (MD) and
NMA (Normal Mode Analysis), other
alternative approaches have also been
used successfully. The following section
briefly discuss the NMA method in which
flexible fitting tool used in this work is
based (iMODFIT).

One of the most interesting alternatives
to MD for studying the flexibility of
macromolecules is the NMA. The NMA is
an effective computational method for
the study of large-scale and collective
macromolecular motions despite its
limitations (Kovacs, J.A., Chacon, P., Cong,
Y., Metwally, E. and Wriggers, W. (2003)).
The NMA can model with relative ease
the collective and large amplitude
movements of large macromolecular
complexes. The main approximation of

Figure 5: Normal vibration modes
The three lower energy modes of
the protein structure of the
adenylate kinase (4ake) protein
have been shown with arrows.

24

this methodology is that the potential and kinetic energies vary
quadratically around the minimum energy conformation of the
system. From this assumption it is possible to decompose the
macromolecular motion in a series of modes of deformation. These
modes form an orthonormal basis of vectors which describes all
possible shifts or deformations around the equilibrium
conformation, that is, any movement can be expressed as a linear
combination of these modes.

The first three modes of the adenylate kinase protein are shown in
Figure 5. Each of them is associated with an energy (or frequency)
so that it is possible to determine those movements that are more
energy-efficient. Note that at higher frequency, higher energy, and
vice versa.

It is not possible to identify which modes are functionally relevant
without additional experimental data. However, in general, they will
almost always be one or a few of the lowest frequency because they
represent the conformational transitions with lower energy cost. In
principle, it is possible to study the function of biomolecules by
filtering out the less important, high-frequency motions, and
focusing on the most dominant low frequency (lower energy)
modes (Ma, J. (2005)).

2.2 ADP_EM Rigid Fitting Tool

ADP_EM is a rigid body fitting method used for interpreting the
information contained in EM maps. The atomic structures are
located inside the experimental map by maximizing their cross
correlation. ADP_EM combines the Fast Rotational Matching
method (FRM) (Kovacs, J.A. and Wriggers, W. (2002)) and
translational scans using spherical harmonics and a convenient
formulation of the three-dimensional rotation. Due to this, it is
possible to improve the search efficiency and exhaustiveness of the
rotational space.

25

The computational solution of the search problem can be reduced
to finding the relative orientation and translation which maximizes
the density cross-correlation of the structures/maps to be fitted.
For a given rotation and translation the cross correlation is defined
as the scalar product between the EM experimental map 𝜌𝑙𝑜𝑤, and
a low-pass filtered version of the atomic structure, 𝜌ℎ𝑖𝑔ℎ:

𝑪(𝑻, 𝑹) = ∫ 𝝆𝒍𝒐𝒘 × 𝛀𝑻 𝚲𝑹 𝝆𝒉𝒊𝒈𝒉

ℝ𝟑

 (1)

where Ω𝑇 and Λ𝑅 denote the translational and rotational operators,
respectively. To find the highest correlation values, some previous
approaches perform a systematic rotational scan of an atomic
structure (𝜌ℎ𝑖𝑔ℎ) relative to a fixed map (𝜌𝑙𝑜𝑤), combined with a

Fast Fourier Transform (FFT)-accelerated translational search based
on the convolution theorem.

This well-known exhaustive search protocol is borrowed from the
protein-protein docking field (Gabb, H.A., Jackson, R.M. and
Sternberg, M.J. (1997), Katchalski-Katzir, E., Shariv, I., Eisenstein, M.,
Friesem, A.A., Aflalo, C. and Vakser, I.A. (1992), Vakser, I.A., Matar,
O.G. and Lam, C.F. (1999)). In contrast, ADP_EM also accelerates the
rotational search providing higher efficiency. This method, named
Fast Rotational Matching (FRM), uses a spherical harmonics
parameterization of the three-dimensional rotation to efficiently
compute the correlation of all rotations for each position (Fig.6).

A detailed description of the theory underlying the FRM method
was given elsewhere (Chacón, P. and W. Wriggers (2002), Kovacs,
J.A., Chacon, P., Cong, Y., Metwally, E. and Wriggers, W. (2003).
Briefly, density functions to be fitted are first approximated by
expansions in a basis of spherical harmonic (SH) functions. To this
end, the EM map is partitioned into concentric spherical layers each
of which is represented by finite sums as:

26

1

0

1

0

 (, ,) () (,)

 (, ,) () (,)

B l
low

lm lm

l m l

B l
high

lm lm

l m l

low

high

r C r Y

r C r Y

where:

• 𝐶𝑙𝑚
(𝑟)

 are coefficients associated with a specific, complex-

valued spherical harmonic function 𝑌𝑙𝑚 (𝛽, 𝜆) defined on the
unit sphere;

• 𝑙 ≥ 0 and – 𝑙 ≤ 𝑚 ≤ 𝑙 are the SH degree and order, and 𝛽
and 𝜆 are the co-latitude and longitude, respectively.

• According to the sampling theorem, the number of sampling
points (in each 𝛽 and 𝜆) used is equal to twice of the
bandwidth B.

Instead of recasting the exhaustive search into a formulation
involving five angles and just one translational parameter (Kovacs,
J.A., Chacon, P., Cong, Y., Metwally, E. and Wriggers, W. (2003)),
here the three rotational degrees of freedom are accelerated, while
the three translational ones are simply scanned. Considering only
the rotational part, the fitting function can now be expressed in
terms of an inverse Fourier transform of the SH transforms (eq. 2) of
the density maps (Kovacs, J.A. and Wriggers, W. (2002)):

2

0

, , '

1
() () ()

l l low high

m h m mh hm lm lm

l

C R d d C r C r r drFT

where the 𝑑𝑚𝑛
𝑙 are real coefficients that define the matrix elements

of the irreducible representations of the three-dimensional rotation
group. This expression can be computed very efficiently by

precomputing the coefficients 𝑑𝑚𝑛
𝑙 and by using as upper limit of

integration the maximum shell radius for which the density has non-
zero values. In this way, eq. 3 allows, for a given translation, a very
fast calculation of the correlation function for all rotations, which

(3)

(2)

27

will be sampled at twice the bandwidth B used in the harmonic
transformation of the maps (eq. 2).

For example, B=16 corresponds to scanning 16,000 rotations with a
sampling step of 11.25°. If the rotational sampling step is set to 5.6°
(B=32), more than 130,000 rotations will be explored. Thus, this
method offers an efficient and customizable rotational screening
(extracted with the permission of the receiving group (Garzón, J. I.,
J. Kovacs, R. Abagyan and P. Chacón (2007))).

The exhaustive search is then performed by applying this FRM
rotational scan on a list of translational points that uniformly cover
all the search space. Moreover, the translational space is limited to

ADP_EM adjusts the
atomic structure of the
component to the map
areas at low resolution
where the correlation
of electronic densities
is greater. In the
example shown, since
the complex is a trimer
(made up of three
identical structures)
there are three
correlation maxima.

Figure 6: Radial and spherical sampling. The figure on the right represents the radial
sampling of the electronic density of the 1lza protein (left). Points with the highest
electronic density are shown in red, with lower density in blue. Each spherical layer of this
radial sampling is then used to perform the expansion on the basis of spherical harmonics.

Figure 7: Modelling
the atomic structure
using ADP_EM.

28

positions on which the dimension of the atomic structure roughly
fits inside the experimental EM map to prevent scanning nonsense
points. There are other translational strategies, such as radial search
(useful for structures with holes) or center-based search (practical
for fitting structures with similar dimensions) (Kovacs, J.A., Chacon,
P., Cong, Y., Metwally, E. (2003). These sampling schemes take
advantage of geometry but their application range is not universal
as the uniform sampling scheme using a mask. Therefore, the
masking strategy is set as default in this project.

Figure 8: ADP_EM Workflow.

The sequence in which the actions are
performed is indicated by the numbering set.
The red lines indicate the flow of data between
the different actions.

29

Although the density cross-correlation works reasonably well, in
particular cases may lead to ambiguous false positives. This can be
critical when the resolutions are low, typically less than 15 Å, and
small components are to be placed in a large density map. Some
alternatives can be taken into account to improve the fitting
contrast. For example, the fitting can be performed by a local
correlation criterion (Roseman, A.M. (2000), Rath, B.K., Hegerl, R.,
Leith, A., Shaikh, T.R., Wagenknecht, T. and Frank, J. (2003)), or the
maps can be pre-filtered with a Laplacian kernel (Chacón, P. and W.
Wriggers (2002)). Since its implementation does not need any
change in the registration scheme, here the fitting is performed
with Laplacian-filtered maps instead of the original density maps.
The strategy of convolving the maps with a Laplacian kernel
improves the numerical contrast among potential solutions, by
including both density and contour overlap.

A new version of ADP_EM and a plugin were developed and
integrated in Chimera. This will be described in later chapters.

2.3 iMODFIT Flexible Fitting Tool

iMODFIT is an approach to obtain a flexible atomic model from a
low-resolution experimental map and an initial atomic structure in
different conformations.

Basically, NMA in IC reduces the conformational search space to
physically realistic collective motions and implicitly maintains the
covalent structures, thus preventing distortions. Because low-
frequency modes computed in IC provide a reasonable and
inexpensive direct view of the relevant conformational space, it is
possible to use the most probable deformation directions encoded
in this essential space to flex the atomic structure while maximizing
the density overlap with the target experimental map.

The NMA decomposes motion into a set of collective deformation
modes. This reduces dramatically the number of variables and

30

improves efficiency (Bray, J.K., Weiss, D.R., Levitt, M., 2011, Kovacs,
J.A., Cavasotto, C.N., Abagyan, R., 2005, López-Blanco, J.R., Garzon,
J.I., Chacon, P., 2011, Lu, M., Poon, B., Ma, J., 2006, Mendez, R.,
Bastolla, U., 2010).

The iMOD NMA engine is used to compute low-frequency modes in
IC (Lopez-Blanco, J.R., Garzon, J.I., Chacon, P., 2011). In NMA, the
macromolecule is modelled as a series of pseudo-atoms connected
by harmonic springs. The modes are calculated by solving a general
eigenvalue problem that diagonalizes the second derivative
matrices of potential and kinetic energies (Lopéz-Blanco, J. R. and P.
Chacón (2013)):

1 2 where (, ,...,), k N u u uHU TU U

Here, 𝒖𝑘 is the 𝑘𝑡ℎ deformation vector with its associated 𝜆𝑘
eigenvalue, and Η and Τ are the kinetic energy matrixes,
respectively. The equation of the potential energy is (Lopéz-Blanco,
J. R. and P. Chacón (2013)):

 62 20 0 0() () where 1 1 3.8ij ij ij ij ij

i j

V F r r s F r

One of the most interesting advantages of iMODFIT is its versatility
because it can handle different types of complexes and different
graining levels to represent structures:

• Heavy-atoms (HA): considers all heavy atoms for proteins and
nucleic acids (next-hydrogen).

• Five pseudo-atoms (C5): uses NH, Cα, and CO, including a Cβ
and virtual mass located at the mass center.

• Cα: select a single Cα atom per amino acid for proteins.

Indeed, these different representations had to be handled in the
Chimera plugin developed that will be seen in later chapters.

iMODFIT workflow is summarized in the Figure 9. In essence, the
tool interactively explores the lowest frequency modes to improve

(1)

(2)

31

the cross correlation with a target map. The atomic structure must
be approximately placed in the correct position inside the map. To
this end, ADP_EM (Garzón, J. I., J. Kovacs, R. Abagyan and P. Chacón
(2007)) or COLORES (Chacón, P. and W. Wriggers (2002)) would be a
good choice and, indeed, it is the way of working in this project.

First, it starts by calculating the 5% lowest-frequency modes in IC
from the initial model (step 1). Then, randomly merges the 10% of
them into a single deformation vector to generate a trial structure
(Steps 2 and 3). Then, the new trial model is low-pass-filtered to
produce a simulated density map. Finally, the fitting score is
calculated using the normalized cross-correlation between the EM
experimental target map, 𝑝𝑒𝑥𝑝, and this simulated map, 𝑝𝑡𝑟𝑖𝑎𝑙, (step

4):

exp exp

exp

i i
voxels

trial trial

i trial

C

This new flexed conformation is accepted only if the cross-
correlation improves; otherwise, the tool goes back (step 1) to
generate new trial deformation and so on. This is repeated until
convergence is reached except when the flexed conformation
deviates more than 0.1 Å RMSD from the previous one used for
NMA. In this situation, normal modes are refreshed using the last
accepted conformation. In addition, a local rigid-body optimization
is performed every 200 iterations to realign the flexed conformation
in order to compensate the small changes in the center of mass and
orientation required for optimal fitting.

Summarizing, combining rigid fitting as ADP_EM, to localize an
atomic structure into a target density map, with flexible fitting as
iMODFIT, to observe conformational changes in that complex, it is
possible to obtain a great quality fitting with efficiency and
reliability. Moreover, it is very easy to use because it does not
require elaborated pre-processing steps (just a previous
approximate rigid body fitting). In addition, it is highly customizable
and the user can control all the fitting parameters. Furthermore, the
computational cost is low, only a few minutes are needed to
perform the fitting.

(3)

32

Figure 9: iMODFIT Workflow.

33

Following, some flexible fittings with iMODFIT in combination with
ADP_EM are presented:

Figure 10: Flexible fitting of the thermosome into an experimental EM map at 10Å.

Panel A shows the initial orientation obtained with ADP_EM, in B, the model adjusted with
iMODFIT, and in C, the overlap of the initial structure (blue) on the model (yellow). The map
is displayed in transparency.

34

Figure 11: Flexible fitting of the GroEL into an experimental EM map at 10 Å

As previously mentioned, it is frequent to first perform a rigid body
fitting (ADP_EM) and then adjust the conformations by applying a
flexible fitting (iMODFIT) for greater accuracy.

In panels A and B two side views of the initial structures (blue) and adjusted
(yellow) are shown, respectively. In C the initial structure aligned on the final
structure with Chimera is shown.

35

The following is an image illustrating this case:

Figure 12: Flexible fitting of the RepB in the presence of DNA using iMODFIT.

The orientation of the initial structure (panel A) has been determined with ADP_EM. Panel
B shows the final model of the flexibly fitted obtained with the default parameters. Arrows
indicate the regions that require flexible fitting.

36

3. Results

3.1 Chimera

UCSF Chimera is a 3D visualization program for EM density maps
and atomic structures. This program includes a suite of tools for
interactive analyses of sequences and structures. In particular, it
offers interaction with molecular structures and related data,
including supramolecular assemblies, molecular dynamics
trajectories, and multiple sequence alignments. Moreover, it
enhances researcher workflow with novel extension features and
the creation of HD images and animations for publication and
presentation purposes.

Figure 13: A snapshot of the UCSF Chimera program.

Besides supporting 3D visualization, other native features include:

• Multiscale Models to visualize large-scale molecular
assemblies.

• ViewDock to screen docked ligand orientations.

37

• Volume Viewer to visualize density maps.

• Multalign Viewer to display sequence alignments, with
crosstalk to any associated structure.

Chimera is distributed with full documentation and a number of
tutorials. It can be downloaded free of charge for academic,
government, non-profit, and personal use. It is available for several
platforms, including Windows, MacOS X, and Linux.

Chimera is developed and supported by the Resource for
Biocomputing, Visualization, and Informatics, and it is funded by the
NIH National Center for Research Resources at the University of
California, San Francisco.

The software is specifically designed for extensibility, to allow
outside developers to incorporate new desirable functions.

The principal objective of this work has been the development,
optimization, and adaptation of the ADP_EM and iMODFIT tools to
be integrated as plugins in Chimera.

3.2 ADP_EM Plugin for Chimera

The main objective of this project is the development of two plugins
for Chimera to perform the two types of fitting (rigid and flexible),
this is, ADP_EM and iMODFIT. Both of them conserve the same
parameters and features as the original methods but are easier to
use. Furthermore, the user can interactively visualize the different
solutions as soon as they are computed. In this section, the ADP_EM
plugin for Chimera is presented.

The ADP_EM plugin developed for Chimera is located in a newly
created EM Fitting section in the Tools menu that Chimera offers to
the users (Figure 14).

38

.

When ADP_EM is loaded, the basic window or GUI that is presented
to the user is shown (Figure 15):

Figure 15: ADP_EM basic GUI in Chimera.

As it can be seen, the most important parameters of the original
methods are readily available in the basic window. The first field
selects the atomic structure and the second is the map. The rest of
them are described below:

• Bandwidth: it corresponds to the bandwidth in the harmonic
transformation. Its values are set to 16, 24, 32, 48 or 64. They
correspond to increasing angular sampling values.

Figure 14: ADP_EM entry menu in Chimera.

39

• Resolution: the nominal resolution of the projection map [Å].

• Cut-off: is the density threshold value for the experimental
map. All density levels below this value will be not
considered. User can get this value from Volume Viewer
dialog through the Get from Volume Viewer button available.

These parameters are the minimum required to perform the fitting.
The next ones are advanced features that should be used carefully
by the user:

• Fitting criterion: this option sets the fitting criterion:

o Standard cross-correlation the scalar product
between the density map of the low resolution map
and the low-pass filtered atomic structure.
Recommended for resolutions < 15 Å, specially the
atomic model accounts all the density of the map.

o Laplacian filter is applied by default to maximize the

fitting contrast. Recommended for resolutions 15 Å,
specially when the atomic model only accounts a part
of the density of the experimental map.

• Saved solutions: number of the saved solutions that ADP_EM
will compute (50 by default).

• Translational sampling: in [Å], by default twice of voxel size
of the density map. Values > 6 Å should not be used.

• Translational scan: translational scan strategy:

o Full search all the translational points inside the
target EM map will be explored.

o Limited radial search starting from the center of
mass.

o Masking search by default.

40

Apart from the button that displays the options for expert users,
there are four more:

• Fit: performs the fitting after validating properly the
parameters.

• Results: displays the solutions of the fitting in a new panel. It
is disabled while fitting is being performed.

• Close: close the GUI but keeps all the values associated.

• Help: opens a help guide in the browser.

Once the user has loaded the atomic structure and the map and
inserted coherent values for the basic parameters, the fitting can be
performed by clicking the Fit button (Figure 16).

When the ADP_EM is executed, a new window is shown to the user
with the process log and a progress bar to check the status (Figure
17).

Figure 16: ADP_EM GUI status just before perform fitting

 . EM map and atomic structure are
loaded and the minimum required parameters are set.

41

Figure 17: ADP_EM fitting process shown by the log window.

In addition to these parameters, some extra features had been
provided to expert ADP_EM users (Figure 18). These parameters can
be found in the Options button, that are displayed in a new panel:

• Number peaks explored per docking: default 30.

• Number peaks stored per iteration: default 20.

• Number peaks stored in the search: default 100.

• Number peaks stored in the multi-docking search: default
500.

• Translational threshold in grid units: default 2.0.

• Rotational threshold in degrees: default 360/bandwidth.

• Width between spherical layers: default 1.0.

• Density cut-off of the simulated map: default 0.0

 Notice how all the buttons are
disabled while the process is running.

42

Mainly, the execution time varies depending on the Bandwidth
value. The finer the angular sampling (bandwidth), the more it
takes.

 Figure 19: ADP_EM process finished. Notice how all the buttons are now enabled.

Figure 18: ADP_EM expert GUI in Chimera.

43

Once the process is finished, the log informs that the user can check
the solutions (Figure 19), and the user can visualize the solutions in
the Results panel which can be seen in Figure 20:

As it can be seen, the main options keep visible to let the user
perform another fitting if it is necessary. Apart of this, there is a
drop-down menu to choose one of the solutions computed by
ADP_EM.

When one of them is chosen, the opened atomic structure updates
its coordinates and moves into the map to the fitted position
calculated by ADP_EM (Figures 21, 22 and 23).

Figure 20: ADP_EM Results panel with all the calculated
solutions dropped down.

44

Figure 21: ADP_EM Solution 1 fitted into the map.

Figure 22: ADP_EM Solution 8 fitted into the map.

45

Figure 23: ADP_EM Solution 10 fitted into the map.

Additionally, a button called Save Solution was implemented to
make a copy, with a representative name, to the Model Panel of the
chosen solution. Model Panel is a very important dialog of Chimera
that shows to the user all the models opened in the program (Figure
24).

Figure 24: Copies of solutions 1, 8 and 10 and molecule positioned in solution 17.

46

The last button in the Results panel, Back to initial, simply resets the
coordinates of the molecule and moves it to the original position it
had before the fitting was performed.

Briefly, the Help button opens a user guide in the browser with
instructions to load correctly the plugin in Chimera and a
description of the parameters involved to use them properly.

Figure 25: A snapshot of the user guide.

It is very common that users, once they loaded the atomic structure
and the map, move the molecule for some analytic reasons. This
situation had to be considered during the plugin development
because it involves camera motions related to the objects as well as
changes in their internal coordinates.

Figure 26: Objects loaded (A) and objects moved (B).

47

This had added considerable difficulty in achieving the plugin but it
maintains its efficiency and maintainability.

Figure 27: Solution 16 of the moved molecule from Figure 25b.

In later chapters the dissemination of this plugin will be described as
well as the different guides and considerations for its correct usage.

3.3 iMODFIT Plugin for Chimera

The iMODFIT plugin is located (with ADP_EM) in the newly created
EM Fitting section of the Chimera Tools panel (Figure 28). It can be
used (and should be) with some of the solutions provided from
ADP_EM in a previous execution.

48

When iMODFIT is loaded, the basic window or GUI that is presented
to the user is shown below (Figure 29):

Figure 29: iMODFIT simplest GUI in Chimera.

As can be seen, there are many options for the user to perform the
flexible fitting that match the original parameters of the method.
The first field selects the atomic structure to fit in the map, the
second one. The rest of them are described below:

• Resolution: the resolution criterion follows EMAN package
procedures. It is the nominal resolution of the projection map
in [Å].

• Fix DoF: randomly fixed ratio of dihedral coords. Example: 0.7
= 70% of dihedrals will be randomly fixed. User can choose
between None, 50% (fast), 70% (faster) or 90% (fastest).

Figure 28: iMODFIT entry menu in Chimera.

49

• Cut-off: is the density threshold value for the experimental
map. All density levels below this value will be not
considered. User can get this value from Volume Viewer
dialog when the map is loaded through the button available.

• Model: represents the coarse-grained model. User can
choose between Heavy-atoms, C5 or Cα (as described in 2.3)

• Number of modes and % Mode: Used modes range, either
number [1,N] <integer>, or ratio [0,1) <float> (default=0.05).

Apart from the button that displays the options for expert users,
there are four more:

• Fit: performs the fitting after validating properly the
parameters.

• Results: displays the solutions of the fitting in a new panel. It
is disabled while fitting is being performed.

• Close: close the GUI but keeps all the values associated.

• Help: opens a help guide in the browser.

Once the user has loaded the atomic structure and the map and
inserted coherent values for the minimum parameters, the fitting
can be performed by clicking de Fit button (Figure 30).

When the iMODFIT is executed, a new window is shown to the user
with the process log (Figure 31).

50

Figure 30: iMODFIT GUI status just before start fitting.

Figure 31: iMODFIT fitting process shown by the log window.

In addition to these parameters, some extra features had been
provided to expert users. These parameters can be found in the

 EM map and the first solution of
ADP_EM are loaded and the minimum required parameters are set.

 Notice how all the buttons are
disabled while the process is running.

51

Options button, which displays a new panel to insert them (Figure
32):

Figure 32: iMODFIT expert GUI in Chimera.

• Introduce options: this field allows user introduce advanced
commands for iMODFIT. Example: --addnevs 0.2 –pdb_ref
chainX.pdb

• Rediagonalization: RMSD ratio to trigger diagonalization.
Default 0. User can choose between None, 0.1, 0.5 or 1.

Mainly, the execution time varies depending on the values of the
parameters. Usually, iMODFIT takes several minutes to perform the
flexible fitting.

 Figure 33: iMODFIT process finished. Notice how all the buttons are now enabled.

52

Once the process is finished, the log informs that the user can check
the solutions (Figure 33), and the user can visualize the solutions in
the Results panel which can be seen in Figure 34:

Figure 34: iMODFIT Results panel.

Additionally, iMODFIT generates five files in the working directory:

• imodfit_fitted.pdb: fitted atomic structure

• imodfit_movie.pdb: multi-pdb trajectory movie

• imodfit_score.pdb: score file to check for convergence

• imodfit_model.pdb: original atomic structure

• imodfit.log: used command log

As can be seen, the main options keep visible to let the user
perform another flexible fitting if it is necessary. The button Show
fitted molecule switches between the original molecule and the
fitted one generated (Figure 35 and 36) and enables, when showing
the fitted molecule, the possibility of copying it (Figure 37 and 38).

53

Figure 35: iMODFIT showing the original molecule.

Figure 36: iMODFIT showing the fitted molecule.

54

Figure 37: iMODFIT showing the fitted molecule and its copy in the Model Panel.

Figure 38: iMODFIT showing the original molecule and the fitted copy.

As iMODFIT generates a multi-pdb trajectory movie, there has been
included another option, Open movie, that allows the user to open
this file and check all the different trajectories that were generated
in the flexible fitting (Figure 39 and 40).

55

Figure 39: Frame 9 of the trajectory movie generated by iMODFIT.

Figure 40: Frame 1 of the trajectory movie generated by iMODFIT.

56

Briefly, the Help button opens a user guide in the browser with
instructions to load correctly the plugin in Chimera and a
description of the parameters involved to use them properly.

Figure 41: A snapshot of the user guide.

In later chapters the dissemination of this plugin will be described as
well as the different guides and considerations for its correct usage.

3.4 Plugins Testing

In this section the different tests made for checking the correct
functionality of the ADP_EM and iMODFIT plugins will be described.
As described before, Chimera requires a restart every time a change
its made in a plugin, so there is no way to create an isolated test to
check some feature. In this context, each test is a result of making a
modification in the plugin code, restarting Chimera, and testing such
a change.

1.
Open Chimera and load the ADP_EM plugin with no
data.

57

2.
Open Chimera and load the ADP_EM plugin with some
molecule and EM map previously loaded. Check if the
objects appear in the plugin to be selected.

3.
Open Chimera, load the ADP_EM plugin and display the
Options panel.

4.
Open Chimera, load the ADP_EM plugin and open the
help guide in the browser with the Help button.

5.
Open Chimera, load the ADP_EM plugin and close it
with Close button correctly.

6.
Open Chimera, load the ADP_EM plugin with no data
and try to perfom a fitting. The message Choose model
and map is shown.

7.

Open Chimera, load the ADP_EM plugin with some
molecule and EM map previously loaded and try to
perfom a fitting. The message Cutoff must be defined is
shown.

8.
Open Chimera, load the ADP_EM plugin with some
molecule and EM map previously loaded and get the
cutoff level from the Volume Viewer dialog.

9.

Open Chimera, load the ADP_EM plugin with some
molecule and EM map previously loaded, cutoff
defined and try to perfom a fitting. The message
Resolution must be defined is shown.

10.

Open Chimera, load the ADP_EM plugin with some
molecule and EM map previously loaded, cutoff
defined, resolution defined to 70 or -2 and try to
perfom a fitting. The message Resolution must be
between 0 and 59 is shown.

11.
Open Chimera, load the ADP_EM plugin with some
molecule and EM map previously loaded, cutoff
defined, resolution defined and try to perfom a fitting.

12.
Open Chimera, load the ADP_EM plugin with all the
existing parameters introduced and check that all the
values are properly set into the plugin.

13.
Open Chimera, load the ADP_EM plugin with the
minimum required parameters and some advanced
options introduced and try to perform a fitting.

14.
Check that the process log window opens correctly and
shows the ADP_EM process log when performing a
fitting. Also check the progress bar status works fine.

15. Check that the Fit, Options, Results and Close buttons

58

are disabled when performing a fitting.

16.
Check that the Fit, Options, Results and Close buttons
are enabled when fitting process is finished.

17.
Display the Results panel when the fitting process is
finished.

18.
Check that all the ADP_EM solutions are set to the
drop-down menu in the Results panel.

19.
Check that the molecule moves correctly to the
position of the first chosen ADP_EM solution.

20.
Check that the molecule switches correctly its position
between different chosen ADP_EM solutions.

21.
Check that a copy of the chosen ADP_EM solution is
created in the Model Panel when Save solution button
is pressed.

22.
Check that the copy of the chosen ADP_EM solution is
the same and is in the same position as it.

23.
Check that ADP_EM plugin removes all temporal files
generated during the fitting process.

24.
Check that ADP_EM plugin does not create PDBs with
the solutions and store all in memory.

25.
Check that ADP_EM plugin creates pipes between
Chimera and the fitting process correctly.

26.
Check that ADP_EM plugin communicates
bidirectionally between Chimera and the fitting
process.

27.
Check that ADP_EM can load files from different
locations and perform the fitting correctly.

28.
Check that ADP_EM communicates properly with
Chimera native dialogs.

29.
Check that ADP_EM is able to make another fitting
when a previous one is finished and the Results panel is
being displayed.

30.
Check that data stored in memory from a previous
fitting is properly cleaned to ensure a correct
functioning when performing a new one.

31.
Check that ADP_EM prevents Chimera blocking when
performing a fitting.

32.
Open Chimera and load the iMODFIT plugin with no
data.

59

33.
Open Chimera and load the iMODFIT plugin with some
molecule and EM map previously loaded. Check if the
objects appear in the plugin to be selected.

34.
Open Chimera, load the iMODFIT plugin and display the
Options panel.

35.
Open Chimera, load the iMODFIT plugin and open the
help guide in the browser with the Help button.

36.
Open Chimera, load the iMODFIT plugin and close it
with Close button correctly.

37.
Open Chimera, load the iMODFIT plugin with no data
and try to perfom a fitting. The message Choose model
and map is shown.

38.

Open Chimera, load the iMODFIT plugin with some
molecule and EM map previously loaded and try to
perfom a fitting. The message Cutoff must be defined is
shown.

39.
Open Chimera, load the iMODFIT plugin with some
molecule and EM map previously loaded and get the
cutoff level from the Volume Viewer dialog.

40.

Open Chimera, load the iMODFIT plugin with some
molecule and EM map previously loaded, cutoff
defined and try to perfom a fitting. The message
Resolution must be defined is shown.

41.

Open Chimera, load the iMODFIT plugin with some
molecule and EM map previously loaded, cutoff
defined, resolution defined to 70 or -2 and try to
perfom a fitting. The message Resolution must be
between 0 and 59 is shown.

42.
Open Chimera, load the iMODFIT plugin with some
molecule and EM map previously loaded, cutoff
defined, resolution defined and try to perfom a fitting.

43.
Open Chimera, load the iMODFIT plugin with all the
existing parameters introduced and check that all the
values are properly set into the plugin.

44.
Open Chimera, load the iMODFIT plugin with the
minimum required parameters and some advanced
options introduced and try to perform a fitting.

45.
Check that the process log window opens correctly and
shows the iMODFIT process log when performing a
fitting.

46. Check that the Fit, Options, Results and Close buttons

60

are disabled when performing a fitting.

47.
Check that the Fit, Options, Results and Close buttons
are enabled when fitting process is finished.

48.
Display the Results panel when the fitting process is
finished.

49.
Check that the imodfit_fitted.pdb file is generated
when the iMODFIT fitting process is finished.

50.
Check that the imodfit_model.pdb file is generated
when the iMODFIT fitting process is finished.

51.
Check that the imodfit.log file is generated when the
iMODFIT fitting process is finished.

52.
Check that the imodfit_score.txt file is generated when
the iMODFIT fitting process is finished.

53.
Check that the imodfit_movie.pdb file is generated
when the iMODFIT fitting process is finished.

54.

Check that the molecule updates correctly its position
to the fitted one when the Show fitted molecule button
is pressed. Also check that the name button is changed
to Show original molecule.

55.
Check that the Copy fitted molecule button is enabled
Show fitted molecule button is pressed.

56.
Check that a copy of the iMODFIT fitted molecule is
created in the Model Panel when Copy fitted molecule
button is pressed.

57.

Check that the fitted molecule updates correctly its
position to the original one when the Show original
molecule button is pressed. Also check that the name
button is changed to Show fitted molecule.

58.
Open the trajectory movie generated by iMODFIT when
the Open movie button is pressed.

59.
Check that the trajectory movie generated by iMODFIT
is shown in the Model Panel.

60.

Check that the trajectories are properly set in the
movie and all the frames were generated correctly.
movie generated by iMODFIT is shown in the Model
Panel.

61.
Check that iMODFIT plugin removes all temporal files
generated during the fitting process.

62.
Check that iMODFIT plugin creates pipes between
Chimera and the fitting process correctly.

61

63.
Check that iMODFIT plugin communicates
bidirectionally between Chimera and the fitting
process.

64.
Check that iMODFIT can load files from different
locations and perform the fitting correctly.

65.
Check that iMODFIT communicates properly with
Chimera native dialogs.

66.
Check that iMODFIT is able to make another fitting
when a previous one is finished and the Results panel is
being displayed.

67.
Check that data stored in memory from a previous
fitting is properly cleaned to ensure a correct
functioning when performing a new one.

68.
Check that iMODFIT prevents Chimera blocking when
performing a fitting.

3.5 Dissemination of the Plugins

In order to make available to the scientific community the
developed bioinformatics tools, a long ago was created a dedicated
website by the receiving group, http://chaconlab.org/, where the
user can find all the necessary documentation organized in the
following sections:

• User guide: it explains the basic and advanced options of the
different tools.

• Tutorial: it comments practical examples with usage tips and
instructions to quickly and easily perform the most common
tasks of each of the tools.

• Frequently Asked Questions (FAQ): this section contains
answers to the most common questions on how to use and
customize the different tools.

http://chaconlab.org/

62

• Other resources: this includes links to programs and external
servers that may be useful for, for example, repairing atomic
models, obtaining atomic structures and density maps, or
evaluating the quality of structures.

• Installation: it explains how to install the different
bioinformatics tools.

Now, a new Chimera section has been included and the user can
freely download the ADP_EM and the iMODFIT plugins for UCSF
Chimera:

ADP_EM

http://chaconlab.org/hybrid4em/adp-em/adpem-chimera

Figure 42: Snapshot of the ADP_EM Chimera plugin the receiving group web.

iMODFIT

http://chaconlab.org/hybrid4em/imodfit/imod-chimera

http://chaconlab.org/hybrid4em/adp-em/adpem-chimera
http://chaconlab.org/hybrid4em/imodfit/imod-chimera

63

Figure 43: : Snapshot of the iMODFIT Chimera plugin the receiving group web.

The complete code of the developed plugins is also freely available
to users in a GitHub repository from which they can be downloaded
and/or consulted:

• ADP_EM https://github.com/pablosolar/adp_em

• iMODFIT https://github.com/pablosolar/imodfit

3.6 Conclusions

Training Stage

During the implementation of the project, many aspects of
structural biology have been learned, such as biophysical
techniques for obtaining data or the main methods of fitting,
how and when they are applied, what tools are currently used
and which are expected to be developed in one future.

https://github.com/pablosolar/adp_em
https://github.com/pablosolar/imodfit

64

In particular, I got used to the state of the art of the fitting
software used in the main field, including ADP_EM, iMODFIT,
Situs (developed in the group), mdff, gEMfitter, Integrative
Modelling, and Rosetta). In addition, familiarization with the
tools available for structural analysis, such as UCSF Chimera,
has been essential in achieving the success of the project.

Development Stage

A set of plugins for making rigid (ADP_EM) and flexible
(iMODFIT) fittings have been designed and implemented for
Chimera, which are:

• Applicable to large macromolecules (proteins, nucleic
acids, multiple chains, and small rigid ligands).

• Capable of using different reductionist approaches.

• Efficient and easy to configure.

• Accessible and documented via the web.

• Compatible with the original versions of the methods.

• Intuitive to users, dynamic and light running.

• Robust and optimized for integration into Chimera.

It has been systematically validated that the solutions generated by
the plugins and the execution times are exactly the same as those
generated by the original methods original methods.

The methodology used and the planning scheduled to carry out the
project has been satisfactory. The only significant deviation is the
pending development of the plugin for COLORES.

Looking to the future, the integration of more fitting tools as
Chimera plugins together with further development of current

65

ADP_EM and iMODFIT versions, would be worth publishing in a
specialized high impact journal.
From a global and global perspective, the project has proved to be a
success and will have direct applications and real uses from the
moment it is disseminated.

3.7 Acknowledgements

I want to acknowledge the numerous advices, tricks and helps that
Pablo Chacón Montes and José Ramón López Blanco gave to me.

It has been a pleasure to work with them and to learn from
everything they said to me.

66

4. Glossary

3D: Tridimensional.

ADP_EM: Another Docking Platform - Electron Microscopy.

B: Bandwidth.

C++: general-purpose programming language (Object Oriented).

CC: Cartesian Coordinates.

COLORES: COrrelation based LOw RESolution.

CSIC: Spanish National Research Council (Consejo Superior de Investigaciones
Científicas).

DoF: degrees of freedom.

EM: Electron Microscopy.

EMAN: software package for reconstructing 3d models from a set of randomly
oriented particle images.

FFT: Fast Fourier Transform.

FRM: Fast Rotational Matching.

FTM: Fast Translational Matching.

GUI: Graphic User Interface

HA: Heavy Atoms.

IC: Internal Coordinates.

MD: Molecular Dynamics.

NMA: Normal Mode Analysis.

PDB: Protein Data Bank.

RMSD: Root Mean Square Deviation.

67

5. Bibliography

1. Bahar, I., Lezon, T.R., Yang, L.W. y Eyal, E. (2010b) Global dynamics of proteins:
bridging between structure and function, Annu Rev Biophys, 39, 23-42.

2. Bray, J.K., Weiss, D.R., Levitt, M., 2011. Optimized torsion-angle normal modes
reproduce conformational changes more accurately than cartesian modes.
Biophys J 101, 2966-2969.

3. Ceulemans, H. y Russell, R.B. (2004) Fast fitting of atomic structures to low-
resolution electron density maps by surface overlap maximization, J Mol Biol, 338,
783-793.

4. Chacón, P. and W. Wriggers (2002). "Multi-resolution contour-based fitting of
macromolecular structures." Journal of molecular biology 317(3): 375-384.

5. Eisenstein, M. and Katchalski-Katzir, E.(2004) On proteins, grids, correlations, and
docking. C. R. Biologies. 327(5): p. 409-420.

6. Fabiola, F., Chapman, M.S. (2005) Fitting of high-resolution structures into electron
microscopy reconstruction images, Structure, 13, 389-400.

7. Gabb, H.A., Jackson, R.M. and Sternberg, M.J. (1997) Modelling protein docking
using shape complementarity, electrostatics and biochemical information, J Mol
Biol, 272, 106-120.

8. Garzón, J. I., J. Kovacs, R. Abagyan and P. Chacón (2007). "ADP_EM: fast exhaustive
multiresolution docking for high-throughput coverage." Bioinformatics 23(4): 427-
433.

9. Jiang, W., Baker, M.L., Ludtke, S.J. y Chiu, W. (2001) Bridging the information gap:
computational tools for intermediate resolution structure interpretation, J Mol
Biol, 308, 1033-1044.

10. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser,
I.A.(1992) Molecular surface recognition: determination of geometric fit between
proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA.
89(6): p. 2195-2199.  

11. Kovacs, J.A. and Wriggers, W.(2002) Fast rotational matching. Acta Crystallogr. D.
Biol. Crystallogr. 58(8): p. 1282-1286.

12. Kovacs, J.A., Chacon, P., Cong, Y., Metwally, E. and Wriggers, W. (2003) Fast
rotational matching of rigid bodies by fast Fourier transform acceleration of five
degrees of freedom, Acta Crystallogr D Biol Crystallogr, 59, 1371-1376. 

68

13. Kovacs, J.A., Cavasotto, C.N., Abagyan, R., 2005. Conformational sampling of
protein flexibility in generalized coordinates: Application to ligand docking. J
Comput Theor Nanosci 2, 354-361.

14. López-Blanco, J. R. and Chacón, P. (2015), Structural modeling from electron
microscopy data. WIREs Comput Mol Sci, 5: 62–81. doi:10.1002/wcms.1199

15. Lopéz-Blanco, J. R. and P. Chacón (2013). "iMODFIT: efficient and robust flexible
fitting based on vibrational analysis in internal coordinates." Journal of Structural
Biology 184(2): 261–270.

16. Lopez-Blanco, J.R., Garzon, J.I., Chacon, P., 2011. iMod: multipurpose normal mode
analysis in internal coordinates. Bioinformatics 27, 2843-2850.

17. Lu, M., Poon, B., Ma, J., 2006. A New Method for Coarse-Grained Elastic Normal-
Mode Analysis. J Chem Theory Comput 2, 464-471.

18. Ma, J. (2005) Usefulness and limitations of normal mode analysis in modeling
dynamics of biomolecular complexes, Structure, 13, 373-380.

19. Mendez, R., Bastolla, U., 2010. Torsional network model: normal modes in torsion
angle space better correlate with conformation changes in proteins. Phys Rev Lett
104, 228103-228107.

20. Rath, B.K., Hegerl, R., Leith, A., Shaikh, T.R., Wagenknecht, T. and Frank, J. (2003)
Fast 3D motif search of EM density maps using a locally normalized cross-
correlation function, J Struct Biol, 144, 95-103.

21. Ritchie, D.W. and Kemp, G.J.(2000) Protein docking using spherical polar Fourier
correlations. Proteins. 39(2): p. 178-194.  

22. Roseman, A.M. (2000) Docking structures of domains into maps from cryo-electron
microscopy using local correlation, Acta Crystallogr D Biol Crystallogr, 56, 1332-
1340.

23. Rossmann, M.G. (2000) Fitting atomic models into electron-microscopy maps, Acta
Crystallogr D Biol Crystallogr, 56, 1341-1349.

24. Vakser, I.A., Matar, O.G. and Lam, C.F. (1999) A systematic study of low-resolution
recognition in protein--protein complexes, Proc Natl Acad Sci U S A, 96, 8477-
8482.

25. Volkmann, N. y Hanein, D. (2003) Docking of atomic models into reconstructions
from electron microscopy, Methods Enzymol, 374, 204-225.

26. Wriggers, W. and Chacon, P. (2001) Modeling tricks and fitting techniques for
multiresolution structures, Structure (Camb), 9, 779-788.

27. Wriggers, W., Milligan, R.A. y McCammon, J.A. (1999) Situs: A package for docking
crystal structures into low-resolution maps from electron microscopy, J Struct
Biol, 125, 185-195.

69

6. Appendants

6.1 ADP_EM Relevant Code

Although in section 3.5 corresponding to the dissemination of the
plugins a link has been cited to the complete code developed for
each one of them, below is the most relevant code, commented
appropriately, starting with the ADP.

Class to register the ADP EM plugin in Chimera.
The plugin will be located in EM Fitting/Volume Data menu

import chimera.extension

class ADPEM_EMO(chimera.extension.EMO):

 def name(self):
 return 'ADP EM'
 def description(self):
 return 'Fitting density map in an exhaustive way through ADP_EM Algorithm'
 def categories(self):
 return ['EM Fitting']
 def icon(self):
 return None
 def activate(self):
 self.module('adpgui').show_adp_em_dialog()
 return None

chimera.extension.manager.registerExtension(ADPEM_EMO(__file__))

Dialog to perform rigid fitting through ADP EM algorithm.

import chimera
from chimera.baseDialog import ModelessDialog
import ADP

ADP EM Plugin Dialog

class ADP_EM_Dialog(ModelessDialog):

In iMODFIT, this is similar

70

Title of APD EM plugin
title = 'ADP EM Exhaustive Fitting'
Name of ADP EM plugin
name = 'ADP EM'
Buttons of ADP EM GUI
buttons = ('Fit', 'Options', 'Results', 'Close')
Path of help guide of ADP EM plugin
help = ('adp_em.html', ADP)
Name of the folder where ADP EM plugin is located
plugin_folder = 'ADP/'
Path of the process of ADP EM
adp_em = plugin_folder + 'adp_em'
Steps for the process progress bar
steps = ["Step 1", "Step 2", "Step 3"]
Steps marks for the process progress bar
marks = ["ADP_EM", "Trans limit", "Interpolation", "Total Time"]
Variable to represent the dropdown menu that will show all the ADP EM Solutions
mb = None
Array to store the solutions generated by ADP EM
solutions_chimera = []
Variables to handle a possible movement of the molecule by the user
They will store an Xform object (gives the rotation and traslation for a model)
relative to the pdb, the map, its inverse or the Xform of the last solution chosen
It works as a movements traceback
bos = None
xf = None
xfC = None
xform_last_solution = None

#-----------------------
ADP EM Chimera Commands

ADP in Chimera indicator
adp_em_chimera_opt = "--chimera"

No solutions
adp_em_chimera_no_save = "--no_save"

Fitting criterion
adp_em_chimera_laplacian = "-f"
adp_em_chimera_laplacian_val = "1"

Saved solutions
adp_em_chimera_saved_solutions = "-n"
adp_em_chimera_saved_solutions_val = "50"

Translational sampling
adp_em_chimera_sampling = "-t"
adp_em_chimera_sampling_val = "2"

Translational scan
adp_em_chimera_scan = "-s"
adp_em_chimera_scan_val = "2"

Peaks explored per docking
adp_em_chimera_peaks_explored = "--ne"
adp_em_chimera_peaks_explored_val = "30"

71

Peaks stored per iteration
adp_em_chimera_peaks_iteration = "--np"
adp_em_chimera_peaks_iteration_val = "20"

Peaks stored per search
adp_em_chimera_peaks_search = "--nr"
adp_em_chimera_peaks_search_val = "100"

Peaks stored per multidocking search
adp_em_chimera_peaks_msearch = "--nrm"
adp_em_chimera_peaks_msearch_val = "500"

Translational threshold
adp_em_chimera_translational_threshold = "--rt"
adp_em_chimera_translational_threshold_val = "2.0"

Rotational threshold
adp_em_chimera_rotational_threshold = "--rc"
adp_em_chimera_rotational_threshold_val = None

Width between spherical layers
adp_em_chimera_width_layers = "--lw"
adp_em_chimera_width_layers_val = "1.0"

Density cutoff of simulated map
adp_em_chimera_cutoff_simulated = "--cutoff2"
adp_em_chimera_cutoff_simulated_val = "0.0"

Performs the ADP EM process

def Fit(self):

 # If a fitting is performed when Results panel is active, close it
 for widget in self.mmf.winfo_children():
 widget.destroy()
 # and clean the array which store the solutions (previous fitting)
 self.solutions_chimera = []
 self.results_panel.set(False)

 # Validation of the parameters introduced by the user
 if self.check_models() is False:
 return

 # Disable Fit, Options and Close buttons when ADP EM process is performed
 self.disable_process_buttons()

 # Retrieve plugin path
 self.plugin_path = __file__[:__file__.index(self.plugin_folder)]

72

#-----------------------
Calling ADPEM process
#-----------------------
from subprocess import STDOUT, PIPE, Popen
import os, sys

Get the full path of ADP EM process
command = self.plugin_path + self.adp_em
Set the workspace
cwd = self.plugin_path + self.plugin_folder
Set the file name that will be generated by ADP EM with all the solutions parameters:
center of mass, Euler Angles and traslations of the PDB solutions
self.filename_chimera = cwd + "chimera.bin"

PDB selected in the menu
pdbSelected = self.object_menu.getvalue()
Map selected in the menu
mapSelected = self.map_menu.volume()
Temporal pdb that will be wrote when performing the process.
It is necessary because if the user moves the molecule, the camera changes, and the
coordinates and the internal states of the pdb and the map remain inconsistent
So saving the pdb ensures that the ADP EM process is going to be done with consistent
values relative to the map
pdb_path = cwd + "temporal_" + pdbSelected.name

Save the pdb xform just before performing the fitting
self.saved_pdb = pdbSelected.openState.xform
Save the pdb xform premultiplied by the map inverse xform
This is necessary to be able to move the molecule to the origin regardless the ADP EM process
self.xf = pdbSelected.openState.xform
self.xf.premultiply(mapSelected.openState.xform.inverse())

Back to origin (Ensure that pdb and map have the same internal state when performing ADP EM
process
pdbSelected.openState.xform = mapSelected.openState.xform

Save pdb relative to the map
from Midas import write
write(pdbSelected, mapSelected, pdb_path)

Update user view
pdbSelected.openState.xform = self.saved_pdb

Record position state
self.record_position_state()

Get options values
self.get_options_chimera()

Variable to move to the center of mass when moving the pdb to the first ADP EM solution
self.fitting_center_mass = True

73

Retrieve the full command to perform the fitting: ap_em + arguments
cmd = [command, mapSelected.openedAs[0], pdb_path,
 self.bandwidth.variable.get(), self.cutoff.get(), self.resolution.get(),
 self.adp_em_chimera_laplacian, self.adp_em_chimera_laplacian_val,
 self.adp_em_chimera_saved_solutions, self.adp_em_chimera_saved_solutions_val,
 self.adp_em_chimera_sampling, self.adp_em_chimera_sampling_val,
 self.adp_em_chimera_scan, self.adp_em_chimera_scan_val,
 self.adp_em_chimera_peaks_explored, self.adp_em_chimera_peaks_explored_val,
 self.adp_em_chimera_peaks_iteration, self.adp_em_chimera_peaks_iteration_val,
 self.adp_em_chimera_peaks_search, self.adp_em_chimera_peaks_search_val,
 self.adp_em_chimera_peaks_msearch, self.adp_em_chimera_peaks_msearch_val,
 self.adp_em_chimera_translational_threshold,
self.adp_em_chimera_translational_threshold_val,
 self.adp_em_chimera_rotational_threshold, self.adp_em_chimera_rotational_threshold_val,
 self.adp_em_chimera_width_layers, self.adp_em_chimera_width_layers_val,
 self.adp_em_chimera_cutoff_simulated, self.adp_em_chimera_cutoff_simulated_val,
 self.adp_em_chimera_no_save, self.adp_em_chimera_opt]

Execute the command with the respective arguments creating pipes between the process and
Chimera
Pipes will be associated to the standard output and standard error required to show the process log
in the window
adp_em_process = Popen(cmd, stdout=PIPE, stderr=PIPE, cwd=cwd, universal_newlines=True)

Text widget for process log that will showthe standard output of the process
from Tkinter import *
root = Tk()
root.wm_title("ADP EM Process Log")
import ttk
self.var_det = IntVar(root)
self.pbar_det = ttk.Progressbar(root, orient="horizontal", length=400, mode="determinate",
variable=self.var_det, maximum=100)
self.pbar_det.pack(side=TOP, fill=X)
S = Scrollbar(root)
T = Text(root, height=30, width=85)
S.pack(side=RIGHT, fill=Y)
T.pack(side=LEFT, fill=Y)
S.config(command=T.yview)
T.config(yscrollcommand=S.set)

Read first line
line = adp_em_process.stdout.readline()
Variable to check the process status and show its output in a friendly format to the user
process_progress = False
Continue reading the standard output until ADP EM is finished
If the current line is an iteration for a model, replace in the widget the last showed
If it is a new model or is part of the ADP EM process, inserts the line at the end of the widget
while line:
 if process_progress is False:
 index_before_last_print = T.index(END)
 T.insert(END, line)
 else:
 T.delete(index_before_last_print + "-1c linestart", index_before_last_print)
 T.insert(END, line)

74

 T.update()
 T.yview(END)
 self.check_steps_marks(line)
 line = adp_em_process.stdout.readline()
 if '[' in line and '%' in line:
 process_progress = True
 elif '100% Finish!':
 process_progress = False
 sys.stdout.flush()
T.insert(END, "\n --> ADP EM Process has finished. Check 'Results' button to visualize solutions. <--
\n")
T.update()
T.yview(END)
When ADP EM process is finished, the results are set into the Results panel...
self.fill_results()
and the plugin buttons are enabled again
self.enable_process_buttons()

Remove the temporal pdb
os.remove(pdb_path)

Records position state between pdb and map

def record_position_state(self):

 self.bos = self.map_menu.volume().openState
 bxfinv = self.bos.xform.inverse()
 self.xf = self.object_menu.getvalue().openState.xform
 self.xf.premultiply(bxfinv)

Moves the molecule to the center of mas

def move_center_mass(self):

 # Get the molecule
 m = self.object_menu.getvalue()
 # Import adphandle to handle pdb transformations
 import adphandle as adph

 # To move the center of mass, Euler Angles should be (0, 0, 0)
 ea = map(float, "0 0 0".split())
 # The position (traslation) to the pdb center of mass is given by ADP EM
 t = map(float, self.com)

 # First apply rotation, then traslation and finally get the related Xform
 self.xf_center_mass = adph.euler_xform_adp(ea, t)
 # Updates the coordinates of the molecule with the xform of the center of mass
 adph.transform_atom_coordinates_adp(m.atoms, self.xf_center_mass)

75

--
Shows a solution generated by ADP EM from the drop-down in the Results Panel

def show_adp_solution (self):

 # If an ADP EM solution is chosen...
 if not '---' in self.mb.variable.get():

 # Import adphandle to handle pdb transformations
 import adphandle as adph

 # Get the molecule
 m = self.object_menu.getvalue()

 # Roll back previous state. Set the molecule to the previous state
 self.back_current_state_adp()

 # Go back to origin...
 if self.xform_last_solution is None:
 # if a solution is chosen fot the first time, it is necessary to move the molecule to the center of
mass
 self.move_center_mass()
 else:
 # if not, move the molecule to the previous position to the one that was in the last solution chosen
 adph.transform_atom_coordinates_adp(m.atoms, self.xform_last_solution.inverse())

 # -----------------------
 # Get selected solution
 # -----------------------
 # Solution_X = [Euler Angles(Phi, Theta, Psi), Traslation(X, Y, Z)]
 self.adp_chosed_solution = self.get_adp_chosed_solution(self.mb.variable.get())
 so = self.solutions_chimera[self.adp_chosed_solution - 1]

 # Get the Euler Angles associated with the solution
 ea = map(float, so[len(so) / 2:])

 # Get the traslation associated with the solution
 t = map(float, so[:len(so) / 2])

 # -----------------------
 # Xform of the solution
 # -----------------------
 # First apply rotation, then traslation and finally get the related Xform
 xform_solution = adph.euler_xform_adp(ea, t)

 # Updates the coordinates of the molecule with the xform of the chosen solution
 # This moves it into the position of the chosen ADP EM solution
 adph.transform_atom_coordinates_adp(m.atoms, xform_solution)

 # Save current state because user may move the solution
 self.save_current_state_adp()
 self.xform_last_solution = xform_solution

76

Saves the current state of the molecule relative to the map
It is necessary because user may move the solution

def save_current_state_adp(self, event = None):

 m = self.object_menu.getvalue()
 v = self.map_menu.volume()
 if m is None or v is None:
 return

 # Applies the inverse of the map xform to the molecule xform to save the current
 # state and movement made
 bxfinvC = v.openState.xform.inverse()
 self.xfC = m.openState.xform
 self.xfC.premultiply(bxfinvC)

Roll back previous state. Set the molecule to the previous state

def back_current_state_adp(self, event = None):

 m = self.object_menu.getvalue()
 v = self.map_menu.volume()
 if m is None or v is None:
 return

 # This only applies to the first movement after process is finished
 if self.xfC is None:
 # Back to origin
 m.openState.xform = v.openState.xform
 return

 # Update the molecule xform with xform that stores the last state and movement made
 oxfC = v.openState.xform
 oxfC.multiply(self.xfC)
 m.openState.xform = oxfC

Apply a rotation and translation to atoms.

def transform_atom_coordinates_adp(atoms, xform):

 for a in atoms:
 a.setCoord(xform.apply(a.coord()))

Rotation applied first, then translation.

def euler_xform_adp(euler_angles, translation):

 xf = euler_rotation_adp(*euler_angles)
 from chimera import Xform
 xf.premultiply(Xform.translation(*translation))
 return xf

77

6.2 iMODFIT Relevant Code

Convert Euler angles to an equivalent Chimera transformation matrix.

Angles must be in degrees, not radians.

Uses the most common Euler angle convention z-x-z (the chi-convention)
described at

http://mathworld.wolfram.com/EulerAngles.html

def euler_rotation_adp(phi, theta, psi):

 from chimera import Xform, Vector
 xf1 = Xform.rotation(Vector(0,0,1), phi) # Rotate about z-axis
 xp = xf1.apply(Vector(1,0,0)) # New x-axis
 xf2 = Xform.rotation(xp, theta) # Rotate about new x-axis
 zp = xf2.apply(Vector(0,0,1)) # New z-axis
 xf3 = Xform.rotation(zp, psi) # Rotate about new z-axis

 xf = Xform()
 xf.premultiply(xf1)
 xf.premultiply(xf2)
 xf.premultiply(xf3)

 return xf

Dialog to perform flexible fitting through iMODFIT algorithm.

import chimera
from chimera.baseDialog import ModelessDialog
import iMODFIT

iMODFIT Plugin Dialog

class iMODFIT_Dialog(ModelessDialog):

 # Title of iMODFIT plugin
 title = 'iMODFIT Flexible Fitting'
 # Name of iMODFIT plugin
 name = 'iMODFIT'

78

Buttons of iMODFIT GUI
buttons = ('Fit', 'Options', 'Results', 'Close')
Path of help guide of iMODFIT plugin
help = ('imodfit.html', iMODFIT)
Name of the folder where iMODFIT plugin is located
plugin_folder = 'iMODFIT/'
Path of the process of iMODFIT
imodfit = plugin_folder + 'imodfit'
Variable to keep the workspace
cwd = None
Name of the fitted pdb generated after iMODFIT process
fitted_molecule = "imodfit_fitted.pdb"
Name of the trajectory movie
imovie = plugin_folder + "imodfit_movie.pdb"

#---------------------------
iMODFIT Chimera Commands

iMODFIT in Chimera indicator
imodfit_chimera_opt = "--chimera"

More PDBs
imodfit_chimera_morepdbs = "--morepdbs"

PDB Reference
imodfit_chimera_pdb_ref = "--pdb_ref"
imodfit_chimera_pdb_ref_val = None

Trajectory (movie)
imodfit_chimera_t = "-t"

Fixing diagonalization
imodfit_chimera_r = "-r"
imodfit_chimera_r_val = "0"

Rediagonalization
imodfit_chimera_re = "--rediag"
imodfit_chimera_re_val = "0"

Coarse-grained model
imodfit_chimera_m = "-m"
imodfit_chimera_m_val = "2"

Modes range
imodfit_chimera_n = "-n"
imodfit_chimera_n_val = "0.05"

Advanced commands
imodfit_chimera_adv_commands = []

79

Performs the iMODFIT process

def Fit(self):

 # If a fitting is performed when Results panel is active, close it
 for widget in self.mmf.winfo_children():
 widget.destroy()
 self.results_panel.set(False)

 # Validation of the parameters introduced by the user
 if self.check_models() is False:
 return

 # Disable Fit, Options and Close buttons when iMODFIT process is performed
 self.disable_process_buttons()

 # Retrieve the full plugin path
 self.plugin_path = __file__[:__file__.index(self.plugin_folder)]

 #-----------------------
 # Calling iMODFIT process
 #-----------------------
 from subprocess import STDOUT, PIPE, Popen
 import os, sys

 # Get the full path of iMODFIT process
 command = self.plugin_path + self.imodfit
 # Set the workspace
 self.cwd = self.plugin_path + self.plugin_folder

 # PDB selected in the menu
 pdbSelected = self.object_menu.getvalue()
 # Map selected in the menu
 mapSelected = self.map_menu.volume()

 # Get options values
 self.get_options_chimera()

 # Retrieve the full command to perform the fitting: imodfit + arguments
 cmd = [command, pdbSelected.openedAs[0], mapSelected.openedAs[0], self.resolution.get(),
self.cutoff.get(),
 self.imodfit_chimera_m, self.imodfit_chimera_m_val,
 self.imodfit_chimera_t,
 self.imodfit_chimera_r, self.imodfit_chimera_r_val,
 self.imodfit_chimera_re, self.imodfit_chimera_re_val,
 self.imodfit_chimera_morepdbs,
 self.imodfit_chimera_n, self.imodfit_chimera_n_val] + self.imodfit_chimera_adv_commands

Execute the command with the respective arguments creating pipes between the process and
Chimera
Pipes will be associated to the standard output and standard error required to show the process log
in the window
imodfit_process = Popen(cmd, stdout=PIPE, stderr=PIPE, cwd=self.cwd, universal_newlines=True)

80

Text widget for process log that will showthe standard output of the process
from Tkinter import *
root = Tk()
root.wm_title("iMODFIT Process Log")
S = Scrollbar(root)
T = Text(root, height=30, width=85)
S.pack(side=RIGHT, fill=Y)
T.pack(side=LEFT, fill=Y)
S.config(command=T.yview)
T.config(yscrollcommand=S.set)

Read first line
line = imodfit_process.stdout.readline()
Variables to check the process status and show its output in a friendly format to the user
iter = False
model_iter = False
index_before_last_print = None
first_ite_sec = True

Continue reading the standard output until iMODFIT is finished
If the current line is an iteration for a model, replace in the widget the last showed
If it is a new model or is part of the iMODFIT process, inserts the line at the end of the widget
while line:
 if len(line.strip()) == 0:
 line = imodfit_process.stdout.readline()
 continue
 if iter is False or (iter is True and 'NMA' in line):
 T.insert(END, line)
 model_iter = True
 elif iter is True and 'sec' in line:
 if first_ite_sec is True:
 T.insert(END, line)
 model_iter = True
 else:
 T.delete(index_before_last_print + "-1c linestart", index_before_last_print)
 T.insert(END, line)
 first_ite_sec = False
 elif model_iter is True:
 index_before_last_print = T.index(END)
 T.insert(END, line)
 model_iter = False
 elif iter is True and 'sec' not in line:
 T.delete(index_before_last_print + "-1c linestart", index_before_last_print)
 T.insert(END, line)
 T.update()
 T.yview(END)
 line = imodfit_process.stdout.readline()
 if ('NMA_time' in line and 'Score' in line):
 iter = True
 if 'sec' in line and iter is True:
 first_ite_sec = True
 model_iter = True

81

 if index_before_last_print is not None:
 T.delete(index_before_last_print + "-1c linestart", index_before_last_print)
 index_before_last_print = T.index(END)
 if 'Convergence' in line:
 iter = False

T.insert(END, "\n\n --> iMODFIT Process has finished. Check 'Results' button to visualize solution.
<--\n")
T.update()
T.yview(END)

When iMODFIT process is finished, the results are set into the Results panel...
self.fill_results()
and the plugin buttons are enabled again
self.enable_process_buttons()

Reads the coordinates of the fitted molecule and updates the original
molecule position to show the fitting made by iMODFIT

def show_fitted_molecule(self, fitted):

 # Get opened molecule (the one selected in the menu)
 p = self.object_menu.getvalue()
 # Get some atom
 a0 = p.atoms[0]
 # Coordinates array
 cs = []
 # Names array
 ns = []

 # Depends on the button state, chose the original molecule
 # or the fitted one to update the position
 fitted_mol = None
 if fitted is True:
 fitted_mol = self.cwd + self.fitted_molecule
 else:
 fitted_mol = self.object_menu.getvalue().openedAs[0]

 # Read thhe coordinates of the fitted molecule and fill
 # coordinates and names arrays
 with open(fitted_mol) as pdbfile:
 for line in pdbfile:
 if line[:4] == 'ATOM' or line[:6] == "HETATM":
 # Split the line according to PDB format
 n = line[12:16]
 # Construct a copy of coordinates
 c = a0.coord()
 c[0] = x = float(line[30:38])
 c[1] = y = float(line[38:46])
 c[2] = z = float(line[46:54])
 # Store all atomic coordinates
 cs.append(c)
 # store names (for self-consistency checking)
 ns.append(n.strip())

82

The full code can be found at:

• ADP_EM https://github.com/pablosolar/adp_em

• iMODFIT https://github.com/pablosolar/imodfit

Update coordinates of the molecule
coordinate array index
i = 0
for a in p.atoms:
 # Check if both atoms are the same
 # if atom names don't match
 if a.name != ns[i]:
 print 'Warning! ', ns[i], ' and ', a.name, ' mismatch at residue ', a.residue
 print 'Searching ', ns[i], ' in residue ', a.residue
 isfound = False
 for b in a.residue.atoms:
 # Atom found
 if b.name == ns[i]:
 print 'Atom (', ns[i], ') found. Updating (', b.name, ') coordinates'
 # Set new coordinates into "b" atom
 b.setCoord(cs[i])
 isfound = True
 break
 if not isfound:
 print 'Error! Atom ', ns[i], ' not found in residue ', a.residue
 # if atom names match
 else:
 # Set new coordinates into "a" atom
 a.setCoord(cs[i])

 # Update index
 i = i + 1

Opens the MD movie created by iMODTFIT with the model trajectories

def open_movie(self):

 # Import the native dialog MovieDialog from Chimera
 from Movie.gui import MovieDialog
 # import the loadEnsemble native functionality from Chimera to load the movie
 from Trajectory.formats.Pdb import loadEnsemble

 # Load the movie created by iMODFIT
 movie = self.plugin_path + self.imovie
 loadEnsemble(("single", movie), None, None, MovieDialog)

https://github.com/pablosolar/adp_em
https://github.com/pablosolar/imodfit

