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Abstract Developing an efficient parallel application is not
an easy task, and achieving a good performance requires a
thorough understanding of the program’s behavior. Careful
performance analysis and optimization are crucial. To help
developers or users of these applications to analyze the pro-
gram’s behavior, it is necessary to provide them with an
abstraction of the application performance. In this paper,
we propose a dynamic performance abstraction technique,
which enables the automated discovery of causal execu-
tion paths, composed of communication and computational
activities, in MPI parallel programs. This approach enables
autonomous and low-overhead execution monitoring that
generates performance knowledge about application behav-
ior for the purpose of online performance diagnosis. Our
performance abstraction technique reflects an application
behavior and is made up of elements correlated with high-
level program structures, such as loops and communication
operations. Moreover, it characterizes all elements with sta-
tistical execution profiles. We have evaluated our approach
on a variety of scientific parallel applications. In all scenarios,
our online performance abstraction technique proved effec-
tive for low-overhead capturing of the program’s behavior
and facilitated performance understanding.
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1 Introduction

Developing an efficient parallel application is not an easy
task, and achieving a good performance requires a thor-
ough understanding of the program’s behavior. In practice,
developers must understand both the application and the
behavior of the environment. They must often focus more
on the resource usage, communication, synchronization and
other low-level issues, than on the real problem being solved.
There are still several challenges that significantly compli-
cate performance diagnosis of parallel applications. Careful
performance analysis and optimization are crucial. There are
many tools that assist developers in the process of perfor-
mance analysis and the detection of performance problems
[14]. Graphical trace browsers, such as Paraver [36] or the
methodology for interactive 3D vision incorporated in the
TAU ParaProf tool [44], offer fine-grained performance met-
rics and visualizations. However, their accurate interpretation
requires a substantial amount of time and effort from highly
skilled analysts. Other tools automate the identification of
performance bottlenecks and their location in a source code.
KappaPI 2 [18], EXPERT [50] and Scalasca [26] perform
offline analysis of event traces searching for patterns that
indicate inefficient behavior. Paradyn [28] uses runtime code
instrumentation to find the parts of a program which con-
tribute significantly to its execution. Periscope [13] uses the
agent hierarchy that searches for inefficiencies of large-scale
parallel applications based on the APART language.
Although these tools greatly support developers in under-
standing what is happening and when, they do not automate
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the inference process in order to find the root causes of the
performance problems. Isolating the root causes is still a man-
ual process that requires a substantial amount of time, effort
and skills from qualified professionals. It is crucial to auto-
mate the inference process of finding the causes of perfor-
mance problems by taking advantage of expert information
on the operation semantics and parallelism found in parallel
computations. As an initial attempt to find problem causes,
we propose an online performance abstraction technique
which allows for the automated runtime discovery of causal
execution paths (instances of execution flows that include
contextual data and execution profile), made up of com-
munication and computational activities in message-passing
parallel programs preserving happened-before relationships.
The application structure and its behavior is automatically
abstracted during the execution, and the resulting abstraction
can be used for automated and dynamic root-cause analysis
[32] or tuning [31].

By following the flow of control and intercepting com-
munication between MPI processes at runtime, the corner
stone of this technique is the ability to reflect the application
behavior in a compact manner. The resulting abstraction is
composed of high-level application structures, such as loops
and communication operations and characterizes them with
statistical execution profiles. It facilitates the understanding
of high-level program behavior and enables an assortment of
online diagnosis techniques. Our technique can be deployed
in a wide range of unmodified MPI applications with accept-
able overhead and scales to thousands of processors. We have
evaluated our approach in a variety of scientific parallel appli-
cations. In all scenarios, our online performance abstraction
technique proved effective for low-overhead capturing of
program behavior and facilitated performance understand-
ing.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the basis that was used for online performance
abstraction. Section 3 presents our approach to online per-
formance abstraction. Section 4 describes the prototype tool
implementation which can automatically abstract an arbi-
trary MPI application during runtime. Section 5 presents the
results of the experimental evaluation of our tool in real-
world applications. The related work is reviewed in Sect. 6.
Finally, Sect. 7 concludes the work and points out directions
for future research.

2 Definition of online performance abstraction

The goal of our approach is to reflect MPI application
behavior by abstracting execution flows through high-level
program structures, such as loops and communication oper-
ations and characterizing them with statistical execution
profiles. We arrange selected primitive events into concepts
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called activities and then track flows through these activities.
The resulting abstraction captures a roadmap of executed
flows together with aggregated performance profiles. It gives
a compact view of the application behavior, preserving the
structure and causality relationships. It then enables a quick
online analysis that determines the parts of the program most
relevant to its performance.

Our technique is hybrid because it combines features of
static and dynamic analysis methods. We perform offline
analysis of a binary executable, discover static code structure
and instrument heuristically selected loops to detect cycle
boundaries. At runtime, we perform selective and incremen-
tal event tracing and the aggregation of executed flows of
activities. We consider that our technique can be valuable
for both non-experienced and expert users. It may ease and
shorten the performance understanding process and serve as
a base for developing online performance analysis.

The presented performance abstraction technique pro-
vides the following three features and improvements:

— It generates event traces, but it consumes them in place,
creating performance profiles so that trace files are no
longer needed. Our approach for bottleneck identification
is equivalent to an automated interpretation of call-path
profiles. The basic difference from profiling tools is that
classical profiling is function-oriented, while our tech-
nique could be thought of as flow profiling, as we analyze
profiles of activities that might represent single code
blocks or span multiple functions.

— It captures the whole application structure with all the
executed paths, together with their statistical execution
profiles and aggregating repetitions. Our approach for
problem identification is distributed; first, we analyze
individual MPI processes independently, and then we
merge the results to reflect whole application behavior
in a scalable fashion.

— There are tools that automate the identification of per-
formance bottlenecks and their location in the source
code. They help a developer in understanding what hap-
pens, where, and when, but they do not automate the
inference process to find the causes of performance prob-
lems. And detecting a bottleneck in a certain place does
not indicate why it happens. Only when the root causes
of a performance problem are correctly identified is it
possible to provide effective solutions to fix or alleviate
the issue. Our approach allows for the detection of pro-
gram phases, the clustering of MPI processes by their
behavior, detecting load imbalance by matching loops
between communicating processes and comparing their
profiles, as well as other observations. Certain proper-
ties of our abstraction, such as the causal relationships
between activities, can be used to develop tools for root-
cause performance problem diagnosis.
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Fig. 1 An example TAG of a single MPI process (MPI Task). We use the spectrum of rainbow colors to reflect the relevance of each activity with

respect to total time. This graph was generated with yEd

2.1 Abstracting individual MPI process

To abstract a process of a parallel application, we define a fask
activity graph (TAG), a directed graph that abstracts the exe-
cution of a single process. The execution is described by units
that correspond to different activities and their causal rela-
tionship. We distinguish between two main types of activi-
ties: a communication activity reflects some message-passing
communication operation, and a computation activity is a
group of statements belonging to the same process, none
of which are communication operations. The communica-
tion activities performed by a process are abstracted as graph
nodes, while computation activities are represented by edges.
Additionally, to reflect the semantics of non-blocking oper-
ations, we introduce a completion edge that connects the
completion node with its start node in the non-blocking oper-
ation. Finally, we use control activities, represented as nodes,
to abstract the punctual program’s control flow events, such
as process start/termination events, and entry/exit events of
selected loops.

The execution of a particular communication activity is
identified by an ordered pair of events: entry and exit, for
example entry/exit events of an MPI_Bcast call. The end of
a communication activity and the start of the consecutive
one identify the execution of a computation activity, local to
a process. In effect, the sequential flow of execution of a sin-
gle process, reflected by temporal event ordering, ensures a
happens-before relationship between the consecutive activi-
ties. Figure 1 shows an example TAG for a single process of
a sample MPI application. All graphs were generated post-
mortem using the yEd editor [51]. Rainbow colors are used
to indicate if a node or edge is a hot/cold activity depending
on the percentage of its total execution time, as presented in
Fig. 2.

Cold activity Hot activity

Fig. 2 Colors used for indicating the influence of nodes and edges on
the application execution time (Color figure online)

We describe the behavior of program activities with exe-
cution profiles by adding performance data to nodes and
edges. We instrument MPI calls using the MPI profiling inter-
face, so MPI calls are wrapped and then executed through
the use of PMPI routines that are actually instrumented. As
each activity might be executed multiple times, we aggre-
gate this performance data into statistical metrics. We use
two basic metrics for all nodes and edges: a timer that mea-
sures the accumulated virtual time and a counter that counts
the number of executions. We also calculate min, max, and
stddev metrics to statistically track variations. Moreover, the
abstraction allows for the addition and removal of arbitrary
performance metrics to any activity. This enables us to con-
trol what performance data we collect for selected nodes and
edges in function of their runtime behavior.

Figure 3 shows details of the visualization of a fragment
of a TAG. We can observe a loop composed of a unique
execution path (although there could have been various con-
ditional paths). In every iteration, the application executes a
sequence of non-blocking send and blocking receive twice,
interleaved with some minor calculations, and finally per-
forms some more time-consuming calculations at the end of
the iteration. The visualization also shows the performance
data. For each edge, we may observe a total number of execu-
tions (e.g., 9999) and the accumulated time spent executing
the edge. For nodes, the visualization shows the unique iden-
tifier (cp) and accumulated node times.

2.2 Abstracting inter-process communications

The TAG reflects all message-passing calls as communica-
tion activities. The graph contains nodes for each communi-
cation activity (e.g., MPI_Send, MPI_Recv), message edges
between corresponding send and receive pairs for point-to-
point and collective communications, as well as flow edges
between nodes that are in consecutive execution order.

To abstract all communications, we intercept the com-
munication routines and capture call attributes including the
type of call, source and destination, and other parameters,
such as message size. To identify a message edge, we must
determine both communicating processes and the particular
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Fig. 4 MPI communication abstraction. Dashed lines denote transmit-
ted messages

send and receive activities in those processes. The key idea is
to match online a sender call context represented by a node
in the sender TAG with a receiver call context represented
by a corresponding receive node in the receiver TAG. To
accomplish this goal, we piggyback the additional data from
the sender to the receiver(s) in every message. We transmit
the current send node identifier and store it in the match-
ing receive node as the incoming message edge. This feature
enables us to logically connect TAGs, while keeping them
distributed. Finally, in order to capture communication pro-
files, we track the count and size histograms individually for
each message edge.

We illustrate the technique in Fig. 4. This example shows a
fragment of an execution of an SPMD application composed
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of four parallel processes that communicate using MPI. The
processes are organized in a 1-D mesh topology. Each process
executes a given number of iterations of a loop (10,000 in
this example). In every iteration, each process exchanges
messages with all of its neighboring processes. Our tech-
nique detects all communication activities in each process
(MPI_Isend, MPI_Wait and MPI_Recv calls represented as
nodes) and tracks executed message edges by correlating
sender nodes with their matching receiver nodes.

2.3 Abstracting an entire application

To abstract the execution of an entire parallel application, we
merge individual TAGs into a new global graph we will refer
to as the parallel task activity graph (PTAG). This merge
process can be performed periodically, on demand, or at the
end of an execution.

The process is straightforward, as we take advantage of
the information stored in the message edges. Each incoming
message edge contains data that uniquely identifies sender
processes and corresponding send nodes. For point-to-point
calls, the edge stores the individual sender data. For collec-
tive calls (e.g., MPI_Gather, MPI_Alltoall), the edge stores
a vector of pairs that identifies all sending processes and their
corresponding node identifiers.

Figure 5 shows a visualization of an example PTAG for an
SPMD application. We may observe four TAGs, where each
MPI process is represented by a horizontal line (flow). The

e .o . ®

Fig. 5 Parallel task activity graph of a sample MPI application composed of 4 processes

@ Springer



Cluster Comput (2016) 19:1105-1137

1109

processes intercommunicate, which is reflected with dashed
arrows. As explained before, a different color is used to high-
light the nodes and edges that take up the highest percentage
of total execution time.

2.4 Abstraction definition

Our approach to performance analysis of an individual MPI
process is based on a TAG that represents a collection
of logically-dependent local events. TAG is extended to
the PTAG, which combines sequential abstractions of all
individual processes, reflecting exchanged message-passing
communications. To formalize our approach, we introduce
the following definitions.

Definition 1 (Call-path) It determines a sequence of active
subroutines that have been called to reach a particular point
of execution in a program. The active subroutines are those
which have been called, but have not yet completed exe-
cution by returning. Call-paths allow a user to identify and
characterize performance problems that depend on where an
instruction (subroutine) is called from, rather than on the
instruction (subroutine) itself. In our approach, call-paths
help to distinguish between different instances of the same
activities, such as sending or receiving a message. The reason
is that an activity may finish quickly for most invocations,
but require excessive time when executed along a particu-
lar call-path. Obtaining an active call-path during execution
from within the program requires the reading of the stack
frames from the call stack.

Definition 2 (Event) We define an event as an execution
instance of a particular instruction in the application when a
specified set of constraints is satisfied. The constraints may
require the instruction to be executed in a determined call-
path, in a determined program state (e.g., a particular variable
must have a determined value) or both.

Definition 3 (Activity) We define an activity as a unit of
execution of a process. Each activity corresponds to a set
of instructions that are grouped together to perform a spe-
cific action. An activity may correspond to the execution of
a sequence of basic blocks in the program or more particu-
larly to the execution of a specific subroutine. An activity is
identified by an ordered pair of events: e, (entry event)
and e,.,;; (exit event).

Definition 4 (Control activity) Itis a subclass of activity that
is used to represent a set of control events in the program
execution, such as program start and termination, as well as
loop start and exit. Control activities are punctual, that is

€entry == €exit-

Definition 5 (Communication activity) Our approach assu-
mes that processes communicate by passing messages. The

communication activity represents an act of sending a mes-
sage, receiving a message or synchronizing with other
processes (e.g., barrier). The communication activity might
be blocking (it does not terminate until completed) or
non-blocking (the activity ends before the operation is com-
pleted). We identify communication activities by means of a
pre-defined set of subroutines. For example, entry and exit
events of an MPI_Send subroutine define the scope of a com-
munication activity.

Definition 6 (Computation activity) It is a class of activi-
ties that corresponds to a group of statements belonging to
the same process, none of which are either communication
activities or control activities. Informally, this may include
CPU-bound calculations, I/O operations or any other kind of
activity. We classify all activities that execute between com-
munication or control activities as a computation activity. For
example, the exit event of an MPI_Send subroutine and the
entry event to the consecutive communication activity define
the scope of a computation activity.

Definition 7 (Matching communication activity) For each
message-passing activity, we assume the existence of a
send communication activity snd, in process p that trans-
mits the message m, and matching receive communication
activity rcvg in process g that receives message m. The rela-
tionship between snd, and rcv, can be one-to-one (e.g.,
send-receive pair), but also one-to-many (e.g., broadcast
defines a relationship between one sender snd, and mul-
tiple receivers rcvi—y.), many-to-one (e.g., gather data from
multiple senders in a single receiver), many-to-many (e.g.,
all-to-all collective calls).

Definition 8 (Causalrelationship) We assume a causal rela-
tionship of two events in a parallel program when they are in
a happened-before relationship. The happened-before rela-
tionship (denoted by +—— ) formulated by Lamport [22] is
formally defined as:

— If events e and e occur in the same process,
e] —> ej if the occurrence of event e preceded the
occurrence of event e;.

— Ifevent e is the sending of a message and event e is the
reception of the message sent in event eq,
el — e.

This relationship is transitive, that is for three events ey,
e, and e3, if e; —> e and e —— e3, then ] ——> e3.

We extend this definition to the causal relationship of
activities. An activity u happened before an activity v if and
only if the following conditions hold:

— Events uepsry and uey;, that identify activity u are in a
happened-before relationship

(uentry > Uexir)
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— Events v,y and vy, that identify activity v are in a
happened-before relationship
(ventry > Vexir)

— Events u,y;; and v,y are in a happened-before relation-
ship (ueyis —> ventry)

Definition 9 (Performance metric) It is a standard of the
measurement of some performance characteristics of a func-
tion, activity, process or system. Example metrics include
the number of occurrences of some events or activities, wall-
clock time elapsed between two events, etc.

Definition 10 (Execution profile) It is a measure of perfor-
mance characteristic (behavior) associated with a particular
function, activity or process. Execution profile is expressed
by means of a set of statistically aggregated performance
metrics.

Definition 11 (7ask activity graph) We define the task activ-
ity graph (TAG) of a program execution to be a DAG (N, E)
where N is a set of nodes and E C NxN is a set of edges.
The set of nodes N represents the execution of all selected
activities in a process. Each particular activity executed from
a distinct call-path is represented exactly by a single node
in the TAG, even if it is executed multiple times. Multiple
executions of the same activity (with the same call-path) are
aggregated in one node. The edge (u, v) C E from node u to
node v exists if any of the following conditions hold:

— Activities u and v are consecutive in the execution of the
same process. In this case, the edge is denominated as
flow edge and represents the control flow of execution
local to a process that was actually executed.

— Activities u and v are matching communication activities
where u belongs to one process and v belongs to another
process or processes. In this case, the edge is denominated
as a message edge and represents the inter-process com-
munication. The node u belongs to the TAG of a sending
process, while node v belongs to the TAG of a receiver
process.

— Activities u and v represent the completion and initiation
of a non-blocking communication activity. In this case,
the edge is denominated as a completion edge, and rep-
resents the completion of a communication activity (it
connects the completion node with its start node) and is
local to a process.

Definition 12 (Parallel task activity graph) We define the
parallel task activity graph (PTAG) of a parallel program
execution to be a sum of the TAG sub-graphs for all the
processes of that program.

Similar to the parallel dynamic program graph (PDG)
approach presented by Choi [10] and later by Mirgorodskiy
[30], our abstraction has the property to represent Lamport’s
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happened-before relationship between nodes. In particular,
an activity « happened before another activity v if and only if
vis reachable from u in the TAG. That is, activity u happened
before activity v if there exists a path in the TAG from the u
node to the v node.

Adapting observations used in previous works, namely
flowback analysis by Choi [10], backward slicing [48], and
failure detection by Mirgorodskiy [30], this fact has impor-
tant consequences. First, the conclusion is that, if activity u
happened before an activity v, then u could causally affect v.
If the v activity is identified as a performance bottleneck, then
its root causes might be one or more activities that happened
before v or (obviously) the activity itself. Second, if activity
u is the root cause of some performance problem, it is likely
to manifest its symptoms after activity u.

3 Online performance abstraction

In this section, we outline our techniques for the online
abstraction of individual MPI processes, inter-process com-
munication and whole-application [33]. We construct the
PTAG in two steps. First, we collect local information at
runtime on each MPI process and construct individual TAGs
independently. This includes monitoring the local events of a
process, as well as communication events. Second, to abstract
the execution of the entire application, we collect snapshots
of the TAG of each process and merge them together into
a new parallel abstraction. An up-to-date TAG of process
behavior is available continuously throughout the process
execution as its construction is incremental and performed
inside the process space. The PTAG is updated periodically
as individual TAG snapshots are collected via the network
and merged with programmed frequency.

3.1 Process abstraction

To construct and maintain the TAG of an individual process
during its execution, we first analyze the program’s exe-
cutable and perform static code analysis to discover the
program’s structure. Next, we dynamically instrument the
program by injecting tracing statements into selected func-
tions and loops. During execution, these statements generate
records of executed events that we use to incrementally build
a TAG directly in the process memory space. In addition,
we perform measurements and collect statistical execution
profiles to reflect the program behavior. Finally, we enable
external observers to access the TAG by taking its snapshots
on-the-fly.

3.1.1 Offline program analysis

Before the application execution, we determine a set of
target functions, a configurable set of functions of inter-
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ests that represent program activities to be abstracted as
graph nodes. In our work, we focus on abstracting inter-
process communication activities, and, therefore, we define
all MPI communication routines as target functions. How-
ever, a user may declare their own functions of interest, such
as computation-specific functions or parallel I/O functions,
to be reflected in the resulting abstraction.

We have developed a simple framework that allows the
user to provide application-specific knowledge in the form
of activity definition. The framework enables the user to flex-
ibly declare all target functions that will be instrumented and
abstracted in the TAG, including a set of certain parameters
to be recorded (e.g., values of parameters passed to the tar-
get function). This definition statically identifies all possible
graph nodes, but leaves the definition of edges to be discov-
ered automatically at runtime.

Then we perform static code analysis. We parse the appli-
cation executable via the Dyninst library [9,47] and extract
the static call graph. A call graph refers to a directed graph
that represents a calling relationship among subroutines in a
program. Although not all possible relationships can be deter-
mined statically (for example, calls performed via function
pointers are not available for static analysis), these graphs
typically give a very good approximation of all possible
execution paths, and have proven useful for constructing
heuristics [25].

In our studies, we use the static call graph for two pur-
poses. To begin with, we match the definition of activities
with the application’s executable. For each target function,
we traverse the call graph and check if it is being invoked by
the application code. If that is not the case, we may discard
instrumenting that function. Usually MPI codes do not use
all possible MPI primitives and, hence, this step enables us
to lower the startup overhead.

Our observation is that, in many parallel scientific codes,
the exhibited behavioral patterns are highly correlated to sta-
tic program constructs, such as loops. This is especially true
for stencil codes. A loop is a basic building block that reflects
a repetitive sequence of actions. We explore this feature and
abstract the execution cycles explicitly. Knowing the bound-
aries of loops enables us to pre-instrument them, track their
execution and reflect them explicitly in the TAG at runtime.
This approach differs from the classical pattern discovery
based on learning repetitive sequences of actions [35]. In
our study, we focus only on loops that contain invocations
of communication activities (i.e., target functions). We avoid
abstracting computational loops due to possibly high instru-
mentation overhead. We have developed a search algorithm
that detects relevant loops by combining the static call graph
traversal with control flow analysis. We assume that any loop
in a program that leads (although through conditional con-
trol flow) to an invocation of any of the target functions is
a relevant loop. We have found that this heuristic enables

the detection of communication pattern boundaries at a low
cost and with a precision that is reasonably close to the best
possible answer.

3.1.2 Dynamic instrumentation of a program

To build a TAG of a process while it is running, we first must
be able to monitor its execution. This requires the program
to be instrumented in order to collect relevant data. The con-
struction of the abstraction requires two types of data to be
collected:

— Events—such as program start or termination, entry or
exit of selected functions that represent observed activi-
ties, entry or exit of selected loops

— Performance metrics—such as counters (e.g., number of
messages sent) or timers (e.g., time spent executing a par-
ticular function). Some of the metrics can be derived from
events (e.g., event counter); others require the insertion
of specific instrumentation (e.g., hardware counters).

To collect all the necessary data, we use Dyninst [9,47], a
library that provides a platform-independent dynamic instru-
mentation capability. We use three types of instrumentation:

— Control event instrumentation—to monitor the occur-
rence of control events, such as process start and ter-
mination (both normal and abnormal), we instrument
predetermined program locations at the main(), exit() and
abort() functions.

— Function instrumentation—we instrument the entry and
exit points of each target function. The entry instrumen-
tation executes two actions (Fig. 6). First, it performs
a low-overhead stack walk to capture the actual call-
path and then determines its unique identifier. Second,
it reads and stores the values necessary to calculate the
requested performance metrics, for example, the current
virtual CPU time that is used to measure the inclusive
time spent executing the instrumented function.

— Loop instrumentation—we distinguish here the loop
instrumentation, as we abstract a behavioral pattern from

PMPI_Send (..) [

{ cpld = get callpath id ()
At entry

beginT = get_virt time ():
criginal cede

end‘l‘ = get _virt time ();

process_event (beginT, endT, cpId, ...):

}

Fig. 6 Event generation instrumentation inserted into an example tar-
get function
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for (dst=0;

{
1

dst<nTasks;

loopId = get loop_id ();

3 Loop_ia
MPI_Send (.., dst, ..) CrRRER (R

if (L)

loop_exit (loopId);

Fig. 7 Event generation instrumentation inserted into an example loop

each process and provide certain information to the
causal execution paths (to discover causal execution
paths that have the highest execution time in a loop).
We insert instrumentation into the loop entry and exit
points (Fig. 7). The instrumentation executes two actions.
First, it determines the current loop’s unique identifier.
This identifier combines the call-path identifier of a cur-
rent function (loop call-context) with a loop entry point
address to reflect the loop’s location inside the function.
If the call-path has not yet been determined in the scope
of an actual function that contains the loop, a complete
call-path identification process is necessary. Otherwise,
we reuse the call-path identifier that has already been
determined in the current scope. This avoids an unneces-
sary overhead of calculating the identifier more than once.
Second, the instrumentation updates the TAG, adding two
nodes that reflect loop-entry and loop-exit. For each loop,
we track the number of iterations and execution time.
This instrumentation is inexpensive, as it only assures
the existence of a corresponding loop marker node in the
TAG.

To distinguish the location of events, we abstract each
communication function considering a call-path taken to
reach the function. This information is particularly use-
ful as the function behavior in MPI programs often varies
widely depending on the caller’s chain on the stack. For
that reason, an activity invoked from distinct call-paths (e.g.,
main/f1/foo/MPI_Isend and main/f2/foo/MPI_Isend) is rep-
resented by separate nodes in the graph.

We determine and uniquely identify actual program call-
paths in the following way. First, adopting the iPath approach
[5], we perform a cost-effective stack walk to determine the
current call-path. Second, while walking the stack, we calcu-
late the call-path hash signature. Third, using this signature,
we perform an inexpensive lookup in the call-path hash table
to determine the actual call-path unique identifier. If an actual
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call-path is not found, that is, it is executing for the first time,
we assign it a new unique identifier and add a new entry to
the hash table.

To capture the actual process call-path, we use the stack
walking technique. Stack walking is the ability to read
the actual process call stack. A call stack is composed of
stack frames (sometimes called activation records). These
are machine-dependent data structures containing subrou-
tine state information (e.g., subroutine return address). Each
stack frame corresponds to a call to a subroutine which has
not yet terminated with a return. The stack frame at the top
of the stack is for the currently executing routine.

In our approach, when walking the stack, we build a vector
of call-site addresses that represents the actual call-path. We
identify each call-path with a unique, numeric identifier that
can be used to determine the actual location in the TAG.
The unique identifier technique allows constant time look-
up speed, since the identifier can be used as an index on
an array of nodes. Given a vector of call-site addresses, we
calculate the call-path hash signature. For that purpose, we
use a combined hashing function:

cpLen
CPSignature = Z addressHash(cpl P;) (1)
i=0

where

— CPSignature a calculated call-path signature

— cpLen call-path vector length

— cpl P; a callsite return address stored at index i

— addressHash() an XOR-based integer hashing function
selected because of its speed and acceptable level of key
conflicts.

Second, we use a hash table that associates call-path signa-
tures with call-path entries. A call-path entry stores a vector
of addresses and a sequential number used as a unique call-
path identifier. The hash table serves as a call-path repository
and supports an efficient, constant-time lookup and the effi-
cient insertion of new entries. In addition, we apply the
recently-used path heuristic to augment the efficiency of the
look-up. Figure 8 illustrates the call-path identification tech-
nique.

Our approach to identifying the call-path in place has sev-
eral advantages over the existing profiling tools. It can be
injected or removed by means of dynamic instrumentation
into selected program locations at run-time without requir-
ing any other modifications to the program. This technique
is able to act only in particular functions (e.g., selected MPI
functions), and only these functions are instrumented. In
effect, the overhead is incurred only when instrumentation is
executed. In our technique, we insert the call-path identifica-
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Call-path

hash table
I S I3
P Function name / \

Stack trace

0x0d40773 |DMARTL reg event ctx

0x1015clc | (dynamic instrumentation) . o
0x0c7Seez |PMPI Isend B

0%80433¢8 |no change 0x0d40773 0x0d40773

0x80433e1 |update global AT Ox1019cic

0x80433%c [update —

0x1018302 | (dynamic instrumentation) 0x0c75061 &

0x0125d7£] libe start main T — 0:012547f

k» Path 14

0x0d40773

0x1019c1c

OxDC74800

0x1018302

0x0125d7f

Fig. 8 Call-path identification

tion functionality mainly into MPI communication routines,
which are much more expensive in terms of execution time
and so the overhead is kept low with relation to the cost of
the invoked routine (the absolute overhead is the same, no
matter which routine is called). The results of this technique
are available immediately at run-time, making it possible to
perform a location-aware analysis.

3.1.3 Incremental abstraction

To enable efficient TAG construction for a single MPI
process, we maintain a local, partial execution graph in the
process’s memory and update it incrementally by consuming
the incoming flow of events. There are a number of alterna-
tives for representing graphs in memory. For TAG purposes,
we have chosen the adjacency list approach that represents
each node as a data structure that contains a list of all adjacent
nodes. It is the most appropriate, because the constructed
graph is sparse. This observation results from the natural
characteristics of the programs. The graph reflects the exe-
cution flow through high-level program constructs such as
loops and communication operations, which are abstracted as
nodes connected by edges. The degree of each node is usually
one, as each node is simply followed by another sequential
instruction (node) except branches that have a higher degree
(usually two). Switch statements usually have higher degrees,
but they are much less frequent.

We maintain a data structure that contains a collection
of nodes and a collection of edges. For each node, besides
storing its properties, we maintain a list of outgoing edges
that reflect possible flows that actually got executed. Addi-
tionally, for each node and edge, we maintain a list of
associated performance metrics. The construction procedure
is the following. We process each event record that has been
generated. Starting with an empty graph, we add a new node
that represents a currently executed activity when it is exe-
cuted the first time or we update the node if it already exists.
The mapping between the activity and the graph nodes is

direct, as we use a unique call-path identifier as an index into
the array of nodes. To abstract the execution flow, we reflect
the transition from a previous activity to a current activity
by adding or updating an edge from the previous node to the
actual node. The instrumentation also updates the execution
profile of the affected node and edge by evaluating and aggre-
gating desired performance metrics. If the node represents a
communication activity, we create (or update if it exists) a
message-edge and store the associated attributes.

Another requirement that we address with our technique is
the ability to examine a partial TAG at runtime. This require-
ment leads to additional complications:

— To allow an external process (an observer) to access the
TAG data, we allocate and store it in a shared memory
segment. An external observer may then attach to this
segment in a read-only mode and then directly read the
memory to access the TAG data. The observer may read
the TAG in place or periodically take its snapshots, i.e.
sample the actual state of the abstraction and store its
copy, without stopping the process. This is illustrated in
Fig. 9.

— To minimize the impact of taking a snapshot we use
a compact representation of the abstraction in memory
avoiding fragmentation and complex data layouts. In
particular, we use pointer-less data structures to enable
zero-cost data relocation. That is, after copying the TAG
to a different memory location, it is valid and may be used
immediately. We avoid using pointers as shared memory
segments are usually mapped at different addresses for
each process, and each pointer would require an explicit
translation (i.e. moving by an offset) thus increasing the
sampling overhead.

— Finally, there are some synchronization issues to solve.
As the TAG snapshot can be taken at any arbitrary instant,
for example in the middle of an update, we must ensure
its consistency. Since the instrumentation code inserted

Observer
process
Sample TAG
MPI task
|
Event records
Update Shared
|- TaAg > memory
Runtime library d

Fig. 9 Sampling TAG via shared memory
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Fig. 10 Instrumentation that
captures basic performance
metrics for nodes and edges

foo (.)
{

v.'r‘:;le (.)

{
MPI_Recv (.)
cale ():
MPI_Send (

}

into an application may write data just as it is being sam-
pled (read) by an external observer, care must be taken
to ensure that consistent values get sampled. However,
the overhead must be kept low. To achieve both goals,
we use optimistic sampling with lock-free synchroniza-
tion. This solution is conceptually close to the software
transactional memory (STM) approach [16]. STM is a
concurrency control mechanism analogous to database
transactions for controlling access to shared memory
in concurrent computing. It works as an alternative to
lock-based synchronization and is typically implemented
in a lock-free way. A transaction, in this context, is a
piece of code that executes a series of reads and writes
to shared memory. STM is optimistic in the sense that
a process completes modifications to shared memory
without regard for what other processes might be doing.
Instead of placing the responsibility on the writer to make
sure it does not adversely affect others, it is placed on
the reader, who, after completing an entire transaction,
verifies that other threads have not concurrently made
changes to memory that it accessed in the past. If a trans-
action cannot be committed due to conflicting changes, it
is typically aborted and re-executed from the beginning
until it succeeds.

The benefit of such an approach is increased concurrency:
the observed process does not need to wait for access to the
TAG, and an application process can safely and simultane-
ously modify disjointed parts of a data structure that would
normally be protected under the same lock. Despite the over-
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PMPI_Recv (..) [

ibeginT = get_wvirt_time ():
[Atexit J~___lendr = get virt time ():

iprocess_event (cpld, beginT, endT,

)

|

beginT = get virt time ()

endT = get virt time ()
process_event (cpld, beginT, endT,

=)

iprocess_event (cpld, tl, t2, )
{

// update edge to actual node

profile * edgeProf = edge_profile[lastCpld, cpld];
edgeProf->counter++;

edgeProf->timer += (tl-last_t2);

// update actual node

profile * nodeProf = node_profile[cpld];
nodeProf->timer += (t2-tl);

head of retrying samples that fail, in most realistic programs
conflicts arise rarely enough that there is an immense perfor-
mance gain over lock-based protocols.

3.1.4 Execution profiles

We describe the behavior of program activities with execu-
tion profiles. We construct profiles by adding performance
measurements to nodes and edges. As each activity (node
or edge) might be executed multiple times, we aggregate
the collected performance data into statistical metrics. Graph
nodes are usually associated with particular functions (e.g.,
MPI_Bcast). Therefore, the execution profile of a node con-
tains function-level performance metrics aggregated over the
runtime of an application. This is different for graph edges
that reflect an arbitrary control flow between two consecutive
activities. An edge might represent a short sequence of basic
blocks or even an invocation of a function call between two
consecutive communication activities that hides a complex
numerical algorithm. In this context, the execution profile
of an edge has a varying level of granularity, depending on
what actually got executed. We use two basic metrics for all
the nodes and edges: a timer which measures the elapsed
virtual time and a counter which counts the number of exe-
cutions. We also calculate min, max, and stddev metrics to
track variations. Additionally, we can add/remove arbitrary
performance metrics to/from any activity.

Consider the example illustrated in Fig. 10. The body of
the while loop inside function foo() is abstracted in the TAG
as a sequence:
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Fig. 11 Causal execution paths
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MPI_Recv node — calc edge — MPI_Send node.

We insert instrumentation into the entry and exit of target
functions PMPI_Recv and PMPI_Send. This instrumentation
measures virtual time at the entry (beginT) and exit (endT)
of each function and finally updates the TAG by invoking a
process_event function. The latter updates the graph structure
(omitted in this example), and then the performance metrics
of the edge from a recent to an actually executed node, and,
finally, the metrics of the node itself. We increment the num-
ber of times an edge has been executed and a timer that sums
up the total time spent executing the edge. The edge execu-
tion time is calculated as the difference between the actual
node’s entry time and the recent node’s exit time, and it does
not require any additional measurements. The node profile
is updated by adding the total time spent executing the node
(t2—t1) to the timer. Finally, bookkeeping actions are per-
formed, such as updating the recent node and its last exit
time.

3.1.5 Causal execution path collection

To enable lower-level analysis, we introduce causal execu-
tion paths: temporary ordered sequences of activities [22].
Causal execution paths are instances of execution flows, and
they are in fact recorded event traces that include contextual
data (such as sender/receiver rank) and an execution profile.
The major difference is that causal execution paths aggre-
gate repeated instances of the same execution paths, while
event traces store each repetition independently. Repeated
executed paths are subject to an on-the-fly aggregation of
performance metrics. Path profiles include counter and total

time spent per path, giving insight for analysis. For example,
we may request causal execution path tracking for a selected
loop. Loop entry/exit events determine path boundaries, and
each unique sequence of activities is identified as a separate
path. These paths contain the comprehensive detail of perfor-
mance data, giving a good base for the root-cause analysis.

Consider the example illustrated in Fig. 11. We have
requested the collection of causal execution paths for loops
17 and 19, previously identified using the TAG of some
application. We may observe that loop 17 has been executed
10,000 times, but is characterized only by a unique sequence
of events, represented by path 1. Every iteration consists of
asynchronously sending a message to process with rank 1 (ctx
1), then receiving a response message from the same process,
and, finally, performing some local calculations. The execu-
tion profile shows that the process spends 94.2 % of its time
on this loop, and most of this is taken up by the last computing
edge (marked with a different color). A different example is
loop 19, which has executed three iterations. However, each
iteration took a different execution path (i.e., paths 3, 4 and
5). Although performed activities in the execution flow are
the same (receiving two consecutive messages), the paths are
differentiated by a sender rank.

Our approach considers an online, on demand collection
of causal execution paths executed between selected acti-
vation and deactivation events. The causal execution path
collection begins when the process executes a user-provided
or tool-provided activation event. This event corresponds to
some semantic activity, such as sending a particular message
or is related to entering a specific code region, such as a loop.
This mechanism has the ability to be deployed on demand
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and to collect detailed runtime information while minimiz-
ing the execution overhead. Once activated, the mechanism
records the sequence of executed activities that are identified
by the TAG, for example, all communication activities, in a
ring buffer. Together with each activity, we store contextual
attributes, such as sender/receiver rank and timestamps. The
recording finishes when the execution reaches a deactivation
event, such as a loop exit. Once completed, we aggregate the
path to the path repository using a hash table. The reposi-
tory stores all distinct causal execution paths that have been
executed together with their accumulated profiles. When the
user or analyzer tool decides to stop the collection procedure,
the mechanism can be removed from the running process.

The collection mechanismis based on dynamic instrumen-
tation. We insert instrumentation into the running process at
points that correspond to activation and deactivation events,
and we also augment the TAG update function that is already
inserted for purposes of TAG construction. The activation
instrumentation evaluates the necessary conditions, and, if
they hold, it marks the path recording flag and returns con-
trol to the application. The update instrumentation records
each executed activity in the path buffer when the recording
flag is active. Finally, the deactivation instrumentation adds
the path to the repository and returns control to the applica-
tion.

3.2 Communication abstraction

Our approach uses local tracing to capture causally ordered
events and abstract local execution flow in each application
process. However, when the inter-process communication is
involved, this approach must be extended. To connect TAGs
of individual processes into one PTAG, it is necessary to track
the execution flow from the sender to receiver(s) processes by
following individual messages that cross process boundaries.

We have found that by determining and intercepting all
inter-process communications, we can obtain the data neces-
sary to dynamically construct a PTAG that reflects executed
communications. The key idea is to match a sender call con-
text, represented by a node in the sender process TAG, with a
receiver call context, represented by a corresponding receive
node in the receiver process TAG. To achieve that, we attach
a small amount of additional information to every message
that is transmitted. Additionally, as we abstract the applica-
tion online, the matching must be performed dynamically
during application runtime. To accomplish this goal, we pig-
gyback the additional data from sender to receiver(s) in every
MPI message. We transmit the current send node identifier,
and we store it in the matching receive node as the incoming
message edge. This feature enables us to logically connect
TAGs while keeping them distributed. Finally, in order to
capture communication profiles, we track the count and time
histograms for each message edge individually.
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The big concern of the MPI piggyback mechanism is
the overhead. To choose the most suitable technique with
minimal overhead, we carefully examined different canon-
ical solutions and validated their characteristics [42]. The
obtained results, finally and similarly to those presented by
Schulz in [41], led us to the conclusion that the selection of
the best technique depends on the message size and the type
of communication operations. We then decided to develop
a hybrid MPI piggyback technique that combines different
mechanisms depending on the communication type (point-
to-point or broadcast) and message size (large or small). For
small messages, we take advantage of the data-type wrap-
ping. The major steps of our approach are:

— Identify communication routines that are invoked by the
application process

— Intercept these communication routines with send and
receive wrappers that detect the initiation of communi-
cation

— In the send wrapper, attach an executed send node call-
path identifier (cpld) to every message sent by a process

— In the receive wrapper, detect and receive the identifier
at the receiver’s process

— Store the identifier in the receiver process TAG as an
attribute of the receive node that has actually been exe-
cuted

For large messages, we send an additional message, which
we found to be much cheaper than wrapping. Moreover, we
interleave the original operation with an asynchronous trans-
mission of piggyback data. This optimization partially hides
the latency of the additional send and lowers the overall intru-
sion.

3.2.1 Abstracting communication activities in a TAG

To reflect actual communications, we introduce message
edges. A message edge describes an act of communication
and identifies all of its participants. We also define an exe-
cution profile for each message edge. Consider passing a
message from a sender to a receiver, as illustrated in Fig.
12. A sender node, 17, at the process called Tasko sends a
message that is received by node 21 at process Task;. The
piggyback data attached to the message identifies a sender as
node 17 at T askg. From the perspective of T ask(, we abstract
this communication by creating a new message edge attached
to node 17. We classify the message edge as outgoing to
express the direction of message flow. We store the destina-
tion rank (T'askp) in the message edge and indicate that the
remote receive node is unknown. On the receiver side, we
create a corresponding message edge to reflect the reception
of the message and attach it to node 21. This edge is incom-
ing and contains the source rank (Taskop) and the sender
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Fig. 12 Message edges for point-to-point operation

node identifier (17) delivered as piggyback data. In addition,
we introduce a time difference metric (DeltaT). The DeltaT
metric is calculated as the difference between a timestamp
taken at the entry of the operation at a given process and the
entry of the corresponding operation at a reference process
(i.e., the receiver process) and adjusted by an estimated clock
difference between the nodes. This metric might be used to
estimate the wait time caused by the temporal asynchrony of
communicating processes.

Considering types of MPI communication primitives, we
distinguish three different types of communications:

PMPI_Isend (..} |

— Blocking point-to-point operations

— Incoming message receives
— Outgoing message sends
— Exchange message exchanges (send/receive)

— Non-blocking point-to-point operations

— Incoming message receives
— Outgoing message sends

— Collective operations

It is straightforward to abstract point-to-point blocking
communication calls, because all the information that is
required for abstracting is available at the exit of the call
and there are no dependencies on other operations.

Abstracting non-blocking operations adds more compli-
cations. The instrumentation of non-blocking calls is illus-
trated in Fig. 13. To abstract these operations, we correlate the
start of each non-blocking operation (e.g., MPI_Isend) with
its completion operation (e.g., MPI_Wait). To do that, we
need to keep track of opaque MPI request handles and update
the TAG in a slightly different way. First, when the operation
starts, we update the start node that indicates the initiation of
the non-blocking operation (e.g., MPI_Isend) and store the
associated request handle. We maintain an associative array
of pairs (MPI_Request; call-path ID) with constant insertion
and lookup times. In addition, we apply recently used opti-
mization to minimize the lookup cost even further. Second,

cpld = get_callpath_id ():

L.

register_request (cpld, req):
process_event (cpIld,

=)

register_request (request, initCpld)
{

// store pair request->initCpld

cpId = get_callpath id ():

// in a lookup table

)

add,

) q

P _event (cpId, beginT, endT, .):
t_completion_callback (req, cpId):

Request lookup table

0x0a40773 —» 26

0x0a50879 —» 31

lookup &

remove 0x0274800 —» 7

{

1

Fig. 13 Abstracting non-blocking communication calls

request_completion_callback (request, £inCpld)

// recover cpid of initiation node by request
// update completion edge

// vpdate begin node with message data

// unregister request
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when the operation is completed, we update the completion
node (e.g., MPI_Wait). Third, we recover the correspond-
ing start node by its request handle, and add or update the
completion edge between the completion node and the start
node. The purpose of completion edges is to reflect the scope
of the non-blocking operations. Finally, we update the mes-
sage edge. When sending a message, all the data necessary to
update the message edge is available at the entry of the send
call. However, for non-blocking receive, we must defer the
update until the operation is completed and we can access
the valid MPI_Status structure.

Handling collective communication primitives is similar
to blocking point-to-point primitives, with two exceptions.
First, depending on the type of call, there are different sce-
narios of distribution of piggyback information. In particular:

— Broadcast/scatter each process stores its local piggyback
data and the data received from the root process as a
link structure. There is no central location where the pig-
gyback data from all the processes is available at once.
Instead, each participating node maintains its local data
and a reference to the root process (Rank), the node that
initiated the call (Cpld) and the relative time difference
to the root process (DeltaT).

— Gather/reduce the situation is inverted for these opera-
tions. A root node receives the piggyback from all the
processes and maintains a list of tuples with participat-
ing processes (Rank), their corresponding nodes (Cpld)
and time differences (DeltaT) relative to the root process.

— Rooted collective communication with large messages
for all types of operations we send an additional small
message with piggyback data using non-blocking primi-
tives.

— All-to-all collective communication with small messages
for all-to-all message transmissions, we apply a mixed
approach. We designate a single process as a root of the
operation (linearly) and make it send a piggyback data to
other processes. The rest of processes do not attach any
data, but store its local piggyback data and received data
from the root process.

— All-to-all collective communication with large messages
similarly to rooted operations, we use a strategy based
on sending an additional message. We designate a single
process as a root (linearly) and invoke gather operation
to collect all piggyback data in one place. We prefer the
gather operation over non-blocking set of point-to-point
calls because of scalability issues on massively parallel
computers. Typically, the collective operations are opti-
mized for good scalability, while point-to-point calls may
suffer from linear scalability limitation.

— Barrier this synchronization call is special in that it does
not transmit any data. Therefore, the only solution is to
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send an additional message. For this purpose, we use
gather operation from all processes to a designated root
(linearly).

The second issue that must be addressed results from non-
deterministic communication calls. In MPI programs, non-
determinism is introduced by so-called wild-card receives,
i.e., MPI_Recv or MPI_Irecv calls combined with the
MPI_ANY_SOURCE option, and wait calls, such as
MPI_Waitsome. For example, a program becomes non-
deterministic as soon as there is at least one wild-card receive
in it, where at least two messages can be accepted. In such
a case, the order in which the messages will be received is
not predictable. This problem is known as message racing
[21]. The non-deterministic repetitions of MPI calls, such as
those triggered by, e.g., MPI_Recv (MPI_ANY_SOURCE),
might present a challenge. In our approach, the TAG reflects
the execution of, e.g., MPI_Recv activity and message links
that indicate all possible senders. In this case, the non-
determinism of the order in which the messages are received
is not addressed because we do not preserve the message
ordering at that level. In fact, the receive node maintains
all possible message edges, but ignores the order in which
they are added. We build causal execution paths to capture
a detailed flow of events that preserves both program struc-
ture and message ordering. However, we do not capture all
possible orderings, but focus only on those that are the most
frequent or take up significant execution time.

For example, consider a loop that terminates upon receiv-
ing messages from all the processes in a group. We take into
account the following scenarios:

— Deterministic sequence of senders the receive operation
isused to collect messages from a fixed number of senders
in a fixed order. For example, a typical construction is a
loop that terminates upon receiving messages from all of
the tasks in a group. In this case, the receive operation
is deterministic, as the code forces the order in which
the messages are to be received. Each sequence can be
abstracted as a distinct causal path.

— Non-deterministic set of senders the messages are recei-
ved from a determined number of senders, but in
an arbitrary order. One example is a loop with an
MPI_Recv (MPI_ANY_SOURCE) operation or a pair
of MPI_Irecv() and MPI_Waitall() calls. This results in
an explosion of possible combinations of sequences of
senders. Although non-deterministic, it is common for
the actual number of orderings in an execution to be lim-
ited, especially for short sequences. Therefore, we intend
to capture a limited number of distinct sequences and
their statistics (i.e. number of occurrences and total time).
This enables us to detect dominant sequences in some
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cases. However, addressing all possible cases remains as
future work.

To characterize the communication behavior, we gather
aggregate statistical metrics for each individual message
edge. This provides data for statistical communication analy-
sis. We define basic performance metrics for each message
edge as follows:

— Timer time accumulated sending/receiving over this edge

Message counter number of messages sent/received

Byte counter accumulated number of transmitted bytes

— DeltaT accumulated time difference (deviations from
pair wise temporal synchrony of communicating proces-
ses). This metric is used for latency analysis.

— Message size histogram (optional) counts the number of
messages of a given size class. We use a simple logarithm-
based histogram log2(size) that divides the message size
space into a fixed-number of buckets.

— Message time histogram (optional) breaks down timer
metric into a fixed-number of buckets with accumulated
time spent on each message size class.

In addition, dynamic instrumentation enables on-the-fly
activation/deactivation of histograms, and, more generally,
the insertion and removal of arbitrary metrics for each indi-
vidual message edge.

Our approach is similar to that of mpiP [17], which collects
metrics separately for each communication activity identified
by a unique call path. However, we collect more fine-grained
statistics as we distinguish between distinct communication
pairs (sender-receiver) or groups (for collective operations).
In general, the advantage of our approach over other statis-
tical ones is that it preserves the program structure and it
may be extended to preserve a temporal ordering of events
(with causal paths), which improves its ability to identify the
causes of problems more precisely. On the other hand, the sta-
tistical approach (even augmented with causal paths) is lossy
and its precision for analysis might be lower when compared
with full communication traces. However, full tracing comes
at the cost of high data volume and scalability problems.
Therefore, the selection of the most appropriate technique
depends on the trade-off between overhead and preserved
level-of details.

3.3 Parallel application abstraction

To abstract the execution of an entire MPI application, we
collect TAG snapshots from all the processes and merge them
into a new global graph that we call the Parallel Task Activity
Graph (PTAG). This process can be performed periodically,
on demand, or at the end of the execution. The merge process
is straightforward, as we take advantage of the information

stored in the message edges. We process all message edges
applying the following procedure:

— Each incoming point-to-point message edge contains
data that uniquely identifies the sender process and send
node. We add an edge that connects the send node to the
matching receive node in the PTAG to reflect the com-
munication.

— We ignore outgoing, point-to-point message edges, as
they are redundant.

— Each collective message edge contains a vector of pairs
that identifies all send processes and their correspond-
ing node identifiers or a local node and a root node
data. In both cases, we add a corresponding group of
point-to-point edges to the PTAG to reflect the collective
communication and its participants.

The limitation of the basic approach to PTAG construction
is its inherent lack of scalability. To address this issue, we
have developed a scalable approach for PTAG construction.
To retain the benefits of TAGs while reducing the volume of
collected data, we classify processes into behavioral equiva-
lence classes. For that purpose, we propose an algorithm to
merge two TAGs (clustering).

First, we decompose each graph into a set of hierarchically
organized sub-graphs called sections. We define the follow-
ing set of basic rules to identify a section:

— A sequence of events that does not contain a loop (e.g.,
from program start to the entry of the first loop).

— Each loop is a section.

— Each nested loop becomes a sub-section.

This approach is equivalent to converting the graph into a tree
by eliminating all loop back edges. The use of trees instead
of directed graphs leads to the generation of a hierarchical
set of sections.

Next, we determine the behavioral equivalence of two
corresponding sections from each TAG. We do not assume
SPMD applications, but we compare two sections, searching
for their similarity. In this sense, two sections are equivalent
if they have a similar behavior and SPMD-like structures. We
use the following rules:

1. The compared sections must be isomorphic. That is,
we require both sub-graphs that represent the compared
sections to be structurally identical. This means each sub-
graph must be composed of the same set of nodes and
edges. We consider two nodes to be structurally equal if
they represent the same activity that has been executed in
the same call-path. If a node represents a communication
activity, we also compare message edges. We compare
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two message edges, taking into account type (p2p or col-
lective, incoming or outgoing) and source and destination
ranks. We use relative ranks to compare source and des-
tination processes. For example, if two processes, 2 and
6, exchange messages with their neighbors to the left, 1
and 5, the relative rank is —1 in both cases, which we
interpret as equivalent communication behavior. Finally,
two edges are structurally equal if they connect equiva-
lent nodes. The structural equivalence enables us to find
groups of sections and whole processes that execute the
same activities. For example, the master process of a
master-worker MPI application behaves substantially dif-
ferently from the worker nodes. Workers perform units
of work, while the master distributes the units among the
workers and gathers the results.

2. The compared sections must have equivalent runtime
behavior. We apply two rules to decide on behavioral
equivalence of executed activities. First, we impose a
strict rule that requires the counter metric, e.g., number
of executions of each node and edge to be equal. This
prevents treating loops with similar execution times but
different numbers of iterations as equivalent. Second, we
use a distance metric to compare the execution profiles of
the compared sections. This rule enables us to distinguish
between sections that execute the same activities but with
different performances. The distance metric estimates the
similarity of two execution flows: a long distance implies
that flows have different behaviors; a short distance sug-
gests that the flows are similar. We use distance metric
instead of strict equality to tolerate insignificant varia-
tions between execution flows.

We define a distance metric between section p and section
q as follows:

N
Distance(p, q) = Z (T(p,ni) —T(q,n))*+
i=1

E
+> (T(p.ej) —T(g,¢))’ )

j=1

where N is the number of nodes in the sub-graph, E is the
number of edges in the sub-graph, n; is the i-th node (from
1 to N), e;is the j-th edge (from 1 to E), T{(section, n;) is the
time profile function of i-th node in a given section, 7(section,
e;) is the time profile function of j-th edge in a given section

The distance metric between sections is defined as the
sum of Euclidian distances between the time profiles of each
node and each edge. We use an accumulated timer metric
(e.g., total time spent executing node/edge in a given time
window) as a time profile function, T. If sections p and q
behave similarly, each node and edge will consume similar
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amounts of time in both processes and their distances will be
low, as will the sum of all the distances.

Finally, we merge equivalent sections into a single section
and add it to the output graph. We label each section with
identifiers of the processes that execute that section.

3.4 Abstraction-based analysis techniques

Our approach enables the assortment of online performance
analysis techniques. The TAG allows for distributed rea-
soning about the behavior of individual processes online. It
provides a high-level view of execution and enables the easy
detection of performance bottlenecks and their locations in
each process. As this information is available at runtime, the
monitoring could be refined in order to provide more in-depth
views of each problem. By merging individual TAGs, we gain
a global application view, which provides the opportunity to
analyze the whole application while it runs. This allows for
the detection of program phases, the clustering of processes
by their behavior and the detection of a load imbalance by
matching loops between processes and comparing their pro-
files, as well as other observations. Some of our abstraction
properties, such as the causal relationships between activi-
ties and the on-demand detection of causal execution paths,
can be used to develop tools for root-cause problem diagno-
sis. Finally, the resulting abstraction can be displayed using
visualization tools.

Actually, we have used the presented technique to build
a set of techniques for online performance analysis that
can be deployed in arbitrary MPI applications running in
large-scale parallel systems. We have developed a three-step
iterative approach called root-cause performance analysis
(RCA) [43]. First, we identify the most severe performance
bottlenecks and their locations in the application. Second, we
perform an in-depth analysis of each individual problem. For
that purpose, we apply a knowledge base to drive the detailed
analysis of well-known parallel inefficiencies, such as those
resulting from inter-process communication and synchro-
nization. Finally, for each problem that has non-local causes,
we perform a root-cause search by comparing concurrent
execution paths followed by communicating processes and
inferring the differences. This enables us to correlate different
performance problems in causal relationships and distinguish
the generation of inefficiencies (root causes) from their causal
propagation (symptoms).

To identify these problems, we periodically collect snap-
shots of the PTAG that summarize the execution in a specified
time window. Each snapshot is then used to locate commu-
nication or computational activities (nodes or edges) that
contribute significantly to a total execution time. For each
severe problem, we perform an in-depth analysis by inves-
tigating its possible causes by exploring a knowledge-based
cause space. We focus on determining the causes that con-
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tribute most to the total problem time. Our knowledge base
provides a catalog of well-known performance inefficien-
cies and methods with which to interpret them. We focus on
typical problems for the message-passing paradigm result-
ing from communication (e.g., limited bandwidth, a large
number of small messages) or synchronization (e.g., late
sender, late receiver, wait at collective operation). More-
over, for computational bottlenecks, we diagnose where the
edge-constrained code spends time by applying code-range
profiling. This technique aids the developers in discovering
and locating performance inefficiencies.

Detection and alleviation of individual performance inef-
ficiencies is often misleading. An overhead originating at a
certain point in the application’s process can causally prop-
agate through the process control flow and then through the
message flow to another process and cause other inefficien-
cies at other points. To address this issue, we propose a
cause-effect analysis technique that intends to differentiate
root causes from one or more of their symptoms and produce
an explanation that characterizes each problem found in a
parallel program. With our automated, abstraction-based per-
formance analysis approach, we are able to easily identify the
most severe performance problems during application execu-
tion and locate their root causes without previous knowledge
of application internals.

The key differences of our technique from existing tools,
such as EXPERT [50], Scalasca [26] and KappaPI 2 [18] are
that it can be performed online, does not require full traces,
scales to thousands of nodes and provides similar results.
Programmers often have no idea where to begin searching
for possible bottlenecks. Our tool allows the programmer to
get a quick overview of the program’s execution and provides
guidance to problems, their causes and corresponding loca-
tions in the source code. It would also be very profitable to go
one step further and provide the programmer with the action-
able recommendations that could help solve the encountered
problems. We believe such recommendations could be valu-
able for both non-experienced and expert users and could
shorten the performance tuning process.

4 Prototype for dynamic abstraction of MPI
applications

We have developed a prototype tool that is able to build a
performance abstraction of an MPI application online, in a
distributed way, and without access to the application source
code [32]. The tool collects and processes the local event
traces at runtime in each process, building individual TAGs.
Then, it periodically collects the TAG snapshots and, using
a hierarchy of intermediate processes, merges them into a
global PTAG for online analysis and visualization.

Global Analyzer (GA)

PTAG

merge

sample

TAG

build

Fig. 14 Prototype tool architecture

The architecture of the prototype tool is illustrated in
Fig. 14. Tt is based on the MRNet infrastructure [39], a
software overlay network that provides efficient multicast
and reduction communications for parallel and distributed
tools. MRNet uses a tree of processes between the tool’s
front and back-ends to improve group communication per-
formance. Our prototype tool is composed of four main
components: the front-end (global analyzer—GA), a hier-
archy of intermediate processes (TBON), the tool daemons
(dynamic monitoring and analyzer Daemon—DMAD), and
the runtime performance abstracting library (RTLib). The
front-end coordinates the tool daemons and collects the TAG
snapshots of the individual processes by merging them into a
PTAG with the help of MRNet. It is also responsible for
processing the PTAG, i.e., behavioral clustering. Finally,
the front-end exports the PTAG into an open graph format
GraphML [6]. The detailed flow of the PTAG creation using
MRNet is presented in Fig. 15.

Each DMAD is a light-weight daemon based on the
Dyninst library [9] that implements the following function-
alities: static code analysis, loading of the RTLib library into
the application process, interception of the MPI routines,
instrumentation insertion to trace events and to collect per-
formance metrics, process start, periodical capture of TAG
snapshots, while the program is running, and TAG propaga-
tion to the front-end. The RTLib library is responsible for
the incremental construction of a local TAG. It provides the
implementation of graph manipulation routines optimized
for fast insertion and constant-time look-ups. The graph and
the associated performance metrics are stored in a shared
memory segment as a compact, pointer-free data structure to
allow the daemon to take its snapshots periodically without
stopping the process. The frequency of taking TAG snapshots
can be configured by a user.

Before the application starts, the tool determines the tar-
get functions, a configurable set of functions which identifies
program activities. By default, we configure all MPI com-
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TBON processes

Back-ends (DMAD)

Front-end (GA)

Individual TAGs Merged groups of TAGs

Fig. 15 Flow of the PTAG creation using MRNet

control, instrument,
monitor, analyze

MPI process

RTLib /

4

Update TAG
& metrics

Fig. 16 Building TAGs by DMAD using shared memory

munication functions as communication activities. However,
users may configure their own functions of interest to be
reflected in the abstraction. Next, the daemon traverses the
program static call graph and control flow graphs for selected
functions to select loops which lead to the invocation of target
functions.

To build a TAG, the DMAD instruments the entry and
exit points of each target function. This instrumentation cap-
tures the record of the executed event. Then, it performs
a low-overhead stack walk using the unwind library [1] to
determine the actual call-path, calculates its signature and
looks up a hash table to recover the node identifier. Next, the
instrumentation invokes the RTLib library routine to process
the event record. A local, partial execution graph (TAG) is
maintained in each process. The library updates the graph
structure by adding, if necessary, the node which represents
a currently executed activity and the edge from the previous
activity. Finally, it updates the execution profile of an affected
node/edge by aggregating the desired performance metrics.
The flow followed by the DMAD to build TAGs in shared
memory is presented in Fig. 16.

The scalability of the cluster approach depends on the
MPI application type: the more different types of processes
there are in the application, the less compact the PTAG is.
To avoid a huge overhead, the prototype tool supports the
PTAG creation periodically or at the end of the execution (a
user can configure when a PTAG is created and the period
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PTAG Clustered PTAG

frequency). Moreover, as the tool is based on MRNet and uses
ahierarchy of TBON processes, it provides efficient multicast
and reduction communications. In the future, the clustering
may be performed on different levels of the hierarchy, not
just in the front-end (Global Analyzer).

The tool is implemented in C++ and targets MPI appli-
cations. We built our prototype tool using OpenMPI [15],
Dyninst API [47] and MRNet [46]. It has been tested on
x86/Linux, Intel IA64/Linux, and partially on PowerPC-
64/Linux.

5 Experiments

To evaluate our approach, we have conducted a number of
experiments with real-world MPI parallel applications. Our
experiments were conducted in two different environments:

— UAB cluster (x86/Linux platform). This is a 128-CPU
(32-node) cluster located at the Universitat Autonoma de
Barcelona (UAB).

— MareNostrum (PowerPC-64/Linux platform). This super-
computer is located at the Barcelona Supercomputing
Center (BSC) [3].

It must be pointed out that each MPI process is located on a
separate CPU and, moreover, on different physical nodes to
assure the same computation and communication conditions.

We experimented with applications that employ the most
common styles of message-passing parallel programming, in
particular:

— SPMD This technique is particularly appropriate for
problems with regular, predictable communication pat-
terns. We have experimented with four SPMD programs
that apply different data decompositions:
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Fig. 17 PTAG for WaveSend program executed on 8 CPUs (UAB cluster)
WaveSend 1D data decomposition, concurrent wave
equation (C code)

NAS LU Benchmark 2D data decomposition, CFD
application (Fortran)

NAS IS Benchmark 2D data decomposition, parallel
sort over small integers (C code)

SMG2000 3D data decomposition, parallel semi-
coarsening multigrid solver (C code)

Master/worker We have experimented with the XFire
application, a large-scale forest fire propagation sim-
ulator code.

5.1 WaveSend (SPMD)

This program implements the concurrent wave equation as
described in [11]. A vibrating string is decomposed into a
vector of points. Since the amplitude of each point depends
on its neighbors, a contiguous block of points is assigned
to each MPI process (“block” decomposition). One of the
processes (so-called master) reads the input vector and dis-

tributes the data to all of the processes. Then, all of the
processes contribute to the calculation (including the mas-
ter). Finally, the master process collects the updated points
from all of the processes and saves the result, that is, the final
vector of amplitudes from the last iteration. Each process
is responsible for updating the amplitude of a number of
points over time. At each iteration, each process exchanges
boundary points with its nearest neighbors (left or right).
WaveSend applies 1-D data decomposition and represents a
typical SPMD. The program uses MPI point-to-point, non-
blocking send and blocking receive primitives to exchange
boundary points.

Figure 17 presents the visualization of the PTAG of the
WaveSend program executed on 8 CPUs (million point wave
and 5000 iterations). The space limitation prevents us from
showing executions on a larger number of CPUs. The snap-
shot was collected after the program termination and shows
the complete execution history of the program.

As we can observe, the abstraction visualization gives
a quick and easy-to-understand overview of the program’s
behavior. We start by sketching a few intuitive interpretations
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Loop cp 40

Loop cp 38
(1, T=286.49 (92.07 %)) (1, T=0.07 (0.02 %)

Path 1 (10000, 0.00 %)

Path 3 (1}, 0.00 %) Path 4 (1}, 0.00 %) Path 5 (1}, 0.00 %)

1: PMP|_Isend

(cp 9ctx 1) 1: PMAI_Recv

(cp 18yctx 1)

1: PMAI_Recv
(cp 18yctx 2)

1: PMAI_Recv
(cp 18yctx 3)

2: PMRI_Wait

(cp 24\¢tx -1) 2: PMHI_Recv

(cp 19yctx 1)

2: PMHI_Recv
(cp 19yctx 2)

2: PMHI_Recv
(cp 19yctx 3)

3: PMAI_Recv
(cp 17yctx 1)

Fig. 18 An example causal execution path for the WaveSend applica-
tion

without actually requiring any knowledge of the program’s
internals. The first observation is that the program exhibits
three main phases of execution. The first phase we may inter-
pret as initialization: the master process broadcasts initial
data to other processes. In the second phase, each process
enters its main loop and executes 5000 iterations, exchanging
data with its neighbors. The communication pattern clearly
reveals 1-D decomposition: we can identify border processes
with a single neighbor (left or right) and processes with
two neighbors (left and right). Finally, in the last phase,
all processes but the master process send results using two
point-to-point messages to the master process that collect the
results.

In the presented example, the performance metrics indi-
cate that the program is CPU-bound and is well-balanced.
More than 70 % of the time is spent on calculations in the
main loop, and there are no observable significant commu-
nication inefficiencies except for a relatively high cost of
MPI_Initand MPI_Finalize calls (28 %). We can also observe
that the interleaving non-blocking sends with calculations
(see MPI_Isend and MPI_Wait calls in the main loop) do not
offer any significant benefits. If configured in the DMAD,
we can obtain a list of causal execution paths that detail the
application behavior. An example causal execution path is
presented in Fig. 18 and we can use it for analysis purposes,
as they contain contextual data (such as sender/receiver rank)
and execution profile.

The size of a complete PTAG snapshot depends linearly on
the number of MPI processes. And the size of each individ-
ual snapshot of the TAG depends mainly on the program’s
code size. Considering a tiny program like WaveSend, the
size of each TAG expressed in XML is about 8 KB. Accord-
ingly, for 1024 MPI processes, the complete PTAG reaches
approximately 8 MB. This relationship between the size and
the number of CPUs has been illustrated in Fig. 19.

It is worth noting, however, that stencil codes are usually
regular and the level of repetitiveness between processes is
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Fig. 19 PTAG snapshot size, varying numbers of CPUs

usually high. To simplify the analysis and visualization of
the PTAG, we took advantage of this property and applied
our behavioral clustering technique. We have performed
clustering in two stages. First, we exploited cross-node repet-
itiveness. Except for border processes, all other processes are
characterized with very similar behavior. To detect these sim-
ilarities, we have applied a graph transformation algorithm
that merges equivalent TAGs, where equivalence is based
on graph isomorphism. The result of this transformation is
shown in Fig. 20. There are three classes of TAGs, namely
the border processes (A and B) and the internal process (C).
The abstraction of processes in each class are isomorphic and
their execution profiles are similar (assuming a 2 % tolerance
threshold). The property of our clustered abstraction is that
its size depends on the number of distinct behavioral classes
rather than on the number of processes.

Second, we have refined our clustering and exploited
code-section level repetitiveness across the nodes. Instead
of clustering the whole PTAG, we divide each TAG into
code sections and merge equivalent sections between the
processes. The result of this transformation is shown in Fig.
21. In comparison to TAG-level clustering, we were able
to discover two subclasses of behavior during initialization,
namely a master process that distributes the data and the
other processes that receive the data. The second section,
namely the main loop, has three subclasses: one for each bor-
der process and the processes that communicate with the two
neighbors. Finally, the third section also has two subclasses:
the master that collects the results and the other processes
that submit them to the master.

Furthermore, we demonstrate the ability for other PTAG
transformations that are useful for better program under-
standing. Consider the visualization with communication
phases as presented in Fig. 22. We have applied a transforma-
tion that preserves message edges between intercommunicat-
ing processes, but reduces each process TAG to a single node.
By visualizing snapshots of the PTAG taken after each code-
section, we can discover three main communication phases:
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Fig. 20 Improved visualization of WaveSend PTAG clustered by similar processes. We merge all TAG sub-graphs that are isomorphic and have

equivalent execution profiles
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Fig. 21 Scalable visualization of WaveSend PTAG after behavioral clustering of code sections

initial data distribution, 1D nearest neighbor exchange pat-
tern and final reduction. Each phase is characterized with a
statistical communication profile that includes the number
and size of the transmitted messages.

To evaluate the overhead introduced by our prototype tool,
we have conducted a number of experiments. For this appli-
cation, the tool instrumented 10 functions (e.g., entry and
exit points of main, MPI_Isend, MPI_Recv and other used
MPI calls) and 2 loops (i.e., entry and exit points of the main
loop and result collection loop). This startup overhead was
constant and independent from the number of processes, as
all the processes start in parallel on different CPUs. We do
not include this startup overhead when presenting program
execution times.

We compared execution times of the WaveSend code run
with and without control of our prototype tool, varying the
number of CPUs. Figure 23 presents a comparison of large

problem size and small-scale executions, with CPUs vary-
ing from 2 to 32 on the UAB cluster. Detailed data are
presented in Table 1. We measure the total overhead the
presented technique imposes on the executed application as
the difference between the wall clock completion time of an
application executed under the DMAD tool and the com-
pletion time of the same application without the tool. We
can observe that the introduced overhead is kept low (0.21—
2.55 %) when varying the number of CPUs from 2 to 32.
Moreover, it is worth noticing that the overhead is nearly
constant although the number of CPUs varies (3.39-4.55 s).
This behavior is expected, as the overhead introduced at
runtime depends linearly on the number of invocations of
communication calls. Since each process executes roughly
the same code (except border processes that differ slightly),
the number of communication calls is constant and is thus the
overhead.
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Fig. 22 Visualization of WaveSend communication phases: initial data
broadcast (left), main exchange phase (right), and final result collection
(bottom)
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Fig. 23 WaveSend 1-D stencil execution times: large problem size
(UAB cluster)

The size of the PTAG (see Table 1) saved in XML format
(without behavioral clustering) is very small and scales quasi-
linearly with the number of CPUs.

To verify how our tool behaves on a larger scale, we
have conducted experiments on the MareNostrum supercom-
puter. However, the lack of availability of the Dyninst API on
PPC32/PPC64 platform (at the moment of conducting these
experiments) prevented us from using dynamic instrumen-
tation. Nevertheless, we have developed a statically linked
support library that uses PMPI interface to intercept com-
munication calls. Although we were not able to detect and
instrument loops and insert/change instrumentation on-the-
fly, we were able to test it on a large scale. Our simplified
tool intercepts MPI calls, builds a TAG at each process and
uses MPI piggyback to connect the TAGs. Finally, the tool
dumps the abstraction at the end of the execution and a post
mortem tool merges them into the PTAG.

Figure 24 presents the execution results of this simplified
tool for large problem sizes on the MareNostrum supercom-
puter, with CPUs varying from 2 to 512 (note logarithmic
scale on Y axis). See Table 2 for details. Our observation
is that the overhead of our tool is low (0.2-5.1 %), except
for execution on 128 and more CPUs (9.6-35.8 %). How-
ever, these executions were extremely short (seconds), and
the overall instrumentation cost with relation to the appli-
cation code was significant. This relationship would change
with bigger problem sizes. The important fact is that the intro-
duced overhead was maintained nearly constant when adding
more CPUs, which confirms the scalability of our implemen-
tation.
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Fig. 24 WaveSend 1-D stencil execution times: large problem size
(MareNostrum)

Table 1 Comparison of WaveSend execution times with and without DMAD: large problem size (UAB cluster)

No. CPUs Exec time (s) Exec time + DMAD (s) Overhead (s) Overhead (%) PTAG size (KB) No. snapshots
2 2073.51 2077.89 4.38 0.21 9.36 70
1038.74 1043.29 4.55 0.44 20.96 36
8 530.38 534.55 4.17 0.79 45.11 19
16 267.57 271.54 3.97 1.48 92.71 10
32 132.76 136.15 3.39 2.55 195.16 5
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Table 2 Comparison of WaveSend execution times with and without DMAD: large problem size (MareNostrum)
No. CPUs Exec time (s) Exec time + DMAD (s) Overhead (s) Overhead (%) PTAG size (KB)
2 1898.91 1902.42 3.51 0.18 9
1122.91 1127.21 4.3 0.38 21
8 545.19 548.94 3.75 0.69 45
16 258.82 262.18 3.36 1.30 93
32 106.90 109.29 2,39 223 195
64 53.08 55.76 2.68 5.06 421
128 27.21 29.82 2.61 9.60 927
256 14.46 17.16 2.7 18.69 2092
512 8.08 10.98 29 35.84 4822

5.2 NAS LU benchmark (SPMD)

NAS LU is a well-known simulated CFD application bench-
mark that employs a symmetric successive over-relaxation
(SSOR) scheme to solve a regular-sparse, lower and upper
triangular system. This application is written in Fortran and
represents a typical SPMD code [2].

This code requires a power-of-two number of proces-
sors. A 2-D partitioning of the grid onto processors occurs
by dividing the grid into two equal parts repeatedly in the
first two dimensions, alternately X and then Y, until all
power-of-two processors are assigned. This results in ver-
tical pencil-like grid partitions on the individual processors.
The ordering of the point-based operations that constitute the
SSOR procedure proceeds on diagonals, which progressively
sweep from one corner on a given Z plane to the opposite
corner of the same Z plane, and then proceed on to the next
Z plane. Communication of partition boundary data occurs
after the completion of computation on all of the diagonals
that contact an adjacent partition. This constitutes a diago-
nal pipelining method called a wavefront method [4]. This
benchmark is very sensitive to the small-message commu-
nication performance of an MPI implementation, as it sends
large numbers of very small messages.

We have executed a B-class NAS LU benchmark on 4
processors (UAB cluster). Our tool needed ~ 17 s at startup
and caused less than 2 % of runtime overhead. The PTAG
was exported into the XML format and its size was 274.8 KB.
The first observation is that the program exhibits three main
phases of execution. In the first phase, the process called Task
rank 0 broadcasts initial data to other processes (invoking an
MPI_Bcast call several times). The volume of distributed
data is very low (=~0.01 KB). Next, the wave-like commu-
nication takes place when each process exchanges data with
its neighbors (1 exchange per neighbor pair, ~406 KB). The
pattern confirms 2D decomposition (2x2 grid), and we can
identify the coordinates of each process. Afterwards, all of
the processes synchronize on the barrier. There are no sight-

lu.B.4, rank 0

lu.B.4, rank 1

1u.B.4, rank 0 Iu.B.4, rank 1

1u.B.4, rank 2 lu.B.4, rank 3 Iu.B.4, rank 2 1u.B.4, rank 3

Fig. 25 NAS LU main loop communication patterns 1 and 2. South-
east wavefront (left), and north-west wavefront (right). Each link
transmitted 25,000 small messages (= 2 KB data each)
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1u.B.4, rank 1 1u.B.4, rank 1
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north south north south

. east .
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Fig. 26 NAS LU main loop communication patterns 3 and 4. East-west
exchange (left), and south-north exchange (right). Each link transmitted
250 messages (~ 377 KB data each)

ings of imbalance at this stage. The second phase is the main
loop, composed of 250 iterations. In each iteration, all of the
processes execute two loops to exchange the data with corre-
sponding 2D neighbors and perform local calculations. The
analysis of communication patterns reveals the communica-
tion scheme, composed of 5 steps:

1. South-east wavefront executed 100 times per iteration
(see Fig. 25, left image)

2. North-west wavefront executed 1000 times per iteration
(see Fig. 25, right image)

3. East-west exchange executed once per iteration (see Fig.
26, left image). This step might be preceded by a condi-
tional all-to-all reduction
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Fig. 27 NAS LU execution times: class D problem size (Marenostrum)

4. South-north exchange executed once per iteration (see
Fig. 26, right image)
5. Final all-to-all reduction.

The behavior of each process depends on its location in
the grid. With a 2 x 2 grid, all of the processes are border
processes, and each is characterized with a different pattern.
For larger grids (e.g., 4 x 4 and more), there would be mul-
tiple processes with all four neighbors (west, north, east, and
south) and the same behavior. In the final phase, the appli-
cation performs a number of reductions and terminates. The
performance metrics show a relatively good load balance, as
the majority of the time is spent on calculations and there are
no sightings of communication inefficiencies.

To evaluate the overhead introduced by our tool, we have
conducted a number of experiments, varying the number of
CPUs in the Marenostrum supercomputer. We used class
D problem size (grid 408 x 408 x 408, 300 iterations) to
take advantage of its capacities. The comparison of execu-
tion times with and without the DMAD when varying the
number of CPUs from 16 to 512 is shown in Fig. 27. Detailed
data are presented in Table 3. Although this application sends
large amounts of small messages, its computation to commu-
nication ratio is high. The resulting abstraction reveals that
most of the time is spent on well-balanced calculations. This
benefits our tool and causes the total overhead to be lower
than 2 % in all cases. This indicates that our MPI piggyback
scheme implementation is efficient for such scenarios.

5.3 NAS IS benchmark (SPMD)

The NAS Integer Sort (IS) kernel is a well-known bench-
mark [2] that is used for testing both integer computation
speed and inter-process communication. The IS kernel ranks
a large array of small integers as fast as possible using a
bucket-sort method that is useful for particle method codes.
Bucket sort [8] is the fastest sorting method because it does
not perform any key comparisons. However, there are signifi-
cant limitations to its usage, and it can be applied sufficiently
only in uncommon situations. To do a bucket sort, a tempo-
rary array must be used in which the elements to be sorted
are distributed based on their key fields. The distribution of
n numbers requires n steps and, thus, the performance of
bucket sort is O(N).

In the IS benchmark, the process called Task rank O (mas-
ter) generates a vector of integer data (keys) to be sorted using
the pseudorandom number generator and Gaussian distrib-
ution. The sorting is performed according to the following
scheme. The master process divides all existing keys in the
number of keys/number of nodes parts. Each part must be
distributed to a single process. First, the master sends each
worker a message with the information that specifies the
range and number of the keys. Next, it sends the data. Each
process receives data from the master and samples it to arrive
ata good load balance. It communicates with other processes
in order to know their ranges. Then, it keeps all of the keys
which fall within its range and sends the other keys to the
appropriate nodes. Finally, it sorts all the keys in its range.
In this benchmark, the communication costs are high (up to
about 50 %). This is because the benchmark is dominated
by all-to-all data exchange messages, since each processor
sends the data which falls within the range of the recipient to
all of the others.

We have executed a C-class IS benchmark on 8 proces-
sors (UAB cluster). The PTAG was exported into the XML
format and its size was 75 KB. The abstraction reveals a sim-
ple structure of IS code. The execution is divided into three
main phases. In the first phase, initialization, we observe that
the MPI_Init call cost (=14 s) is relevant with respect to
the total execution time, which itself is short. Once con-
nected, the processes perform local calculations (~10 s)

Table 3 Comparison of NAS LU execution times with and without DMAD: class D problem size (Marenostrum)

No. CPUs Exec time (s) Exec time + DMAD (s) Overhead (s) Overhead (%) No. snapshots Mop/s
16 7555.98 7651.40 95.42 1.26 253 5280
32 3726.63 3776.52 49.89 1.34 125 10,706
64 1822.64 1848.56 25.92 1.42 62 21,890
128 754.12 765.46 11.34 1.50 26 52,906
256 228.82 232.47 3.65 1.59 9 174,366
512 118.44 120.70 2.26 1.91 5 336,872
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Fig. 28 NAS IS execution times: class C problem size (Marenostrum)

and then perform global initialization by performing global
data reduction, all-to-all exchange, and, finally, personalized
all-to-all exchange of ~129 MB of data (MPI_Alltoallv).
Nevertheless, all of the processes terminate this phase equally
and with no sign of imbalance. The second phase is the
main loop, composed of 10 iterations. In each iteration, all
of the processes execute the same scheme, composed of
global reduction, all-to-all exchange, personalized all-to-all
exchange of data, and, finally, local calculation. The iteration
time is dominated by communication activity due to relevant
data volume (all-to-all with 129 MB of data in each iter-
ation). However, the calculations and communications are
well-balanced, and we did not observe any significant inef-
ficiencies. In the final phase, the application reduces a small
amount of data on the process Task rank 0, then propagates
messages from Task rank 0 sequentially up to the last process,
performs the ultimate data reduction and terminates.

The comparison of execution times with and without the
DMAD when varying the number of CPUs from 2 to 256
is shown in Fig. 28. We observed overheads ranging from
0.1-2.3 %.

5.4 SMG2000 (SPMD)

SMG2000 is a parallel semi-coarsening multigrid solver
for the linear systems arising from finite difference, finite
volume, or finite element discretizations of the diffusion
equation on logically rectangular grids [7,23]. The code
solves both 2D and 3D problems and is derived directly from
the hypre library [24], a large linear solver library that is
being developed at LLNL.

SMG2000 is an SPMD code written in C that uses MPL.
Parallelism is achieved by data decomposition based on sub-
dividing the grid into logical P x Q x R (in 3D) chunks

of equal size. SMG2000 is a highly synchronous code.
The communication and computation patterns exhibit the
surface-to-volume relationship common to many parallel sci-
entific codes. Hence, parallel efficiency is largely determined
by the size of the data chunks mentioned above, and the
speed of communications and computations on the machine.
SMG2000 is also memory-access bound, doing only about
1-2 computations per memory access, SO Memory-access
speeds also have a large impact on performance.

We have also abstracted the SMG2000 program executed
on 8 processors (UAB cluster) for small problem sizes (35
x 35 x 35). PTAG was exported into the XML format and
its size was 736 KB. Unfortunately, the visualization of the
resulting abstraction is too big and not readable, as we can
observe in Fig. 29.

With this application, we could see the limitations of our
prototype tool implementation. SMG2000 makes intensive
use of recursion (in fact, the hypre library is a highly recur-
sive code). Data-driven recursion generates a huge number
of distinct call-paths which introduce noise to structural pat-
terns captured by the TAG. The fundamental assumption in
the TAG is that each node is identified by a unique stack trace
thatends in an MPI call. Typically, the number of possible dis-
tinct stack traces is limited by the application static structure.
This assumption changes in the presence of recursion when
it becomes data dependent. In the case of a multigrid solver,
we have observed an explosion in the number of nodes. In
particular, the same activities were abstracted multiple times
when executed at different levels of recursion.

There are different ways of representing recursion more
compactly [37]. The most common approach used by the
majority of stack walking tools is to limit the considered stack
trace to some maximum depth (e.g., the mpiP tool uses this
approach [17]). Our intuitive approach is that any recursive
implementation could be transformed to its iterative version.
The solution to this problem is to dynamically cluster similar
stack traces using an equivalence metric that combines sim-
ilar stacks into the same representation. In this case, during
the application execution, we would obtain a code structure
correctly, and the abstraction would be understandable. We
believe that this would reduce the possible call-path space
and better reflect the structural code patterns. However, find-
ing a cost-effective stack trace clustering method remains as
future work.

5.5 XFire (master/worker)

We have selected XFire as an example application based on
Master/Worker paradigm. XFire is a forest fire propagation
simulator [19] that calculates the expansion of the fireline
considering the initial fireline position and different aspects,
such as weather (wind, temperature, moisture), vegetation
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Fig. 30 Scalable PTAG visualization of XFire application after behavioral clustering

and topography (terrain). This application represents a typ-
ical computationally intensive Master/Worker code and is
written in C++.

Figure 30 presents the visualization of the PTAG of the
XFire application executed on 4 processors after applying the
behavioral clustering. As expected, we observe two behav-
ioral classes of processes: Class A, which corresponds to the
process Task rank O (master), and Class B, which corresponds
to processes Task rank 1-3 (workers). The visualization is
scalable to an arbitrary number of workers. The abstraction
indicates three phases of execution. We can interpret the first
phase as initialization, which includes the synchronization
and distribution of 64 MB of data from master to work-
ers. The next phase is the main loop. In each iteration, the
master sends requests to the workers. Statistics suggest one
request per worker (with 64 MB of data). Next, it waits for the
results from all of the workers (64 MB of data received from
each worker), and, finally, performs some calculations. Each
worker waits for a request, processes it and then responds.
Finally, we observe the coordinated termination phase. The
performance metrics reveal the existence of severe bottle-
necks in the second phase. The MPI_Recv node in the master
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Fig. 31 XFire execution times (MareNostrum)

with 77.4 % of the total time indicates the bored master
waiting for calculating workers. The MPI_Send node in the
workers reveals an inefficiency (20.8 %) that we manually
infer to be caused by master calculations at the end of each
iteration. This indicates the opportunity for potential opti-
mizations that could bring significant benefits.

We present overheads in Fig. 31. The experiments were
conducted varying the number of CPUs from 4 to 64. We
performed the tests with a higher number of CPUs, but it did
not provide any additional speedup. This effect is due to the
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Table 4 Comparison of XFire execution times with and without DMAD (MareNostrum)

No. CPUs Exec time (s) Exec time + DMAD (s) Overhead (s) Overhead (%) PTAG size (KB) No. snapshots
4 380.71 380.60 —0.11 —0.03 18.77 14
8 208.29 207.46 —0.83 —0.40 36.43 8
16 144.60 144.59 —0.01 —0.01 71.49 6
32 111.13 110.89 —0.24 —-0.22 141.84 5
64 105.42 105.10 —-0.32 —0.30 281.60 5
limited scalability of the Master/Worker approach as the mas- = Task rank 0 (master)
ter process quickly becomes a bottleneck when managing a T
higher number of workers. Table 4 lists the detailed measure- (=] -
ments registered during the experiments. One interesting fact Lol @19 T71) 2
is that the total overhead is constant and negative in all cases 1 1 "°°°)1I
(up to 0.4 %). This peculiar effect might be attributed to three
facts. First, there is a small number of exchanged messages
and, thus, low overhead. Second, the inherent inefficiency
in all the program’s processes that are mostly blocked wait- l
ing on messages hides the monitoring overhead. Third, the a7 (1007, ”
measurement error might be significant, given the small dif- -
ferences between compared times. T PMPL_Send
| 37 (T=305.73) (cp9. T=1.32)
(cp 8, T=77.63)

5.6 Use case of the abstraction-based analysis

As indicated in Sect. 3.4, the proposed application abstrac-
tion can be used for performance analysis in order to identify
bottlenecks and their root causes. To show its applicability,
we have chosen the abstraction of the XFire application pre-
sented in Fig. 30.

To identify performance problems, the first step is to
determine activity rankings for each process. Analyzing the
application abstraction, we prepare a list of the top activ-
ities that consume the most execution time. For example,
we can observe the existence of inefficiency resulting from
MPI_Recv (cp19), as, on average, almost 47 % of the time,
the master is blocked waiting on incoming messages with
results from slaves. The second and third top-activities are the
computational edges 14 — 14 (some computation between
consecutive sends that consumes 13 % of the time) and
18 — 13 (calculations of a global abstraction that consume
22 % of the time). The behavior of all of the workers is similar.
The top activity is the computational edge 7 — 8 (repre-
senting the execution of a local fire propagation model) that
consumes about 41 % of the time. This indicates some kind
of performance problem, as workers are expected to max-
imize efficiency and avoid idle times. Effectively, in these
processes, we observe an inefficiency in ablocked receive call
(MPI_Recv, cp8) that is used to receive work requests from
the master. We may interpret that the workers are blocked,
waiting to receive work from the master. This inefficiency

Fig. 32 Details of the problematic execution paths in master and work-
ers

reaches 36 %, which indicates a severe performance prob-
lem. The most problematic execution paths are zoomed in
on in Fig. 32.

The second step is the in-depth analysis of each individ-
ual problem. The blocked receive call in the master process
revealed the existence of 7 communication links with work-
ers where the distribution of waiting times per process is not
uniform. This manifests the existence of a synchronization
problem in the form of multiple late senders and one receiver.
Moreover, the analysis of top-activities in the worker diag-
nosed the existence of multiple instances of a late sender
problem, i.e., each worker is waiting to receive work from the
master. The identified performance problems are presented
in Table 5.

Finally, once the performance problems are determined,
we search for causal relationships between the synchroniza-
tion problems. To analyze the instances of a late sender
problem in the workers, we compare corresponding causal
execution paths. Example causal execution paths are pre-
sented in Fig. 33.

Our algorithm identified the following activities with the
largest contribution to the length of the master’s path as the
causes of the late sender:
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Table S List of performance problems found after the first analysis interval of the XFire application

No. Problem Location Details Severity at source
process (%)
1 Multiple late senders one Task rank 0 MPI_Recv(Task rank 0, cp19), 47.32
receiver MPI_Send(Task rank 1-7, cp9)
2 Computation Task rank 0 Edge 14 — 14 13.11
3 Computation Task rank O Edge 18 — 13 8.93
4 Computation Task rank 1-7 Edge 7 — 8 41.18
5 Late sender Task rank 1-7 MPI_Recv(Task rank 1-7, cp8), 36.45

MPI_Send(Task rank 0, cp16)
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Fig. 33 Example execution paths for XFire application

— MPI_Recv (cp19) reception of work from all of the work-
ers.

— Back loop edge 18 — 13 global model calculations in
the master.

— Edge between sends 14 — 14 source code examination
revealed that this edge corresponds to message packing
with MPI_Pack calls.

— Edge 13 — 14 fireline data memory management.

The path comparison revealed the following findings:

— Edge 7— 8 source code examination helped us deter-
mine that the activity represents the local model calcula-
tions performed by the worker (79 £ 1 % contribution to
the inefficiency in the master). Our interpretation is that
the master distributes the work and immediately waits for
the results. The slaves receive the requests and require
time to calculate the response. This time contributes to
almost 80 % of the blocked receive problem.

— MPI_Recv call (cp8) reception of work by the worker.

@ Springer

We may conclude that the master is implemented to wait
for the workers to finish calculations. On the other hand,
the workers lose time waiting for work assignments, because
the master processing time for assigning work is significant.
This effect is attributed to three main causes: global model
calculations in the master, message packing during work dis-
tribution, and the fireline data management code.

To relax the scalability limitations of XFire, we recom-
mend:

— Opverlapping the reception of results (communication)
with global model calculations in edge 18 — 13 of the
master. This optimization could help reuse waiting times
in the receive call to prepare fragments of input for the
next iteration.

— Avoid using explicit message packing (edge 14 — 14 in
the master) and instead use derived data types.

— Pre-allocate and initialize the memory necessary to man-
age the fireline data before the main loop instead of
managing it dynamically for each iteration.

In order to verify the correctness and the influence of the
suggested recommendations, we have manually changed the
source code of the XFire application, applying them to the
corresponding places. Finally, we have compared the origi-
nal version of the application with the tuned code where the
suggested recommendations were taken into account. As we
can see in Fig. 34, the execution time is reduced by up to 27 %
when applying the recommendations. A detailed explanation
of this evaluation is presented in [43].

5.7 Evaluation of overheads

We classified and evaluated the overheads caused by our pro-
totype tool as follows.

5.7.1 Offline startup overhead
At startup, each tool daemon performs four actions. First, it

starts up and connects to the parent process. Second, the dae-
mon parses the program executable using Dyninst. The cost
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Fig. 34 Comparison of the XFire execution time for the original and
tuned versions

of this action depends on the executable size. Third, it starts
the application process, loads the RTLib library (158 KB),
parses it and performs initialization. Fourth, the daemon
instruments the executable. This includes wrapping MPI calls
that are used by the application, and inserting instrumenta-
tion into target functions. This cost depends on the number
of MPI calls used and the number of predefined target func-
tions and loops selected during static code analysis. We have
observed that this cost is higher for Fortran programs. To
summarize, the total startup cost is constant for a given exe-
cutable. Table 6 lists a detailed breakdown of startup times
for evaluated applications.

5.7.2 Online TAG construction overhead

This includes the runtime cost of executing event tracing
instrumentation, walking the stack, finding a call-path iden-
tifier in the hash table, updating the graph nodes, edges and
metrics. The penalty is nearly constant. Overall, application
overhead depends mainly on the number of communi-
cation calls invoked and instrumented loop entries/exits.
Additionally, this overhead increases when there are more
performance metrics to be evaluated.

5.7.3 Online TAG sampling overhead
Each daemon periodically samples the TAG. To take a snap-
shot, the daemon copies a contiguous block of memory

shared with the application process to its local memory. The

Table 6 Breakdown of startup times for evaluated applications

cost of this action depends on the graph size, which in turn
reflects the program structure.

5.7.4 Online MPI piggyback overhead

This includes the cost of the wrapped MPI calls and datatype
wrapping overhead for small payloads and the cost of send-
ing an extra message for large payloads. We compared the
results of the SKaMPI Benchmark [38] for original MPI and
MPI with an active piggyback mechanism. As illustrated in
Fig. 35, for point-to-point operations the absolute overhead
is nearly constant when varying message size. Its impact
decreases from 10 % for messages smaller than 1 KB to 2 %
for 1 MB messages. We observed similar effects for collec-
tive operations where overhead varied from 15 to 0.5 %. This
is illustrated in Fig. 36. Although these overheads might be
considered relevant for some scenarios, we did not observe
important impacts when evaluating application-level over-
heads.

The included experiments match well with those presented
in [41]:

— Depending on the message size, packing data and piggy-
back together leads to a worse performance, and, hence,
it is better to send two separate messages.

100000 I I
—=— Point-to-point MPI_Send-
MPI_Recv
—=&—Point-to-point MP1_Send-
MPI_Recv +Piggyback A
10000 »
: ;,ﬂ
o
@
@
=
8
E /
£ 1000
(S r')r’
100

1 10 100 1000 10000 100000 1000000

Message length (bytes)

Fig. 35 MPI piggyback overhead for point-to-point, send-receive pat-
tern

Program Language Size (KB) No. modules No. funcs Parsing Load lib. (%) Preinstr. (%) Other (%)
WaveSend C 15.4 15 6952 44 36 17 3

NAS IS C 25.6 17 6971 22 34 15 29

NAS LU Fortran 222.4 48 8126 16 29 39 16
Sweep3D Fortran 95.5 30 8178 18 32 44

XFire C 824.6 48 10,428 25 51 17 7
SMG2000 C 504.9 60 7289 21 32 23 24
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Fig. 36 MPI piggyback overhead for an all-to-all collective commu-
nication pattern

— A constant bandwidth varying piggyback message sizes
is observed in some benchmarks, but latency depends
directly on the piggyback size. It is not always necessary
to translate into application overhead.

— For certain communication intensive benchmarks, an
average overhead is around 10 %, similar to our tested
case of the SkaMPI benchmark.

— Performance in piggyback depends on the MPI imple-
mentation, especially on the optimization of advanced
mechanisms such as custom datatypes or message coa-
lescing. Therefore, extending the MPI standard to include
piggyback mechanisms would be beneficial.

5.7.5 PTAG construction overhead

After sampling the TAG, each daemon sends its snapshot
to the parent process. The intermediate TBON processes
receive snapshots from multiple processes, merge them and
send them up the TBON tree. Finally, the front-end process
merges the complete PTAG snapshot. However, all TBON
processes (including front-end) are physically located on
separate CPUs to avoid computational interference with the
application processes. Therefore, we do not attribute the
PTAG construction costs to the overhead induced in the appli-
cation.

6 Related work

The concept of the detection of causal execution flows for
cause-effect inference has been studied by Mirgorodskiy
in his automated problem diagnosis thesis [29]. This work
introduces self-propelled instrumentation, an approach for
tracking the control-flow of a process and across process
and kernel boundaries, which overcomes the limitation of

@ Springer

application-specific tracing and introduces a low overhead. It
introduces a flow separation algorithm, a statistics-rule-based
approach for separating concurrent activities in a system.
This approach allows for the identification of particular
requests within the application with little user intervention.
Their approach collects function-level control-flow traces,
while our technique aggregates repetitive patterns while pre-
serving probabilistic causality.

Our work is also related to communication pattern extrac-
tion and runtime MPI trace compression techniques. Noeth
et al. in [34] proposed a framework for scalable trace com-
pression and replay of communication traces. Their approach
allows for a scalable, lossless, near-constant size trace com-
pression scheme, regardless of the number of CPUs, while
preserving structural information and a temporal ordering of
events. Process-level MPI trace compression takes advantage
of the regular nature of communication patterns, represented
in the source code mostly by loops. This method drastically
reduces the size of the individual process’ trace. The com-
pression algorithm maintains a queue of MPI events and uses
a greedy pattern-matching scheme to compress the queue. To
preserve the locations of MPI calls, the tracing framework
identifies and records the calling sequence by logging the call
sites of the calling stack in the stack walk. This feature is sim-
ilar to our approach presented in this work. Both approaches
use pattern matching to dynamically discover repeating com-
munication structures in an MPI event graph. Our work is
different in that it uses statically determined loops to find
pattern boundaries. Our on-the-fly trace analysis is lossy, as
it uses aggregation and builds statistical profiles.

There are also many similarities to the critical path profil-
ing presented by Schulz in [40]. Their approach dynamically
builds an execution graph at runtime by tracking communi-
cation activities and piggybacking data over MPI messages.
While they focus on complete critical path extraction com-
posed of individual events, our approach is different, as it
represents the whole application with all of the executed
paths together with their statistical execution profiles and
aggregating repetitions.

Concerning application behavior, our approach is also
related to Palm, described by Tallent et al. in [45]. Palm uses
an annotated modeling language on an application source
code to describe application execution. It allows for the cre-
ation of an analytical application model post-mortem that can
then be used for performance prediction and application diag-
nostics reports. Palm combines top-down (human-provided)
semantic insight with bottom-up static and dynamic analysis.
Given annotated source code, Palm generates a model based
on the static and dynamic mapping of annotations to program
behavior.

As the generated abstraction may be used for performance
problem diagnosis, our approach is also closely related to
analysis tools. These are a set of tools that are based on
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trace file analysis, such as Vampir [20], a commercial tool
currently known as Intel Trace Analyzer. It uses trace files
and provides a GUI to visualize a timeline of MPI events
after application execution. This tool has its own mechanism
to trace the application called VAMPIRtrace. It is a library
with MPI tracing wrappers and records point-to-point com-
munications, collective operations, MPI I/O operations and
user-defined procedures. When the user-defined procedure is
to be traced, the VampirTrace API must be used to modify the
application and, hence, the recompilation phase is required.

The Scalasca toolset, described by Geimer et al. in [12],
mainly focuses on trace analysis to produce post-mortem
reports in a 3D dimension space view. It is oriented to search
a list of problems and locate them in the program. Using the
CUBE tool, it performs an interactive exploration of the pro-
duced data for providing performance metrics and diagnosis
to the analyst, who can then take specific actions to elimi-
nate or minimize performance bottlenecks. Scalasca includes
different tools to combine or manipulate various generated
reports, allowing comparisons and aggregations, focus on
specific parts of the reports, and generating additional per-
formance metrics.

Another tool is TAU (Tuning and Analysis Utilities),
described by Malony et al. in [27]. This is a portable pro-
filing and tracing toolkit that uses the static instrumentation
approach for the performance analysis of parallel programs
written in C, C++ and several other languages. To perform
tracing, TAU provides an instrumentation API and tools to
facilitate source code instrumentation. It also provides call-
path specific profiling. The TAU traces function entries and
exits via instrumentation code inserted into the program and
uses this information to generate a stack of currently exe-
cuting functions. TAU uses the stack of active functions as
a representation of the current call-path, so their approach is
based on whole-program instrumentation.

Furthermore, to address more types of parallel applica-
tions, we could complete our technique by adding support for
I/O activities. The problems of I/O operations on an extreme
scale and how to characterize these systems are presented by
Wiedemann et al. in [49]. We believe it would be straightfor-
ward to intercept and abstract both sequential I/O calls (e.g.,
open, create, write, read, flush) and parallel MPI I/O (e.g.,
MPI_File_read, MPI_File_write). By abstracting individual
I/O calls and providing I/O specific knowledge (e.g., speci-
fication of I/O inefficiencies), our approach could be used to
understand the behavior of I/0-based codes.

7 Conclusions
We have presented an online performance abstraction tech-

nique and its prototype implementation, which automates the
discovery of causal execution paths, made up of communi-

cation and computational activities, for arbitrary message-
passing parallel programs. Multiple executions of a defined
activity are reflected in the TAG just by one instance, and its
behavior is statistically summarized in an execution profile.
These factors contribute to the compactness of the application
performance abstraction while reflecting high-level commu-
nication patterns. This approach enables autonomous and
low-overhead execution monitoring that generates perfor-
mance knowledge about application behavior for the purpose
of online performance diagnosis. By following the flow of
control and intercepting communication between processes
at runtime, the cornerstone of this technique is the ability to
discover causal execution paths through high-level applica-
tion structures, such as loops and communication operations,
and characterize them with statistical execution profiles.
We have developed a set of techniques based on dynamic
instrumentation that enables the online construction of such
abstractions with acceptable intrusion on application exe-
cution. Our technique maintains a trade-off between large
volumes of collected data and a preserved level of details.
We take advantage of tracing, but avoid the high data vol-
ume problem by consuming the data on-the-fly, using lossy
trace compression. When the analysis needs more detailed
data, our technique enables the collection of causal execu-
tion paths that capture selective traces that preserve event
ordering and low-level information.

Furthermore, we have proposed a scalable PTAG con-
struction technique that can be used on HPC systems to
analyze large-scale scientific applications. Our scalable TAG
merging algorithm works best for applications that are com-
posed of groups of identical processes that perform similar
repetitive activities. Our approach enables the evaluation of
the performance of individual processes and provides a high-
level view of the entire application. It can be used to shorten
the performance understanding process and serve as a base
for developing a variety of online analysis techniques. We
have demonstrated this ability in several real-world MPI
applications. The abstraction of these applications reveals
details about their behavior and structure, without requiring
explicit knowledge or a source code. In all scenarios, our
online performance abstraction technique proved effective
for the low-overhead capturing of a program’s behavior and
facilitated performance understanding.

As future work, we are planning to improve the scala-
bility of the DMAD tool to perform tests on thousands of
processors. For this purpose, we are planning to improve the
functionality of the global front-end for scalable TAG collec-
tion by distributing PTAG clustering to a tree-based overlay
network infrastructure. We have used this technique as the
basis of our investigation of automated root-cause perfor-
mance analysis, and, hence, we plan to follow this research
line. Moreover, we are planning to develop additional func-
tionality for the DMAD, as it has certain limitations: poor
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management of recursive functions, no support for I/O MPI
or one-sided operations of MPI-2 and MPI-3 .
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