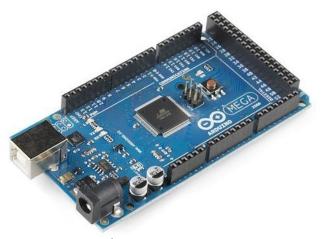
Robot Arduino controlado mediante sensores y con respuestas sobre actuadores

Asier Pérez de Lazarraga Grado en Tecnologías de Telecomunicación Consultor: José López Vicario

Índice


- Contexto y Justificación
- Objetivos del Proyecto
- Unidad Central: Microcontrolador vs Microprocesador
- Hardware
- Comunicación del Robot
- Sensórica
- Puertos de expansión
- Entornos de desarrollo (IDE's)
- Captura de datos
- Conclusiones y líneas de trabajo futuras

Contexto y justificación

- Arduino:
 - Hardware libre
 - Entorno de desarrollo (IDE) open-source

- Contexto:
 - Cultura Do it Yourself (DIY)
 - Auge de cultura contemporánea maker
 - Tecnologías IT como base de nuevos conceptos:
 - Smart City
 - Internet of Thinks (IoT)
 - Industria 4.0
 - Robótica colaborativa
- Justificación. HW y SW libre para:
 - Emprender
 - Aplicar en entornos propietarios

Objetivos

- Objetivos principales:
 - Construir un robot Arduino con capacidad de desplazamiento
 - Implementar una aplicación para controlar los movimientos del robot de forma pasiva/activa
- Otros objetivos:
 - Equipar de sensores al robot y hacerlo interconectable
 - Posibilitar que el dispositivo sea ampliable

Unidad Central

- Menor consumo
- Más robusto
- Orientado a la gestión de entradas y salidas
- Similar a un autómata programable (PLC)

- Mayor capacidad de computación
- Mayor velocidad de operaciones
- Para múltiples propósitos
- Similar a un PC

Microcontrolador *Ej: Arduino*

Microprocesador *Ej: Raspberry...*

Hardware

- Robot con placa Me Auriga:
 - Basada en microcontrolador Arduino MEGA 2560
- Microcontrolador (µC): encargado de realizar acciones en función de las entradas recibidas
- Equipado con:
 - Sensores: luz, temperaturas, sonido, acelerómetro y sensor de giro
 - Actuadores: buzzer, 12 LED's RGB
- Fácilmente ampliable:
 - 10 puertos de expansión RJ25
 - 2 puertos para motor encóder

Comunicación I

Conexión cableada

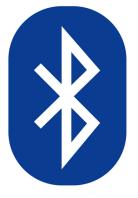
- Limita la movilidad
- ✓ No requiere alimentación externa

NFC

No válido : rango de alcance limitado (20cm).

Wifi

- ✓ Alta velocidad de datos (no requerida)
- Alto consumo


ZigBee

- ✓ Alternativa técnicamente válida
- Dispositivos no compatibles

Comunicación II

- Solución inalámbrica validada: Bluetooth
 - Distancia de 10 a 15m en campo abierto
 - Consumo de potencia bajo (menor incluso en BLE)
 - Velocidad de transmisión de datos suficiente:
 - No se requieren enviar ni recibir grandes volúmenes de datos
 - Bluetooth clásico: 0,7 2,1Mbps
 - BLE: 300kbps
 - Interconexión sencilla
 - Banda ISM de 2,4GHz

Sensórica

- Dispositivos que detectan una acción externa y la transmiten adecuadamente (según RAE).
- Existen sensores de todo tipo
- Por sus salidas pueden ser:
 - · Analógicos: mostrar el valor de la temperatura...
 - Digitales: determinar presencia/ausencia...
- Entradas para múltiples aplicaciones:
 - Automatización industrial
 - IoT

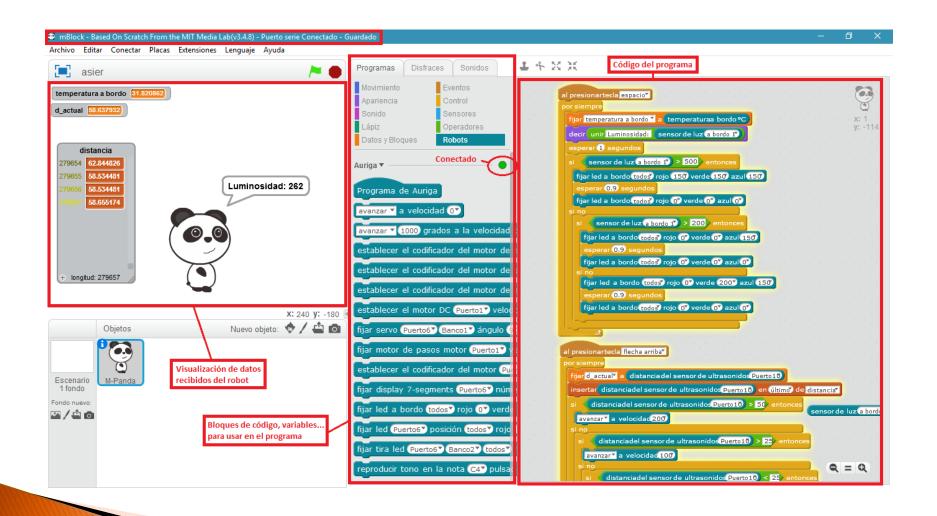
0

Puertos de expansión

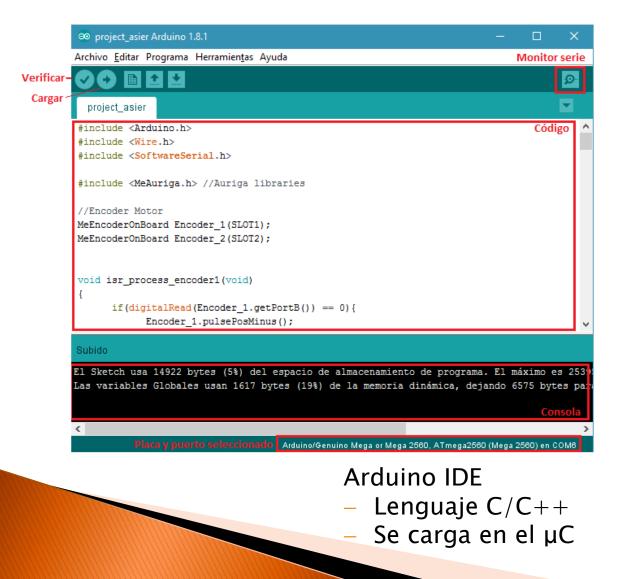
Disponibles 10 puertos de expansión RJ25:

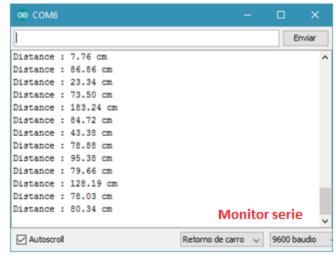
Puertos	Color	Función	Módulos
1-4	Rojo	V _{CC} 6-12V	Motores
5	Gris	Puerto serie	Comunicación
6-10	Amarillo	Interfaz digital single	Sensores y actuadores
	Azul	Interfaz digital dual	
	Negro	Interfaz analógica	
	Blanco	Puerto I ² C	

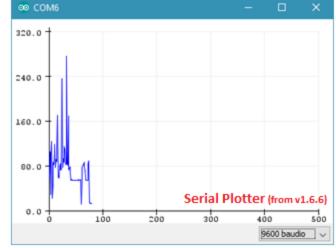
- Fácil expansión
- Sensores conectables a puertos 6 a 10:
 - Ultrasonidos (10), Sensor IR (9).


IDE I: Entornos Makeblock

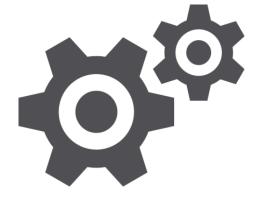
- IDE del propietario con librerías de los robots
- Versiones:
 - Ordenador (mBlock)
 - Dispositivos móviles (Makeblock)
- Ejecución del programa online
- Basados en lenguaje *Scratch*:
 - Lenguaje de bloques
 - Lenguaje gráfico
 - Simple




Panel de control y visualización Makeblock en móvil Android


IDE II: Scratch en Makeblock

IDE III: Arduino IDE



Captura de datos

- Software de captura de puertos conectados (ej: RealTerm):
 - Visualizan los datos
- Independencia de puertos con IDE's
- Posibilidad de procesar los datos de los ficheros que se generen (BBDD, Excel...)
- Posibilidad de alimentar otros sistemas

Conclusiones

- Se ha conseguido implementar un robot con capacidad de movimiento
- Se han implementado programas que producen acciones en función de entradas en:
 - Scratch
 - Arduino (C/C++)
- Se ha realizado un trabajo de documentación
- Se ha constatado que existen infinidad de posibilidades a implementar
- Filosofía DIY/maker. Comunidad muy amplia y con muchos recursos y herramientas en red.

Líneas de trabajo futuras

- Equipar al robot con más sensores/actuadores para cubrir más necesidades
- Procesamiento y visualización de datos
- Controlar al robot mediante alguna plataforma de diseño de sistemas (ej.: LabView)
- Desarrollar y depurar más profundamente el código Arduino

El conocimiento y las herramientas están al alcance y son baratas La clave es identificar necesidades que requieran ser cubiertas

Gracias por su atención