
Statistics & Operations Research Transactions

SORT 40 (1) January-June 2016, 201-224

Statistics &
Operations Research

Transactions
© Institut d’Estadı́stica de Catalunya

sort@idescat.catISSN: 1696-2281
eISSN: 2013-8830
www.idescat.cat/sort/

A statistical learning based approach for

parameter fine-tuning of metaheuristics

Laura Calvet1,∗, Angel A. Juan1, Carles Serrat2 and Jana Ries3

Abstract

Metaheuristics are approximation methods used to solve combinatorial optimization problems.

Their performance usually depends on a set of parameters that need to be adjusted. The selection

of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced

analytical and problem-specific skills. This paper provides an overview of the principal approaches

to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far

by the scientific community. In addition, a novel methodology is proposed, which is tested using

an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.
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1. Introduction

Mathematical optimization plays an important role both in research and in our everyday

lives. Management of portfolios, vehicle routing or DNA sequence assembly, are only

some of the fields in which optimization techniques are employed.

Most of the existing proposals to solve optimization problems can be classified into

exact methods or heuristic/metaheuristic approaches (Talbi, 2009). The former guaran-

tee the optimality of the solution found. Unfortunately, a number of relevant problems

are particularly complex, and tackling them with state-of-the-art exact methods would
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require substantial computer memory and time. Problems of this kind are known to be

NP-hard (Bovet and Crescenzi, 1994). The Facility Location Problem, the Knapsack

Problem and the Multi-Depot Vehicle Routing Problem (MDVRP) are some examples

of NP-hard problems. In these cases, heuristics present some experience-based tech-

niques that implement strategies to obtain a sufficiently good solution in a reasonable

amount of time. Although they do not provide any theoretical guarantee, they are a

popular choice when solving NP-hard problems. Owing to its nature, any heuristic is

problem-dependent, which restricts its application to one particular class of problems.

Also, heuristics usually provide sub-optimal solutions. These factors have led to the

introduction of metaheuristics.

Birattari and Kacprzyk (2009) defines metaheuristics as “general algorithmic tem-

plates that can be easily adapted to solve the most different optimization problems”.

A number of them are nature-inspired, include stochastic components and have several

parameters (Boussaı̈d et al., 2013). They are present in a large number of research areas

such as telecommunications (Martins and Ribeiro, 2006), machine learning (Carvalho

et al., 2011), and vehicle routing (Gendreau et al., 2008), among others.

Although the performance of metaheuristics is known to depend on its parameter val-

ues, the scientific community has not formally addressed the so-called Parameter Setting

Problem (PSP) until the end of the last century. According to Eiben et al. (1999), dur-

ing the first decades of metaheuristics research, many scientists based their choices on

tuning the parameters “by hand”, i.e. experimenting with different values and select-

ing the ones that provide the best outputs, or “by analogy”, applying settings that have

been proven successful for similar problems. More recently, the need for a systematic

approach towards setting of metaheuristic parameters has been increasingly outlined in

the literature (Hooker, 1995; Johnson, 2002). Subsequently, researchers employ a sci-

entific approach to tackle the PSP more frequently. It is important to highlight that the

selection of a systematic methodology leads to a gain of efficiency, as in general, less

time is required to fine-tune the parameters while the performance of the metaheuristic

is the same if not improved. However, there is no methodology commonly accepted by

the scientific community and there is also a lack of publications that compare, in an

exhaustive and objective manner, the main approaches and the techniques used so far.

Moreover, some of the proposed methodologies are not easily reproducible or are highly

metaheuristic and problem dependent. These are some of the reasons why, in spite of

the amount of parameter fine-tuning works, many practitioners go on tuning by hand or

designing algorithms without parameters (or with a very low number of them), even in

the case when more parameterized algorithms could lead to better performances.

This article aims to contribute to the literature by proposing a general and auto-

mated statistical learning based procedure to tackle the PSP. It is accompanied by some

methodological guidelines to validate the results. In order to test the methodology and

illustrate its application, the approach is employed to fine-tune a hybrid algorithm im-

plemented to solve the MDVRP.
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The remainder of this article is organized as follows. Section 2 presents a formal def-

inition of the PSP, the existing approaches, and their main contributions. Our method-

ology is outlined in Section 3, followed by Section 4, which shows its application on a

hybrid algorithm. A discussion of the results is reported in Section 5. Finally, Section 6

presents concluding remarks.

2. Related work on the Parameter Setting Problem

Ries et al. (2012) define the PSP as the search for a set of parameter values θ∗ in the

parameter space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation of preference),

for a given metaheuristic m in the metaheuristic space M, and a given instance x or

group of them X in the instance space I. In practice, the amount of time available for

experimenting T may be a restriction. In this case, the solution is approximate (θ̂). With

regards to the difficulty of this problem, Montero et al. (2014) states that: (a) it is time

consuming; (b) the best set of parameter values depends on the problem at hand; and

(c) the parameters can be interrelated.

During the last decades, a large number of methodologies have been put forward to

solve the PSP. These proposals can be classified in two groups (Birattari and Kacprzyk,

2009): Parameter Control Strategies (PCS), and Parameter Tuning Strategies (PTS).

This classification is extended by Instance-specific Parameter Tuning Strategies (IPTS),

which include features of the aforementioned groups.

This section provides a brief description of each approach and some of the most cited

works. We refer the interested reader to more specific publications such as Eiben et al.

(1999), De Jong (2007) and Battiti and Brunato (2010) for an expanded review of PCS,

Birattari and Kacprzyk (2009) in the case of PTS, and Ries (2009) for IPTS.

2.1. Parameter Control Strategies (PCS)

These methodologies aim for a dynamic fine-tuning of the parameters by controlling

and adapting their values while solving a problem instance. They follow two basic steps:

firstly, an initial set of parameter values is chosen; secondly, an adaptation mechanism

is integrated which changes relevant parameter values. Most of these strategies apply

Adaptive Parameter Control, which means that their adaptation mechanism is based

on the assessment of particular information that is stored during the iterative process

of a metaheuristic. This information is usually related to the goodness of intermediate

solutions. Figure 1 outlines the main instructions of a PCS based on Adaptive Parameter

Control. The main drawbacks of this approach are the potentially high computational

effort required and the lack of acquired understanding about good parameter values

each time an instance is solved.
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Figure 1: Scheme of PCS applying an Adaptive Parameter Control.

Eiben et al. (1999) addressed the PSP in Evolutionary Algorithms (EAs). Three cate-

gories were defined to classify the PCS. The first one, Deterministic Parameter Control,

alters the value of a parameter by some deterministic rule, which is usually time based.

The second category, Adaptive Parameter Control, does employ feedback to determine

the direction and/or magnitude of a parameter change. This is the most used kind of

control. Consequently, we will focus on it. The third, Self-Adaptive Parameter Control

(Smith, 2008), encodes the parameters to be adapted into the chromosomes of an EA. De

Jong (2007) described the main motivations to use dynamic parameter setting strategies

in EAs: first, as the running proceeds, information about the fitness landscape is gener-

ated, which may be used to improve the performance; also, changing the parameters is

needed as an EA “evolves from a more diffuse global search process to a more focused

converging local search process”.

Table 1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization problem

Battiti and Tecchiolli

(1994) and Battiti and

Brunato (2005)

Reactive Scheme Tabu Search (TS) Quadratic Assignment

Problem (QAP), and

Maximum Clique

Problem

Zennaki and

Ech-Cherif (2010)

Support Vector

Machines

TS TSP

Lessmann et al. (2011) Regression Models Particle Swarm

Optimization (PSO)

Water Supply Network

Planning Problem
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Figure 2: Scheme of PTS.

Table 1 gathers a few representative works following this approach. Nowadays, it

constitutes a popular choice, mostly in EAs. From the literature, it can be concluded

that the parameter fine-tuning is a difficult task, partly due to the potential interactions

between parameters (Eiben et al., 1999; De Jong, 2007 and Smith, 2008). The worth of

applying PCS is sometimes doubted (Beasley et al., 1993) or not recommended for static

optimization problems (De Jong, 2007). However, most authors agree that this approach

has a long way to go.

2.2. Parameter Tuning Strategies (PTS)

This approach relies on the concept of robustness (Viana et al., 2005). A robust algorithm

provides good results for a given set of instances of a problem using a fixed set of

parameter values. The basic procedure (Figure 2) involves finding a set of parameter

values providing satisfactory results for a set of instances, usually using statistical and/or

optimization techniques. Some authors analyse only a representative subset of instances

and apply the set of parameter values found to solve all the instances. This approach

also includes the case of solving one instance.

The work of Czarn et al. (2004) is an outstanding contribution from a statistical point

of view. It addresses the issues of blocking when using design of experiments (DOE)

for variation or noise due to seed, testing individual parameters and interactions, and

performing power analyses, among others.

Table 2 shows some works relying on this approach. Many authors focus on min-

imizing the number of runs, presenting simple models without interactions (e.g., Coy

et al., 2001; Pongcharoen et al. 2007 and Xu et al., 1998). DOE and regression analy-

sis are the most employed techniques. The main criticism these works may receive is

that most need an initialization of methodology-specific parameters that in some cases

is not fully reported. Fortunately, the number of papers that report applications of their

methodology in more than one problem or in real-world problems is increasing.
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Table 2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Park and Kim (1998) Simplex method SA Graph Partitioning

Problem, Permutation

Flow Shop Scheduling

Problem, and

Short-term Production

Scheduling Problem

Xu et al. (1998) Tree growing and

pruning method based

on statistical tests

TS Steiner Tree-Star

Problem

Coy et al. (2001) DOE and Linear

Regression

Routing heuristics Vehicle Routing

Problem

Bartz-Beielstein et al.

(2004)

DOE, Classification

and Regression Trees,

and Design and

Analysis of Computer

Experiments

PSO and Nelder-Mead

Simplex Algorithm

Elevator Group

Controller Problem

Ramos et al. (2005) Logistic Regression EA TSP

Birattari and Kacprzyk

(2009), Birattari et al.

(2010)

Racing Algorithm

(Maron and Moore,

1993) and the

Friedman’s two-way

analysis of variance by

ranks (Conover, 1999)

Iterated Local Search

(ILS) and Ant Colony

Optimization (ACO)

QAP and TSP

Adenso-Dı́az and

Laguna (2006)

DOE and Local Search Neighbourhood

structure, TS, SA, TS,

Heuristic based on the

SA and the TS, and TS

Steiner Problem,

Part-Machine

Grouping Problem,

Part-Machine

Grouping Problem,

Single-Machine

Scheduling,

Proportionate

Flowshops, and

Bandwidth Packing

Pongcharoen et al.

(2007)

DOE GA TSP

Ridge and Kudenko

(2007)

DOE and Desirability

Functions

ACO TSP

Gunawan et al. (2013) DOE, Response

Surface Methodology

and ParamILS (Hutter

et al., 2009)

SA Industry Spares

Inventory Optimization

Problem
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2.3. Instance-specific Parameter Tuning Strategies (IPTS)

As in the case of PCS, IPTS aim for an instance-specific tailoring of the parameters. At

the same time, these strategies use a fixed set of parameter values, as the PTS, avoiding

the need of modifying the metaheuristic algorithm and reducing the potential compu-

tational effort required to adapt parameter values during the algorithmic run. In order

to implement these strategies the relation between the parameter values and the perfor-

mance of the metaheuristic has to be analysed, taking into account instance features.

The next step consists in developing a mechanism able to use the features of a new

instance to recommend a set of parameter values. The key element is the selection of

instance features that are easy and fast to compute, and good at discriminating instances

on the shape of their fitness landscapes. These landscapes represent the relationship

between the objective function values and the parameters. This learning may take a

non-negligible amount of time, but it is assumed that this approach requires less com-

putational time than the PCS approach does. The procedure is shown in Figure 3.
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Figure 3: Scheme of IPTS.

Some contributions are included in Table 3. The number of works is low since it is

relatively new. As in the previous cases, they employ a variety of techniques and analyse

several problems.

Table 3: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Ries (2009) DOE and Fuzzy Logic Guided Local Search

and GA

TSP

Pavón et al. (2009) Case-Based Reasoning

and Bayesian Networks

GA Root Identification

Problem

Dobslaw (2010) DOE and Artificial

Neural Networks

PSO TSP
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It has been seen that the literature on the PSP is relatively diverse. However, more

research is needed to fully explore and compare the performance of different techniques

from statistics and operations research (OR), and to achieve that researchers and prac-

titioners become aware of the relevant effect that an adequate parameter-fine tuning

may have. In this paper we mainly focus on the parameter fine-tuning of metaheuristic

algorithms from an OR perspective. Notice, however, that the literature on parameter

fine-tuning of general algorithms is much more extensive, and it has been mainly devel-

oped by the computer science community. This community addresses a larger variety

of problems (not only of optimization nature), and tends to employ algorithms with a

larger number of parameters and to consider more complex and/or time-consuming ap-

proaches for setting the parameters of different types of algorithms, including searching

and classification algorithms, etc. Thus, for example, Ansótegui et al. (2015) or Hutter

et al. (2011) describe general but complex methods that can be used in the fine-tuning

process of several types of algorithms. These general approaches are rarely considered

by the OR community. Accordingly, one of the main contributions of this paper is to

provide the OR community with an alternative methodology, which is easier to use and

faster, and that can be employed to simplify and make more agile the fine-tuning process

of metaheuristic algorithms.

2.4. Approaches comparison

All approaches have different advantages. The dynamic adaptation of the parameter val-

ues that characterizes PCS usually provides better results. However, the computational

effort tends to be higher. On the other hand, the PTS approach is the easiest and fastest

to use, once a set of parameter values is selected. Although the code of the algorithm

is not changed, finding an adequate set may be also time-consuming. The last group of

strategies represents a compromise solution: it takes less computational time than the

PCS approach, but requires implementing a learning mechanism, for which statistical

learning skills are needed.

Therefore, there is no approach that stands out from the others. Probably, the most

adequate depends on the specific problem to tackle, the instances to solve, the avail-

able time and the skills of the researcher. Despite this fact, some general guidelines can

be formulated. PTS can be considered as the best option when working with robust al-

gorithms. Regarding IPTS, they are more complex than PTS but provide better results

when the algorithm is not robust. In case of prioritizing the algorithm performance, PCS

usually constitute the most recommendable approach.
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3. Our approach

We propose a methodology that follows the PTS approach. There are several reasons for

choosing it. Firstly, it is not computationally intensive, since it may focus on a subset

of instances. The inference from a representative sample of benchmark instances to the

whole set usually provides good results, specifically if the analysed algorithm is robust.

There are two conditions that imply robustness. First, the algorithm has to be little sen-

sitive to small changes in the parameter values, and second, the fitness landscapes for

different instances have to be similar. These conditions guarantee that the best set of

parameter values for one instance will probably provide good results for the others. The

high number of works following this approach, which cover several metaheuristics and

optimization problems, shows that many metaheuristic algorithms can be considered ro-

bust. Another reason for focusing on PTS is that there is no methodology based on this

approach and widely employed, but at the same time, there are plenty of techniques that

can be used. Some of them have been intensively tested as DOE and regression analysis.

However, others remain to be investigated.

Our methodology is based on clustering (Hastie et al., 2009) and DOE (Montgomery,

2012). These are two well-established techniques that can be easily implemented using

free statistical software. Clustering groups instances that have a similar fitness land-

scape. It facilitates the selection of representative instances and also provides informa-

tion that can be used to perform a more flexible fine-tuning if each group is treated

independently, i.e. exploring the fitness landscape of an instance to find a good set of

parameter values and applying it to solve the instances assigned to the same group. Re-

garding DOE, it enables experimenters to identify and quantify the effects of several

parameters and their interactions on the objective function value.

The remainder of this section presents a statistical learning based methodology to

obtain a list of sets of parameter values, and a more global procedure to validate and

assess its goodness.

3.1. General methodology

A four-step procedure is exposed herein. It is assumed that the experimenter has de-

scribed and modelled a problem, and has chosen the metaheuristic to tackle it and a set

of benchmark instances.

• The first step involves choosing a subset of the instances. Their fitness landscapes

will be analysed in order to obtain sets of parameter values that provide good re-

sults for them. The subset has to be representative as these sets of parameter values

will be used to solve the whole set of instances. An approach to select a representa-

tive subset is, firstly, to determine the instance features that have a major influence

on which set of parameter values is the most adequate, and then, choose the in-

stances in such a way that the feature values of the subset are representative of
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those of the entire set of instances. For example, if we have a parameter for which

its optimum value is known to depend on the instance size, a representative subset

of the instances will present the same proportion of instances of a given size that

the whole set does. This approach can be particularly difficult when there are sev-

eral non-independent parameters. A possible simplification for feature selection

consists of choosing those that are commonly used to discriminate instances of a

specific problem. Several examples can be found in the literature. Coy et al. (2001)

considered, when addressing the Capacitated Vehicle Routing Problem (CVRP),

the distribution of customers, the distribution of demand and the location of the

depot. Ries et al. (2012) studied the size, the distance metric, a ratio to describe

the shape of the area within which a set of cities is distributed and a measure of

clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially, for a

given number of randomly generated sets of parameter values, each instance is

solved several times using different seeds for the random number generator of

the algorithm (or only once if the algorithm is deterministic). Alternatively, the

sets could also be generated using more advanced statistical techniques such as

DOE. We consider the median of the objective function values found with the

same parameter values but different seeds. The median is a robust measure to

aggregate data, but many others could be employed. It is essential to remark the

importance that a seed may have in the performance of an algorithm (Juan et al.,

2015 and Czarn et al., 2004). Afterwards, feature scaling is applied to the values

obtained for each instance. Then, this data is used to cluster instances and select a

representative one from each cluster. These instances form the subset to analyse.

Although it is a computationally intensive approach, we think it is effective to

assess which instances show a similar relation between parameter values and the

performance of an algorithm.

For each instance of the subset, the steps ranging from the second to the fourth are

implemented as follows.

• The second step requires selecting the range over which each parameter can be set.

Some experience or knowledge about the problem and the metaheuristic may be

highly valuable. The ranges should be large enough to cover at least one set of pa-

rameter values that can provide a sufficiently good solution with a high probability.

On the other hand, a smaller range would allow the experimenter to describe more

accurately, with the same resources, the relationship between the parameter values

and the objective function value. If there is no a priori information about which

are the best regions of the parameter space, a suitable procedure is to perform a

rough and fast landscape analysis. Specifically, some possible combinations of pa-

rameter values can be selected and utilised to run the algorithm. The best results

will identify promising regions. There are several ways of choosing the combina-
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tions, as equally-spaced or randomly generated sets. This analysis holds a trade-off

between the computational time required and the reliability of the conclusions.

• The third step consists of designing an experiment. A Central Composite Design

is studied. Each metaheuristic parameter is considered a factor and the extreme

values of its range define the levels. According to this design, the algorithm is

executed also several times for each combination of factor values, each one with a

different seed.

• In the fourth step, a procedure is developed to search the neighbourhood of the

best set of parameter values found. Specifically, another Central Composite Design

centred on this set is applied.

Finally, the upshot is a list of recommended sets of parameter values, one per cluster;

in particular, those that reported the best results on the last step. The procedure is shown

in Figure 4.
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Figure 4: Outline of the procedure for parameter fine-tuning.

An extended proceeding (Figure 5) is described below in order to validate the list of

sets of parameter values obtained and analyse the results provided by it.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where K is the

number of clusters, is chosen as has been explained in the precedent section. Later on,

each instance of the subset used to select θ̂ is solved with the corresponding set of θ̂, and

with different sets, θ̄ j ( j = 1,2, . . . ,J) (equally spaced, randomly selected or relatively

close to the set of θ̂ according to some distance measure). To assess the performance

of a set of θ̂ in a specific instance regarding the other sets, the associated solutions

are compared. Given a decision level parameter r (1 ≤ r ≤ J + 1), if the rank of the

objective function value provided by the proposed set is equal or lower than r, then it is

considered a good set for that instance. Once all the instances of the subset are examined,

the proportion of them in which the corresponding set has been classified as good can

be calculated. θ̂ is validated by comparing this proportion with a predefined parameter
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p (0 < p < 1); if the proportion is higher, then the experimenter has enough evidence of

the quality of θ̂ to go on to test it with other instances in the next step.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart representing the proposed methodology. 
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Figure 5: Flowchart representing the proposed methodology.
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If θ̂ is not validated, the process has to be readjusted and restarted. This readjustment

may be done in several ways, some options are: checking the robustness and the ade-

quacy of the clustering, adapting the ranges, dedicating more resources to the search,

etc. The best strategy is problem-dependent. As a consequence, the choice should rely

on the opinion of the experimenter, who will have acquired valuable information from

the outputs observed.

Once the list of sets of parameter values has been labelled as valid, it is applied

for solving the other instances (each one with the set proposed for the representative

instance of the cluster where it has been assigned). To examine the effectiveness of the

procedure, it is desirable to compare the solutions with others reported in the literature

for the same instances, by performing the t-test for paired samples if data are normal,

or the Wilcoxon signed rank test otherwise. If the means (or the mean ranks if data are

not normal) do not differ significantly, it may be classified as a satisfactory outcome as

it will mean that the proposed methodology, automated and general, has been proven to

be competitive. If the results are unsatisfactory, the procedure should be modified and

reinitiated.

It is useful to consider that, since the available resources are usually limited, the

possible readjustments should be also limited (T represents this limit). Consequently,

the process may end without a satisfactory list of sets of parameter values. In this case,

the list which provides on average the best solutions will be accepted.

4. Experimental results

4.1. Case study: Biased randomization and ILS for solving the Multi-Depot

Vehicle Routing Problem (MDVRP)

In order to test our methodology, it was implemented to fine-tune the parameters of the

hybrid algorithm described in Juan et al. (2015), which combines biased randomiza-

tion and the ILS metaheuristic to address the MDVRP. A brief introduction to both the

problem and the algorithm are presented in this subsection.

The MDVRP is a variant of the well-known CVRP that consists in planning routes

to service a number of customers with a homogeneous fleet of vehicles that have a max-

imum capacity. All routes begin and end at one depot, where all resources are initially

located. The objective is to find a solution (Figure 6) that minimizes the total cost while

satisfying the associated constraints. Typically, these constraints imply that a single ve-

hicle supplies each customer and it cannot stop twice at the same customer. The MDVRP

integrates an allocation problem, in which the customers are assigned to one depot, with

several CVRPs, one per depot. In the test case, there is also a maximum number of ve-

hicles per depot and a maximum route length. It is considered a challenging problem as

allocation and routing issues are interrelated.
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Figure 6: Solution for a medium-size MDVRP with 4 depots (cylinders).

The algorithm follows several steps. Initially, a priority list of potentially eligible

customers is computed for each depot. The lists are sorted according to a distance-

based criterion. Then, they are randomized based on a geometric distribution and used

to allocate customers to depots. Afterwards, an initial solution is built by solving each

routing problem independently with a version of the Clarke & Wright’s Savings (CWS)

heuristic (Clarke and Wright, 1964). In short, CWS starts building an initial solution in

which each route includes just one customer. Following that, the heuristic considers the

possibility of merging two routes if the total cost is reduced. This operation is repeated

until no more merges are possible. For this project, the authors developed a biased-

randomized version (Juan et al., 2011); while the original seeks always the best possible

merging, this version applies biased randomization to select one merging (i.e., multiple

solutions can be obtained). In the next phase, an ILS procedure is implemented. A new

solution is computed by perturbing the current solution, which implies the reallocation

of a given percentage of customers. The new solution replaces the current solution if

the former is better. If it is also better than the best solution found so far, the latter

is updated. On the other hand, if the new solution is worse than the current one, an

acceptance criterion is applied and, consequently, the current base solution can still be

modified. This phase ends after a fixed number of iterations. Finally, a post-optimization

process is applied to the five best solutions.

This algorithm has three main parameters:

• bM: the parameter of the distribution assigning nodes to depots.

• bR: the parameter of the distribution selecting edges in the CWS heuristic.

• p∗: the percentage of nodes that are reallocated in the ILS phase.

Note that these parameters take values between 0 and 1.
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5. Implementation details

The first step is the selection of a representative subset of instances. Initially, 10 ran-

domly generated sets of parameter values, 7 seeds and the 33 benchmark instances

solved in Juan et al. (2015) were selected. Therefore, information from 2310 runs was

stored. Data from different seeds was aggregated by computing the median; then fea-

ture scaling was applied. The instances that were considered easy-to-solve, those that

presented no variation in the results, were separated. This was done to focus the analy-

sis on the instances for which results could be improved by fine-tuning the parameters.

Afterwards, a clustering using the k-medoids algorithm (Theodoridis and Koutroumbas,

2009) was performed. The range of values considered for setting the value of k was 2-

12. The final value was selected employing the average silhouette criteria (Rousseeuw,

1987). The composition of the clusters and the representative instances (or medoids) can

be observed in Table 4.

Table 4: Clustering of the benchmark instances.

Medoids Clusters

p01 p01

p07 p04, p07, p11, p18, pr02, pr05, pr09

p09 p03, p09, pr04, pr10

p17 p17

p19 p19

p22 p22

p23 p20, p23

pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

Once the subset of instances was formed, the second step, setting the ranges of the

parameters, was carried out. After a statistical analysis, it was concluded that just two

parameters, bM and bR, did significantly affect the performance of the algorithm. There-

fore, only those two parameters were studied. Five equally spaced values ranging from

0 to 1 were analysed for each parameter. Each instance was solved seven times (consid-

ering different seeds) for each possible combination of parameter values. The objective

function values were aggregated as before. Then, the values for other possible combina-

tions were estimated by linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter space

that included the lowest objective function values. In particular, the values labelled as

the lowest were those meeting the following condition:

Objective solution ≤ minimum value+β · (maximum value−minimum value)
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The value of β was set at a different value for each instance. More precisely, it was

the minimum value that encompassed, at least, 5% of the search space. Figure 7 shows

the contour plot and the area in which the search was intensified for each instance.

Figure 7: Contour plots of the medoids sorted from left to right, and top to bottom.
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Figure 8: Scheme of the FCC Design applied to the instance p01.

The next step was applying a design for each instance of the subset. It was performed

to better analyse the relation between the metaheuristic performance and the parameter

values. A Face-Centred Central Composite (FCC) Design was selected, as in most of the

cases the space parameter could not be expanded (since all parameters could only take

values between 0 and 1). Figure 8 displays the scheme for instance p01. The objective

function values for the same instance are represented in Figure 9.

Figure 9: Solutions of the instance p01.

Then, the neighbourhood of each set that provided the best solution for an instance

was explored applying another FCC Design, centred on that set and covering half of

the area analysed with the previous design. The sets that finally presented the best per-

formance were stored. They are outlined in Table 5. Random values were assigned to

the instances that did not present variations in the results when changing the parameter

values.
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Table 5: Proposed list of sets of parameter values.

Medoids Clusters bM bR

p01 p01 0.513 0.501

p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372

p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random

p19 p19 0.443 0.378

p22 p22 0.001 0.231

p23 p20, p23 0.449 0.250

pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07,

pr08

0.500 0.231

p02, p12, p13, p14, p16, p21 random random

5.1. Results

The following parameters were chosen to validate the list of sets: J = 10, T = 3, α =
0.05, r = 6, p = 0.7. The number of sets randomly generated was fixed considering

the trade-off between the reliability of our comparisons and the computational time

required. The number of iterations was set considering only the time available. The

significance level is the one most commonly used in the literature. The value of the

fourth parameter is the mean rank that could be expected due to randomness with 11

solutions (1 set proposed and 10 randomly generated). The last parameter was calibrated

to force the algorithm to provide good results at most of the instances.

The algorithm was run 7 times with different seeds for each combination of param-

eter values, the medians and the minimum values were stored. The ranks of the results

obtained are detailed in Table 6. Ties receive a rank equal to the average of the ranks

they span, shown inside the parentheses.

Table 6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)

p01 1 3.5 (1-6)

p07 5 3.5 (1-6)

p09 2 2

p17 2 (1-3) 1

p19 6.5 (2-11) 10.5 (10-11)

p22 11 11

p23 1.5 (1-2) 1

pr06 5 1.5 (1-2)

Valid instances 0.75 0.75
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Table 7: Sets of parameter values for comparison.

bM bR p*

Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

Table 8: Instances experimental results.

Inst.
OR medians

(1)

OR, minimum

values (2)

JR, medians

(3)

JR, minimum

values (4)

% Gap

(1)-(3)

% Gap

(2)-(4)

p01 585.000 576.866 593.829 576.866 −1.509 0.000

p02 480.261 476.660 480.261 476.660 0.000 0.000

p03 644.464 641.186 649.229 641.186 −0.739 0.000

p04 1022.085 1019.570 1024.473 1024.062 −0.234 −0.441

p05 760.341 756.281 764.325 754.882 −0.524 0.185

p06 882.827 879.072 880.418 879.763 0.273 −0.079

p07 899.709 897.974 906.395 897.974 −0.743 0.000

p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176

p09 3920.743 3906.561 3923.248 3900.274 −0.064 0.161

p10 3706.763 3667.344 3705.012 3687.054 0.047 −0.537

p11 3598.972 3584.691 3592.891 3585.690 0.169 −0.028

p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000

p15 2573.393 2556.846 2573.393 2557.528 0.000 −0.027

p16 2605.565 2585.373 2605.565 2600.099 0.000 −0.570

p17 2720.231 2714.663 2725.799 2725.799 −0.205 −0.410

p18 3831.996 3806.783 3835.388 3806.783 −0.089 0.000

p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058

p20 4080.348 4074.779 4091.482 4091.482 −0.273 −0.410

p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000

p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346

p23 6134.441 6128.873 6145.576 6123.306 −0.182 0.091

pr01 861.319 861.318 861.319 861.318 0.000 0.000

pr02 1330.495 1310.679 1331.543 1314.364 −0.079 −0.281

pr03 1813.634 1813.634 1814.452 1813.634 −0.045 0.000

pr04 2084.843 2077.582 2089.785 2079.832 −0.237 −0.108

pr05 2379.075 2359.947 2379.797 2368.525 −0.030 −0.363

pr06 2709.792 2693.680 2713.593 2696.504 −0.140 −0.105

pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000

pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020

pr09 2148.216 2147.192 2153.317 2142.650 −0.237 0.212

pr10 3016.255 3008.129 3028.606 3014.874 −0.409 −0.224
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According to our methodology, the list of sets can be considered valid as it presents

a rank equal to or below 6 in 75% of the analysed instances, both considering medians

and minimum values. In order to test our results, the algorithm was executed with the

parameter values suggested in Juan et al. (2015). Both series of results are comparable

as were obtained using the same computer and stopping criteria based on the number of

iterations. Table 7 presents the parameter values used in the aforementioned paper. In-

stead of setting fixed values, the authors introduced randomness by employing uniform

distributions. The lower and upper bounds were selected after some tests.

Table 8 shows the results obtained solving all instances with the proposed list of sets

(our results, OR), and with the set proposed in Juan et al. (2015) (indicated as JR in the

table).

6. Discussion of the results

The comparison of the solutions shows that our procedure achieves better results in

most of the instances. Table 9 presents the average and the standard deviation of the

differences, and the p-values of the test to compare the mean ranks of the results. It is a

non-parametric test as the null hypothesis of the Shapiro-Wilk test, a test of normality,

was rejected in all cases. The means are negatives, indicating that our methodology

provides better solutions. The p-values reveal that the differences of the mean ranks are

not statistically significant. Even though, the magnitude of the mean difference can be

considered relevant in the context of the MDVRP.

Table 9: Means and standard deviations of the differences and statistical tests.

Mean of the

differences

Standard deviation

of the

differences

P-value of

the comparison

of mean ranks

All instances
Medians −0.149 0.330 0.954

Minimum values −0.070 0.219 0.980

All instances except

the studied subset and

those not analysed

Medians −0.117 0.247 0.942

Minimum

values
−0.100 0.217 0.942

Results on all instances except the subset of representative instances selected ini-

tially and those not analysed because of the null variation of their results allow us to

demonstrate the good performance of our methodology, which is not directly attributed

to the instances deeply studied but to their representativeness, without considering the

changes in the instances that where discarded, which are due to randomness.
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7. Conclusions

This paper has addressed the Parameter Setting Problem which, due to the relevance of

metaheuristics in a number of fields, is increasingly getting more attention.

We have presented an overview of the main approaches: Parameter Control Strate-

gies (PCS), Parameter Tuning Strategies (PTS), and Instance-specific Parameter Tun-

ing Strategies (IPTS). While PCS dynamically adapt the parameter values during the

resolution of an instance, PTS leave the parameter values fixed and employ them to

solve several instances. IPTS represent a compromise solution, the parameter values are

not modified during the search but they can be different for each instance, depending

on its features. The benefits and pitfalls of each approach have been discussed. In ad-

dition, a new methodology which stands out for being automated and, problem- and

metaheuristic-independent, has been presented. It incorporates techniques of clustering,

which allows splitting the set of instances and, as a consequence, gives more flexibility

to the fine-tuning by analysing each subset independently, and design of experiments.

As a result, we have developed a methodology that avoids the strictness of common

PTS, which present only a set of parameter values, and the need of modifying the main

algorithm and spending more time on the resolution of instances that characterizes PCS.

At the same time, our methodology is simpler than IPTS as it does not require a learning

procedure able to recommend an instance-specific set of parameter values. In order to

illustrate and test our methodology, it has been applied to a hybrid algorithm. The case

study provides promising results.
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