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Abstract: Most of the currently proposed solutions for automated malware behaviour-analysis
in the literature are fully or partly based on commercial software or in obsolete software. An
automated behaviour-based method of analysis based on free open source software as alternative
to the existing ones is proposed here. This method will help to determine if a software sample
is malware that can allow in a later step to generate static fingerprints for IPS/IDS and Antivirus
software. The results of some experiments based on the proposed model are commented.
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1. Introduction

Typically the antivirus programs and anti-
malware suites identify the malware software by
the use of static patterns. Before they can iden-
tify the malware software a previous analysis
must have been done to identify it and get static
fingerprints. By the use of behavioral detection
techniques it can be observed how the program
executes and try to identify malware by looking
for suspicious behaviours.

To create a malware analysis laboratory is a
very important task, mainly for security con-
sultant enterprises and medium and large enter-
prises with its own IT security department.

There are several software tools that help to
automate the creation of sandboxes and obtain
behaviour data of a software. This data can be
analysed and used to generate signatures that
could be used later in antivirus or IPS/IDS soft-
ware or anti-malware suits using static analysis.

A behaviour-based analysis system based on
free open source software (FOSS) tools will be

proposed in order to create models based in ma-
chine learning (ML) techniques to determine if
a software sample is malware or not in base of
its behaviour patterns. Some experiments based
in the proposed model were done and are com-
mented in this paper.

2. Background

There are currently many studies that discuss
automated malware analysis in different ways
[1]. Most of them use a combination of static
analysis and dynamic analysis. Static methods
have the problem of obfuscation. Saed et al.
[2] propose a novel technique that extracts the
semantics of binary code in term of both data
and control flow. It was called semantic flow
graphs(SFG) [2] and can be used to detect mal-
ware in cases where refactoring and obfuscation
make difficult to analyse the code. Even of that
static analysis could help to analyse some files
it could not determine malware code in highly
obfuscated or deeply packed binaries.



Dynamic analysis methods have a high accu-
racy, but they produce higher overhead and can-
not cover all malicious behaviours a malware
could have, as it could not test all the possible
cases and combinations of events [3]. In these
cases a static analysis can help to get a more ro-
bust detection system.

Malware needs one or more sequential pro-
cesses to achieve its purpose. This sequential
processes is defined as behaviour chain [3]. The
creation of behaviour chains models [3] in con-
junction with other models like machine learn-
ing could be used to detect and classify malware
with a high accuracy.

Sanjay et al. [4] proposes a method using the
WEKA data mining tool [5] to detect malware
based on machine learning. Zahra et al. [6] pro-
poses a malware detection system based on API
calls, their arguments and return values. Aziz
et al. [7] proposes a malware detection sys-
tem based in the usage of the file system, mem-
ory, network and Windows registry. Ding et al.
[8] proposes a malware detection system based
on the analysis of static system calls. Naoto et
al. [9] proposes a malware classification using
APIs in Initial Behaviour. Saja et al. [1] pro-
poses a malware detection system based in the
Windows registry monitoring.

Dynamic analysis is done by the use of sand-
boxing techniques. The software tool MAAR
[6] provides a system model to monitor, anal-
yse, model and monitor Portable Executables
(PEs) files used in 32-bit and 64-bit versions
of Windows. Currently there are free software
tools that could be used to automate the dy-
namic analysis of malware [10][11]. Some eva-
sion techniques and countermeasures are also
used by malware to avoid it detection in sand-
boxes environments [12].

Most of the proposed solutions for automated
malware behaviour-analysis in the literature are
fully or partly based on commercial software or
in obsolete software.

3. System design

3.1.  Analysed Software

In order to automatize the Sandbox creation
task and the behaviour data extraction process
for a later analysis the next software was anal-
ysed.

3.1.1. Cuckoosandbox:

Cuckoo sand box is a malware analysis system
and it is currently under active development.
Cuckoo is completely written in Python and cur-
rently it only fully support Python 2.7. It sup-
ports the next OSes:

— Host system: GNU/Linux (Debian or
Ubuntu preferably), also tested to run in
Windows 7 and Mac OS X.

— Sandboxed OS: Windows (Windows XP
and Windows 7 64bits recommended), Mac
OS X, GNU/Linux, and Android.

It allows to:

— Analyse many different malicious files (ex-
ecutables, document exploits, Java applets)
as well as malicious websites, in Windows,
OS X, Linux, and Android virtualized envi-
ronments. Trace API calls and general be-
haviour of the file.

— Dump and analyse network traffic, even
when encrypted.

— Perform advanced memory analysis of the
infected virtualized system with integrated
support for Volatility.

It can retrieve the following type of results:
— Traces of calls performed by all processes
spawned by the malware.

— Files being created, deleted and down-
loaded by the malware during its execution.

— Memory dumps of the malware processes.
— Network traffic trace in PCAP format.



— Screenshots taken during the execution of
the malware.

— Full memory dumps of the machines.
It can be used to analyse:

— Generic Windows executables
— DLL files
— PDF documents
— Microsoft Office documents
— URLs and HTML files
— PHP scripts
— CPL files
— Visual Basic (VB) scripts
— ZIP files
— Java JAR
— Python files
— Other type of files.
Yara and Pydeep are optional plugins. In order

to use the Django-based Web Interface, Mon-
goDB is required

3.1.2. Yara:

Yara is a tool for data analysis that allows to
apply predefined rules to search patterns. It is
currently under active development. It Allows
to create descriptions of malware families based
on textual or binary patterns.

It is BSD 3 licensed and runs on Windows,
Linux and Mac OS X. It can work also as a
cuckoo plugin.

3.1.3. Malheur:

Malheur is a tool for the automatic analysis
of malware behavior. It is currently not un-
der active development. It works with popular
malware sandboxes (e.g. CWSandbox, Anubis,
Norman Sandbox, Joebox) Can be used for:

— Extraction of prototypes
— Clustering of behaviour
— Classification of behaviour

— Incremental analysis

There is a modified version of Cuckoo that sup-
ports Malheur.

3.1.4. Other sandboxing software:

There are others malware analysis solutions in
the market. Most of them are offered as sample
analysis service and some of them are not cur-
rently under active development. E.g. Buster
Sandbox Analyzer, Zero Wine Malware Analy-
sis Tool, CWSandbox, Anubis, Norman Sand-
box, Joebox, VMRay, ThreatAnalyzer, Norman
Sandbox, GFI Sandbox, ValidEDGE.

4. Proposed method

The proposed method consist in the use of the
FOSS Tools indicated in the Table 1 to exe-
cute an automated analysis of software samples.
Once the results are obtained they are processed
to extract relevant data. After that, the resulting
data is analysed to determine if the sample could
be considered as malware in base of it registered
behaviour.

Table 1 List of main FOSS Tools used

Name Description
Cuckoosandbox Malware analysis system
VirtualBox x86/AMD64/Intel64

virtualization product
WEKA Data mining

and machine learning tool

Cuckosandbox was selected due it is a free
open licensed project under active development
that can be used to automatically extract dy-
namic behaviour data from software executed
under a controlled environment. Oracle Virtual-
Box was selected as virtualization environment
as it is a free open software project (GPL li-
censed) widely used and supported with cuckoo
sandbox. Cuckoosandbox allows to submit soft-
ware to be analysed. The results of the anal-
ysis are stored in JavaScript Object Notation
(JSON) format. In order to analyse a wide
amount of data obtained from the cuckoo soft-
ware the Weka software was selected. Weka is



GPL licenced and contains a collection of visu-
alization tools and algorithms for data analysis
and predictive modelling. It has an user graph-
ical interface as well as a command line one.
Weka is written in Java and allows to integrate
its components as java classes. Weka has sup-
port to import JSON files, but the cuckoo JSON
file is complex, in same cases the resulting file
can reach a big size (over 1Gb) and it is not di-
rectly importable by Weka. A custom python
program is used in order to process the cuckoo
results. It extracts relevant data from the JSON
files and export them in Attribute Relationship
File Format (ARFF) format, which is the Weka
native format. In this format a list of attributes
considered relevant for malware analysis or de-
tection will be provided to Weka. The liac-arff
[13], bigjson[14], python libraries and custom
functions are used to import and export the data.
Python provides a flexible and powerful envi-
ronment to create rules to extract the relevant
data from the JSON files.

To determine the independent variables that
causes the malware behaviour could be a diffi-
cult task and Weka with the obtained data from
the custom Python program could be used to fa-
cilitate this by the analysis of the data and study
of the models to classify the software.

Table 2 Used FOSS Licence

Name Version Licence
Cuckoosandbox 2.0 GPLv3
VirtualBox 5.1.16 GPLv2
WEKA 3.8.1 GPLv3

Listing 1. Example of an ARFF file

% ARFF example file
@RELATION normal

@ATTRIBUTE
@ATTRIBUTE
NUMERIC

file_created NUMERIC
regkey_written

@ATTRIBUTE

NUMERIC
@ATTRIBUTE
@ATTRIBUTE
@ATTRIBUTE

regkey_opened

command_line NUMERIC
file_written NUMERIC
regkey_deleted

@ATTRIBUTE
@ATTRIBUTE
NUMERIC

dll_loaded NUMERIC
connects_hosts

NUMERIC
@ATTRIBUTE
normal }

class {malware,

@DATA

,normal
,malware
,normal
,nhormal
,nhormal
,normal
,malware
,nhormal
,malware
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4.1. System setup

Cuckoosandbox is used in conjunction with Vir-
tualBox to analyse software samples.

Before start working with couckoosandbox a
system set up is needed.

Cuckoosandobox’s documentation [10] ex-
plains how to setup the system to work in con-
junction with VirtualBox and how to submit
analysis requests. Cuckoosandbox also allow
to work in conjunction with other virtualization
tools or even with real systems used as sand-
boxes.

A special configuration of the sandbox system
is required for the selected setup based in vir-
tualbox. The steps to configure the guest sys-
tem to work properly with the cuckoo agent are
described in the cuckoosandbox documentation.
The samples under analysis can be submitted
to cuckoosandbox by the use of the submit.py
Python script included in cuckoo utils folder.



Listing 2. E.g. Submit all .exe files in the current
folder to cuckoo

for f in x.exe; do
“/cuckoo/utils/submit.py ”$f”;
done

Cuckoo sandbox also have a web interface
and an API to help to automatize the submit
task. Once the analysis of a sample is finished a
report is generated by cuckoosandbox.

Cuckoo generates JSON files as output.

Listing 3. Structure of a typical cuckoo JSON
result file

{ info{...}
signatures {...}
target {...}

virustotal {...}
network {...}
behavior{
generic {...}
apistats {...}
processes {...}
processtree {...}
summary { ...} }
debug {...}
strings {...}
metadata {...}}

Listing 4. Example of python function to ex-
tract information about the accessed registry
keys from the cuckoo JSON file

def analizeReg(json_data, D,
reglist , firstIndex):
try:
for i in json_data[”behavior”
][ ”summary” ][ "regkey_read”
]:
idx = firstlIndex
for k in regList:
if i
D[idx ]=1
idx += 1
except Exception:
raise
return D

The JSON report is adapted by a python script
to ARFF format. The Python script produces
an output in Attribute-Relation File Format
(ARFF), that can be processed by the WEKA
software package.

[ SW Samples }

[ VirtualBox }
/

cuckoo ]

™~
[VM—cuckoo Agent}

{ JSON File }

{Python Custom Program}

{ ARFF File }

=S

{Model based in ML}

5. Experiment results

In order to test the proposed method a series of
experiments were executed and their results are
exposed here.

5.1. Test equipment

The system used for testing was an Intel 15
M480 CPU PC, 4GB of RAM and Ubuntu
16.04.2 LTS GNU/Linux as Operating Sys-
tem. A Windows 7 professional SP1 (64 bits)
virtual machine (VM) was used by cuckoo to



execute the binary files with the samples un-
der evaluation. The virtual machine (VM) was
properly configured to work with cuckoo Agent.

Samples of software were obtained to be anal-
ysed:

e 997 samples of Windows PE Malware and
38152 samples of CryptoRansom malware
from the VirusShare [15] website with mal-
ware samples.

e 54 software samples from the CNET.com
[16] website with free software download.

e 549 software samples from the Freeware-
files.com [17] website with free software
download.

Cuckoosandbox, Virtualbox and Weka were
installed as indicated in the system setup sec-
tion.

5.2. Data extraction

For these experiments, instances of ransomware
malware, other types of malware and normal
software were used. Malware classified samples
could include ransomware malware samples as
it is a specific type of malware. We could use
this. All the samples under analysis run in the
virtualized environment.

The samples were placed in a folder and sub-
mitted to cuckoo for testing with the next re-
sults:

e Some of the files in the ransomware dataset
were not Windows PE files and the analysis
was not performed.

e A report in JavaScript Object Notation
(JSON) format was generated. After a
analysis of 3016 files, 19 files were over
250MB.

e Due the limited resources of the used equip-
ment the JSON files with size over 250MB
were discarted and only 3016 files were
analysed with cuckoo sandbox.

The dataset used as input for the machine
learning scheme is composed by a set of in-
stances. Each instance is an independent exam-
ple of the concept to be learned. Preparing the
input for a data mining investigation consumes
the bulk of the effort invested in the entire data
mining process [18].

5.3. First data extraction

The resulting data from the cuckoo analysis was
processed to obtain the next attributes:

— file created NUMERIC

— regkey written NUMERIC
— dll loaded NUMERIC

— connects hosts NUMERIC
— regkey opened NUMERIC
— command line NUMERIC
— file written NUMERIC

— regkey deleted NUMERIC
— file exists NUMERIC

— mutex NUMERIC

— file failed NUMERIC

— resolves host NUMERIC
— guid NUMERIC

— file read NUMERIC

— regkey read NUMERIC

— directory enumerated NUMERIC

This attributes were selected as they describe
a set of actions registered by cuckoo and that
could be interesting to evaluate it relation with
the malware classification. All of them are
set as NUMERIC type and normalized as 0
or 1. The software under test was classified
as {ransomware, malware, normal}. The soft-
ware obtained from the VirusShare PE malware
samples was classified as malware. The soft-
ware obtained from the VirusShare ransomware
malware samples was classified as ransomware.
The software obtained from other sources was
classified as malware or normal depending if
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there was a positive value in the Virustotal
database. This data was extracted from the
JSON file.

Listing 5. Software classification function

def virustotalSum (json_data ,D):
try:
if json_data[”virustotal”][
summary” |[ " positives”] ==
0:
D.append( ’ normal ’)
else:
D.append(’ malware’)
except Exception:
raise
return

2

There are usually lots of possible attributes
which could be directly extracted from the
cuckoo result data and also others derived from
association rules and others data processing
techniques. Weka was used for investigating
this data and evaluate how well each attribute
can be predicted from the others. It also allows
to find association rules and clustering. With the
help of Weka explorer (fig.1) it is possible to do
a pre-analysis of the data. Data cleaning is a
time-consuming task, mainly with large dataset,
but absolutely necessary.

5.3.1. First dataset analysis results: To
analyse the dataset the cross-validation Weka

Classifier
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Fig. 2. Weka Explorer - Classifier

option was used. A value of 10-fold gener-
ates 10 cross-validated trees to estimate ~out-of-
sample” error. This help to ensure that the re-
sults were representative. A decision tree based
in the C4.5 learner algorithm is implemented in
Weka as J4.8 algorithm. C4.5 is a widely used
algorithm for machine learning. J4.8 will be
used to evaluate the dataset.

The results after executing the J4.8 classifier
to the dataset is shown in Fig.3.

5.4. Second data extraction

In Salehi et al.[6] it was considered that the use
of relevant API calls was a relevant indicator to
characterize malware software. Only a subset of
126 API calls of advapi32.dll, kernel32.dll, nt-
dll.dl1, user32.dell, wininet.dll and ws2_32.dll
were considered in that case.

In this case a list with all the dlls used by
software samples was extracted and the result-
ing data was analysed in Weka. 213 API Calls
were extracted and used as numeric attributes
with a value of 1 if the API call was present in
the behaviour section of the JSON file or 0 oth-
erwise.The generated ARFF file was processed
with Weka an analysed with the J4.8 classifier
algorithm. Weka Classifier Tree Visualizer al-
lows to see the decision tree generated by the
algorithm and also other relevant graphical rep-
resentations and statistical data.



=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: Dataset0426

Instances: 2761

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===
J48 pruned tree

Number of Leaves : 71

Size of the tree : 141

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 1958 70.9163 %

Incorrectly Classified Instances 803 29.0837 %

Kappa statistic 0.5099

K&B Relative Info Score 108837.9181 %

K&B Information Score 1586.5704 bits 0.5746 bits/instance
Class complexity | order 0 4025.2765 bits 1.4579 bits/instance
Class complexity | scheme 56466.8785 bits 20.4516 bits/instance
Complexity improvement (8f) -52441.602 bits -18.9937 bits/instance
Mean absolute error 0.2715

Root mean squared error 0.3801

Relative absolute error 66.1843 %

Root relative squared error 83.9232 7

Total Number of Instances 2761

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area
0.752 0.177 0.770 0.752 0.761 0.577 0.824 0.801
0.835 0.277 0.677 0.835 0.748 0.549 0.815 0.713
0.238 0.034 0.554 0.238 0.333 0.297 0.728 0.369
0.709 0.197 0.700 0.709 0.692 0.524 0.806 0.701

=== Confusion Matrix ===
a b c <-- classified as

914 277 25 | a = ransomware
133 946 54 | b = malware
140 174 98 | ¢ = normal

Fig. 3. Dataset0426 J48 Result

Class
ransomware
malware
normal

Weighted Avg



=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: normal
Instances: 2967
Attributes: 214
[1ist of attributes omitted]
Test mode: 10-fold cross-validation

=== (Classifier model (full training set)

J48 pruned tree
Number of Leaves : 90
Size of the tree : 179

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error
Total Number of Instances

=== Detailed Accuracy By Class ===

Class
ransomware
malware
normal

TP Rate FP Rate Precision Recall
0,835 0,054 0,935 0,835
0,876 0,199 0,730 0,876
0,573 0,040 0,698 0,573
0,814 0,107 0,824 0,814

=== Confusion Matrix ===

a b C <-- classified as
1189 215 20 | a = ransomware
58 991 82 | b = malware

25 151 236 | ¢ = normal

Fig. 4. Dataset0428 J48 Result

2416 81.4291 9,
551 18.5709 %
0.6926
0.1679
0.3142
41.6287 %
69.9712 9%
2967
F-Measure MCC ROC Area PRC Area
0,882 0,789 0,916 0,889
0,797 0,660 0,873 0,790
0,629 0,580 0,849 0,558
0,814 0,711 0,890 0,805

Weighted Avg



Fig. 5. Weka Classifier Tree Visualizer

Listing 6. API Call extraction from the JSON
file
def exportData(inFile ,apiList):
try:
with open(inFile ,’r’) as i:
json_data=json.load (1)

try:

dictl=json_data[”behavior” ][
“apistats”]

for i in dictl .keys():

dict2=json_data[”behavior”
][ apistats”][1]
listKeys=dict2 .keys ()
for key in listKeys:
if key in apilList:
pass
else:
apiList.append(key)
except:
raise
except:
raise:
return

6. Conclusion

A new method to obtain and analyse behaviour-
based malware data based in FOSS Tools was
described and some examples of its use were ex-
posed. This method can be used to create new
models based in machine learning to detect and
classify software samples automatically. Static
fingerprints could then be generated to allow
IDS/IPS systems, anti-malware suites and An-

tivirus programs detect then new malware clas-
sified samples.
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