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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados y conclusiones del trabajo. 

SaNGreeA es un algoritmo determinista voraz basado en agrupación para 
obtener grupos k-anónimos en un grafo etiquetado, no dirigido. Actualmente es 
un clásico y la referencia en los algoritmos de k-anonimización por agrupación. 
Tiene una complejidad de tiempo cuadrática. Esto lo hace realmente lento para 
una red razonablemente grande (1 M nodos). Nuestro proyecto adapta 
SaNGreeA para hacerlo escalable para una red grande real y lo especializa 
para asegurar que los grupos generados sean útiles para un sistema de 
recomendaciones. 
 
SaNGreeA siempre devuelve la misma solución para un mismo conjunto de 
datos, pero no es la mejor solución ya que el problema subyacente es NP-
completo. Genera una solución que es óptima local. Nuestra adaptación 
genera cientos de soluciones similares gracias a randomización con sesgo y 
múltiples reinicios y se selecciona la mejor solución de entre todas ellas. 
 
Hemos desarrollado nuevas métricas y un sistema de evaluación para 
comprobar la calidad de los grupos generados, que consideran la potencial 
utilidad para un sistema de recomendaciones. 
 
Hemos sido capaces de ejecutar nuestro algoritmo en un conjunto de datos 
grande real, con 1M de nodos y 75M de relaciones. Los resultados son 
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alentadores para un sistema de recomendación ya que los atributos quasi-
identificadores más importantes no están muy dañados. 
 
El algoritmo se ha implementado en Spark y puede ser ejecutado en hasta 
cientos de procesadores en paralelo para reducir el tiempo de computación de 
cientos de ejecuciones en apenas un par de horas.  
 
 

  Abstract (in English, 250 words or less): 

SaNGreeA is a greedy and deterministic clustering algorithm for achieving k-
anonymous clusters on a labeled, undirected graph. It is nowadays a classic 
and the leading work in clustering based k-anonymity algorithms. It has a 
quadratic time complexity which makes it really slow for a reasonably big 
network (1 M nodes). Our project adapts SaNGreeA to make it scalable for a 
real world big network and specialises it to make sure the generated clusters 
are useful for a recommender system. 
 
SaNGreeA always returns the same solution, but it is never the best solution as 
the underlying problem is NP-complete. It generates a solution that is a local 
optima. Our adaptation generates hundreds of similar solutions with a multi-
start biased randomization procedure and selects the best one. 
 
We have developed new metrics and evaluation framework that consider the 
quality of the clusters from a recommender system point of view. 
 
We were able to run our algorithm in a real world dataset with around 1M nodes 
and 75M relationships. The results are encouraging for recommendations as 
the most important quasi-identifier attributes are not heavily damaged. The 
algorithm has been implemented in Spark, and can be run in up to a hundred of 
computing processors in parallel to reduce the computing time of hundreds of 
different clusterizations to a couple of hours. 
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1 Introduction

1.1 Context of this work

XING [1] is a social network for business. People use XING, for example, to
find a job and recruiters use XING to find the right candidate for a job. At
the moment, XING has more than 15 Million users and around 1 Million job
postings on the platform. Given a user, the goal of the job recommendation
system is to predict those job postings that are likely to be relevant to the
user. In order to fulfill this task, various data sources can be exploited. Job
recommendations are displayed on xing.com as well as in XING’s mobile
apps.

RecSys Challenge 2016 [2] is organized by XING and CrowdRec [3]. In this
edition of the RecSys Challenge, the task is: given a XING user, predict those
job postings that a user will click on. XING provides publicly a dataset with
information about the users, job postings, and the user clickstream on those
postings during a time window (e.g., 1 month).

Researchers can use the dataset to design their own recommendation al-
gorithm. At any time they can evaluate their system by submitting their
productions to a submission portal, getting a score value back, which deter-
mines the quality of their predictions. The predictions are compared to the
real clicks done by the users on a smaller time window immediately after the
published one, which is private, not available to researchers.

The dataset published has been anonymised by masquerading ids, not reveal-
ing any names, and creating fake users / job postings to try to k-anonymise
based on quasi-identifier attributes (career level, industry, discipline). The
social network relationships between users have not been published.

We want to evaluate a potential extension to this public data-set, providing
the network relationships between users, without giving out sensible data
and preserving the anonymity of our users.
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1.2 Objective of this work

We want to evaluate what would be the impact if we enhance the data-set
by publishing social relationships between users, using a k-anonymization
algorithm based on clustering techniques. We want to preserve the anonymity
of the real individuals present in the released dataset, so it is important that
it is not possible to re-identify any individuals of the dataset. And at the
same time, we want to preserve the utility of the dataset.

k-anonymity is a model of data protection. The concept was introduced by
P. Samarati [4] and L. Sweeney [5]. Essentially, this model asserts that any
individual in the dataset can not be distinguished from at least other k - 1 in-
dividuals from the dataset in terms of quasi-identifier attributes values.

The focus is to develop a clustering based algorithm. We want to achieve k-
anonymised clusters (on the quasi-identifier attributes career level, discipline
and industry), where the clusters have been calculated based on the distance
between user profiles. That means taking into account their quasi-identifier
attributes, but also the relationships between users (friendship).

After the anonymization, the relationships between users of the same cluster
will be dropped, and all the relationships that fall between two clusters will
be simplified to one edge representing them.

These anonymous edges will be undirected between clusters, and they will
have only one attribute with the count of edges summarized into that one.

The challenge is to develop a clustering k-anonymization algorithm that is
able to scale up to 1M users, and around 100M edges between them.

1.3 Related work

There is quite research done for the anonymity of graphs. Most of them focus
on unlabeled graphs, so the main information to be preserved is the graph
structure itself, while the labeled graphs get less research.

There is always a tradeo↵ between the utility and protection of the anonymised
data. Several measures of protection have been studied for social networks.
They have introduced more specific definitions of k-anonymity for graphs de-
pending on the assumption of the attacker’s knowledge like k-degree anonymity
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[6], k-neighborhood, etc. All of them can be named as k-P-anonymity [7].
For a given structural property P and a vertex in the graph G there are at
least k - 1 other vertices with the same property P .

One technique is the edge or vertex modification. This is the approach used
originally for the RecSys challenge. Their dataset was essentially an users
table, but without any relationships. They added new nodes (fake users)
into the dataset in order to still ensure there are at least k individuals with
the same quasi-identifier attributes.

Another even simpler technique is a random perturbation of the graph. It
is usually a simple and low complexity algorithm that can be used for big
networks. Hay et al. (2007) [8] proposed a method that consists of removing
p edges from the real graph, and adding p new fake ones so the number of
vertices and edges in the anonymised network does not change. The downside
is that it adds additional noise to the anonymised dataset and it does not
have strict privacy warranties.

Casas-Roma et al. (2015) [9] studied how to preserve the anonymity of graph
structures. Their approach is to generalise an unlabeled, undirected network
by generalising the edge structures while retaining as much data utility as
possible for graph mining tasks. Their algorithm can be used also for graph
dimensionality reduction, as their generalisation summarizes the graph. The
summary can then be used to approximate the structural properties of the
original graph.

J. Salas (2016) [10] proposes a sampling and merging approach for unlabeled,
undirected networks. The idea is to increase the utility of the published data
by giving two views of it. First a set of local neighborhoods is anonymised
separately from the rest of the graph. Then all local neighborhoods are
published separately, and in addition, a merged graph.

A. Campan and T.M. Truta developed SaNGreeA (2009) [11], a greedy and
deterministic clustering algorithm for achieving k-anonymous clusters on a
labeled, undirected graph. It is nowadays a classic and leading work in
clustering based k-anonymity algorithms.

Juan et al. [12] (2011) presented a generic procedure for converting a deter-
ministic heuristic algorithm into a probabilistic one by adding biased ran-
dom behavior. They used it for solving vehicle routing problems which have
NP-complete complexity. With this technique, given an algorithm that can
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generate some good-enough solution for a problem, it can be extended so
that a big set of alternative good solutions can be generated in a simple way.
Then the best generated solution is chosen.

K. Santhi and N. Sai Lohitha (2014) [13] claimed their clustering algorithm
outperformed SaNGreeA in terms of minimizing the information loss. Their
approach is to initially assign nodes into clusters of k elements at random,
and then sequentially keep swapping nodes into other clusters to decrease the
information loss until a local optimum is reached. There is no guarantee that
the algorithm finds the global optimum, so they execute it several times with
di↵erent initial random clusterings to try to find better local optimums.

T. Tassa and Dror J. Cohen (2013) [14] developed a similar sequential clus-
tering algorithm. They have an initil random partition of all nodes into
clusters. Then the main loop keeps iterating and moving nodes into clusters
that decrease the information loss. As they do not swap nodes, it may hap-
pen that some clusters may grow in size, while others decrease. Then they
have to split and merge clusters to restore the size. They have the same local
optima problem, and suggest a similar restart mechanism.

In this work, we have developed a multi-start biased random algorithm based
on SanGreeA. It uses some of the techniques described by Juan et al. and
K. Santhi et al. work for generating multiple good enough local optimum
solutions and keep the best performing one. Thanks to the clustering based
approach, we will have k-neighborhood-anonymity which is the most restric-
tive and implies all the other structural properties P .

1.4 Project planning

We have divided the project into three big milestones that are the continuous
evaluation PEC.

1.4.1 Milestone PEC1: Work schedule

For this first milestone, we had to plan what to do, how and the reach. We
investigated the state of the art in k-anonymization algorithms, and decided
which one we can try to adapt to our needs.
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At the same time, we had to build the dataset. We had to query the source
original XING data and generate a subset similar to the used for the RecSys
Challenge.

1.4.2 Milestone PEC2: Follow up

After the algorithm decision was made, we did a first näıve implementation
without any parallelism. It should just generate one clustering solution.
That version was very ine�cient in terms of computing time and memory
consumption. Next step, we optimized the algorithm such that it was able to
be executed several times and finish in a reasonable amount of time. Many
tweaks were necessary until it was performant.

At that point, we did not have a way to evaluate how the clustering output
look like, so we implemented a simple evaluation framework to check a few
metrics in order to compare the di↵erent clustering solutions. That was
needed also to spot a few bugs and issues with the clustering. We did a few
adjustments into the clustering algorithm thanks to that.

Finally, we implemented the final and complete evaluation framework and
we started to collect all results for the di↵erent experiments published.

1.4.3 Milestone PEC3: Documentation

The main output of this milestone is the almost finished documentation. Af-
ter this milestone, the last work to do is to record the presentation video.

1.4.4 Project Gantt diagram

Figure 1 shows how these tasks where scheduled.

1.5 Product output summary

We have developed a scalable algorithm for k-anonymise a real dataset. It
is based on SaNGreeA algorithm, but adapted to focus on the utility for a
recommender system.
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Figure 1: Gantt diagram for project schedule

2016 2017

September October November December January

Work schedule
State of the art investigation

Ideas brainstorming

Dataset preparation

Milestone PEC1

Follow up
Näıve clustering algorithm

Parallel clustering algorithm

Simple evaluation framework

Improvements and optimizations

Complete evaluation framework

Milestone PEC2

Documentation
Milestone PEC3

We have converted it into a parallel and multi-start biased randomization al-
gorithm. It will be run several times in parallel to calculate di↵erent solutions
and keep the best one.

We have designed our own evaluation metrics that focus on the potential
utility of the clustering output for a recommender system. Finally, we have
empirically tested the computing time scalability and quality of the clustering
results.
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1.6 Sections summary

The rest of the sections are organized as follows. Section 2 overviews the
dataset we have available. Section 3 explains the original SaNGreeA algo-
rithm and our own modifications and implementation for both the clustering
and evaluation framework. Section 4 describes our evaluation setup and dis-
cusses the results. Section 5 concludes the research and points future work
directions.
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2 Dataset overview

We have available a subset of the users of the full XING database. It is
approximately the same size as the RecSys challenge database, with fewer
attributes but adding the relationships.

The list of attributes on the dataset are shown in the following table:

Table 1: Dataset attributes

Field name Type Average list size Domain size
User id Identifier - 813.000

Job roles List of categorical values 3.8 11968
Career level Categorical - 5
Discipline Categorical - 22
Industry Categorical - 23
Region Categorical - 16

Relationships List of user ids 155.9 813.000
Entities List of categorical values 151.7 11000

It is important to note all except one attribute are categorical values, and
we do not have available a hierarchy tree for such categorical values. Some
of them have also a very big domain size like the list of job roles. Some
example of job roles are ”Data Scientist”, ”Software Developer” and ”Senior
Software Developer”. Unfortunately, we do not have available for this dataset
a hierarchy to relate these job roles in any way.

Discipline and industry are fields related, but di↵erent. For example, one
user could have Human Resources discipline and IT industry values if he is
an HR person working for an IT company.

The relationships network is provided as a list of relations for every user. As
it is a symmetric relationship, if one user A has a user B in his relationships
field, the user B will have the user A in his relationships field as well.

We will represent these relationships as a labeled, undirected graph G. Let
G = (V,E) where V is the set of nodes (users) and E ✓ V ⇥ V the set of
bidirectional edges (relations) in G. We use ei,j to define an undirected edge
from vertex vi to vj. |V | ⇡ 813.000 and |E| ⇡ 63M . Every node vi is a tuple
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H

Figure 2: Small example network

John Amy

Mary Larry

with all the attributes in the above table. Every edge ei,j does not contain
any additional information.

The figure 2 shows how an example network of 4 nodes could look. In the
example, John user has a vertex degree of 3 (it has 3 relationships) and Larry
has vertex degree 1. In our real dataset, the average vertex degree is around
156. These may feel as the network is densely connected, but this is not the
case. As there are 813.000 users, the network is really sparse. That means it
is very unlikely that two random users are connected.
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3 Anonymization algorithm

We need to build clusters of k elements that are similar in attribute level
and relationships level. The anonymization algorithm will need to find the
clusters that minimise the information loss on these two directions, and en-
sure every cluster has at least k elements to maintain the desired anonymity
level.

3.1 SaNGreeA scalable algorithm

The proposed algorithm is a modification of the classic SaNGreeA (Social
Network Greedy Anonymization) algorithm. SaNGreeA is a greedy clustering
algorithm that performs a partitioning of all graph nodes by grouping them
into clusters of at least k elements.

3.1.1 Original algorithm

Nodes inside the clusters become indistinguishable, as every cluster collapses
(generalises) all the attributes of the inner nodes, and all the relationships
between two clusters are collapsed into a single undirected edge. The goal of
the algorithm is to choose the partitioning such as the information loss on
attributes generalisation and relationships is minimised.

It is a greedy algorithm that is driven by two criterion measures: minimi-
sation of generalisation information loss and minimisation of structural in-
formation loss. On every iteration step, it adds a new node to the current
cluster until it has k of them, and then it creates a new cluster. The node is
selected such as it is the one that the most the two criteria described for the
current cluster being built.

During the execution of the algorithm, the structural information loss can
not be computed as the entire partitioning is not known, so the clustering
process is driven by a di↵erent measure as a proxy. That means the solution
will be a local optima, but not the best solution. Furthermore, the algorithm
is deterministic, that means, two executions of the algorithm on the same
data input will generate the same partitioning.
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3.1.2 Time complexity

SaNGreeA has a quadratic asymptotic runtime complexity O(N2), where N
is the number of nodes. That makes it a bit slow if we have a big num-
ber of nodes (1 million), as it would need to do in the order of 1M * 1M
operations.

In our case, we will modify the amount of work the algorithm needs to do
per iteration, such as in practice for our problem, the number of operations
is far less than quadratic.

Concretely, each cluster will ensure all inner nodes have exactly the same
discipline, career level and a location which is close enough (same region).
That will allow to prebuild these buckets in advance, and do a fast search on
runtime by looking only into the nodes in the corresponding bucket, which
would be a very small subset of the network. That will reduce considerably
the work to be done in each iteration, as long as there are not hotspots (a
very few number of buckets with much more elements than the vast majority)
and there are more buckets than machines.

This restriction also makes sense from product point of view, since it will
ensure a minimum level of quality in the anonymization (minimising the
information loss), while still maintaining the k-anonymization property.

3.1.3 Multi-start with biased randomization

In order to improve the clustering quality, we will transform the algorithm
into a non-deterministic one. The idea is to apply some random perturbation
into the node selection during each iteration step, while still taking into ac-
count the two criteria that drive the partitioning (generalisation information
loss and structural information loss).

On every iteration, we will not just blindly choose the node that minimises
the most the two criteria for the current cluster, but instead we will randomly
chose it from the list of the top M candidates, with a probability proportional
to their score on the criteria given.

Each full execution of the clustering algorithm will then generate a reasonably
good solution, but di↵erent every execution. Even if most of the solutions
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may have lower quality than the deterministic solution, by running the full
clustering algorithm hundreds or thousands of times, we will hopefully es-
cape from local-optima solutions and get some solutions which are actually
better with a lower information loss. This will allow us to use a more com-
plex evaluation of the solution scoring, more focused on the quality of the
recommendations that we would get with the clustering. We will then just
choose the clustering solution that damages the least our utility score.

3.1.4 Parallelization

The original SaNGreeA algorithm is inherently serial, since the work cannot
be divided into independent tasks (it keeps adding nodes to the current
cluster until it fills up, then it creates a new one). That means, it can
not be directly sped up by splitting the work using a parallel framework like
Spark or Hadoop.

In our case, we will keep it serial as well. The serial runtime will be just fine to
be run in a single machine, since we have reduced its time complexity.

We will achieve linear parallelism from other perspective. As we are running
the full algorithm multiple times with slightly di↵erent results by the ran-
domization, we can very easily exploit that fact. We will simply run multiple
copies of the clustering process in parallel, each with a di↵erent random seed.
Once we have finished doing hundreds or thousands of full executions divided
between the available number of machines, we will then just keep the best
result as explained in the previous section.

3.2 SaNGreeA metrics for information loss

The authors of SaNGreeA paper developed a few metrics for the evaluation
of the information loss caused by the clusterization for some small networks.
There are two levels of generalisation, quasi-identifier attributes generalisa-
tion, and edge generalisation.

It is important to remark the networks used in their research are orders of
magnitude smaller than the network in our dataset.

12



Concretely, one example network they use has just 300 nodes, and is really
dense with an average vertex degree around 5 to 10. That means, given two
nodes, they have a very high probability to be connected (greater than 1
%).

In contrast, our network is extremely sparse. We have around 1 million nodes,
and an average degree between 100 and 200. The probability of two random
nodes to be connected is tiny in comparison (lower than 0.01 %).

Given this di↵erence in conditions, in this section we explain the metrics they
developed for evaluation of their algorithm in very small networks, and why
they are not very practical for our use case.

3.2.1 Generalization information loss

When the clustering has finished, we need to summarize the quasi-identifier
attributes of all nodes assigned to a cluster. SaNGreeA authors developed
two generalisation types depending on the nature of the attributes to be
summarized.

- Categorical attributes: those are usually generalised using generalisa-
tion hierarchies specific to the domain of the attribute. The cluster
node will take the lowest common ancestor in the hierarchy to all the
inner nodes.

- Numerical attributes: the cluster node will take a range that goes from
the minimum value of the inner nodes up to the maximum value.

None of the two types fits for our dataset. We are using essentially hierarchy-
free categorical values, so this metric won’t be very appropiate for our appli-
cation. Even more, some attributes we have are a list of category values like
list of job roles of an user. We do not have a clear hierarchy for them in our
domain.

3.2.2 Intra-cluster information loss

The k nodes that have been collapsed into a cluster they may originally have
some relationships between them. These edges do not point to other clusters,
they are internal to the cluster. SaNGreeA represents that information by
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adding a new attribute to the cluster which is just the cardinality of the
number of intra-edges that have been collapsed.

Their metric for evaluation the amount of information lost by this summa-
rization is called intra-cluster structural information loss. They quantify it as
the probability of error when trying to reconstruct the structure of the initial
social network from its masked version. The following formula is applied for
every cluster cl and then summed over for all clusters.

intraSIL(cl) = 2 · |✏cl| ·
⇣
1� |✏cl| /

�|cl|
2

�⌘

Their evaluation function intraSIL essentially means that we get zero loss,
perfect information for a cluster cl if either:

- none of the nodes in cl share any edge

- all nodes in cl are interconnected between them

For example, for k = 3 we can have a maximum of 9 edges inside a cluster.
The following shows the information loss function value for all the possible
cases:

Number of edges intraSIL loss
0 0.00
1 1.77
2 3.11
3 4.00
4 4.44
5 4.44
6 4.00
7 3.11
8 1.77
9 0.00

As we can see, for the extreme cases (no edges, or all possible edges), re-
constructing the original edges is perfect and trivial as we have complete
information. On the other hand, we get maximum loss if we have a number
of edges that is the half of the pair of nodes in the cluster as there is more
uncertainty to which original nodes belong every edge.

However from our application point of view, a good cluster will have users
that are similar. We consider similar if their quasi-identifier attributes are
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similar, or if they have many relations in common. We think that find-
ing clusters with a few internal edges is far better than having no edges at
all.

We do not care so much if the original information can be recovered, if
it generates clusters with low usefulness for a recommendation algorithm.
Why would we want to have clusters that do not share any edge between
them? Even if that means we do not lose information when generalising it
is counter-intuitive for our purposes. Given the sparsity of our network, it
would be too unrealistic to think we can find many clusters where all nodes
are interconnected between them.

SaNGreeA focuses on the damage from reconstruction point of view, but we
aim to have a clusterization that retains the semantics of what we think is a
good user similarity.

3.2.3 Inter-cluster information loss

This metric represents how much information do we lose if we generalise all
the edges that were connected from a node belonging to a cluster cl1, to a
node belonging to a di↵erent cluster cl2. All these nodes that fall between
two concrete clusters are summarized to just one edge with a weight value
that indicates how many edges are collapsed into this new one.

The interSIL metric they develop is identical to the metric for intra cluster
but instead of all the edges that fall inside one cluster, it is evaluated for
every pair of clusters cli and clj and then summed all over.

interSIL(cli, clj) = 2 ·
��✏cli,clj

�� · (1� ✏cli,clj
|cli|·|clj |)

So given two clusters cli and clj, the inter-cluster information loss metric has
zero loss (a perfect reconstruction is possible) for these cases:

- there are no edges between cli and clj

- all nodes of cli were connected with all nodes of clj

We would get maximum loss if we have half the maximum possible edges.
The function table is identical to the intraSIL one shown in the previous
section. Again, we do not think this is a good metric for our use case. It is
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not very di↵erent for us if we have two clusters that are totally linked with
all possible edges between them or just a good subset of them.

Once there are more than a few edges between two clusters we can consider
these two clusters to be heavily linked. That can be used by a recommender
system to infer that these two clusters are really related and infer good
recommendations for one cluster are potentially good for the other. But for
that, it does not really matter too much if they have the maximum number of
edges possible between them, just above a certain reasonable threshold. We
may even choose that threshold to be around half of the maximum possible
number of edges.

It is unrealistic to aim for achieving maximum linkage for a high number of
clusters given our very high sparsity. Most of the pairs of clusters will have
a very low number of edges crossing them.

Given this, the interSIL metric will essentially try to minimise the loss by
either finding clusters that are completely unlinked, or fully linked. Those
that fall in the middle are really penalised. As we can not aim to have
many pairs of totally linked clusters, the algorithm will try to minimise the
error from the other side, so that the clusters do not have too many edges
between them. That is totally opposite to what we would like to have from
a recommender point of view.

3.3 Our utility score for information loss

As the metrics used for study the original SaNGreeA algorithm are not appli-
cable to our use case, we need to develop our own. We will develop a utility
score, which will be used to select which full clusterization from the hundreds
we run, is the one that we find the best and selected as final result.

First we need to find a di↵erent generalisation function for the quasi-identifier
attributes, as we have categorical values without a clear hierarchy, and then
a di↵erent scoring method for the clusterization output.
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3.3.1 Quasi-identifier attributes generalisation

Every cluster represents a set of k nodes. Some quasi-identifier attributes are
warrantied to have the same value as all its inner nodes (those used for the
bucketing mechanism while clustering), but the rest of them will need to be
generalised to represent the inner values while maintaining anonymity.

None of the quasi-identifier attributes in the dataset has a clear hierarchy.
Even the job roles is essentially a flat structure on our dataset. Therefore
taking into account what would be the best for the utility of the data in
a recommender system, the easiest is just to report a list of all the values
present in the inner nodes, without repetition.

That means, if we have a cluster covering users A, B, C, with industries
respectively I1, I1, I2, the cluster will have as industries attribute the set [I1,
I2].

As an advantage, we still know the concrete industries instead of more generic
ones, thus avoiding increasing the damage caused by the clustering. If we
had chosen a more generic one such that it covers both I1 and I2 (if we had
such hierarchy), probably it will also cover other industries that would not
be part of the inner nodes in the cluster, thus increasing the data damage
unnecessarily.

The downside of this is that we are transforming the attributes that are single
value to a list of values. In some applications there may be the need of some
transformations (like generating nodes synthetically by pooling randomly
from the cluster) to make it usable. But from the recommender application
point of view, it is acceptable as it is very easy to incorporate a set as an
attribute, and just recommend items doing an union to take into account
results covering any of the values.

3.3.2 Relationships generalisation

We will generalise the relationships exactly as described in SaNGreeA paper.
All intra cluster edges will be collapsed into just a new cluster attribute with
the count value, and all inter cluster edges between two concrete clusters will
be collapsed into just one edge with a count attribute.
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We will consider the number of relationships in common of the inner nodes of
a cluster and the intra edges for our scoring function. We want to obtain the
clusters that collapse the most similar users. From a recommender system
point of view, it is more important to find clusters with very similar users,
than pairs of clusters with a very heavy link between them.

3.3.3 Clusterization scoring function

For every cluster, we will calculate one damage value per quasi-identifier
attribute, and one additional one for the relationships, getting a tuple of
damage values.

Essentially, for every attribute that have been generalised, the cluster has a
set with all the di↵erent values present in the cluster. We will set the damage
score of that attribute to the cardinality of the set.

Note the minimum score possible is 1, which is the perfect scenario where all
the collapsed nodes have exactly the same value, as the resulting set would
be just 1 element.

3.3.3.1 Relationships scoring

We will reduce the problem of scoring the relationships into the quasi-identifier
attributes scoring one.

Given a cluster cl with users u1. . .uk, intra edges ecl and inter edges ecl,cli ,
we define the set of edges Ecl as the union of all intra edges and inter edges
of cl.

Ecl = ecl [ ecl,cli

Next, we define the nodes Ccl as all the unique nodes referenced by Ecl. That
means, any node from the graph (internal or external), where at least there
is one edge of cl referencing it.

Ccl = {v 2 V | 9u 2 u1. . .uk such that eu,v 2 Ecl}
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The damage score for the relationships is then calculated as:

damage score (cl) = |{u | u 2 u1...uk [ Ccl}|
2 · |Ecl| · k

Essentially, it is the number of all unique nodes inside the cluster or connected
to the cluster (without repetitions), divided by the total number of edge
extremes plus the cluster size (with repetitions).

The lower this score, the more shared relationships the cluster has. We can
consider this value as the damage score for the relationships attribute, as we
want to minimise it like quasi-identifier attributes damage score.

3.3.3.2 Example clustering damage score

For example, for a clusterization where we have a cluster C1 that collapses
the users u1 and u2, and the users have two quasi-identifier attributes A and
B. If the users have the attribute values:

User Attribute A Attribute B
u1 [A1, A2] [B1]
u2 [A2, A3] [B1, B2]

Then when the cluster C1 collapses users u1 and u2, we generalise the values
by adding each di↵erent attribute value into a set. The cluster will then have
the attributes:

Cluster Attribute A Attribute B
C1 [A1, A2, A3] [B1, B2]

The damage score tuple for cluster C1 is equal to the cardinality of each
attribute set values:

A = | [A1, A2, A3] | = 3

B = | [B1, B2] | = 2

So the damage score tuple of the cluster C1 (dst1) is equal to:

Cluster Damage score tuple
C1 (3, 2)
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3.3.3.3 Final average damage score

Finally, after we have calculated all damage score tuples dst1...M for all the
clusters C1 to CM , we sum all the tuples and divide by the number of clus-
ters M. The final tuple would be the average number of di↵erent values per
attribute for this full clustering execution.

average damage score =
PM

i=1 dsti/M

Let’s say we have executed one hundred times the clusterization algorithm.
For the 45th execution we have get an average damage score value of 2.33
for attribute A, 1.3 for attribute B and 67.4 for relationships. Then we
would have a list of average damage score tuples, one per full clusterization
execution like:

1st execution average damage score = (aaa, bbb, ccc)

...

45th execution average damage score = (2.33, 1.3, 67.4)

...

100th execution average damage score = (ddd, eee, fff)

3.3.4 Selection of the best clusterization

Once we have finished computing hundred of di↵erent clusterizations, and we
have calculated their average damage score tuple, we need to choose which
one of the clusterizations is the best.

As every clusterization execution has a tuple score, instead of just a number,
it is not immediately obvious which one is the best. If it where just a number,
we would then choose the minimum one, but we have a tuple instead.

We will calculate a single value final score per clusterization by first normal-
izing the tuple scores per attribute, and finally multiplying all normalized
attributes to get a single value score.

Example: in the following table we show the average damage scores we would
have get in an hypotetical case where we have executed the clustering algo-
rithm 3 times:
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Clustering execution Attribute A Attribute B
Execution 1 3.2 4.5
Execution 2 3.1 6
Execution 3 2.1 4.6

We then normalize the scores by dividing by the maximum damage per col-
umn:

Clustering execution Attribute A Attribute B
Execution 1 3.2 / 3.2 = 1.00 4.5 / 6 = 0.75
Execution 2 3.1 / 3.2 = 0.97 6 / 6 = 1.00
Execution 3 2.1 / 3.2 = 0.66 4.6 / 6 = 0.77

Finally we just multiply each value of the normalized tuple:

Clustering execution Final score
Execution 1 1.00 * 0.75 = 0.75
Execution 2 0.97 * 1.00 = 0.97

Execution 3 0.66 * 0.77 = 0.51

The minimum normalized damage score is achieved by the 3rd execution, so
that will be selected as the best clustering execution.

3.4 Technical implementation

The anonymization algorithm have been implemented in Apache Spark which
is a framework for developing large-scale data processing algorithms.

Essentially every spark program consists of a main driver program that
spawns several parallel operations on a cluster of machines. It is similar
to the MapReduce framework, but with a higher level abstraction, making
easier to write complex workflows.

3.4.1 Parallelism

As explained in previous section, we have exploited the parallelism in Spark
by two axis:

1. Partitioning the users so that we can divide and calculate independently
di↵erent sets of clusters
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2. Running multiple independent full clusterization executions

Thanks to that two-level parallelism, we try to ensure the data processing
machine nodes almost always have tasks to do that are not too big. That
is important to avoid hotspots that will make the algorithm slower, as we
would need to wait to the longest task, making some data processing nodes
underutilized.

Finding the right amount of data partioning and number of tasks to be run
in parallel have been a long trial and error process, as too many tasks create
a lot of management overhead by Spark, and having too few means we may
face hotspots by very long-running tasks.

3.4.2 Optimizations

We had to make several memory management optimizations in the data pro-
cessing tasks. One of the issues was that the most trivial data structures were
not performant enough, as we quickly run out of memory in the task nodes.
We had to use high-performance memory-compact data structures from fas-
tutil framework to make our algorithm fast and memory e�cient.

One of the most expensive operations is to calculate the similarity between
users. Also this is a very redundant operation, during a single execution we
will need the similarity of some user A and B up to k times (when compar-
ing the current cluster being built to all remaining users). Even more, the
similarity value between user A and B does not change between clustering
algorithm executions as it only depends on their attributes.

3.4.3 Execution steps

The execution steps are the following:

1. Similarity cache

2. N ⇡ 100 clusterization algorithm executions with biased randomization

3. Evaluation of the N clusterization algorithm outputs and selection of
the best
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For achieving computing e�ciency, we have done a similarity cache step
before starting any clusterization execution. It is executed just once, reading
all user data, grouping them by the clustering bins, and computing all pairs
similarity values per bin. That information is then stored in a compact table
indexed by pair of users A, B with the similarity value.

Then every clusterization execution just loads that users similarity table as
the input. That makes the clusterization algorithm very e�cient on execution
(the similarity is precomputed) and in memory usage as well, since the only
thing it needs to load is such table, removing the need to read any user data
which is several orders of magnitude bigger.

Finally, the evaluation needs as input the original users data and the clus-
terization output, in order to generate the damage scores.
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4 Experiments and results

We have tested our algorithm with di↵erent parameters on our 830.000 users
dataset. We are interested to evaluate how the utility of the k-anonymised
dataset is damaged from a recommender system point of view. Also we have
done scalability tests for the proposed parallel solution.

4.1 Damage evaluation

We have tested our algorithm with three similarity functions. They are used
to drive the clustering greedy algorithm:

- Minimise both attributes and structural information loss

- Minimise only the attributes information loss

- Minimise only the structural information loss

Each of these similarity functions have been tested with di↵erent values of k.
The number of full clustering executions have been fixed to N = 100.

For the quasi-identifier attributes damage evaluation, we have plotted the
average number of di↵erent values a cluster of size k has. In the ideal case,
the average cluster quasi-identifier attribute length will match the average
length of a random user (if for every cluster, all users of the cluster have
identical values). In the worst case, the average value would be k times the
ideal value (none of the clusters have any two users with a shared attribute
value).

For example, for the industries attribute, as every user has only 1 value, the
ideal case would be to have an average attribute length of 1 for a cluster,
independently of k. But the worst case would be equal to k. Analogously,
for the job roles attribute, the average length per user is 3.8 (see dataset
overview section). Then the best case would be 3.8 independently of k, and
worst case would be 3.8⇥ k.

Figure 3 shows the average number of di↵erent values for each of the quasi-
identifier attributes as cluster size k grows, with a di↵erent color for the
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similarity function applied. The gray dashed line is the theoretical worst
case and the green one is the best case as explained before.

Figure 3: Average damage scores per cluster
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We can clearly see the e↵ect of the di↵erent similarity functions. The structural-
only similarity function works well for increasing the shared relations, but
not so well for the minimisation of the quasi-identifier attributes, except for
the entities case which will be analyzed later.

The attributes-only and all-attributes similarity functions are nearly identical,
except for the first graph, the shared relations. Obviously the attributes-only
function is the worst performing one, as it does not take into account the
relationships for building the clusters.

We can say the all-attributes similarity function is performing specially well
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for the information loss minimisation, and still improving a bit the structural
information loss (relationships damage). That is good news, since we want
to minimise the damage score in both.

It is important to note the e↵ect on the entities quasi-identifier attribute. It
is a very sparse attribute as an average user has a list of 151.7 di↵erent values
from a domain of 10.000 di↵erent entities. As all similarity functions have
the same e↵ect for it, it does not matter if we take it into account for building
the clusters. We can conclude this attribute will be heavily damaged, and
will be very unreliable to be used for driving any recommendation from the
clusters.

The industries attribute is arguably the most undamaged one. For the all-
attributes and attributes-only similarity functions, as k grows, the number
of di↵erent industries barely grows, it is almost flat, and quite close to the
theoretical minimum of 1 (ideal case, green dashed line). This quasi-identifier
attribute is specially important for recommendations, so it is highly desirable
to have the average size as small as possible.

Please remember there are 3 other quasi-identifier attributes which do not
have any damage at all and do not need any evaluation: disciplines, career
level and region. During the clustering process, we have guaranteed all users
inside a cluster have the same value for these 3 attributes by partitioning the
users beforehand.

We are able to just share around 1 % of the relationships inside a cluster.
This is expected, as our network is really big and sparse. This is not as bad
as it seems, as we can say two users are strongly connected when they share
just a few (maybe a handful) of contacts.

4.2 Damage minimisation over N

We have evaluated how much the solution improves running the clustering
algorithm N times. We are interested to see how the ”best so far” solu-
tion damage score decreases as we are finding better solutions until we have
completed the clustering stage by calculating N di↵erent solutions.

For this analysis, we have run the full clustering process for N = 200 and K
= 5. The similarity function is all-attributes.
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Figure 4: Damage minimisation over N
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Figure 4 shows in blue dots the score value for each of the N clustering
solutions. We have separated into a di↵erent chart per attribute, and a
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leading one with the final solution score combining all attributes.

The black line is the trailing minimum score found so far for the specific
attribute being represented. The first plot is the one that has the real function
we are minimising and selects the ”best solutions so far”, those are marked
as black dots in the other graphs. The absolute best solution with minimum
score is marked as a red dot in all graphs.

Note how the best solution (marked in red in all plots) is found quickly after
less than 100 iterations. The best solution coincides that it is one of the
minimums of the industries attribute (follows its black line), but it is not a
minimum in the other attributes, they are about in the middle of their range
of solutions. It is not even the absolute minimum of the industries attribute,
as an even lower value is found after much later (N approaching 200).

Since the best solution is the one that combining all attribute damage scores
has the lowest value, it should be competent in all attributes at the same
time. That means having a very low value for industries, but too high for
the other attributes is not desirable. That is the reason why it sacrifices a
bit of damage for industries for a bigger decrease of damage in the other
attributes.

Nevertheless, we are able to adjust the importance of any attribute by apply-
ing higher weight when combining all the scores. That allows for fine tuning
the search, if any of the attributes is specially important for the utility of the
anonymized dataset.

4.3 Scalability

We want to evaluate how our algorithm scales as we increase our comput-
ing power. As our algorithm requires many full executions to improve the
clustering results, we want to be able to run a large number of executions
N and shorten the wall clock computing time by adding more computing
nodes.

When we increment the number of executions N , if we increment the com-
puting power by the same relative amount, in the ideal case we want it to
finish in about the same time. If an algorithm has such ideal property, it is
said the algorithm has perfect linear scalability.
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4.3.1 Processing stages

As stated before, our full process has three stages that are executed sequen-
tially with a di↵erent need of resources.

1. Similarity cache: compares all pairs of users of the same bin. It does
not depend on N neither on k

2. N clusterization algorithm executions with biased randomization. We
have set 40 computing tasks by default.

3. Evaluation of the N clusterization algorithm outputs and selection of
the best.

As the first stage is fixed in size and complexity, it is independent of the
number of clustering executions N and k. However, the second and third
stages depend on k and N , so these are the ones we want to scale well. The
target is to be able to run as many full clustering executions as we want, and
keep adding more computing nodes in order to finish the full process in a
reasonable total wall clock time.

We focus our analysis in the clustering stage which is the one that really
requires high computing power. The evaluation is really lightweight in com-
parison. In our tests we have seen the time required for evaluating the results
is mainly constant, with a very small increase in time as N increases.

Figure 5 and table 2 show the total wall clock time required to compute N
full clusterizations and how much it decreases as we run it in more computing
nodes in parallel.
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Figure 5: Full clustering stage time
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Table 2: Full clustering computing time (minutes)

Computing nodes
N 10 20 40 80 160
20 40.8 31.9 19.0 17.6 15.4
50 68.8 57.6 27.3 25.4 24.4

100 107.6 79.3 45.0 41.4 42.7
200 193.5 149.7 97.4 83.6 77.1

We can see it is not perfect linear scalability as if we double the number of
nodes, we do not finish the same amount of work in half the time. In the
table 3 we calculate relative computing time per row relative to 10 computing
nodes (first column).

It scales up until we have between 40 and 80 nodes, then adding more nodes
does not significatively decrease the total time. That is because we need to
have much more work to do than nodes, so that we can ensure all of them
are busy most of the time.

Another factor is the overhead work of data loading. Our clustering algorithm
should first load the similarities table from the cache. Even that the table is
precomputed, this table is quite big and needs some minutes for its loading.
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Table 3: Percentage of time relative to 10 computing nodes

Computing nodes
N 10 20 40 80 160
20 100% 78% 47% 43% 38%
50 100% 84% 40% 37% 35%

100 100% 74% 42% 38% 40%
200 100% 77% 50% 43% 40%

This loading is done in serial, and it can not be reduced by adding more
tasks.

There is also a communication overhead cost. Adding more nodes requires
more data movement. If there is not enough work to do to keep the nodes
busy, it would be a waste of time to move data into them. It can actually
be finished earlier in half nodes if they have full usage, rather than double
nodes with half usage.

For our dataset and N = 200, we claim it is acceptable to use 40 nodes to
finish the clustering in less than two hours. There is no need to actually use
more nodes as practically if a company needs daily generation can leave that
computing process during night when there are usually other batch processes
running. Even more, if a dataset is going to be published, it can be just a
one time thing, so two hours is really not of an issue.

Furthermore, if we have the need for higher accuracy figures, we can increase
N over 1000 and then we will see the benefit of adding more nodes to the
clustering process.
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5 Conclusions

We have successfully developed a k-anonymized clustering based algorithm
that can scale to process almost a million users and can be run over tens of
computing nodes in parallel. It can be executed hundreds of times to keep
decreasing the damage caused by the clusterization. It is able to take into
account both the structure of the network and the nodes attributes to drive
the clustering greedy algorithm.

We are happy with the evaluation results. We have learned which attributes
of the clustering output will retain their utility for a recommender system,
and which ones should not be used as they are heavily damaged, which
is expected by their own sparse nature. We have shown how the solution
improves as we keep running more and more iterations of the full clustering
algorithm and finding new local optima solutions.

We were able to develop our algorithm in a nice big data computing frame-
work (Spark) which is one of the references in the field and use it to pro-
cess a real world dataset which is big enough to be a challenge. There is
not many research on clustering-based k-anonymized algorithms where a big
dataset is processed as usually they focus on networks of less than a thousand
nodes.

Initially we planned to develop a recommender algorithm alongside the clus-
tering algorithm. Quickly afterwards we realised that would be too much
work, and we left it out of scope. A recommender algorithm can be a full
research project by itself easily. Nevertheless, the spirit to focus on the utility
to a recommender system remains, as the clustering algorithm decisions and
evaluation framework is heavily focused into real world needs for a recom-
mender system.

5.1 Future directions

5.1.1 Recommender systems e↵ect with k-anonymized data

One obvious future direction can be to further analyze the e↵ect of the k-
anonymized clusters into a real world recommender. That would mean to
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use the clustered data for generating recommendations and evaluate how
much those recommendations degrade in comparison of recommendations
generated from the original dataset.

Recommender systems evaluation is hard. There are essentially two types of
recommendations evaluation:

1. O✏ine evaluation: compare the recommendation system results against
some truth dataset.

2. Online evaluation: compare how well the new recommendations work
by checking real user behavior when they face them.

With online evaluation we are able to know if the utility of the recommenda-
tions have really improved or not. The downside is that it requires to deploy
the new recommender system into some production environment and drive
users into it. That can be risky if the new recommender system is very ex-
perimental and can do detrimental damage to the business if the new system
does not performs well enough. However, the results are the most realistic
ones.

The o✏ine evaluation is a bit harder to be accurate. We can check how the
new recommendations output is, their distribution, some key metrics, even
compare them against some truth dataset without the need to deploy the
system to production.

Let’s say we have an online store and a recommender system A that never
recommended any book product. Then the new recommender system B is
able to recommend all products A was able, and additionally books. If we
check o✏ine the accuracy of this new recommender, it will have products
never reported before by the previous version. How can we then compare
against a truth dataset? We may need to manually enter good matches
for some hand-made user profiles which can be time consuming, and we
will never be able to think on all possibilities. Even more, are these books
recommended what the user really wants? Selling these books will be more
profitable than other products? How can we then develop a truth dataset to
compare with? The utility of a recommender system is not only driven by
the accuracy of the matches, but also from a business perspective. For this
case maybe online evaluation is more appropiate.
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5.1.2 Other k-anonymization algorithms

Another future research direction can be to apply our evaluation framework
to K.Santhi et al. k-anonymization algorithm [13]. Their algorithm already
has the same multi-start properties and multiple solutions generation, so it
would mean to develop a scalable version that can handle our dataset size,
generate the same set of metrics and compare the results.
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6 Glossary

• XING [1]: a social network for business.

• RecSys Challenge 2016 [2]: it is a research challenge organized by XING
and CrowdRec [3].

• Quasi-identifier attributes: attributes that are not by themselves iden-
tifiers, but they are correlated with a series of entities and combined
can be used to identify some of the entities individually.

• k-anonymity: it is a model of data protection. The concept was intro-
duced in 2002 [5]. Essentially, this model asserts that any individual in
the dataset can not be distinguished from at least other k - 1 individual
from the dataset in terms of quasi-identifier attributes values.

• Clustering: it consists of grouping a set of objects such that objects in
the same group are more similar than those in other groups.

• SaNGreeA [11]: a greedy and deterministic clustering algorithm for
achieving k-anonymous clusters on a labeled, undirected graph. It is
nowadays a classic and leading work in clustering based k-anonymity
algorithms.

• NP-complete problems: a set of problems for which we do not know
yet any polinomial time algorithm that can solve it with exact solu-
tion. They are usually solved with heuristic algorithms that can get an
approximation in polynomial time.
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