. UNIVERSITAT
RovIRA 1 VIRGILI

e JUOC

Universitat Oberta
de Catalunya

Master In Computational and Mathematical Engineering

Final Master Project (FMP)

Metaheuristic Algorithms for solving the Multi-Depot Arc
Routing Problem

Name of the Student: Patricio Page Carro
Area of the FMP: Modelizacion y Simulacion

Name of the Tutor: Jesica de Armas Adrian
Name of the Professor in Charge of the Subject: Angel Alejandro Juan Pérez

Date of Delivery: 18/06/2017

EY HMC KD
This work is subject to a licence of Recognition-
NonCommercial- NoDerivs 3.0 Creative Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/

Alternative licences (choose any of the following and substitute the one of the previous page)

To) Creative Commons:

@080

EYv MG KD
This work 1is subject to a licence of Attribution-
NonCommercial-NoDerivs 3.0 of Creative Commons

This work is subject to a licence of Attribution-
NonCommercial-ShareAlike 3.0 of Creative Commons

This work is subject to a licence of Attribution-
NonCommercial 3.0 of Creative Commons

This work is subject to a licence of Attribution- NoDerivs 3.0
of Creative Commons

This work is subject to a licence of Attribution-ShareAlike 3.0
of Creative Commons

This work is subject to a licence of Attribution 3.0 of Creative
Commons

B) GNU Free Documentation License (GNU FDL)
Copyright © YEAR YOUR-NAME.

Permission is granted to copy, distribute and/*or modify this
document under the terms of the GNU Free Documentation Li-
cense, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no **Back-Cover Texts.

To copy of the license is included in the section **entitled
"GNU Free Documentation License".

C) Copyright

© (The author/to)

Reserved all the rights. It is forbidden the total or partial
reproduction of this work by any half or procedure, comprised
the impression, the reprography, the microfilm, the computer
treatment or any another system, as well as the distribution of
copies by means of rent and loan, without the permission
written of the author or of the limits that authorise the Law of
Copyright.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

INDEX CARD OF THE FINAL MASTER PROJECT

Metaheuristic Algorithms for solving the Multi-Depot Arc

Title of the FMP: Routing Problem

Name of the author: | Patricio Page Carro

Name of the TUTOR: | Jesica de Armas Adridn

Name of the PRA: | Angel Alejandro Juan Pérez

Date of delivery (mm/aaaa): | 06/2017

Degree: | Master In Computational and Mathematical Engineering

Area of the Final Work: | Modelizacion y Simulacion

Language of the work: | English

Keywords | Arc routing problem, randomized algorithms, heuristics

Summary of the Work (maximum 250 words): With the purpose, context of application, methodology,
results and conclusions of the work.

The main objective of the present work is to elaborate the most effective algorithm for solving the Multi-
Depot Arc Routing Problem (MDARP), taking the Randomized Sharp as base algorithm and starting
point, and particularly to study different alternatives for developing the edge-to-depot assignment.
Concrete applications of this problem are garbage collection, electricity meter reading, mail distribution
and door-to-door selling. To accomplish this several edge-to-depot allocation strategies in conjunction
with variations on the Randomized Sharp algorithm were implemented in the Java language and tested
against one another and using the existing benchmarks for this problem.

The results show that assigning edges to depots using a biased-randomized strategy offers the best results.
Also the present work's algorithm, which combines the Randomized Sharp algorithm with a splitting
search, simulated annealing and a cache strategy gives competitive results compared to current
benchmarks.

Abstract (in English, 250 words or less):

The Multi-depot Arc Routing Problem (MDARP) is a combinatorial optimization problem belonging to a
family of related problems that have in common the objective of finding the optimal route for a vehicle or
a fleet of vehicles in order to satisfy demand located at the nodes or along the edges of a graph. When the
demand is located at nodes it is called a Vehicle Routing Problem (VRP) and when it is located along the
edges it is called Arc Routing Problem (ARP). For the present work, the ARP problem is studied, enriched
by having multiple starting and finishing nodes, called depots. This problem is known in literature as
Multi-depot Arc Routing Problem (MDARP). The aim of the present work is to study algorithms for the
solution of the MDARP and some of its variants using as base the Randomized SHARP algorithm from
Gonzalez et al. (2012). This base algorithm is a randomized Clarke & Wright Savings heuristic (Clarke
and Wright (1964)) for the construction of the solutions. Several strategies for the allocation of edges to
each available depot were studied and compared in their results and efficiency.

According to the results, the assignment of edges to depots using a biased-randomized strategy combined
with the Randomized Sharp algorithm, a splitting search, simulated annealing and a cache strategy gives
competitive results compared to current benchmarks.

il

01N L BN

Index

B U113 (0T L1 ot o) TSR 1
1.1 Context and justification 0f the WOrK...........ccoooviiiiiiiiiiicec e e 1
1.2 ATMS OF the WOTK......couiiiiiiiiiie ettt b bbbt st be e bt e sbee e 1
1.3 Approach and method fOILOWEA..........cceevvieiiiiieiiiieie ettt e e e 1
1.4 Planning Of the WOTK.........ccoouiiiiiiiiiiiieieciectesee ettt ettt b e et eeree b e e s sbeeessaeensseesnneas 1
1.5 Brief summary of products Obtained.ceouirieiiinieiieet e 1
1.6 Brief description of the others chapters of the MemOry...........ccceeieiiiiiniiiii e 1

. Brief description of the Problem...........c.coeiiiiiiiiiiiiiiiee ettt 2

o LIEETALUIE REVICWeitieiiiiieie ettt ettt ettt et ettt e st e et e s seeaeesseenseeseenseeneenteeneenaeeneenneensennes 4

 PLESENt APPIOACH.cciiiiieiiiieie ettt te e b e enee bt e rtenneeetaeeennaeenteas 4

. CompPutational RESULLS........cceiieiieieiieieiceteeie ettt sttt ettt e et e teesseeseessesseensesseessessseennseeensnes 9

e COMCIUSIONS. ...ttt ettt eb ettt bt be s et et e b e e b et e b e e et en e ententeseebeebeebeebeebesbeeeneenee 20

e GLOSSAIY .. .vitieitectiete ettt ettt ettt et este e e et e este s teesbesteesbeessesseessesseessesseese e beaseeebeesaeereerbesaeenbeeesbaeensaeennreeanns 22

B S 0] 0o 3] 1 RSP USRRSUPSTSNt 23

il

List of figures
Figure 1: MDARP representation
Figure 2: Splitting procedure
Figure 3: gdb6
Figure 4: gdb8
Figure 5: gdb9
Figure 6: gdbl1
Figure 7: gdb12
Figure 8: gdb13
Figure 9: gdb21
Figure 10: gdb22
Figure 11: All Instances
Figure 12: Accepting only solutions improving best solution

Figure 13: Accepting solutions improving base solution

1. Introduction

1.1 Context and justification of the Work

The ARP family of problems has not been studied as exhaustively as Vehicle Routing Problems (VRP).
Particulary the multi-depot versions have significantly less bibliography. The purpose of the present work
is to contribute by comparing several strategies for the allocation of edges-to-depots and present a
competitive algorithm which can be used to explore further variations of the problem.

1.2 Aims of the Work

e Study the effectiveness of different edge-to-depot allocation strategies for the MDARP.
e Develop an algorithm based on the most effective strategy identified.
e Compare the final algorithm with the current benchmarks.

1.3 Approach and method followed

As a starting point, the state of the art algorithms for the ARP and MDARP are reviewed. This
includes similar problems that serve as a good starting point for the MDARP, such as the VRP and Multi-
depot VRP. The main objective of this initial phase is to develop an understanding of the use of the
CWS heuristic, its randomized variation, and the various frameworks in which they work, including
multi-start, ILS, tabu-search and cache schemes. Also, the main strategies for node allocation to depots
are reviewed.

Next, several node allocation strategies in conjunction with the Randomized Sharp algorithm are
implemented and tested against one another and using the existing benchmarks for this problem. This
serves the purpose of increasing the understanding of the way each strategy impacts the end result, and
their strengths and weaknesses. The next step is to develop different modifications of the existing
strategies and methodologies for node allocation to depots and route generation. The implementation of
these variations of the main Randomized Sharp algorithm are done using the Java language due to the
ease of modelling the language provides and its widespread use.

Having implemented several different strategies and variations on the Randomized Sharp algorithm, they
are tested using the problem’s benchmarks to determine the quality of the solutions each of them
provides. This is performed simultaneously with some parameter-tweaking worthy of studying.

Along with the optimality of the solutions, the time cost is taken into account, not discarding strategies
solely based on time performance, but including it into the final considerations of the global performance
of each of the strategies.

Finally, conclusions are extracted regarding the effect of applying the various node allocation strategies,
as well as variations of the Randomized Sharp algorithm and the impact of the tweaking of the
parameters. Also the efficiency of the studied algorithms is analyzed. To conclude, paths for future
investigations are proposed.

1.4 Planning of the Work

Task Days Starting date Finishing date
End of Master Paper Realization 187 5-Dec-2016 10-Jun-2017
Work Plan preparation 16 5-Dec-2016 21-Dec-2016
Literature revision 16 5-Dec-2016 5-Jan-2016
Study of the Randomized Sharp 31 5Dec2016 5 Jan-2017
algorithm

Formu@atlon of improvement 13 2-Jan-2017 15-Jan-2017
strategies

Implementatlon of . improvement 59 16-Jan-2017 16-Mar-2017
strategies for the algorithm

Comparative analysis of

improvement strategies for the 31 17-Mar-2017 17-Apr-2017
algorithm

Elaboration of conclusions 17 18-Apr-2017 5-May-2017
Composition of the preliminary 15 6-May-2017 | 21-May-2017
report

Revision of the paper 10 22-May-2017 1-Jun-2017
Composition of the final report 8 2-Jun-2017 10-Jun-2017

1.5 Brief summary of products obtained

An algorithm for the MDARP was developed, which offers competitive results compared to benchmarks
and proves to be a good starting point to explore richer versions of the MDARP.

1.6 Brief description of the others chapters of the memory

The article is structured as follows: Chapter 2 gives a brief introduction to the MDARP problem, Chapter
3 highlights some related works on the ARP and its variants. Details and implementation of the solutions
analyzed in this article are given in Chapter 4. The experiments carried out and their results are described
in Chapter 5. Lastly, Chapter 6 points out the key aspects of this paper and identifies the possibilities for

some future research lines.

2. Brief description of the problem

This paper aims at exploring various strategies for solving the Multi-Depot Arc Routing Problem
(MDARP). In this problem, there is a graph G = (N,E) (where N is the number of nodes and E the number
of edges) to be traversed in any number of different routes which start and end in one of the depots. Some
of this graph’s edges are required to be part of a route and some are not required. Concrete problems that
could be modeled this way are garbage collection, electricity meter reading, mail distribution and door-to-
door selling Assad and Golden (1995)[2], Dror (2000)[5].

In Figure 1 an MDARP graph is presented, with its nodes, depot nodes and edges. The bold edges
represent edges that are required and contain demand to be serviced by routes beginning and ending in
one of the depots. The dashed edges are not required but may or may not be needed as part of one of the
routes. The problem then is how to construct routes to service each of the required edges with the least
cost, each route beginning and ending in the same depot.

Figure 1: MDARP representation

Differently from a single-depot ARP, where the problem consists in finding the best route to serve all
required edges, when approaching a MDARP, a previous phase can be identified. This first phase is
related to the problem of determining which depots will be serving each one of the required edges,
referred to as edge allocation. This part of the problem will output as a result a submap for each depot,
meaning a subset of edges from the full graph. The second phase is involved in determining the routes
through the required edges for each of the depots. In this work the focus is placed mainly on the first
phase, the edge allocation, for which many strategies for generating submaps are explored. Also different
schemes for applying the Randomized SHARP are analyzed: the use of a cache strategy and a simulated
annealing approach combined with a local search procedure. Different combinations of these strategies
are tested and compared regarding the minimum and average values obtained.

3. Literature review

The amount of literature devoted to the ARP is significantly lower than that dedicated to the Vehicle
Routing Problem. Nevertheless, many parallelisms can be drawn between the two types of problems and
what serves as good literature for one might prove valuable for the other.

The ARP might have begun with Leonhard Euler’s solution to the Konigsberg bridges problem (Sachs

et al. (1988)). In this problem, a connected graph G = (N,E) is given and the task is to find a closed tour
that visits every edge in the graph exactly once or prove that no such tour exists. Such tours, if found, are
known as Euler tours. Two algorithms were presented some years later for constructing the Euler Tour,
the first one by C. Hierholzer (Hierholzer (1873)[11]) and another version, less efficient, by M. Fleury
(Fleury (1883)[8]). Another famous ARP is the Chinese Postman Problem, posed by Kwan Mei-Ko (Mei-
Ko (1962)[17]). It is similar to Euler’s problem: Given a connected graph G = (N,E,C), where N are the
nodes of the graph, E are the edges and C is a distance matrix, find a tour that traverses every edge in the
graph, but does so in the least amount of time. Assad and Golden (1995)[2] state the basic methodology
for solving generic ARPs, and describe several application areas. Similarly, Eiselt et al, write two papers
(Eiselt et al. (1995a)[6], Eiselt et al. (1995b)[7]) to review the algorithmic methods for solving the chinese
postman problem. There exist other surveys on the various methods for solving the ARP such as Dror
(2000)[5], Wohlk (2008)[20], this last one more focused on the capacitated version of the ARP. Another
survey of methods was published in Corberan and Prins (2010)[4] in which two important versions of the
problem are discussed: the standard ARP and the capacitated ARP (CARP), in which an additional
constraint is imposed on the ARP: the routes serving edges with demand have a limited capacity to satisfy
that demand.

Metaheuristic approaches have been explored, some of which are used in the present work as well. For
instance, the use of simulated annealing techniques has been applied to the ARP family of problems such
as in Wohlk (2005)[19] and Amberg et al. (2000)[1], the latter of which also a tabu search is tested.

Many evolutionary approaches have been used for the MDARP and CARP as well, such as Hongtao et al.
(2013)[12], Tiantang et al. (2014)[18], Xing et al. (2009)[21] and Kansou (2010)[14].

Finally, some Ant Colony Optimization algorithms have been used in Kansou and Yassine (2009)[15] and
Kansou and Yassine (2012)[16]. The present article is strongly based on the SHARP algorithm presented
in Gonzalez et al. (2012)[10] which makes use of the Clarke & Wright savings heuristic from Clarke and
Wright (1964)[3]. This heuristic has been succesfully applied to Vehicle Routing Problems and in their
paper, Gonzalez et al present a framework for applying the CWS heuristic to the ARP, and also present a
biased randomized version for use in multistart algorithm.

Regarding the approach to the Multi-Depot version of the problem, the paper by Juan et al. (2014)[13],
provides a good framework for the VRP, particularly for the allocation of nodes to each depot. The
mentioned work provides valuable ideas and methods that can be translated into the MDARP.

4. Present approach

As stated in a previous section, the MDARP problems can be divided into an edge allocation problem and
a simpler ARP problem. The first phase produces a submap for every depot in the graph, that is it
establishes a relationship of ’belonging” of every required edge to a depot. The second phase of solving
each of these submaps using the Randomized SHARP algorithm in conjunction with other techniques will
determine the most successful of these allocation strategies. This work first tries to select the best edge
allocation strategy in this way, and subsequently different combinations of techniques for solving the
submaps will be compared as well.

4.1 Edge Allocation Strategies

Edge allocation strategies can be divided into two groups: the savings-based strategies and strategies not

based in the concept of savings. For the first group it is necessary to elaborate on the concept of savings
as it is applied to edge allocation, since it differs slightly from the concept presented in Clarke and Wright
(1964)[3]. In the most common sense, what is referred to as ’saving” associated to an edge is how much
cost is prevented if that edge is traversed, as opposed to returning to the depot from that edge’s starting
node and then travelling again from the depot to the edge’s finishing node. In the case of edge allocation,
we can see savings in the following way. When an edge is assigned to a depot, there is a certain cost of

travelling from the depot to the edge’s starting node, plus the cost of traversing the edge, plus the cost of
returning to the depot from the edge’s finishing node. For a particular edge there is going to be a different
total cost depending on the depot to which it is assigned, therefore we can understand a saving associated
to a depot-edge pair as the difference of cost between assigning that edge to that depot and assigning it to
the closest of the remaining depots.

The following table briefly references each of the strategies tested in this work:

Table 1: Edge Allocation Strategies

Savings-Based strategies
Round-Robin
Round-Robin With Capacity
Random With Savings
Depot With Highest Saving
Edge-To-Edge Savings
Distance (or cost)-based
Edge Probability
Randomized Depot Distance
Depot And Edge Distance
Depot And Two Edges Distance
Depot And Edge Average Distance
Random Edge Distance

Two Random Edges Distance
Closest Edge In Submap
Not Savings nor Cost-Based
Random

4.1.1 Savings-Based strategies

Round-Robin: This strategy will select one depot at a time and assign an edge to it according to the
savings of the edge for that depot, with some randomization given by a geometric distribution. This loop
will continue assigning an edge to each depot at a time, until all edges have been assigned.

Round-Robin With Capacity: Similarly to the previous strategy, this one attempts to assign edges to
depots one depot at a time. The difference between the two strategies is that this one will always assign an
edge to the depot with the least amount of demand served so far in an attempt to achieve a more uniform
distribution of loads among depots.

Random With Savings: Taking into account the savings for each depot-edge pair, this strategy assigns
edges to depots one depot at a time, but every time a random depot is chosen among all the depots
following a uniform distribution.

Depot With Highest Saving: In this case, for each edge the depot which produces the highest saving
is determined and the edge is assigned to it.

Edge-To-Edge Savings: This strategy assigns the first edge of every submap according to its distance to
the depot. Afterwards it iterates over every unassigned edge and calculates the savings caused by
connecting that edge to every edge in each submap, finally the edge is assigned to the submap that
contains the edge for which the savings are greater.

4.1.2 Distance (or cost)-based

Edge Probability: for this strategy, we first calculate the costs of assigning the edge to every depot and
select the two closest least costly depots for this edge. Then a ”probability” of assigning the edge to the
closest depot is calculated. This is done by taking the cost of assigning the edge to the farthest depot of
the two and dividing this cost by the sum of both costs. This number is then multiplied by a factor of
1.5 to increase the probability of assignment to the closest depot. During the assignment phase, for each

edge, a random number with uniform distribution is obtained and if this number is less than the
assignment probability of the edge, it is assigned to the closest depot, otherwise it is assigned to the
second closest depot.

Randomized Depot Distance: This strategy first determines the closest depot to the nodes of an edge

and assigns the edge to that depot. To determine the closest depot, the distance to each of the edge’s
nodes must be minimal. In the case of a depot having a closer distance to one of the nodes, this is

labeled as ’second closest” depot and the edge is assigned to one of these depots according to a uniform
distribution. In the case that only one closest depot is found, the edge is assigned to this depot with 70%
probability, the remaining 30% of the times the edge is assigned to any depot according to a uniform
distribution.

Depot And Edge Distance: This strategy iterates over every edge and finds its distance to each of the
depots and its distance to a randomly chosen edge already assigned to that depot. Both this distances are
added, and this is done for every depot. Finally the edge is assigned to the submap for which this sum is
minimal.

Depot And Two Edges Distance: Like the previous strategy, this one takes into account the distance of
the edge to the depot and its distance to two random edges already assigned to that depot, assigning the
edge to the submap for which the sum of these distances is minimal.

Depot And Edge Average Distance: Just like Depot And Edge Distance, with the difference that instead
of taking the sum of the distances, it takes the average, and assigns the edge to the submap for which this
average is minimal.

Random Edge Distance: This strategy iterates over all the edges and for each one it select a random,
already assigned edge of each submap and calculates the distance between them, keeping the edge for
which this distance is minimal. Finally, the edge is assigned to the same submap as this edge.

Two Random Edges Distance: Like the previous strategy, this one takes into account the distance to
two edges already assigned to each submap.

Closest Edge In Submap: In this case for each edge that we need to assign, all of the currently assigned
edges per submap are evaluated for distance. The edge is assigned to that submap which contains the edge
that is closest to it.

Finally there is a strategy which is neither savings-based nor cost based:

Random: This strategy simply iterates over all of the edges and for each one it selects the depot with
a uniform distribution.

4.2 General testing algorithm

For testing these allocation strategies an algorithm was used that combines a multistart procedure for
generating several initial solutions based on the Randomized SHARP algorithm with a simulated
annealing scheme which utilizes a splitting procedure and a cache of best known routes.

In Algorithms 1, 2 and 3 the main algorithm and it’s most important parts are detailed.

Algorithm 1: Main algorithm

1: Map + assignEdgesToDepots(strategy, graph)
2: SolPool + solution pool of size five

3 Cache <+ cache of best solutions

4: Nlter + number of iterations

5. while iterations < Niter do

fi sol + MDRandSHARP(Map, Cache)

7. if sol.cost < highestCostInSol Pool then

8: addSolToPool(sol, SolPool)

9 removeHighestCostSolutionFromPool
10 if sol.cost < lowestCostinSol Pool then
11: BesiOverallSol + sol
12: end if
13: end if

14: end while

15: Forcelmprovement « false

16: for all Sol in SolPool do

17: BaseSol « splitSolution(Sol, Cache, Splitlter, Forcelmprovement)
18: BestSol «+ BaseSol

19: remperature < Initial Temperature

20: while elapsedTime < maxTime seconds and remperature = 0 do
21: temperature + decreaseTemperature(temperature)

22: NewSol « splitSolution(BaseSol. Cache. Iter, Forcelmprovement)
23: Delia = NewSol.cost — BaseSol .cost

24 if Delra < 0 then

25: temperature 4 decrcuseTeillpel‘uture(tcmperuture]l

26: if Newsol.cost < BestSol.cost then

27: BaseSol + Newsal

28: BestSol + Newsol

29: else if Random < exp(delta/t) then

30 BaseSol + Newsol

31 end if

32: end if

33: end while
34: BestSol + improveEdgesorder{BestSol)
35: if BestSol.cost < BestOverallSol then

36 BestOverallSol + BestSol
37: end if
3%: end for

Algorithm 2: MDRandSHARP(Map, Cache)

1: for all Submap in Map do

2 SubSol + rand SHARP(Submap, Cache)
3: appendSubSolToSol(Subsol, Sol)

4: end for

Algorithm 3: splitSolution(Sol, Cache, Splitlter, ForceImprovement)

1: if Forcelmprovement = true then
BestSol +— Sol

: else

BestSol +— null

5: end if

6: improvements +— 0
7 BaseSol + sol
¥
9

I3

ol

- while improvements < Splitlter do
improvements +— impravements + |

10: partialRoute, remaining Route +— removeRandomEdgesFromSol(BaseSol)
11: for i =0 to sharplterations do

12: newPartialRoute + MDRandSHARP{partialRoute, Cache)

13 if newPartialRoute.cost < partial Route.cost then

14: partialRoute +— newPartialRoute

15; end if

16: end for

17: newSol + mergeSolutions(partial Route, remainingRoute)
18: newSol +— improveWithCache(newSol, Cache)

19: if BestSol = null or newSol.cost < bestSol .cost then

: BaseSol +— newsol
21: BestSol +— newsol
22: end if

23: end while
24: return Bestsol

4.2.1 First Phase: Multistart Algorithm

After assigning the edges to the depots according to the selected allocation strategy (Algorithm 1, line 1),
the algorithm begins an initial multi-start procedure (Algorithm 1, line 5) that takes advantage of a
randomized version of the SHARP algorithm Gonzalez et al. (2012)[10] for multiple depots to generate
many different solutions (Algorithm 1, line 6). This multi-depot version of the Randomized SHARP is
succinctly detailed in Algorithm 2, where for each submap in the graph, the Randomized SHARP
procedure is applied.

Briefly, the SHARP procedure ranks the edges in a graph according to the savings produced by traversing
the edge with a single vehicle instead of visiting its nodes in two different routes. In order to construct a
full route, one could simply choose those edges with highest savings and start joining them to form routes
with high savings. This process, when done in a Capacitated Vehicle Routing Problem (CVRP) is known
as the Clarke & Wright Savings heuristics, widely recognized to be the best heuristic for solving the
CVRP. The limitation of using this heuristic is that the resulting solution is always the same. By using a
guided randomization process we can obtain several different solutions, many of which might improve
the original CWS solution. This “guided randomization” consists in not simply selecting the highest
saving edge when constructing a solution, but randomly select the edge following a geometric
distribution. This results in the best edges being selected with higher probability, but allowing for some
”not so good” edges to be selected at times. After running this process for a number of iterations (Nlter),
(Algorithm 1, line 5) the best five of these solutions are kept in a ”’solution pool” (Algorithm 1, lines 7-
13) and a second search phase is applied to each of them (Algorithm 1, line 16-38).

4.2.2 Second Phase: Local Splitting Search with Simulated Annealing

For each solution in the solution pool generated in the previous phase, the solutions are split into the
routes that compose them. Then each route in the solution is split (Algorithm 1, line 17). This means the
route has a random number of routes extracted from it (Algorithm 2, line 10). The route that has been
extracted is solved again iteratively using the Randomized SHARP procedure to obtain a new route
(Algorithm 2, line 12). This splitting and searching is repeated until no improvements have been obtained
after a number of iterations equal to splitlter. After the final route is obtained, it is merged back with the
remaining routes (Algorithm 2, line 17). Using this final route, the cache is searched to attempt to
improve the solution (Algorithm 2, line 18). If the final solution improves the best known solution, the
new solution is accepted as best solution (Algorithm 2, line 19-22).

Figure 2 illustrates this splitting procedure: starting from a graph with three routes, one of them is
selected, and solved through the Randomized SHARP algorithm, before being merged back into the
solution.

Figure 2: Splitting procedure

...............

The splitting procedure can be set to enforce improvements or not. In the case where improvements are
enforced the best known solution is set to the initial solution (Algorithm 2, line 1-2), so that the newly
obtained solutions will only be accepted if they improve the initial solution. Otherwise, if the procedure is
set not to enforce improvements, the best known solution is set to null (Algorithm 2, line 4), which results
in accepting the best of the generated solutions whether it improves the initial solution or not. This results
in a starting solution for a simulated annealing search (Algorithm 1, line 19-33), which runs until the
elapsed time reaches the maximum time set or the temperature parameter reaches zero. In this iterative
process the solution is split again (Algorithm 1, line 22) and accepted according to a simulated annealing-
based acceptance criterion (Algorithm 1, line 23-32). At each iteration of the process, temperature is
decreased(Algorithm 1, line 21), and the difference of cost between the new solution and the current
solution evaluated as Delta (Algorithm 1, line 23-24). If Delta is less than zero, temperature is again
decreased (Algorithm 1, line 24-25), if the cost of new solution is less than that of the best known
solution, both the best known solution and the best known solution are updated with the new value
(Algorithm 1, line 26-28), otherwise if a uniformly random number is less than e (delta/t) , the base
solution is updated with the new solution, the best known solution remains unchanged(Algorithm 1, line
29-31).

With the solution obtained from this process, the order of the edges is analyzed in search for “’knots”
(Algorithm 1, line 34). This means in practice that every three consecutive edges in a route, a different
ordering is analyzed and if the cost diminishes in any other ordering, the solution is updated with this new
order.

This process is repeated for every solution in the pool and the best solution is kept as a result(Algorithm
1, line 35-37).

4.2.3 Use of a memory cache

At all moments during these search, a cache of best found routes for servicing the edges with demand is
kept and constantly updated with improving routes. This cache is perused throughout the algorithm
(Algorithm 1, line 6, 17, 22; Algorithm 2, line 2; Algorithm 3, line 12, 18), always comparing the present
route with routes previously found for a given list of edges with demand.

5. Computational Results

This algorithm was coded in the Java language and tested on a Core i3 CPU @ 2.4GHz and 4GB RAM.
For the computational experiments, the gdb set proposed in Golden et al. (1983)[9] were used. These
instances contain dense and sparse networks of small to medium size (from 10 to 50 edges). All of the
edges contain required demand. In every instance the depots have been set to the first and last nodes of
the graph.

During the multistart procedure, the number of iterations is set to 100.000 (NIter = 100.000; Algorithm

1, line 4), and the size of the solution pool is set to 5 (Algorithm 1, line 2). In the first splitting search, the
search is performed until no improvements have been made for 10 iterations of the splitting procedure
(Splitlter = 10; Algorithm 1, line 17), keeping the best solution. The simulated annealing search is
performed until the elapsed time reaches 5 seconds (maxTime = 5), the following splitting searches are
performed until reaching 30 non-improving iterations (Iter = 30; Algorithm 1, line 22), also keeping the
best solution. Within the splitting procedure, the Randomized SHARP algorithm is executed on the
extracted routes for 30 iterations (sharplterations = 30; Algorithm 3, line 12). Regarding the simulated
annealing parameters, the initial temperature is set to 15.000 (Algorithm 1, line 19). It is decreased in
every iteration by a uniformly random amount between 0 and 10 (Algorithm 1, line 21), and when an
improving solution is found the temperature is decreased by a uniformly random number between 0 and
delta x 2 , delta being the difference of cost between the new solution and the old solution (Algorithm 1,
line 25).

First set of experiments

In this first set of experiments, the edge allocation strategies are considered, using the base algorithm
described previously. Each strategy is used to generate the edge allocation map for each gdb instance,
with fifteen different runs associated with fifteen different seed numbers for the random number
generator. Both the minimum cost attained by the strategy and the average cost are taken into account for
deciding which is the optimal strategy.

Table 2: Compare Minimum Cost of Strategies

Tnstance g .
Strategy bl gib2 gdbd gibd gdte g6 gdb7 gdb§ gdb pdbl0 gabll gdbl2 pdbl3 pdbid gdbls gdbie gdbl7 gdblf gdbi9 gdb2) gabll gdbiz pabas o st
Closest Edge In Submap 337 353 301 332 388 321 356 351 314 284 405 430 536 104 5% [168 55 131 158 200 235 GOIS
Closest Edge In Submap With Probability 316 337 367 287 T 305 430 36 100 5% o1 162 35 131 156 200 706
Depot And Two Edpes Distance 35329 371 M6 R W 43 SE m SE o1 160 55 T EX)
Depot And Edge Average Distance 300320 260 295 ;5 340 3 W 49T 6 98 S8 91 160 35 131 156 200 EE
Depor And Edge Distance 315 337 367 8% 333 340 1% W5 466 44 106 5% 91 160 35 131 156 200 233 Sale
Randomized Depot Distance 300 336 1 366 330359 308 T S8 o1 60 55 1311 198 231 S84
Depot With Highest Saving T4 357 MW 9 465 W3 300 309 33 AT 695 617 107 58 o1 162 8% 37 175 02 M5 682
Edge Probability 300 321 259 266 361 3% 325 3d 18 387 447 s36 98 5% 91 162 55 121 156 198 233 6%
Ed ge-To- Edge Savings 337 342 305 310 435 321 366 372 W5 4% 535 s80 115 &2 o3 181 71 131 166 208 I 6374
Two Random Edges Distance 315 330 371 286 30 304 326 346 W7 37 450 550 98 SE o1 60 55 121158197 135 SaI6
Randam WE__ 337 385 266 386 3013306 373 J___ a6 558 % SE 91 60 __ 55 T30 15600 333 S0
Random Edge Distance 315 329 271266 361N 325 57 3 4W 2 W 58 91 [EIE 121159 198 135 S5
Random With Savings W6 3372612724007 331 317 433 51752 98 56 91 160 55 130156198 4 GIZ
Round Robin 34 339 280 294 405 W1 331 310 421 531 558 98 56 91 158 6l 130 I 198 231 6066
Round Robin With Capacity W6 337 37 204 388 315 333 321 131 543 s58 6 91 160 69 130 158 198 231 61
Minimum Cost 300 321 259 266 361 285 328 Y 367 43 =52 % 56 91 ENES 121 156 1% 231 s6%
Table 3: Compare Average Cost of Strategies
IRt C8 - Total Cost
Stralegy T w6 gdb7 _gdbs gdh? pdbl0 gdbll gdbl2 pdbld pdbld gdbls gdbl6 gdbl7 gdbls gdbl? gaba pdb2l gdbal gdb2d
Closest Edge In Submap 337 353 31 356 354 317 784 405 43 536 14 58 D 168 55 121 158 200 135 63
Closcst Edge In Submap With Probability 316 348 2 348 79 W9 43 536 105§ 127 91 [121 157 200 235 S8
Depor And Two Edges Distance 36 W2 08 351 460 0059 [ETE] 164 62 136163 201 137 968
Depot And Edge Averige Distance 301335 £ 346 0 g] [T 161 55 131 157 201 135 S
Depot And Edge Distance 36 350 301 34 476 107 5% 1% a1 S 138 159 200 236 5981
Randomized Depot Distance 36 W5 ETE] A83 W5 59 12891 165 56 129 164 201 [T
Depol With Highest Saving B 95 07 58 [T 162 83 EE 68T
Edge Probability 310 333 Wl 58 1z 9 16 55 121 10 200 15
Edpe-To-Edge Savings 337 371 115 62 133 o3 182 71 131 168 208 6515
Two Random Edges Distance 36 39 128 91 17155 130 162200 w02
Random, 39 351 L 167 68 T 6265
Random Edge Distance BT 333 128 91 16255 21161200 868
Random With Savinge 313 350 21 1 a1 16262 136 163200 6301
Round Robin 329 3% EE 128 91 16l 67 137164200 G
Round Robin With Capacity T 35 390 377 59 [T 16274 134 16219 6338
Minimum Average Cost 301333 2634z 202 95 58 12791 1655 21157 1% B35

Using both minimum cost and average cost metrics the lowest cost is obtained through the Edge-
probability strategy. Other strategies have come to results close to this, particularly ”Depot And Edge
Average distance” and this strategies might become more relevant in different setting, like larger networks
with more depots.

To better visualize the difference among strategies, a sample of all the instances were selected to be
represented by box-plots in the following figures.

10

Figure 3: gdb6

gdb6

— fpoedsquigoppunoy

— umohpunoy

= sfumESuInWopUEY

- soumisgstpgwopuey

|- wopuey

|~ sousysigssbpgwopusyomL

|- Bumegsbpge)stpg

|- fmaeaoigsbeg

|- Bunesisayfiiodsg

— puEysouElsiqpoda]

|- sousmgebipapuyiedsq

O |= soumsgbngebpapuyiodsn

|- soueysigsspgomipuyiodsg

— AmoEncigupdewansusbpg sssc

b dewagngu|stp3eseoD

0gE OvE (€€ 0EE

oLe 00 06z

Figure 4: gdb8

gdb8

— fpoedepuigogpuncy

|- wnoppunoy

= EDLAESUPALCPUEY

— soumEgstpgwopusy

|- wopusy

|- soussigssbipgwopuEyom

|- Bunegsbpgo) sbpg

|- fmgeaaugebeg

|- BumesissyfiHiodsq

— PpusyscuElsiQlodeq

|- soumisgabpapuyiodag

|- souEsBnyeipapuyiodsg

- soumsgesbpgom puyiedsg

= dewangu|alpieeso)

11

Figure 5: gdb9

gdb9

— fpoede QUIgoYpUNoY

I umoppunoy

|- sCuneEsyppwopUEY

|- souEpEgeBpgwopuey

|- wopusy

|- soumisigssfpgwopuEHomL

|- Bumegsbpgo) s6pg

|- Amgegoigsteg

|- Bumegissyfiiedsg

— pusysouE|Ejodsg

- =ousisstpgpuyiods

|- soumisgBnyeBpapuyiadsg

— sousisgsabpgom puyicdaq

ApprEaoigL

— dewangujabpissso

I
ore

I
i

00g [1: 54

Figure 6: gdbl1

gdb11

— fpoedeuigoypunoy

— umohpunoy

= sDuESUIAWopUEY

| soumsQafipgwopuEy

|- wopuey

ouE)E]EabpgwopuEY oM

[~ Bumessbpgo)stpg

|- fmaEaoigsbeg

|— Bues)sayfitqiodag

— pusyscuEsiQloda]

|- sousmgebipapuriedsg

(= souElsgbvysEpgpuyodsg

|- souemqsstpgomipuyiodag

— AmoEgciguumdewansusbpgsssog

— dewagngu|sip3iesso

12

Figure 7: gdb12

gdb12

— fpoedsquigoppunoy

— umohpunoy

= sfumESuInWopUEY

- souesgafipgwopuEy

|- wopuey

|~ sousysigssbpgwopusyomL

|- Bumegsbpge)stpg

— dmoeaoigstpg

|- Bunesisayfiiodsg

— puEysouElsiqpoda]

|- sousmgebipapuyiedsq

(= souEysQBvysEpgpuyodag

|- soueysigsspgomipuyiodsg

— AmoEncigupdewansusbpg sssc

b dewagngu|stp3eseoD

00L

I
059

T T
[:] 055

T]
005 0sF

Figure 8: gdbl3

gdb13

— fpoedsquigoypunoy

| umohpunoy

= sbuESYIAWopUEY

— souesgafpgwopuEy

|- wopusy

= soussigsalipguopusLomL

|- Bumegsbpgo)stpg

|- fmaeaoigsbeg

|- Buwesisayfiiodsg

— pusysoumsiQodag

|- soummgebpgpuyiedsg

|- souEimgbnyebpapuyiodsg

|- soueisgssbpgomipuyiadag

— Amoeacigupmdewansusbpgsssc

b dewagngu|stpg1essoD

002

T
g%

T I
035 s

13

gdb21

— Ayedequigoypunoy

- umeypunoy

(= sfuneEgyuwopUEY

|- swuEEgebpgwopuey

|- wopuey

(— sousE]sebpgwopuEom]

|- Bumegsbpgo)sbpg

--._ - fwoEaoigsbpg

- Bumegissyfiiedsg

|- puegsousImgIedeq

.._ |- saummgspapuyiedsg

_.: H— - sousisgBaystpgpuyicdsg

|- soumisigssfpgom puyiedeq

H_y._ - fmegoiduimdswansusipg|sasorD

I dewgngu|spgisssog

Figure 9: gdb21
Figure 10: gdb22

gdb22

— fpoedepuigogpuncy

|- wnoppunoy

= EDLAESUPALCPUEY

|- sousEmQeBpgwopuEy

|- wopusy

|= soussgEsbpqwopuEH oML

|- Bunegsbpgo) sbpg

|- fmgeaaugebeg

|- BumesissyfiHiodsq

— PpusyscuElsiQlodeq

|- soumisgabpapuyiodag

|- souEsBnyeipapuyiodsg

— =oumEigsabpgom) puyiodag

= dewangu|alpieeso)

02

02

|
g

20g

00g

a6l

14

It is noticeable how for some instances one strategy greatly outperforms another. For example, in instance
gdb6 the strategy "DepotAndEdgeAvgDistance” is significantly better than ”EdgeProbability”. In gdb22,
”EdgeProbability” is clearly better between the two, but is again outperformed by "ManyRandomEdges
Distance”.

By analyzing the cost of each strategy to run an all instances, a broader conclusion can be made. The
following chart shows this comparison.

Figure 11: All Instances
All Instances

—
o]
E —
= B==
= °
4 ——— —
: = = g ==
_— j— ?O
E_._ _1_800@
a
8
e
B s 8 8 .
3 0 o
e+ -+ 1%+ &®¥ &% ~*+ > @° 7 "0 11
& £ 2 ¢ ¢ B B g B E B ® §F £ B
N N SR A NN R D T
LI | :)
Eéﬁgégg‘ﬁ"gg L
[:
i
A

From this chart it is clearer that ”EdgeProbability” performs better on average, but some other strategies,
like ”DepotAndEdgeAvgDistance”,”ClosestEdgeInSubmapWithProbability” and ”RandomEdgeDistance”
seem to be very close both on average and on the minimum values obtained.

To analyze the statistical significance of the difference between these strategies, a multiple comparison
was made using Friedman’s test in which each strategy is assigned a rank within each instance. Table 4
shows the statistics of the ranks for each strategy.

15

Table 4: Friedman’s test Ranks

Strategy Sum Of Ranks Range Std. Dev. Min Max
ClosestEdgeInSubmap 181.5 7.89 4.06 3§ 135
ClosestEdgeinSubmapWithProbability 92.5 4.02 1.86 5§ 3
DepotAndTwoEdgesDistance 168 7.30 2.89 2 13
DepotAndEdgeAvgDistance 80 3.48 2.27 1 11
DepotAndEdgeDistance 140.5 6.11 3.20 1 13
DepotDistanceRand 187.5 8.15 231 3 12
DepotHighestSaving 305.5 13.28 3.30 - 15
EdgeProbability 77 3.35 2.16 1 8.5
EdgeToEdgeSaving 313 13.61 1.62 9 15
TwoRandomEdgesDistance 158 6.87 3.6l 1 14
Random 259.5 11.28 1.86 7 14
RandomEdgeDistance 115.5 5.02 2.16 2 10
RandomWithSavings 20753 9.89 2.79 3 14
RoundRobin 2345 1020 3.64 1 15
RoundRobinCapacity 219.5 9.54 3.70 1 14

Through Friedman’s test strategies are grouped. Each group is represented by a letter, each group contains
strategies that are not significantly different. Strategies in different groups are significantly different.

Table 5 shows the groups obtained.

Table 5: Friedman’s Groups

Strategy Sum of Ranks Group
EdgeProbability 77.00 a
DepotAndEdge AvgDistance 80.00 a
ClosestEdgeinSubmapWithProbability 92.50 a
RandomEdgeDistance 115.50 ab
DepotAndEdgeDistance 140.50 bc
TwoRandomEdgesDistance 158.00 cd
DepotAndTwoEdgesDistance 168.00 cd
ClosestEdgeInSubmap 181.50 de
DepotDistanceRand 187.50 de
RoundRobinCapacity 21950 ef
RandomWithSavings 22750 fg
RoundRobin 23450 tg
Random 25950 g
DepotHighestSaving 305.50 h
EdgeToEdgeSaving 313.00 h

We see that RandomEdgeDistance, ClosestEdgeinSubmapWithProbability, DepotAndEdgeAvgDistance
Nevertheless,
EdgeProbability is the lowest ranked strategy of the group, it is selected as the top strategy for the

and EdgeProbability are not significantly different between themselves.

remainder of this work.

Second set of experiments

In this second set of experiments we maintain the “Edge Probability” strategy fixed and test different

since

settings to the main algorithm. To reduce the amount of tests to run, instead of running the whole
combinations of settings, they have been organized in ’phases”. In each phase, every combination of a
reduced set of settings is studied and the optimal settings are kept for the subsequent phases.

16

In the first phase, we test the use of a randomized versus a greedy version of the SHARP algorithm, along
with the use of the cache and the use of the solution pool. The solution pool setting can be: A) add every
solution that improves the worst solution in the pool (in other words, keeping the top five solutions), B)
add only solutions that improve the best solution in the pool or C) not use the pool at all.

The combination of these settings can be summarized in Table 6. It is clear that when the greedy version
of the SHARP algorithm is used, there is no need of a pool of solutions, since every time the algorithm is
run, the solution is going to be the same.

Table 6: First Phase

Settings l-a | 1-b | 1-¢ | 1-d | 1-e | 1-f | 1-g | 1-h
Use Randomized Solve | Yes | Yes | Yes | Yes | Yes | Yes | No | No
Use Cache Yes | Yes | Yes | No | No | No | Yes | No
Pool (A/B/C) A B C A B C C C

The results of this tests are exposed in the following tables.

Table 7: Phase 1: Compare Minimum Cost of Settings

Instance

Test ZabT 3db2 gdb3 pabd gdbs §db6 a7 ZdbE Zab9 gdb10 mdbll EdbI2 gdbl3 Rabld pdbis pdbl6 pdbI7 EabIE ZdbI9 §ab20 gabIl @ipaz gapzs ol Cost
la 3 321 259 266 361 285 325 33 286 281 387 M7 528 96 56 125 91 162 55 121 156 198 233 5673
T 300 321 259 266 361 285 315 334 286 283 387 447 536 96 56 15 91 16z 55 12l _ 156 D98 235 568
lc 310 339 267 266 382 309 335 358 306 284 399 448 540 102 S8 129 91 165 59 121 16l 02 238 5869
1d 300 321 259 266 361 285 325 334 286 281 387 447 528 96 58 125 91 162 55 121 156 198 233 5675
le 300 321 259 266 361 285 325 334 286 283 387 M7 536 96 58 125 91 162 55 121 156 198 233 5685
I 310330 367 266 382 309 335 338 306 284 399 48 540 10258 13 o1 165 50 I3 16l 303 338 5860
T2 30 335 771 266 361 299 330 331 297 95 47 M8 50 98 o0 15 91 162 63 123 16l W1 337 562
Ih 300 335 271 266 361 299 330 351 297 295 407 448 540 98 60 125 91 162 63 123 161 01 237 5821
Cost 300 311 259 266 361 285 325 334 286 281 387 447 518 96 56 125 91 162 55 121 156 198 233 5673

Table 8: Phase 1: Compare Average Cost of Settings

Ingtamcs Total cost

Test gdbl gdb2 gdb3 gdbd pdbS pdbb pdb7 gdbS pdb% pdbl0 pdbll pdbl2 pdbl3 gdbl4 pdblS pdblé pdb17 pdbl¥ pdblY pdb20 pdb21 pdbd2 pdhl3 B
T 30329 271 266 3% 8 330 40 291 281 W8 49 57 100 57 126 91 162 55 12l 158 20 26 57
Th 3334 274 266 3% W5 332 339 293 381 K0 450 57 101 57 137 91 163 55 1231 158 200 23 5B
Ic 39 356 292 275 395 23 349 366 316 295 44 477 57 10859 136 92 168 & 155 69 2055 61D
1d 00 329 271 66 3T M98 330 00 291 1M 388 449 537 100 58 126 91 162 55 121 158 146 136 5776
le 2 334 274 266 3Th WS 332 3400 297 284 384 450 537 101 58 127 91 163 55 121 158 200 236 5802
I 32 356 292 275 395 323 350 366 ile 295 414 478 557 108 59 136 92 168 60 123 169 205 245 6111
lg L 34 273 273 382 312 337 373 306 298 413 453 557 102 6l 127 91 164 63 123 164 202 241 5965
Ih ECIEED 273 273 382 312 338 373 306 298 413 453 557 102 60 127 91 164 [E] 123 164 202 241 5965
Minimum Average Cost 309 329 271 266 376 298 330 339 291 284 388 449 537 100 57 126 91 162 55 121 158 1% 236 5774

Table 9: Phase 1: Compare Average Time of Settings
Instance Average Time

Test gahl pdhz gdb3 gabd pdbs gdbb gdh? gpdb8 gab9 pdblD gdbll gabll gdbl3 gdhld gdbhls gdblG gadbl7 gdbl8 gdbl9 gab20 gab2l pdh2l gdhid
la__ 168747 I75800 D4.8354 54101 18631 J0ENM J3.482 I56649 18357 148767 IRAIES 355037 116936 1346 GO286 J4.8410 44087 141833 B.506 04344 J0R743_ 17.6311 70083 150627

] 141714 1EE3L 16,128 54163 161834 161458 168553 1975 2142973 130675 I6ETSL ILI66L 127876 57833 19.5114 4.598 121931 E4515 94433 22235 1R8] 19013 145372

le 02344 00808 0.0581 0.053 00785 00393 D.O7ET (.1381 0.0556 01515 0.16 0,065 00426 00284 00551 0.0894 0.1341 00471 00571 01198 0107 1813 LIS G

ld 167273 2725237 247029 53457 227044 226091 219895 X L74458 14.7351 1B0R16 12,4358 22.6865 5260346 41282 14.0362 7.293 18.7149 254125 17.5722
le 140459 19991 15.9929 5.3463 158574 160301 167022 1 12,1092 14.1435 127507 1 104959 13.355 7 153635 41412 12.0345 7.2891 18.058 187339 14.024%
If AASTT 004 00172 00161 WOISE 0008 0.012 00383 002% (N7 00294 00143 0.8 LSS 00037 0082 00071 00113 00028 00043 00LIE 00102 04211 L0165
lg 02655 00018 00768 D.0TTE 02468 DI163 0144 01279 02501 01123 01182 01037 0.0951 D162 0016 D135 D063 0153 00009 00035 00017 0308 02750 012649
1h 00592 00436 00168 OLODSE 00197 00T 001D 00352 00418 0011 0172 00085 0D 00004 00017 00003 00068 00174 (W03 D007 .01 00105 D021 00163

It is clear from the results exposed in the previous table that using the randomized version of the SHARP
algorithm along with the cache and a pool of solutions accepting every solution improving the worst
solution in the pool is the best combination of settings. It is also worthy to notice that the use of cache
hasn’t improved the solution very much, but the penalty in processing time for using it seems to be too
small to discard its use. It is likely that for larger instances, the cache might gain much more relevance.
As stated before, this settings are kept constant for the following phases.

In the second phase we test the use of the “unknotting” of the routes by the use of the function
“ImproveEdgesOrder”. The options are simple, either use the function or not use it. For that reason there

17

is no need for a table to detail the tests that were performed.
In the following tables the results from this phase are exposed.

Table 10: Phase2: Compare Minimum Cost of Settings

Instance . y
Test 20bT gdb? Ed5 §dbd pdbS gdb6 gdb] a8 gdbY pdbI0 gdbIl gdbIZ pdbl3 gdbid gdbls sdbl6 EdbI7 pdbIE gabld pan20 gab2l miniz mapzs o Cost
2a 300 321 259 266 361 285 325 334 286 281 387 47 528 96 56 125 91 162 55 121 156 198 233 5673
h 300 325 259 266 361 285 325 334 286 281 387 447 528 96 56 15 91 162 55 121 156 198 233 5677
Minimum Cost 300 321 259 266 361 285 325 334 286 281 387 447 528 96 56 L 162 55 121 156 198 233 5673
Table 11: Phase2: Compare Average Cost of Settings
Instance Total Cost
Test gdbl pibl gdbd pdbd pdb5 gdbé pdb7 gdb8 pd® gdbi0 gdb1l gdbll gdbl} pdbid gdbl5 gdbl6 gdbl7 pdbI8 pdbi9 gdb® gdb3l gdb32 gdbzy o
Ta 3W 329 771 266 %16 298 330 W0 291 284 388 440 537 100 57 126 91 162 5% 121 158 200 236 &4
oh 301 329 269 266 316 298 330 339 291 284 389 447 536 100 57 126 91 162 55 121 158 199 236 §771
Minimum Average Cosl 310 329 269 266 376 298 330 339 201 284 388 447 536 100 57 126 91 162 55 121 158 199 236 5771
Table 12: Phase 2: Compare Average Time of Settings
Tastance Average Time
Test _gabl _ gdhl _ gdhd gabd gdis gdbé gdb7 gdh gdb¥ gdbl0 gdbll gdbl gdbl3 gdbld pdblE gablG gdbl7 gdbll gdbl9 gdhi0 gahll ganlZ gdi3 merge Tme
Ta 687 TTER90 2483 54300 D180 21830 LIARN0 356610 1IR30 148767 IRATRS 155007 114026 134600 GOIRG 24FA20 44087 141833 3536 0439 2083 176321 270083 IR0GN
Tb_ 131680 281615 OR.1315_ 0816 201629 201322 ILI383 223324 203410 100377 142664 251566 136195 211213 73038 300080 4.2685 151076 K730 I0.1168 230100 313525 193189 175254

In this second phase we get very similar results between using and not using the unknotting” function,
only in instance gdb2 we can see an improvement. It is to be noticed that in the average cost table, not
using the function provided the best results. This could be due to the algorithm of the function actually
producing knots in the routes while undoing other knots. Still, since we are more concerned with the
minimum values than the average, the use of the unknotting function is kept for the next phase.

In this last phase there are three modifications to the simulated annealing algorithm that we test. The
splitting search used both to generate the starting solution for the SA algorithm and the one used within
this algorithm can be set to only return solutions that improve the original solutions, or to return solutions
that don’t necessarily do. This gives modifications to test. Furthermore, the direct acceptance of solutions
can be set to only apply for solutions improving the best solution overall, or for solutions improving only
the base solution used within the simulated annealing algorithm, not caring if it improves the best overall
solution. The following flowcharts clarify this, each flowchart details each one of the setups described
previously.

18

[BesiSol = splitsolutiony) |

[BaseSol = BastSol |
[
[setinitial temperare |

[NewSol = Spitsoiubony) |

Delta = MewSol Cost -
BasaSal Cost

Datta <0

A coapta e
A | Dacrease temparaturs

Yag
| Decrease temperature |

[Bestsol=pewsol |

[BasaSol = NewSol |

[Relurn BestSol |

Figure 12: Accepting only solutions improving best solution

[BestSol = Splitsolutionf) |

| BaseSol = BestSol |
1

[setinitial temperawre |

[w = Spitsolution() |
Delta = NewSol Cast -
BaseSol Cost
Delta <0
No

Acceptance Yeos

Elinciion [Decrease Tmpemwre |
pasaed
b [BaseSal = NewSal |
Yes
No
[BasaSol = NewSol
elpasadTima >=
max time
M
13
| Return BestSol |

Figure 13: Accepting solutions improving base solution

The following tables detail the tests that were performed and the results of those tests.

19

Table 13: Third Phase

Phase 3 (SA Algorithm variations) 3a|3b|3c|3d|3e |3f |3g | 3h
Outer MultiSplit With improvement No | No | No | No | Yes | Yes | Yes | Yes
Inner MultiSplit With improvement No | No | Yes | Yes | No | No | Yes | Yes
Accept solutions improving base but not best (baseSol = newSol) | No | Yes | No | Yes | No | Yes | No | Yes
Table 14: Phase3: Compare Minimum Cost of Settings
Instance Total Cost
Test gdb1 gdb3 gdbd gdb5 gdb6 gdb7 gdb8 gdb¥ gdbl0 gdbll gdbl2 gdbi3 gdbld gdbl5 gdblé gdbl7 gdhl8 gdbl9 gdb20 gdb2l pdbi2 gdbid
3u 300 25% o6 361 285 325 334 286 181 38T 447 528 96 56 125 91 162 55 121 156 198 233 5673
b 300 25% 66 361 285 325 334 186 181 387 447 528 26 56 115 91 162 55 121 156 198 233 5673
3¢ 300 259 2a6 36l 285 325 334 286 281 387 447 528 96 56 125 91 162 55 121 156 198 233 5673
3d RITT) 259 286 36l 285 325 334 286 281 387 47 530 96 56 125 91 162 55 121 156 198 233 5675
de 300 25% o6 361 285 325 334 286 181 387 447 528 96 56 125 91 162 55 121 156 198 233 5677
3r 300 259 66 361 285 325 334 186 181 387 447 528 96 56 125 91 162 55 121 156 198 233 5677
3g 300 259 2a6 36l 285 325 334 286 281 387 447 528 96 56 125 91 162 55 121 156 198 233 5677
3h 300 259 26 36l 285 325 334 286 281 387 447 528 96 56 125 91 162 55 121 156 198 233 5677
Cost 300 25% o6 361 285 325 334 286 181 387 447 528 96 56 125 91 162 55 121 156 198 233 5673
Table 15: Phase3: Compare Average Cost of Settings
Instance Tatal Cost
Test gdbl pdb2 pdb3 gdbd pdbS pdbé gdb7 pdbS pdbY pdbl0 gdbll pdbl2 gdbl3 pdbl4 gdbl5 gdblé gdbl7 pdbl8 pdbl9 pdb20 pdb21 pdb22 pdb23 N
3a 30 39 271 266 3Th 98 330 340 I 284 388 44 537 100 57 126 91 162 55 121 158 200 236 5774
Ib 31 328 249 266 3Te 298 330 339 291 284 389 HT 536 100 57 126 91 162 55 121 158 199 25 5769
e 30 328 271 266 3Te M8 330 340 291 283 189 9 537 100 57 126 91 162 55 121 158 199 236 5774
3d 30 329 271 266 376 98 330 340 291 284 3E9 444 537 100 57 126 91 162 55 121 158 199 236 5774
Jee 339 269 266 3Th 98 330 339 191 284 B9 HT 530 100 58 126 a1 162 55 121 158 199 235 5771
ar 3L 329 269 266 3Th 08 330 339 291 284 IR0 HT 53 100 57 126 91 162 55 121 158 199 236 5770
i AL 329 269 266 376 8 330 339 291 283 180 HT 53 100 57 126 91 162 55 121 158 199 15 5770
3h 3L 329 269 266 376 98 330 339 191 284 3E9 HT 536 100 57 126 91 162 55 121 158 199 236 5771
Mi Average Cost 310 328 269 266 376 208 330 339 291 283 388 HT 53 100 57 126 91 162 55 121 158 199 235 5769
Table 16: Phase 3: Compare Average Time of Settings
Inphmmcs: Average Time
Tost _pdhl pdh? pdh3 pdhd pdh® pdbh gpdh7 pdb8 pdb® pdbl pdbhll pdbl2 pdbl3 gdbld pdbls pdble gdhl7 pdbl8 gdbl9 pdb2d gdb2l pdh22 pdhl3
3a 16,8747 27.5899 24 8254 54292 228632 228204 234820 25.6649 183570 14.8767 184185 255037 116926 234600 69286 24 8429 44087 141833 82526 94344 208743 . 18.0628
kY 131911 281685 28.1359 5.0850 21.1649 200287 221400 223375 183636 101340 251718 13.6055 21.1321 57170 30.1841 151830 £.1995 10.1118 232159 17.5449
e 168484 27.5030 5 54130 22404 22R049 256682 19.0134 18.3825 154915 11887 234617 61179 234982 44537 141842 8IE31 94385 208837 18.0145
d 168260 5 256796 19.0289 14.8474 129302 2 5.6584 248352 4.4 141762 8.1922 94360 208821 17.9%00
Je 13.17558 2 10.1422 13.6055 21 38698 30.1884 15.1941 8.1682 10.1137 173082
3f 131814 23364 X 10,1399 116228 11 5.8 15,1982 83012 101 17.3858
EN) 131904 21.1632 22317 X 15.9760 135919 31.1 5 15.1845 E.1890 101078 17.739%
3h 131961 21172 223360 21400 10.1422 211221 4.8819 15 §5229 10.1116 17,6005

From these results we can conclude that it is better to not force the splitting procedure to only

improving solutions. It is coherent with the random nature of a simulated annealing approach,
needs of some non-improving solutions to function as it is intended. Regarding the acceptance of
solutions improving only the base solution, this also seems to offer better results as can be seen in the
results for the average cost. It even reaches the solution in less time than its counterpart.
Table 17 shows the results of the present algorithm and those of Hongtao et al. (2013)[12], Kansou (2010)
[14] and Kansou and Yassine (2012)[16].

20

return
which

Table 17: Comparison of results

Kanson 2012 Kanson 2010 HongTao Present Algorithm
Instance HACO Time DACOS Time MDMA time HGAP Time Result Time Gap (HACO) Gap (DACOS) Gap (MDMA) Gap (HGAP)
gdbl 300 gl 300 <1 300 <1 300 <1 31l 13.19 367 3.67 3.67 344
adh2 331 1 329 12 321 <1 321 -1 328 28.17 -0.91 <030 218 219
2db3 267 1 273 <l 263 1 259 1 269 25.14 0.75 =147 2.28 386
odbd 266 1 269 <1 266 q 266 1 266 5.08 0.00 =112 0.00 0.00
adbs 369 1 364 1.3 361 <1 361 1 376 2116 1.90 3.30 416 396
gdbe 358 1 358 1 291 1 282 1 298 20.13 -16.76 -16.76 241 5.50
2db7 325 =1 325 =1 325 <1 325 <1 330 22,14 1.54 1.54 1.54 1.40
edbB 351 1.5 359 1.8 350 1.7 328 43 339 2233 =342 -5.57 -3.14 327
2db 34 1.7 il4 2 Kl 2.1 279 4.7 291 18.36 -7.32 -7.32 -5.83 416
gdbl0 275 =1 275 =1 275 | 275 <1 284 10.13 327 3.27 3.27 3.06
gdbll 407 <1 407 1.7 403 <1 387 1.9 3R9 14.27 =442 =442 =347 0.51
gdhl2 450 | 454 | == | 420 | 447 25.17 =067 -1.54 1.59 6.10
gdbl3 540 | 540 1 540 | 528 | 536 13.61 -0.74 -0.74 -0.74 1.49
gdbl4 498 <1 98 o | 96 <1 06 <1 100 21.13 204 204 4.17 4.19
gdbl5 56 <1 56 1 56 <1 56 <1 57 572 1.79 1.79 1.79 2.10
gdblé 127 | 127 1 127 | 125 | 126 3008 -0.79 -0.79 -0.79 0.48
gdbl17 a1 <1 a1 <1 a1 <1 91 <1 a1 4.28 0.00 0.00 0.00 0.00
gdbI8 160 <1 160 1.5 158 <1 158 <1 162 15.18 1.25 1.25 2.53 247
gdb19 35 | 55 o | 35 1.1 55 | 55 8.20 0.00 .00 0.00 0.00
gdb20 122 <1 123 1 121 1.5 121 <1 121 10.11 -0.82 -1.63 0.00 0.00
gdh2l 158 <1 158 =1 158 1.8 154 2.8 158 23.22 0.00 0.00 0.00 2.65
gdh22 202 1.3 202 1 201 2.6 196 4.7 199 21.26 -1.49 -1.49 =100 1.61
gdh23 235 1.6 236 1.5 235 32 229 6.4 235 22,37 0.00 =042 0.00 2.68

From the results we see that the algorithm gives good results, and in some instances it equals the results
of Hongtao et al. (2013)[12], but it seems clear that there are many improvements to be made to the
algorithm to achieve it’s values. Particularly the running time of the algorithm should be improved.

6. Conclusions

In this article several strategies for approaching the Multi-depot ARP. Particular attention has been

placed on the strategies to decide which depot will be serving which edge, but also some variations on

a main algorithm were tested to determine the value of pursuing the refinement of these variations. The
computational experiments show that the best way to assign edges to depots is by assigning a probability
of assignment of this edge to the two closest depots according to the cost associated to traveling from
each depot to the edge, and then randomly making the assignment with this probabilities. Other
assignment strategies have returned good solutions and might even perform better on larger networks,
with more depots and edges without required demand. Regarding the variations on the main algorithm, a
randomized version of the SHARP has proven to offer better results, since from the variety of solutions it
can return, many search algorithms can be applied, and pairing these with a simulated annealing approach
might prove to be a most valuable use of these various solutions. The use of a cache mechanism has
improved the time it takes the algorithm to achieve the minimum, but it hasn’t significantly decreased the
cost of the solutions. Again this might be more valuable in larger networks. Also, the use of a pool of
solutions obtained from the initial multi-start procedure gives the possibility of exploring more solutions
and not get trapped in local optima. Like it has been proven with the splitting search, accepting non
improving solutions in thecontext of a simulated annealing framework is desirable. Finally, the
“unknotting” procedure hasn’t proved to be definitely favorable or unfavorable. Although theoretically it
should never increase the cost of a solution, the results show that this might be the case for some
instances. One thing to analyze is whether in the process of “unknotting” a subset of three edges, it is
creating a new knot in previously “unknotted” edges.

Some ideas for future work are: (i) run these full suite of tests to larger networks with more depots and
including edges without required demand, since the allocation strategies might perform very differently in
these networks; (ii) further analyze the “unknotting” algorithm, isolated from the other strategies; (iii) test
in isolation the cache mechanism in larger networks since its value might actually reside in those kinds

of networks; (iv) analyze different alternatives to reduce the time performance of the algorithm (v) add
capacity restrictions to the depots; and (vi) add restrictions on time-capacity to the problem.

21

22

7. Glossary

ARP: Arc Routing Problem

VRP: Vehicle Routing Problem

MDARP: Multi-Depot Arc Routing Problem
MDVRP: Multi-Depot Vehicle Routing Problem
CARP: Capacitated Arc Routing Problem
CVRP: Capacitated Vehicle Routing Problem
SHARP: Savings-based Heuristic for the ARP
CWS: Clarke And Wright Savings

23

8. Bibliography

[1]JAmberg, A., W. Domschke, and S. Vof. 2000. “Multiple center capacitated arc routing
problems: A tabu search algorithm using capacitated trees”. European Journal Of Operational
Research.

[2]Assad, A., and B. Golden. 1995. “Arc routing methods and applications”. Handbooks in
operations research and management science.

[3]Clarke, G., and J. Wright. 1964. “Scheduling of vehicles from a central depot to a number of
delivery points”. Journal Of Operations Research.

[4]Corberan, A., and C. Prins. 2010. “Recent results on Arc Routing Problems: An annotated
bibliography”. Networks.

[5]Dror, M. 2000. Arc routing: theory, solutions, and applications. Springer.

[6]Eiselt, H., M. Gendreau, and G. Laporte. 1995a. “Arc routing problems, part I: The Chinese
postman problem”. Operations Research.

[7]Eiselt, H., M. Gendreau, and G. Laporte. 1995b. “Arc routing problems, part II : The Rural
Postman Problem”. Operations Research.

[8]Fleury, M. 1883. “Deux problemes de geometrie de situation”. Journal de mathematiques
elementaires.

[9]Golden, B., J. Dearmon, and E. Baker. 1983. “Computational experiments with algorithms for
a class of routing problems”. Computers & Operations Research 10 (1): 47 — 59.

[10]Gonzalez, S., A. A. Juan, D. Riera, Q. Castella, R. Muoz, and A. Prez. 2012. “Development
and assessment of the SHARP and RandSharp algorithms for the arc routing problem”. Al
Communications.

[11]Hierholzer, C. 1873. “ber die Mglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren”. Mathematische Annalen VI.

[12]Hongtao, H., L. Tangtao, Z. Ning, Z. Yiting, and M. Dequan. 2013. “A hybrid genetic
algorithm with perturbation for the multi-depot capacitated arc routing problem”. Journal of
Applied Sciences.

[13]Juan, A., . Pascual, D. Guimarans, and B. Barrios. 2014. “Combining biased randomization
with iterated local search for solving the multidepot vehicle routing problem”. International
Transactions in Operational Research.

[14]Kansou, A. 2010. “New upper bounds for the multi-depot capacitated arc routing problem”.
International Journal of Metaheuristics 1:81-95.

[15]Kansou, A., and A. Yassine. 2009. “A two ant colony approaches for the multi-depot
capacitated arc routing problem”. Technical report, Laboratoire de Mathematiques Appliquees du
Havre (LMAH), Universite du Havre, France, 1nstitut Superieure d’Etudes Logistiques (ISEL),
Universite du Havre, France.

[16]Kansou, A., and A. Yassine. 2012. “Splitting algorithms for the multiple depot arc routing
problem: application by ant colony optimization”. International Journal of Combinatorial
Optimization Problems and Informatics 3 (3): 20 — 34.

[17]Mei-Ko, K. 1962. “Graphic Programming Using Odd or Even Points”. Chinese
Mathematics.

Sachs, H., M. Stiebitz, , and R. J. Wilson. 1988. “An historical note: Eulers Knigberg letters”.
Journal Of Graph Theory.

[18]Tiantang, L., J. Zhibin, and G. Na. 2014. “A genetic local search algorithm for the multi-
depot heterogeneous fleet capacitated arc routing problem”. Flexible Services And
Manufacturing Journal.

[19]Wohlk, S. 2005. Contributions to Arc Routing. MSc. thesis, University of Southern
Denmark.

[20]Wohlk, S. 2008. “A Decade of Capacitated Arc Routing”. In The Vehicle Routing Problem;
Latest Advances and New Challenges. Springer.

[21]Xing, L., P. Rohlfshagen, Y. Chen, , and X. Yao. 2009. “An Evolutionary Approach to the
Multidepot Capacitated Arc Routing Problem”. IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION.

24

25

	1. Introduction
	1.1 Context and justification of the Work
	1.2 Aims of the Work
	1.3 Approach and method followed
	1.4 Planning of the Work
	1.5 Brief summary of products obtained
	1.6 Brief description of the others chapters of the memory

	2. Brief description of the problem
	3. Literature review
	4. Present approach
	4.1.1 Savings-Based strategies
	Algorithm 1: Main algorithm
	Algorithm 2: MDRandSHARP(Map, Cache)
	Algorithm 3: splitSolution(Sol, Cache, SplitIter, ForceImprovement)
	4.2.1 First Phase: Multistart Algorithm
	The splitting procedure can be set to enforce improvements or not. In the case where improvements are enforced the best known solution is set to the initial solution (Algorithm 2, line 1-2), so that the newly obtained solutions will only be accepted if they improve the initial solution. Otherwise, if the procedure is
	At all moments during these search, a cache of best found routes for servicing the edges with demand is kept and constantly updated with improving routes. This cache is perused throughout the algorithm (Algorithm 1, line 6, 17, 22; Algorithm 2, line 2; Algorithm 3, line 12, 18), always comparing the present
	5. Computational Results
	Figure 5: gdb9
	Figure 6: gdb11
	Figure 7: gdb12
	Figure 8: gdb13
	Figure 9: gdb21
	Figure 10: gdb22
	From this chart it is clearer that ”EdgeProbability” performs better on average, but some other strategies, like ”DepotAndEdgeAvgDistance”,”ClosestEdgeInSubmapWithProbability” and ”RandomEdgeDistance”
	The results of this tests are exposed in the following tables.
	The following tables detail the tests that were performed and the results of those tests.
	From the results we see that the algorithm gives good results, and in some instances it equals the results of Hongtao et al. (2013)[12], but it seems clear that there are many improvements to be made to the algorithm to achieve it’s values. Particularly the running time of the algorithm should be improved.
	6. Conclusions
	7. Glossary
	8. Bibliography

