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The main objective of the present work is to elaborate the most effective algorithm for solving the Multi-
Depot  Arc Routing Problem (MDARP),  taking the Randomized Sharp as base algorithm and starting
point,  and  particularly  to  study  different  alternatives  for  developing  the  edge-to-depot  assignment.
Concrete applications of this problem are garbage collection, electricity meter reading, mail distribution
and door-to-door selling. To accomplish this several edge-to-depot allocation strategies in conjunction
with variations on the Randomized Sharp algorithm were implemented in the Java language and tested
against one another and using the existing benchmarks for this problem. 

The results show that assigning edges to depots using a biased-randomized strategy offers the best results.
Also the  present  work's  algorithm,  which combines  the  Randomized  Sharp algorithm with a splitting
search,  simulated  annealing  and  a  cache  strategy  gives  competitive  results  compared  to  current
benchmarks.
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  Abstract (in English, 250 words or less):

The Multi-depot Arc Routing Problem (MDARP) is a combinatorial optimization problem belonging to a
family of related problems that have in common the objective of finding the optimal route for a vehicle or
a fleet of vehicles in order to satisfy demand located at the nodes or along the edges of a graph. When the
demand is located at nodes it is called a Vehicle Routing Problem (VRP) and when it is located along the
edges it is called Arc Routing Problem (ARP). For the present work, the ARP problem is studied, enriched
by having multiple starting and finishing nodes, called depots. This problem is known in literature as
Multi-depot Arc Routing Problem (MDARP). The aim of the present work is to study algorithms for the
solution of the MDARP and some of its variants using as base the Randomized SHARP algorithm from
González et al. (2012). This base algorithm is a randomized Clarke & Wright Savings heuristic (Clarke
and Wright (1964)) for the construction of the solutions. Several strategies for the allocation of edges to
each available depot were studied and compared in their results and efficiency. 

According to the results, the assignment of edges to depots using a biased-randomized strategy combined
with the Randomized Sharp algorithm, a splitting search, simulated annealing and a cache strategy gives
competitive results compared to current benchmarks.
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1. Introduction

1.1 Context and justification of the Work

The ARP family of problems has not been studied as exhaustively as Vehicle Routing Problems (VRP).
Particulary the multi-depot versions have significantly less bibliography. The purpose of the present work
is  to  contribute  by  comparing  several  strategies  for  the  allocation  of  edges-to-depots  and  present  a
competitive algorithm which can be used to explore further variations of the problem.

1.2 Aims of the Work

 Study the effectiveness of different edge-to-depot allocation strategies for the MDARP.
 Develop an algorithm based on the most effective strategy identified.
 Compare the final algorithm with the current benchmarks.

1.3 Approach and method followed

As a starting point, the state of the art algorithms for the ARP and MDARP are reviewed. This
includes similar problems that serve as a good starting point for the MDARP, such as the VRP and Multi-
depot VRP. The main objective of this initial phase is to develop an understanding  of  the  use  of  the
CWS heuristic,  its  randomized variation,  and the various frameworks in which they work,  including
multi-start, ILS, tabu-search and cache schemes. Also, the main strategies for node allocation to depots
are reviewed.
Next,  several  node  allocation  strategies  in  conjunction  with  the  Randomized  Sharp  algorithm  are
implemented and tested against one another and using the existing benchmarks for this problem.  This
serves the purpose of increasing the understanding of the way each strategy impacts the end result, and
their  strengths  and  weaknesses.  The  next  step  is  to  develop  different  modifications  of  the  existing
strategies and methodologies for node allocation to depots and route generation. The implementation of
these variations of the main Randomized Sharp algorithm are done using the Java language due to the
ease of modelling the language provides and its widespread use.
Having implemented several different strategies and variations on the Randomized Sharp algorithm, they
are  tested  using  the  problem’s  benchmarks  to  determine  the  quality  of  the  solutions  each  of  them
provides. This is performed simultaneously with some parameter-tweaking worthy of studying. 
Along with the optimality of the solutions, the time cost is taken into account, not discarding strategies
solely based on time performance, but including it into the final considerations of the global performance
of each of the strategies.
Finally, conclusions are extracted regarding the effect of applying the various node allocation strategies,
as well as variations of the Randomized Sharp algorithm and the impact of the tweaking  of  the
parameters. Also the efficiency of the studied algorithms is analyzed. To conclude, paths for future
investigations are proposed.
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1.4 Planning of the Work

Task Days Starting date Finishing date
End of Master Paper Realization 187 5-Dec-2016 10-Jun-2017
Work Plan preparation 16 5-Dec-2016 21-Dec-2016
Literature revision 16 5-Dec-2016 5-Jan-2016
Study  of  the  Randomized  Sharp
algorithm

31 5-Dec-2016 5-Jan-2017

Formulation  of  improvement
strategies

13 2-Jan-2017 15-Jan-2017

Implementation  of  improvement
strategies for the algorithm

59 16-Jan-2017 16-Mar-2017

Comparative  analysis  of
improvement  strategies  for  the
algorithm

31 17-Mar-2017 17-Apr-2017

Elaboration of conclusions 17 18-Apr-2017 5-May-2017
Composition  of  the  preliminary
report

15 6-May-2017 21-May-2017

Revision of the paper 10 22-May-2017 1-Jun-2017
Composition of the final report 8 2-Jun-2017 10-Jun-2017

1.5 Brief summary of products obtained

An algorithm for the MDARP was developed, which offers competitive results compared to benchmarks
and proves to be a good starting point to explore richer versions of the MDARP.

1.6 Brief description of the others chapters of the memory

The article is structured as follows: Chapter 2 gives a brief introduction to the MDARP problem, Chapter
3 highlights some related works on the ARP and its variants. Details and implementation of the solutions
analyzed in this article are given in Chapter 4. The experiments carried out and their results are described
in Chapter 5. Lastly, Chapter 6 points out the key aspects of this paper and identifies the possibilities for
some future research lines.
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2. Brief description of the problem
This  paper  aims  at  exploring  various  strategies  for  solving  the  Multi-Depot  Arc  Routing  Problem
(MDARP). In this problem, there is a graph G = (N,E) (where N is the number of nodes and E the number
of edges) to be traversed in any number of different routes which start and end in one of the depots. Some
of this graph’s edges are required to be part of a route and some are not required. Concrete problems that
could be modeled this way are garbage collection, electricity meter reading, mail distribution and door-to-
door selling Assad and Golden (1995)[2], Dror (2000)[5].
In  Figure  1 an MDARP graph  is  presented,  with its  nodes,  depot  nodes  and edges.  The bold edges
represent edges that are required and contain demand to be serviced by routes beginning and ending in
one of the depots. The dashed edges are not required but may or may not be needed as part of one of the
routes. The problem then is how to construct routes to service each of the required edges with the least
cost, each route beginning and ending in the same depot.

Figure 1: MDARP representation

Differently from a single-depot ARP, where the problem consists in finding the best route to serve all
required  edges,  when approaching a MDARP, a previous phase can be identified.  This first  phase is
related  to  the problem of determining which depots  will  be serving each  one of the required  edges,
referred to as edge allocation. This part of the problem will output as a result a submap for each depot,
meaning a subset of edges from the full graph. The second phase is involved in determining the routes
through the required edges for each of the depots. In this work the focus is placed mainly on the first
phase, the edge allocation, for which many strategies for generating submaps are explored. Also different
schemes for applying the Randomized SHARP are analyzed: the use of a cache strategy and a simulated
annealing  approach combined with a local search procedure. Different combinations of these strategies
are tested and compared regarding the minimum and average values obtained. 

3



3. Literature review
The amount of literature devoted to the ARP is significantly lower than that dedicated to the Vehicle
Routing Problem. Nevertheless, many parallelisms can be drawn between the two types of problems and
what serves as good literature for one might prove valuable for the other.
The ARP might have begun with Leonhard Euler’s solution to the Königsberg bridges problem (Sachs
et al. (1988)). In this problem, a connected graph G = (N,E) is given and the task is to find a closed tour
that visits every edge in the graph exactly once or prove that no such tour exists. Such tours, if found, are
known as Euler tours. Two algorithms were presented some years later for constructing the Euler Tour,
the first one by C. Hierholzer (Hierholzer (1873)[11]) and another version, less efficient, by M. Fleury
(Fleury (1883)[8]). Another famous ARP is the Chinese Postman Problem, posed by Kwan Mei-Ko (Mei-
Ko (1962)[17]). It is similar to Euler’s problem: Given a connected graph G = (N,E,C), where N are the
nodes of the graph, E are the edges and C is a distance matrix, find a tour that traverses every edge in the
graph, but does so in the least amount of time. Assad and Golden (1995)[2] state the basic methodology
for solving generic ARPs, and describe several application areas. Similarly, Eiselt et al, write two papers
(Eiselt et al. (1995a)[6], Eiselt et al. (1995b)[7]) to review the algorithmic methods for solving the chinese
postman problem. There exist other surveys on the various methods for solving the ARP such as Dror
(2000)[5], Wohlk (2008)[20], this last one more focused on the capacitated version of the ARP. Another
survey of methods was published in Corberán and Prins (2010)[4] in which two important versions of the
problem are  discussed:  the  standard  ARP and the  capacitated  ARP (CARP),  in  which  an  additional
constraint is imposed on the ARP: the routes serving edges with demand have a limited capacity to satisfy
that demand.
Metaheuristic approaches have been explored, some of which are used in the present work as well. For
instance, the use of simulated annealing techniques has been applied to the ARP family of problems such
as in Wohlk (2005)[19] and Amberg et al. (2000)[1], the latter of which also a tabu search is tested.
Many evolutionary approaches have been used for the MDARP and CARP as well, such as Hongtao et al.
(2013)[12], Tiantang et al. (2014)[18], Xing et al. (2009)[21] and Kansou (2010)[14].
Finally, some Ant Colony Optimization algorithms have been used in Kansou and Yassine (2009)[15] and
Kansou and Yassine (2012)[16]. The present article is strongly based on the SHARP algorithm presented
in González et al. (2012)[10] which makes use of the Clarke & Wright savings heuristic from Clarke and
Wright (1964)[3]. This heuristic has been succesfully applied to Vehicle Routing Problems and in their
paper, González et al present a framework for applying the CWS heuristic to the ARP, and also present a
biased randomized version for use in multistart algorithm.
Regarding the approach to the Multi-Depot version of the problem, the paper by Juan et al. (2014)[13],
provides  a  good framework  for  the VRP, particularly for  the allocation of  nodes to each  depot.  The
mentioned work provides valuable ideas and methods that can be translated into the MDARP.

4. Present approach

As stated in a previous section, the MDARP problems can be divided into an edge allocation problem and
a simpler  ARP problem.  The first  phase  produces  a  submap for  every  depot  in  the graph,  that  is  it
establishes a relationship of ”belonging” of every required edge to a depot. The second phase of solving
each of these submaps using the Randomized SHARP algorithm in conjunction with other techniques will
determine the most successful of these allocation strategies. This work first tries to select the best edge
allocation strategy in this way,  and subsequently different combinations of techniques for solving the
submaps will be compared as well.

4.1 Edge Allocation Strategies

Edge allocation strategies can be divided into two groups: the savings-based strategies and strategies not
based in the concept of savings. For the first group it is necessary to elaborate on the concept of savings
as it is applied to edge allocation, since it differs slightly from the concept presented in Clarke and Wright
(1964)[3]. In the most common sense, what is referred to as ”saving” associated to an edge is how much
cost is prevented if that edge is traversed, as opposed to returning to the depot from that edge’s starting
node and then travelling again from the depot to the edge’s finishing node. In the case of edge allocation,
we can see savings in the following way. When an edge is assigned to a depot, there is a certain cost of
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travelling from the depot to the edge’s starting node, plus the cost of traversing the edge, plus the cost of
returning to the depot from the edge’s finishing node. For a particular edge there is going to be a different
total cost depending on the depot to which it is assigned, therefore we can understand a saving associated
to a depot-edge pair as the difference of cost between assigning that edge to that depot and assigning it to
the closest of the remaining depots.

The following table briefly references each of the strategies tested in this work:

4.1.1 Savings-Based strategies

Round-Robin:  This strategy will select one depot at a time and assign an edge to it  according to the
savings of the edge for that depot, with some randomization given by a geometric distribution. This loop
will continue assigning an edge to each depot at a time, until all edges have been assigned.

Round-Robin With Capacity: Similarly to the previous strategy, this one attempts to assign edges to
depots one depot at a time. The difference between the two strategies is that this one will always assign an
edge to the depot with the least amount of demand served so far in an attempt to achieve a more uniform
distribution of loads among depots.

Random With Savings: Taking into account the savings for each depot-edge pair, this strategy assigns
edges to depots one depot at  a time, but every time a random depot is  chosen among all the depots
following a uniform distribution.

Depot With Highest Saving: In this case, for each edge the depot which produces the highest saving
is determined and the edge is assigned to it.

Edge-To-Edge Savings: This strategy assigns the first edge of every submap according to its distance to
the  depot.  Afterwards  it  iterates  over  every  unassigned  edge  and  calculates  the  savings  caused  by
connecting that  edge  to every edge in each submap,  finally the edge is assigned to the submap that
contains the edge for which the savings are greater.

4.1.2 Distance (or cost)-based

Edge Probability: for this strategy, we first calculate the costs of assigning the edge to every depot and
select the two closest least costly depots for this edge. Then a ”probability” of assigning the edge to the
closest depot is calculated. This is done by taking the cost of assigning the edge to the farthest depot of
the two and dividing this cost by the sum of both costs. This number is then multiplied by a factor of
1.5 to increase the probability of assignment to the closest depot. During the assignment phase, for each
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edge,  a  random  number  with  uniform  distribution  is  obtained  and  if  this  number  is  less  than  the
assignment probability of the edge, it  is assigned to the closest depot, otherwise it  is assigned to the
second closest depot.

Randomized Depot Distance: This strategy first determines the closest depot to the nodes of an edge
and assigns the edge to that depot. To determine the closest depot, the distance to each of the edge’s
nodes must be minimal. In the case of a depot having a closer distance to one of the nodes, this is
labeled as ”second closest” depot and the edge is assigned to one of these depots according to a uniform
distribution. In the case that only one closest depot is found, the edge is assigned to this depot with 70%
probability, the remaining 30% of the times the edge is assigned to any depot according to a uniform
distribution.

Depot And Edge Distance: This strategy iterates over every edge and finds its distance to each of the
depots and its distance to a randomly chosen edge already assigned to that depot. Both this distances are
added, and this is done for every depot. Finally the edge is assigned to the submap for which this sum is
minimal.

Depot And Two Edges Distance: Like the previous strategy, this one takes into account the distance of
the edge to the depot and its distance to two random edges already assigned to that depot, assigning the
edge to the submap for which the sum of these distances is minimal.

Depot And Edge Average Distance: Just like Depot And Edge Distance, with the difference that instead
of taking the sum of the distances, it takes the average, and assigns the edge to the submap for which this
average is minimal.

Random Edge Distance: This strategy iterates over all the edges and for each one it select a random,
already assigned edge of each submap and calculates the distance between them, keeping the edge for
which this distance is minimal. Finally, the edge is assigned to the same submap as this edge.

Two Random Edges Distance: Like the previous strategy, this one takes into account the distance to
two edges already assigned to each submap.

Closest Edge In Submap: In this case for each edge that we need to assign, all of the currently assigned
edges per submap are evaluated for distance. The edge is assigned to that submap which contains the edge
that is closest to it.

Finally there is a strategy which is neither savings-based nor cost based:

Random: This strategy simply iterates over all of the edges and for each one it selects the depot with
a uniform distribution.

4.2 General testing algorithm

For testing these allocation strategies an algorithm was used that combines a multistart procedure for
generating  several  initial  solutions  based  on  the  Randomized  SHARP algorithm  with  a  simulated
annealing scheme which utilizes a splitting procedure and a cache of best known routes. 
In Algorithms 1, 2 and 3 the main algorithm and it’s most important parts are detailed.
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Algorithm 1: Main algorithm

Algorithm 2: MDRandSHARP(Map, Cache)
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Algorithm 3: splitSolution(Sol, Cache, SplitIter, ForceImprovement)

4.2.1 First Phase: Multistart Algorithm
After assigning the edges to the depots according to the selected allocation strategy (Algorithm 1, line 1),
the algorithm begins  an initial  multi-start  procedure  (Algorithm 1,  line  5)  that  takes  advantage  of  a
randomized version of the SHARP algorithm González et al. (2012)[10] for multiple depots to generate
many different solutions (Algorithm 1, line 6). This multi-depot version of the Randomized SHARP is
succinctly  detailed  in  Algorithm  2,  where  for  each  submap  in  the  graph,  the  Randomized  SHARP
procedure is applied.
Briefly, the SHARP procedure ranks the edges in a graph according to the savings produced by traversing
the edge with a single vehicle instead of visiting its nodes in two different routes. In order to construct a
full route, one could simply choose those edges with highest savings and start joining them to form routes
with high savings. This process, when done in a Capacitated Vehicle Routing Problem (CVRP) is known
as the Clarke & Wright Savings heuristics, widely recognized to be the best heuristic for solving the
CVRP. The limitation of using this heuristic is that the resulting solution is always the same. By using a
guided randomization process we can obtain several different solutions, many of which might improve
the original  CWS solution. This  ”guided  randomization” consists in  not  simply selecting the highest
saving  edge  when  constructing  a  solution,  but  randomly  select  the  edge  following  a  geometric
distribution. This results in the best edges being selected with higher probability, but allowing for some
”not so good” edges to be selected at times. After running this process for a number of iterations (NIter),
(Algorithm 1, line 5) the best five of these solutions are kept in a ”solution pool” (Algorithm 1, lines 7-
13) and a second search phase is applied to each of them (Algorithm 1, line 16-38).

4.2.2 Second Phase: Local Splitting Search with Simulated Annealing

For each solution in the solution pool generated in the previous phase, the solutions are split into the
routes that compose them. Then each route in the solution is split (Algorithm 1, line 17). This means the
route has a random number of routes extracted from it (Algorithm 2, line 10). The route that has been
extracted  is solved again  iteratively using the Randomized SHARP procedure  to obtain a  new route
(Algorithm 2, line 12). This splitting and searching is repeated until no improvements have been obtained
after a number of iterations equal to splitIter. After the final route is obtained, it is merged back with the
remaining  routes  (Algorithm 2,  line 17).  Using  this  final  route,  the  cache  is  searched  to  attempt  to
improve the solution (Algorithm 2, line 18). If the final solution improves the best known solution, the
new solution is accepted as best solution (Algorithm 2, line 19-22).
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Figure  2 illustrates  this  splitting  procedure:  starting from a  graph  with  three  routes,  one  of  them is
selected,  and  solved  through the Randomized  SHARP algorithm,  before  being  merged  back into the
solution.

Figure 2: Splitting procedure

The splitting procedure can be set to enforce improvements or not. In the case where improvements are
enforced the best known solution is set to the initial solution (Algorithm 2, line 1-2), so that the newly
obtained solutions will only be accepted if they improve the initial solution. Otherwise, if the procedure is
set not to enforce improvements, the best known solution is set to null (Algorithm 2, line 4), which results
in accepting the best of the generated solutions whether it improves the initial solution or not. This results
in a starting solution for a simulated annealing search (Algorithm 1, line 19-33), which runs until the
elapsed time reaches the maximum time set or the temperature parameter reaches zero. In this iterative
process the solution is split again (Algorithm 1, line 22) and accepted according to a simulated annealing-
based acceptance criterion (Algorithm 1, line 23-32). At each iteration of the process,  temperature is
decreased(Algorithm 1, line 21),  and the difference of cost between the new solution and the current
solution evaluated as Delta (Algorithm 1, line 23-24). If  Delta is less than zero, temperature is again
decreased  (Algorithm 1, line 24-25),  if  the cost  of  new solution is  less  than that  of  the best  known
solution,  both the best  known solution and the best  known solution are  updated with the new value
(Algorithm 1, line 26-28), otherwise if a uniformly random number is less than e (delta/t)  ,  the base
solution is updated with the new solution, the best known solution remains unchanged(Algorithm 1, line
29-31).
With the solution obtained from this process, the order of the edges is analyzed in search for ”knots”
(Algorithm 1, line 34). This means in practice that every three consecutive edges in a route, a different
ordering is analyzed and if the cost diminishes in any other ordering, the solution is updated with this new
order.
This process is repeated for every solution in the pool and the best solution is kept as a result(Algorithm
1, line 35-37).

4.2.3 Use of a memory cache

At all moments during these search, a cache of best found routes for servicing the edges with demand is
kept  and  constantly  updated  with  improving  routes.  This  cache  is  perused  throughout  the  algorithm
(Algorithm 1, line 6, 17, 22; Algorithm 2, line 2; Algorithm 3, line 12, 18), always comparing the present
route with routes previously found for a given list of edges with demand.

5. Computational Results
This algorithm was coded in the Java language and tested on a Core i3 CPU @ 2.4GHz and 4GB RAM.
For the computational experiments, the gdb set proposed in Golden et al. (1983)[9] were used. These
instances contain dense and sparse networks of small to medium size (from 10 to 50 edges). All of the
edges contain required demand. In every instance the depots have been set to the first and last nodes of
the graph.
During the multistart procedure, the number of iterations is set to 100.000 (NIter = 100.000; Algorithm
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1, line 4), and the size of the solution pool is set to 5 (Algorithm 1, line 2). In the first splitting search, the
search is performed until no improvements have been made for 10 iterations of the splitting procedure
(SplitIter  =  10;  Algorithm 1,  line  17),  keeping  the  best  solution.  The  simulated  annealing  search  is
performed until the elapsed time reaches 5 seconds (maxTime = 5), the following splitting searches are
performed until reaching 30 non-improving iterations (Iter = 30; Algorithm 1, line 22), also keeping the
best  solution.  Within  the  splitting  procedure,  the  Randomized  SHARP algorithm is  executed  on  the
extracted routes for 30 iterations (sharpIterations = 30; Algorithm 3, line 12). Regarding the simulated
annealing parameters, the initial temperature is set to 15.000 (Algorithm 1, line 19). It  is decreased in
every iteration by a uniformly random amount between 0 and 10 (Algorithm 1, line 21), and when an
improving solution is found the temperature is decreased by a uniformly random number between 0 and
delta × 2 , delta being the difference of cost between the new solution and the old solution (Algorithm 1,
line 25).

First set of experiments

In this first set of experiments, the edge allocation strategies are considered, using the base algorithm
described previously. Each strategy is used to generate the edge allocation map for each gdb instance,
with  fifteen  different  runs  associated  with  fifteen  different  seed  numbers  for  the  random  number
generator. Both the minimum cost attained by the strategy and the average cost are taken into account for
deciding which is the optimal strategy.

Using  both  minimum cost  and  average  cost  metrics  the  lowest  cost  is  obtained  through  the  Edge-
probability strategy.  Other strategies have come to results close to this, particularly ”Depot And Edge
Average distance” and this strategies might become more relevant in different setting, like larger networks
with more depots.
To better visualize the difference among strategies, a sample of all the instances were selected to be
represented by box-plots in the following figures.
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Figure 3: gdb6

Figure 4: gdb8
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Figure 5: gdb9

Figure 6: gdb11
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Figure 7: gdb12

Figure 8: gdb13
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Figure 9: gdb21
Figure 10: gdb22
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It is noticeable how for some instances one strategy greatly outperforms another. For example, in instance
gdb6 the strategy ”DepotAndEdgeAvgDistance” is significantly better than ”EdgeProbability”. In gdb22,
”EdgeProbability” is clearly better between the two, but is again outperformed by ”ManyRandomEdges
Distance”.
By analyzing the cost of each strategy to run an all instances, a broader conclusion can be made. The
following chart shows this comparison.

Figure 11: All Instances

From this chart it is clearer that ”EdgeProbability” performs better on average, but some other strategies,
like ”DepotAndEdgeAvgDistance”,”ClosestEdgeInSubmapWithProbability” and ”RandomEdgeDistance”
seem to be very close both on average and on the minimum values obtained.
To analyze the statistical significance of the difference between these strategies, a multiple comparison
was made using Friedman’s test in which each strategy is assigned a rank within each instance. Table 4
shows the statistics of the ranks for each strategy.
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Through Friedman’s test strategies are grouped. Each group is represented by a letter, each group contains
strategies  that  are  not significantly different.  Strategies  in  different  groups are  significantly different.
Table 5 shows the groups obtained.

We see that RandomEdgeDistance, ClosestEdgeinSubmapWithProbability, DepotAndEdgeAvgDistance
and  EdgeProbability  are  not  significantly  different  between  themselves.  Nevertheless,  since
EdgeProbability  is  the lowest  ranked strategy  of  the group,  it  is  selected  as  the top strategy  for  the
remainder of this work.

Second set of experiments

In this second set of experiments we maintain the ”Edge Probability” strategy fixed and test different
settings  to  the  main  algorithm.  To reduce  the  amount  of  tests  to  run,  instead  of  running  the  whole
combinations of settings, they have been organized in ”phases”. In each phase, every combination of a
reduced set of settings is studied and the optimal settings are kept for the subsequent phases.
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In the first phase, we test the use of a randomized versus a greedy version of the SHARP algorithm, along
with the use of the cache and the use of the solution pool. The solution pool setting can be: A) add every
solution that improves the worst solution in the pool (in other words, keeping the top five solutions), B)
add only solutions that improve the best solution in the pool or C) not use the pool at all.
The combination of these settings can be summarized in Table 6. It is clear that when the greedy version
of the SHARP algorithm is used, there is no need of a pool of solutions, since every time the algorithm is
run, the solution is going to be the same.

The results of this tests are exposed in the following tables.

It is clear from the results exposed in the previous table that using the randomized version of the SHARP
algorithm along with the cache and a pool of solutions accepting every solution improving the worst
solution in the pool is the best combination of settings. It is also worthy to notice that the use of cache
hasn’t improved the solution very much, but the penalty in processing time for using it seems to be too
small to discard its use. It is likely that for larger instances, the cache might gain much more relevance.
As stated before, this settings are kept constant for the following phases.
In  the  second  phase  we  test  the  use  of  the  ”unknotting”  of  the  routes  by  the  use  of  the  function
”ImproveEdgesOrder”. The options are simple, either use the function or not use it. For that reason there
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is no need for a table to detail the tests that were performed.
In the following tables the results from this phase are exposed.

In this second phase we get very similar results between using and not using the ”unknotting” function,
only in instance gdb2 we can see an improvement. It is to be noticed that in the average cost table, not
using the function provided the best results. This could be due to the algorithm of the function actually
producing knots in the routes while undoing other knots. Still, since we are more concerned with the
minimum values than the average, the use of the unknotting function is kept for the next phase.

In this last phase there are three modifications to the simulated annealing algorithm that we test. The
splitting search used both to generate the starting solution for the SA algorithm and the one used within
this algorithm can be set to only return solutions that improve the original solutions, or to return solutions
that don’t necessarily do. This gives modifications to test. Furthermore, the direct acceptance of solutions
can be set to only apply for solutions improving the best solution overall, or for solutions improving only
the base solution used within the simulated annealing algorithm, not caring if it improves the best overall
solution. The following flowcharts clarify this, each flowchart details each one of the setups described
previously.
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The following tables detail the tests that were performed and the results of those tests.
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From these results we can conclude that it is better to not force the splitting procedure to only return
improving solutions. It  is coherent with the random nature of a simulated annealing approach,  which
needs  of  some  non-improving  solutions  to  function  as  it  is  intended.  Regarding  the  acceptance  of
solutions improving only the base solution, this also seems to offer better results as can be seen in the
results for the average cost. It even reaches the solution in less time than its counterpart.
Table 17 shows the results of the present algorithm and those of Hongtao et al. (2013)[12], Kansou (2010)
[14] and Kansou and Yassine (2012)[16].
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From the results we see that the algorithm gives good results, and in some instances it equals the results
of Hongtao et al. (2013)[12], but it seems clear that there are many improvements to be made to the
algorithm to achieve it’s values. Particularly the running time of the algorithm should be improved.

6. Conclusions
In this article several strategies for approaching the Multi-depot ARP. Particular attention has been
placed on the strategies to decide which depot will be serving which edge, but also some variations on
a main algorithm were tested to determine the value of pursuing the refinement of these variations. The
computational experiments show that the best way to assign edges to depots is by assigning a probability
of assignment of this edge to the two closest depots according to the cost associated to traveling from
each  depot  to  the  edge,  and  then  randomly  making  the  assignment  with  this  probabilities.  Other
assignment strategies have returned good solutions and might even perform better on larger networks,
with more depots and edges without required demand. Regarding the variations on the main algorithm, a
randomized version of the SHARP has proven to offer better results, since from the variety of solutions it
can return, many search algorithms can be applied, and pairing these with a simulated annealing approach
might prove to be a most valuable use of these various solutions. The use of a cache mechanism has
improved the time it takes the algorithm to achieve the minimum, but it hasn’t significantly decreased the
cost of the solutions. Again this might be more valuable in larger networks. Also, the use of a pool of
solutions obtained from the initial multi-start procedure gives the possibility of exploring more solutions
and not get  trapped in local  optima. Like it  has been proven with the splitting search, accepting non
improving  solutions  in  thecontext  of  a  simulated  annealing  framework  is  desirable.  Finally,  the
”unknotting” procedure hasn’t proved to be definitely favorable or unfavorable. Although theoretically it
should never  increase  the  cost  of  a  solution,  the  results  show that  this  might  be  the  case  for  some
instances. One thing to analyze is whether in the process of ”unknotting” a subset of three edges, it is
creating a new knot in previously ”unknotted” edges.
Some ideas for future work are: (i) run these full suite of tests to larger networks with more depots and
including edges without required demand, since the allocation strategies might perform very differently in
these networks; (ii) further analyze the ”unknotting” algorithm, isolated from the other strategies; (iii) test
in isolation the cache mechanism in larger networks since its value might actually reside in those kinds
of networks; (iv) analyze different alternatives to reduce the time performance of the algorithm (v) add
capacity restrictions to the depots; and (vi) add restrictions on time-capacity to the problem.
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7. Glossary

ARP: Arc Routing Problem
VRP: Vehicle Routing Problem
MDARP: Multi-Depot Arc Routing Problem
MDVRP: Multi-Depot Vehicle Routing Problem
CARP: Capacitated Arc Routing Problem
CVRP: Capacitated Vehicle Routing Problem
SHARP: Savings-based Heuristic for the ARP
CWS: Clarke And Wright Savings
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