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Abstract. In this work, we review the main subjects that we have to serve to
build an image classifier, then we design and implement a system to classify
identity documents. Especially relevant is the description of the workflow that
we have come up with after several ways of approaching the problem and which
we hope can serve other machine learning practitioners. We evaluate some fea-
ture extractor algorithms to find the most suitable for identity documents classifi-
cation purposes. Using virtual machines on the cloud, we run feature extractors
in parallel to label at a speed of 16 images/s. Then, we select a neural network
architecture and hyperparameters to train a convolutional neural network. Our
results give an accuracy of 98%. We detail the responses of the convolutional
filters over the images. Results and source code in the appendix.
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1. INTRODUCTION

1. Introduction
1.1. Work form

Tı́tol del treball Classification of identity documents using
a deep convolutional neural network

Nom de l’autor Pere Vilás Marı́
Nom del consultor Lourdes Meler Corretjé
Nom del PRA David Garcı́a Solórzano, Jose Antonio Morán Moreno
Data de lliurament 01/2018
Titulació programa Grau de Tecnologı́es de la Telecomunicació
Àrea del treball final 11.602 TFG- Aplicacions multim.

basades en processament del senyal
Idioma del treball anglès
Paraules clau machine-learning, computer-vision, image-classification

Resum del treball En aquest treball, repassam els coneixements que necessitam per con-
struir un classificador d’imatges. Després dissenyam i implementam un sistema per clas-
sificar documents d’identitat. És especialment rellevant la descripció del flux de treball
al qual hem arribat després d’aproximar-mos al problema des de diferents vessants. Es-
peram que l’experiència pugui servir a altres practicants de machine learning. Avaluem
alguns algorismes d’extracció de caracterı́stiques per identificar el més adequat per clas-
sificar documents d’identitat. Usant màquines virtuals al núvol, hem executat extractors
de caracterı́stiques en paral·lel a una velocitat de 16 imatges per segon. Després, hem
seleccionat una arquitectura i uns hiperparàmetres per entrenar una xarxa neuronal con-
volucional. Els nostres resultats ens donen una precisió del 98%. Detallam les respostes
dels filtres de convolució sobre les imatges. Els resultats i el codi font estan disponibles
als apèndix.

Abstract In this work, we review the main subjects that we have to serve to build an image
classifier, then we design and implement a system to classify identity documents. Espe-
cially relevant is the description of the workflow that we have come up with after several
ways of approaching the problem and which we hope can serve other machine learning
practitioners. We evaluate some feature extractor algorithms to find the most suitable for
identity documents classification purposes. Using virtual machines on the cloud, we run
feature extractors in parallel to label at a speed of 16 images/s. Then, we select a neural
network architecture and hyperparameters to train a convolutional neural network. Our
results give an accuracy of 98%. We detail the responses of the convolutional filters over
the images. Results and source code in the appendix.
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1. INTRODUCTION

1.2. Introduction

As an example of image classification, we could help to classify the pictures of a group of
zoologists working into the African savannah. We could have a database with one image
and a category of each of the different wild animals:

Figure 1. Animal database: each animal has an image and a category

We would create a system for the zoologists that, given an image of an animal, will clas-
sify it into the right category and give its probability.

In our case, (fig. 2) we have taken an image of a gazelle, and the system gives us the right
category of the animal. Each input image would be sorted by only one category of a set.
So it is a problem of multi-class, single-label classification.

Figure 2. Given an image, get the category

To endow this work with some industrial interest, we have decided to design a classifica-
tor of identity documents although we hope our techniques should serve other people to
perform different classification jobs.

Figure 3. Training the network

It works in the following way: first we take many samples of the same document and
assign them a label; ESP-BO-03001 for example. With these samples we train a structure
called convolutional neuronal network and keep it. Subsequently, through a process called
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1. INTRODUCTION

inference, we use that network to predict the category of a document never seen by the
system.

Figure 4. Making inference with a new document

We have divided this work into four parts: first, we will describe the areas of knowledge
that we must know minimally to create an image classifier. Then we will explain a pos-
sible design and its implementation. Finally, with the acquired experience, we will give
some ideas of how to extend the classifier.

1.3. Objectives

Our objective is to create an image classification system using a deep convolutional net-
work.

This system will be specialized on identification documents like id cards, passports, driv-
ing licenses, etc.

We aim to an accuracy equal or greater than 95%.
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2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

2. What we need for image classification?
2.1. Previous knowledge

We need some understanding of several areas as mathematics, optics, electronics and
programming.

Regarding mathematical knowledge, to achieve enough comprehension about the field it
is only necessary a reasonable level of calculus, algebra, and statistics.

Some idea about how an image is captured an digitized can help. Some concepts about
lenses, focal length, aperture, optical aberrations and scene illumination would be use-
ful. In electronics, it would be using the idea of CCD, CMOS capture device, quantum
efficiency or spectral response (QE).

Obviously, we would need to program a computer to do the classification task. The stan-
dard languages on machine learning (ML) are C and Python.

On the field of machine learning, we would need the concepts of supervised and unsuper-
vised learning and the characteristics of each of the algorithms.

A reasonable level of calculus is necessary to understand the error minimization tech-
niques as gradient descent. We need the concept of partial derivatives as we will often
work with multivariate functions.

Regarding algebra, we will use the vectorized form of most equations because the rep-
resentation is more compact and easy to understand. The matrix representation of the
features of the study subjects is natural to us. Moreover, as we do need lots of data to feed
our models, the matrix form becomes the best option to handle it.

Years of investigation in the field have produced very highly optimized algebra software
libraries that perform the calculations easy and even run the tricky algorithms in a pre-
dictable and numerically stable way.

An essential concept taken from signal processing, called signal convolution, is used in
machine learning although in a slightly different way. As an image convey 2D informa-
tion, we can apply 2D matrix-based filters to increase or attenuate the image signal on the
features we are interested in.

Machine learning is heavily based on mathematical statistics. We use concepts of this
subject as the probability distribution, regression, maximum likelihood, and entropy.

We would need the concepts of image distortion, histogram, equalized histogram, color
spaces, contrast, filters, deskew and image file format.

The use of GPU,s to do these calculations is one of the keys to the rise of the machine
learning (ML). In ML, the GPUs are not much more used than matrix-multiplicators-and-
adders. The high memory bandwidth permits to load and calculate amounts of data, but
the principal difference with traditional CPUs is that GPUs can perform these calculations

10



2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

in very a parallelized way.

The brand NVIDIA is the the-facto standard in ML due to the availability of the CUDA
programming library that makes relatively easy to perform these calculations on it.

Concerning cost, in these moments (Novembre 2017), one high-end computer graphics
card to play games (and more serious work!) like the NVIDIA GeForce GTX2800Ti has
the following specifications:

• Architecture: Pascal
• Memory: 12GB GDDR5X, Interface 384 bits, clock 10GHz, Bandwith 480GB/s!
• Cuda cores: 3384

And the cost is less than 800$ [40].

But the new and powerful Titan V, with Volta architecture, can peak to 100 TeraFLOPS
and outperforms the last generation on ML operations in a factor over 10! In Europe it’s
3.100C.[25]

Of course, not all algorithms can be vectorized and optimized for GPUs. In these cases,
we can use multi-core CPUs or other forms of parallel computation.

2.2. Machine Learning

We are profiling the workflow of ML categorization projects. First, we need the categories
where the input images will correspond. Then, we need a significant number of examples,
categorize them and use them to train our estimator model or hypothesis. Finally, we
can use the trained model to predict the category of new inputs never seen by the model.

Once we have the data labeled (categorized), we take one part to train the model and other
to test the trained model. The data we use to teach the model is called training dataset.
Also, the information we use to check the model is called test dataset.

2.2.1. ML primer

We are going to introduce machine learning from the perspective of their application to
solving our classification problem.

Given the data labeled, we then make a hypothesis of what features of the input data
prompt the outcome (in our case, the category). This assumption h can be a linear, poly-
nomical, exponential or any other type or function of the input features.

h : X → Y

Were h is the model, X = (x1, x2, ..., xn) are the input feature (the input image or some
extracted features) and Y is the outcome of the model (the category in our case). We

11



2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

denote x(i) the i− th input (image) and y(i) the output of the model when the input is x(i).
x(i) can be a vector (or matrix) of features. Both X and Y are also called tensors.

When the target variable y to predict with the hypothesis h(x) is continuous we call the
problem a regression problem, when the outcome is a discrete variable we call it a classi-
fication problem.

If we assign an ordinal position to each of the possible outcomes (categories) of the model,
then y(i) can be an array that is non-zero in the position of the class (this is named a one-
hot vector representation).

The input dataset has a size of m inputs of (x(i), y(i)) tuples. In our case, the x(i) are the
images (or a set of features of the images) and y(i) is the category of the image i encoded
as one-hot matrix.

2.2.2. Regression

To simplify, let’s suppose we hypothesize that the output is a linear function of the input
as in

hθ(x
(i)) = θ0 + θ1 x

(i)

Let’s define the cost function J(θ0, θ1) as the average quadratic difference between our
hypotesis and the real outcome,

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2

Sometimes the results of this function are named the loss.

2.2.3. What Machine Learning really is

Much of Machine Learning sutff is related on how to find the parameters (θ0, θ1, ..., θn)
that minimize the cost function J of the hypotesis.

2.2.4. Minimize the cost function

The most used method to find these parameters is to repeatedly take small steps α of each
parameter in the opposite direction given by the partial derivative of the hypothesis
function for that parameter. Eventually, we will reach a (global or local) minimum when
the parameters converge. The algorithm can be expressed as:

12



2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

repeat until convergence:

θj := θj − α
∂

∂θj
J(θ0, θ1)

where j ∈ {0, 1} is the feature index number and α is the learning rate or also called the
step.

Note that in our linear example θ0 is a constant, so its partial derivative is zero and for
parameter θ1 the ∂

∂θ1
J(θ1) part will tend to zero as we will approximate to the bottom of

the cost function thus the algorithm converge because we get:

θ1 := θ1 − α ∗ 0

This method is called gradient descent.

2.2.5. Regression for classification

For classification tasks, we do not use a linear regression model but another called logistic
regression model. It is a binary model that only gives us the probability that an input
belongs to an output domain.

Our hypotesis will be now hθ(x) = σ(θTx) being θT the transposed parameter matrix of
the hypotesis and σ the logistic function defined as:

σ(z) =
1

1 + e−z

The cost function for the logistic regression is similar to the regression one.

When we have several output categories (multi-class classification), we run the logistic
regression on each class versus the rest. We call these probabilities logits and we will use
the maximum entropy function to create a one-hot array that will contain a “1” on the most
likely category and zeros in the others.

2.2.6. Large number of features and non-linear hypotesis

When we work with a small number of input features may be we can find a hypothesis
(parametrized linear or polynomic combination of the input features) that fit with the
output, but when this number is large it would be impractical or impossible to find any
model.

2.2.7. Neural networks

An alternative method for this case are the neural networks (NN). The name comes from
the similitudes with that we know of the brain operation.

13



2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

A neuron receives weighted inputs wi (the parameters called θ in the literature about
regression) from the input xi or other neurons and activates his output based on some
“activation” function, e.g., surpass some threshold (step function). That is, the output of
the neuron will be 1 if

∑
j wixi > threshold and 0 otherwise. In matrix notation we can

simplify
∑

j wixi to WX +B > 0 with B is the threshold or bias. When the bias is high,
it is easy for the neuron to fire a 1 and if it is very negative, it is difficult.

It is stated that an NN can model any non-linear function[24].

When the activation function is a sigmoid σ(x) the output the neuron will be:

1

1 + e−
∑

j wjxj−b
∈ R

Moreover, the transition will be more smoothly than the with the step function. In this
form, the neuron returns a real number and has the property that small changes in weights
∆wi or bias ∆b excite a little change in the output.

Another widely used activation function is the Rectified Linear Unit(ReLU) that returns
0 for negative inputs and the same value for positives, that is it max(0, x) or

f(x) =

{
0 for x < 0

x for x ≥ 0

The cost function of an NN is similar to the logistic but taking all the “connections” into
account[23].

To minimize the cost function, we will use a quick version of the gradient descent called
stochastic gradient descent. We use only some randomly chosen samples and average
them to calculate the gradient.

An NN can have many layers of many neurons. These are named deep neural networks
(DNN). An algorithm named backpropagation is used to train them.

On the output layer of the NN we have real numbers but as we are making a classificator
it is better to transform these numbers to probabilities. That is, to represent a categori-
cal probability distribution over k different outcomes. We can use the softmax function
defined as

σ(z)j =
ezj∑
k e

zk
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2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

2.2.8. Overfitting and regularization

When we are finding a hypothesis that explains the distribution of the data it could appear
the phenomena of overfitting.

On the figure 5, we observe that the green line gives us the best accuracy on this exact set,
but it is the black one that generalizes better for new input data. One solution is to smooth
the green curve by regularization.

Figure 5. Overfitting. Credit: wikimedia/Chabacano

2.2.9. Convolution

When we are talking about the input feature array x(i) we speak about a one-dimensional
matrix. We feed the estimator with this vector and use the outcome to train it. However,
what about 2D information like images?. In this case, we can flatten the 2D image array
into a larger 1D by concatenating the rows. Sure this will work but, unfortunately, we will
lose the spatial relations that are intrinsic to the images[7].

A typical operation taken from maths and discrete signal processing although it is not
precisely defined in the same way is the convolution. We slide a signal, kernel, filter or
feature map h over an input signal (an image x), multiply element by element and then
add them up.

More graphically, if we have an input image I and a kernel K, the convolution of the two,
I ∗K, will be like in fig. 6.
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2. WHAT WE NEED FOR IMAGE CLASSIFICATION?

Figure 6. Convolution I*K

Note that, in this case, we have deleted the borders of the image that do not fit into the
dimensions (3 × 3) of the filter. This way to apply the convolution is named “valid”
convolution.

As we do not flip the kernel before slice it (like in signal processing) the operation is the
same that a cross-correlation and can be written as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

By designing these filters, we can amplify (increasing or attenuating) some features con-
tained in the 2D information of the image. That is it,

the convolution operation works increasing the signal of one feature while
attenuating the rest

An essential property of the convolution is the equivariance to translation[4]: if we shift
the input image, its correlation will be proportionality moved.

Typical examples are the gradient-based edge filters, gaussian blur, color filters and much
more. In any way, applying filters to an image gives us a higher level of abstraction as we
extract features in a way similar that our brain does.

A convolutional neural network (CNN) is an NN that uses the convolution operation in
one or more layers. For a comprehensive review of their use in image classification see
[Rawat and Wang] [5].

2.2.10. Pooling layers

A convolution layer is typically followed by a Pool layer that summarizes some rectan-
gular area e.g. max pooling returns the max value of a neighborhood.

Unlike convolution (cross-correlation) pooling has some invariance to small translations
because it takes a statistic of a particular area.
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Pooling layers capture essential information, and it reduces the size of the next network
layer. We will need pooling on the last layer of a categorization network as it will have a
fixed number of neurons.

2.2.11. Other ML tools

We can include some other tools in our arsenal to make the machines learn.

KMeans

When we have much unlabeled data, and we want to cluster it automatically, we need
some unsupervised learning to do the task.

Kmeans accepts an initial number of cluster centroids[30] and for each data sample, recal-
culates the position of each centroid minimizing the inertia (the quadratic sum of cluster’s
distances). The final result will be that the initial set is classified in groups of equal vari-
ance.

Figure 7. Clustering digits dataset. Credit: scikit-learn

Regarding our problem of how to label a bunck of images, perhaps we can use kmeans to
have an initial classification.

SVM

Support Vector Machines is classification algorithm[29]. It is said it belongs to the group
of supervised learning methods because we can use it when we already have the data
labeled and want to classify new one. SVM tries to distribute the data taking the maximum
(hyperplane) distance between the points of another class.

We can use different kernels that would best fit according to our target features: linear,
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polynomial, and RBF or even create our kernel.

Figure 8. Apply SVM with different kernels to the same dataset. Credit: scikit-
learn

2.2.12. Principal component analysis (PCA)

With PCA we can reduce the dimensionality of a tensor. The new set is an orthogonal
transformation of the original, and the first component retains the maximum possible
variance, the second component the second maximum and so on.

The method was invented by the statistician Karl Pearson in 1901[38]. It is also called
Karhunen-Loève transform (KLT) in signal processing or Singular Value Decomposition
(SVD) in mechanical engineering.

On the figure, we show the projection of the two principal components of the four that
have the IRIS[31] (a type of flower) dataset. Note that in this situation we can easily apply
an SVG to classify new flowers. We have simplified the dataset while retaining most of
the variance.

2.2.13. The importance of good datasets in image ML

As we can see, gradient descent only works if we have a large dataset to train the network.
The Learning part is done by automatically fine-adjusting the parameters wi, but as the
steps are so small we need a large number of examples to capture the subtleties of data
like images. Shall we finish this chapter with this idea in mind:

The predictor will be better trained as more well-labeled data is provided.
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Figure 9. Example of PCA. Credit: scikit-learn

2.3. Computer vision

According to the wikipedia[36], computer vision (CV) is an interdisciplinary field that
deals with how computers can acquire, process and analyze images to produce numerical
or symbolical information.

As vision is the primary sense, humans use to get information about the world. Many
studies are dedicated to how we can reproduce this behavior on a machine.

The broadest used library in CV is OpenCV. Initially developed by Intel, now is in public
domain. It is written in C but has links in python. The python links are easy to use than
C, but not all modules have the bindings. In these moments, there are not python binds to
the CUDA modules (to use the GPU).

2.3.1. Feature extractors

To characterize an image, we try to extract some features that uniquely describe the model
and helps us to both differentiate from others or search other similar photos. These unique
features can be corners or abrupt changes of color.

When we find these unique parts of the image, it is said to perform an image feature
detection. To get the ability to find the same features on other images, we need the
characteristics of the region around the key point. This is called feature description.

It is important to note that all the feature extraction methods that we are going to describe
have some degree of invariance to scale and rotations.

Corners are useful descriptors, and there are the Harris and Shi-Tomasi algorithms to
locate them although there are not invariant but these methods also suffer in changes of
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illumination.

In 2004, David G. Lowe[1] wrote a paper describing a method to extract distinctive key
points from images instead of having changes in orientation, scale, illumination or noise.
A kind of mini-revolution became in this field because this method[32] allowed us to find
images in image sets or other pictures by matching the key points.

Unfortunately, the algorithm, like others as SURF was patented in the USA, but it was the
beginning of a whole new area of investigation.

The OpenCV[27] library comes with a free feature extractor named ORB (Oriented FAST
and rotated BRIEF) and other designated BRISK. It was delivered by Ethan Rublee[6] and
others in their paper ORB: an efficient alternative to SIFT or SURF in 2011. It is faster
than SIFT and takes ideas from other extractors like FAST and BRIEF.

The latest algorithm included in the OpenCV library is KAZE[2] and its fast version
AKAZE[3], created by Pablo F. Alcantarilla of the University of Alcalá and others.

Let’s see an example of both extractors, AKAZE and ORB:

Figure 10. Example of AKAZE on the left and ORB on the right.

Image capture hardware

Some capture hardware that can be:

• a table scanner
• a traditional photographic camera (handheld or with support)
• a mobile phone
• a video camera

Each system has with its particular combination of lenses, sensor, movement compensa-
tion and image processor.

It is also crucial the illumination of the scene that ideally would be uniform and with and
spectral composition that match with the sensor used. Regarding this, some id documents
are sensitive to the ultraviolet light.

A high-quality table scanner is the best scan option. Some documents like the passports
are likely to be bend when scanning it because of the cover.
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Blur

The photography terms unfocused and blurred are easy to interchange because their ef-
fects on the image are very similar, but the phenomena is caused by different things:

• Unfocus is due to the lack of coincidence of the focal plane and the sensor plane.
• Blur is caused by the movement of the sensor while capturing the image mostly

because of the shutter movement.

In an out of focus image (or image area) the energy of a light ray is spread across a non-
punctual area (a circle of confusion). To blur a picture, we convolve it with a kernel that
follows a Gaussian distribution. The effect is attenuate high frequencies (low-filter), and
that resembles an out-of-focus image.

Motion

When we extract the document from the scanner before the scan is terminated, it can
appear a distortion named motion (linear).

Low contrast

Low contrast is one of the more significant problems when obtaining images in a non-
controlled environment as it depends on the scanner quality, the illumination of the scene
and the physical state of the document.

The contrast of an image is the difference between the maximum and the minimum lumi-
nance. It is also essential the distribution across the available range (the more variance,
the better). When the range is small or bad distributed, there isn’t enough information to
distinguish one object from another.

Salt-and-peeper noise

This type of noise can come from a low illuminated scene. The number of photons
counted by each photocell is proportional to:

• the illumination of the scene
• the area of each photocell
• the sensor spectral response
• the exposure time (more time, more photons can be counted)

In low-quality scanners or mobile phones noise can appear mostly because of the thermal
noise of the sensor counting photons that are not there. Moreover, in low light conditions,
the SNR will be low and the noise will be more relevant in the final image. It is said
that median filters can remove some of this type of noise but at the cost of change image
properties that help extractors.

This type of noise is not usual on high-quality table scanners or high-end cameras.

Partial occlusion
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This case can be tricky depending on the area occluded (see fig. 11).

Figure 11. Occlusion

2.3.2. Other feature descriptors - HOG

There are other feature descriptors available. The histogram of oriented gradients[37]
(HOG) is intended to recognize objects (like pedestrians) on a scene and it is scale invari-
ant.

HOG counts occurrences of gradient orientations in the image that will represent shapes.
Because it only takes the gradient and not the absolute value, it is resistant to changes in
illumination. (See fig. 12)

Figure 12. HOG example. Credit: scikit-image.

2.3.3. Feature matchers

When the features were extracted, we would found which picture on the target data set is
more similar.

The feature extractors return tuples of (key point, point-descriptor). The key point con-
tains the coordinates of the point, and their descriptor provides information about the
point[28].
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On the ML field, we call

• query image to the input image that we want to match
• train image (or trained image) to each of the images we have labeled.

We usually create a matcher object and then use it over several query and train images.
Doing this will save us some initialization time but has some issues in multiprocessing as
we will see in short.

We establish a threshold to the correspondence between descriptors (Dr. Lowe paper pro-
posed 0.7) to take it for good. Besides, we give a minimum number of descriptor matches
as a low number could be a spurious correspondence.

If we set these parameters high, we could not find a document match, but we will avoid
false match (wrong labeled documents). If we set the parameters low, we will have more
document matches, but they can be wrong.

To calculate the distances between points, we will use the L2−norm (Euclidean)[34] for
methods that returns vectors of real-valued distances and the Hamming distance[33] for
methods that return a binary vector (like ORB).

The matcher return a set dmatch objects with the following attributes:

• distance between descriptors (lower is better)
• trainidx is the index of the descriptor in train descriptors
• queryidx is the index of the descriptor in query descriptors
• imgidx index of the train image

We have two types of matching algorithms: brute force and FLANN.

Brute force matcher

Brute force matchers will examine each of the points on the query image and try to match
it with each of the train images; only the closest points will be returned.

knn Matcher

FLANN stands for Fast Library for Approximate Nearest Neighbors. It uses a series of
optimisations (trees) to search neighbors points and performs better than brute force on
large datasets.

2.3.4. Homography

To find an object image into another image we use homography. The query image can
have the document rotated, translated or in other plane orientation. The homography
operation returns the affine transformation we need to transform the query image plane
into the train image plane.
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Given this affine transformation, we can project the query image into the target image
plane to rectify it. In OpenCV we can use cv2.findHomography and
cv2.prespectiveTransform functions to do it.

2.4. NN frameworks

To later train the NN we can use one of these two libraries.

2.4.1. TensorFlow+keras

TensorFlow[18] from Google is widely used, and there are much code examples and
documentation. Keras[11] facilitates the implementation of the model graphs and the
training.

2.4.2. Mxnet+gluon

Mxnet[17] is the open source ML library from Apache Software Foundation. There is
only one place to get information, but it is very well documented with lots of jupyter
notebooks. Gluon[16] is the keras equivalent for mxnet.

2.5. Preprocess the images

Before post an image to the feature extractor and matcher it would be convenient to rectify
it. It takes less time to calculate the homography and we are surer that we are using
consistent data. If the scan comes from a table scanner, it is common that it is rotated.
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3. Design
As it has been said, we will use a convolutional neural network to classify the documents.
Our first task is going to be to create the image database to train this network.

Create database Train network Save trained network

Figure 13. Build the network

The training itself consists of model, train, validate and test our classifier with the database.

Once the network is tuned, in a second phase, we can load it and use it to make inferences.

Load trained network

Inference

Prediction

New image

Figure 14. Use the network inference

3.1. Database creation: getting and labeling the data

With no doubt, if we are creating a classifier from scratch, the primary job is to collect,
organize, categorize and label the sample images. It is worth to spend enough time in
design the strategy to make the sample set.

The accuracy of the neural network classifier will increase with the number of samples
and their variance[8].

In general, we start finding the images for any method like:

• image databases
• Internet
• taking the images for ourselves
• scanning paper-based docs
• etc.

From the first bunch of images, the first step will be to infer the categories in which the
images will fall.
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One initial condition of the problem would be the availability of a category index of
images, that is it, a set of already labeled images (one image is enough). An example
will be a marked image of each terrestrial mammal of the savannah if we are classifying
pictures of these animals. In this case, we can get the category by comparing a given
image with all the index using some comparison method.

There are some known methods to compare two images, but the most used are the com-
parison of histograms and the feature extractors.

Given the characteristics of the expected input images (id-documents took in unknown
conditions of light, resolution, exposure) the histogram method can be discarded.

Regarding the feature extractors, they work relatively well, but they take enormous amounts
of computing time. Moreover, this kind of algorithms are not easily vectorizable, and
thus they are not appropriate to implement them on a GPU although they exist in the
same opencv library (there is not a cuda-AKAZE). Fortunately, we can extract image
features in parallel using several regular CPUs.

The features of two images can be compared (they are invariants to the size of the images)
and thus calculate the percent of feature matches as an estimation of the likelihood that
the two images belong to the same category.

One time we had an image index (see 3.1.6), our next step will be to pre-calculate the
features of the index images to speed-up the matching process.

3.1.1. Tagging the images

We will explore three techniques to tag the input images:

HOG+Kmeans

Basically, we calculate the oriented histogram of the images and cluster them with kmeans
in order to be able to visually identify the category of the images next to each centroid.

Algorithm 1 Tagging with HOG+Kmeans
for all images do

Calculate HOG of image
end for
Cluster HOGs with kmeans
Visually identify the document model of the cluster and assign it to members next of
the centroid
Check or discard images not belonging to any category

Image feature extraction+Kmeans

Could be better than HOG as the precision increases but impractical with a large number
of documents because of the kmeans initialization. This method can be adviseable when
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we know the number of categories before the clustering.

Image feature extraction+kNN Matching

Can be a good option but at the cost of calculate the features of all images (set and index).
The k-nearest neighbor should be a good matcher option for a large number of files. The
number of matching points over the total can be used as a probabilty.

Algorithm 2 Tagging with AKAZE+kNN
for all index images do

Extract AKAZE features
Save index features as a separate file

end for
for all images do

Extract AKAZE features
Save features as a separate file

end for
for all feature files do

for all index files do
matches:=kNN(feature file, index file)
prob:=len(matches)/total keypoints
if prob > THRESHOLD then

assign index category to image
end if

end for
end for

Whatever the method we will take, we will need to supervise the results manually. We
find the maximum quality of our training dataset as it is critical to get good results later.

3.1.2. Creating the category index

If we do not have an index set, we can first try to cluster the images with some clustering
algorithm like kmeans[26] and then manually infer the labels. Unfortunately, kmeans
does not work well if we do not have an initial estimation of the number of categories or
this number is higher and the images are similar between classes.

Algorithm 3 Extracting categories from a bunch of images
guess an initial number of different documents
cluster images with kmeans
visually identify the clustered documents
label all the documents of the same cluster with the same label
visually inspect all documents to check if the label is correct for all documents

In our experiments, we had a kind of reasonable results by first extracting the features of
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all images and then try to cluster them. Then, we manually checked the clusters identify-
ing the images nearest to the centers and created the categories.

bunch of images apply k-means
manually check

 clusters
create one label

 for each category
labeled image index data set

Figure 15. Build the category index

3.1.3. Categorizing the images

Once the index built, we would apply the feature matching methods.

Bunch of images

Extract features

Matching

Match?

Assing this category
 to this image

yes

Create new category

no

Category feature index

Labeled image data set

Figure 16. Categorizing process

As we cannot be sure that with the last step we have created all the categories, we can
tune our category index and at the same time label all the images of the dataset with the
following process:
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Algorithm 4 Categorizing the images
1: img:=1
2: while img ≤ numImages do
3: get image number img
4: if find a match with the index then
5: assign the category label to the image
6: else
7: create the category
8: append category to the index
9: img:=0 {restart loop}

10: end if
11: img:=img+1
12: end while

Each time that we create a new category, we must re-check all the dataset (see alg. 4 lin.
9) because an image that belonged to a class can finally belong to a newly created one.
See diagram on fig. 16.

3.1.4. Mixed strategy

If we have a huge dataset, the feature matching process can be impracticable in time.
That contrasts with the blazing fast inference speed of a neural network classifier. We can
get an alternative approach if we first label a random sample of the dataset with feature
matching methods, build a network and then use it to classify the rest of the data.

Algorithm 5 Mixed strategy
new cat:=true
while new cat is true do

new cat:=false{assume there wont be more categories}
random set:=random(images)
rindex:=classify with feature matching(random set)
network:=create cnn(rindex) {Create network}
for all images not in random set do

prob category:=network.predict(image)
if prob category > THRESHOLD then

assign category to image
else

insert new category into the index
new cat:=true
break

end if
end for

end while

Once the subset is exhausted, we can build a new network with all the dataset. The key
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here is to use the probability as an estimator of new categories so that we will need a
softmax activation function on the last layer of the network. The size of the random set
will determine the number of times the whole process run as the value of THRESHOLD
the quality of the results. See fig. 17 and alg. 6.

Bunch of images

Random subset

Rest of data

Create labeled
 image dataset

Classify by inference

Build NN

Low probability?

Insert into category index

yes

Assing this category
 to this image

no

Labeled image data set

Figure 17. Labeling with a mixed strategy

Quality of the dataset

It is mandatory to manually inspect all the dataset before the training phase. We will
need some tool to check and eventually update or delete images of the set.

Most of the time spent on the project can be doing checking tasks.
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3.1.5. Learning about

When starting an ML project, it is useful to teach oneself about the subject. Reading
books, websites, forums, watching videos, etc. . . oneself can become to get an idea about
the relevant features of the issue. That is named feature engineering[41].

Quotting Jason Brownlee[9],

Feature engineering is the process of transforming raw data into features
that better represent the underlying problem to the predictive models, re-
sulting in improved model accuracy on unseen data.

In our case, as an example, we could try to use the calculated keypoints of the images
as the input data instead of the images itself, but we our requirements need very high
precision in the prediction.

Deciding the categories

The study of the subject will give us the labels we will need to work with the dataset.

It is usually better not to reinvent the wheel and go for academic, industrial or other types
of standard. Most of the time, the set of categories will come from the project. Some
examples can be: types of cells in microscopy images, types of stars, authors in sound
registers, recognition of the speaker’s language, ...

As explained before, the design of the system must be flexible enough to accept new
categories at any time of the development since it is a situation in which we can often find
ourselves in projects in which we start from scattered data.

3.1.6. Our index: PRADO

In our particular domain, we have selected the PRADO project as our target.

PRADO[14] stands for Public Register of Authentic travel and identity Documents On-
line. It is a document identification database maintained by the European Council, Direc-
torate General Justice and Home Affairs. It is used by many administrations like Interpol
or Frontex. The PRADO glossary[13] can be a good starting point to learn about id doc-
uments.

The documents are organized by country, category, type, document-number, and version.

For example the document code FRA-AO-01001 consists of:

• FRA for the France country
• A for pAssport
• O for Ordinary
• 01 for the document number (two digits)
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• 001 the version of the document number (three digits)

Each document has almost an image in visible light on the recto side.

Each folio of the document has the recto and verso[39] side referring to the “front” and
“back” sides. The terms come from Latin rectō foliō and versō foliō, translating to “on
the upright side of the page” and “on the turned side of the page”, respectively.

It should be noted that the recto of a passport document (A) is the cover of the passport
and the verso is where the information is written.

The complete tables of categories and types are

Document categories according PRADO

• A - Passport
• B - Identity card
• J - Travel document issued to non-nationals
• C - Visa
• D - Stamp
• E - Entry paper
• H - Residence related document
• F - Driving license
• G - Vehicle license/log book
• I - Seafarers identity document
• P - Civil status/other official document
• S - Special authorization card
• W - Work permit
• X - Other document

Document types according PRADO

• O Ordinary document
• D Diplomatic
• S Service/official
• P temporary/provisional/emergency
• Y Related/associated document

The civil status (P) category has the following types:

• B Birth
• M Mariage
• T Death certificate
• N Nationality/citizenship
• R Divorce
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3.1.7. Downloading resources from the web

It is great to have a database available online but how can we download and format it? It
can be easy or difficult depending on how the website is structured.

In our case, PRADO, we denoted that although there is not a general document index, we
have one by country[12].

Figure 18. PRADO documents by country. Credit: EU Council.

3.1.8. Pandas or sql?

To handle the documents we can use both pandas (a kind of standard in python) or any
SQL database server.

We prefer SQL only because we are personally more used to it. Nevertheless, it is worth
to make a note of the fact that when you are processing much (possibly unstructured)
data, an error can quickly happen. If you use pandas, you may not save the results until
the process is terminated overall data and a program error could lose the calculations
performed until that time. If you use SQL, you may commit after each count and no loss
of data will happen in case of a failure.

3.1.9. Handle image files

We have found a combination that works surprisedly well moving large amounts of data
(as images).

If we work with zipped or tar files of many gigabytes of images, it is difficult with tra-
ditional ssh-copy (SCP) to move them from the workstation to the calculation servers on
Amazon Web Services (AWS).
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With Dropbox or AmazonS3 you can first copy the files to this service and then create a
shared link. Then, form AWS you can download the file with the link with wget at a speed
of many Gb/m! If you work with S3 you can use the excellent boto3[21] library.

3.1.10. Tasks parallelization

When calculating the image features, we will need all the available computer capacity
that we can achieve or otherwise we will spend days or weeks until they terminate.

To speed up the job we will want to use all the capacity of our CPU but this is not as easy
it seems.

For Python, the best option is to use the multiprocessing package. It relies on the os to
perform the tasks and saves the problems with the Python Global Interpreter Lock and the
traditional spawn of threads. Nevertheless, multiprocessing programming is a bit tricky,
and it is advisable to read the documentation carefully. Isolate the main module. If we
share one or more variables with other processes take care with the type or the implicit
locking mechanism will block multiprocessing.

3.1.11. AWS

To extract image features, we will need many cores to parallelize the task and to train a
CNN we will need a powerful GPU. However, these machines are expensive.

The best economical option is to rent virtual machines from a provider like Amazon.

Amazon has even SOs already tailored for machine learning, with all the libraries (includ-
ing CUDA) included or compiled.

3.1.12. Initial features

When downloading the images, we should make sure we catch all the associated features
we can.

The reason is straightforward: imagine the target has a size of 2400 images (approx.
PRADO on Nov 2017). Then, for each query image, we will need 2400 matching op-
erations what it will consume much computation resources and time because the cost is
linear with the number of images O(n).

If we would have any input feature that match with the target (in our case the country
or the document category) we can massively reduce the number of matching operations
because only this nation, class (or both) target images were necessary to match.
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3.1.13. Statistics

We have designed a document table with the following structure:

Listing 1 Document table

CREATE TABLE DOCUMENTS (
ID integer NOT NULL PRIMARY KEY,
COUNTRY TEXT,
YEAR TEXT,
recto text, /* visually checked model */
verso text,
recto_akaze text, /* discovered model with akaze method */
recto_brisk text,
recto_orb text,
recto_svm text, /* predicted by svm */
recto_nn text, /* predicted by nn */
recto_cnn text, /* predicted by convolutional nn */
unframed integer default 0, /* the image is unframed */
noprado integer default 0, /* image does not match prado db */
test integer default 0 /* use this image as a test image */

);

The recto and verso fields are the visualy inspected. akaze, brisk and orb are
the models matched by their respective methods. Then, to calculate the number of hits of
each method e.g. akaze we can do

select count(*) from documents where recto=recto_akaze;

3.2. CNN Modeling

As we are dealing with neural networks, our first step will be to imagine a network archi-
tecture that will model the behavior of the classifier. There are no rules about the number
of layers, its connections, its types or its activation functions. We can only go to the liter-
ature to find the model with best performance on a problem given. We could need dozens
or hundreds of iterations until we see the design and the hyper-parameters that provide
the best results, that is, it generalizes better and makes predictions in a more precise way.

In every moment, we will be aware of not to overfitting the network by observing the loss
and accuracy of the model.

3.2.1. Model

In our case of an image classifier, we will use a deep convolutional network architecture.

We use the term deep in the sense that the network will have more than one hidden layer.
Some of these layers will be pooling layers that will summarize the results of the upper
layers and others will be dropping layers that will help to mitigate the phenomenon of
overfitting. The convolution layers will make the operation of the convolution of the
upper layer with a filter bank. The signal level that the neurons of a layer are transporting
to the next is given by the activation function of the layer.

35



3. DESIGN

Figure 19. VGG16 architecture. Credit: cs.toronto.edu

We have chosen a VGG16-like[22], a model developed in 2014 by the renowned Visual
Geometry Group of the Department of Engineering Science, University of Oxford.

It is a bunch of convolution layers, each followed by a max pooling. The activation
function is always a RELU. Finally, a dense (fully connected) layer connects to a final
softmax with a size of the number of categories of the model.

Our exact architecture is:

Listing 2 Model summary

Model summary
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 218, 152, 64) 1792
_________________________________________________________________
conv2d_2 (Conv2D) (None, 216, 150, 64) 36928
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 108, 75, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 106, 73, 64) 36928
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 53, 36, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 51, 34, 64) 36928
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 25, 17, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 27200) 0
_________________________________________________________________
dense_1 (Dense) (None, 512) 13926912
_________________________________________________________________
dropout_1 (Dropout) (None, 512) 0
_________________________________________________________________
dense_2 (Dense) (None, 144) 73872
=================================================================
Total params: 14,113,360
Trainable params: 14,113,360
Non-trainable params: 0

Where we can see a first convolution layer that accepts images resized to a tensor of
(218, 152) and a bank of 64 filters. The second layer has 64 filters itself, and then we
summarize by applying max-pooling which gives us tensors of (108, 75). From here we
use sequentially two layers of conv+maxpooling always with 64 filters.
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The eighth layer will flatten the results in a tensor of size (27200) that is (25x17x64).
Finally, we link dense1 and dense2 with a dropout(0.5) to avoid overfitting the model[19].

The last layer is a tensor (144) that reflects the number of categories of identity docu-
ments. It is activated by a softmax function, so each dimension is the probability that the
input image belongs to the class located in this position. A max operator over this tensor
we will get the most likely category of the input document.

3.3. Dataset partition

Once we reach a quality sample labeled database, we must divide it into three parts[35]:

1. Training set (60% of samples)
2. Validation set (20% of samples)
3. Test set (20% of samples)

We will use the training set to efficiently train the network, namely to adjust the parame-
ters (weights and bias) of the net in a way that output the same label when the input is an
image of some category.

The validation set is used to tune some hyper-parameters of the network like the learn-
ing rate, the initialization strategy or even the number of hidden layers. We can detect
problems like overfitting with this set.

Finally, we use the testing set to feed the network with never seen images and make a
statistic of the accuracy of the classification.

Probably, we will need a large number of iterations over model-train-validate-testing until
getting the desired accuracy. In this phase, it is worth to use a high-performance GPU (or
TPU) in our facilities or external virtual machines like Amazon or Google.

It is imperative to shuffle our dataset before the partition to avoid biasing the network. If
for any cause the system were influenced by the data partition, it will not generalize well.

Once the data is shuffled, we will organize it in category directories so our final structure
will be like in the figure 20

Figure 20. Organization of the dataset before training

One important detail is to have the same categories in each partition. We must check it
before the training.
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4. Implementation and results
In this section, we are going to describe the implementation of the ideas discussed be-
fore. First, we study the tolerance to image aberrations of the feature extractors, some
useful web utilities and a short application of the rectification image process. Then, we
will download and label the documents from the PRADO website. These will be our
categories. Next, we will extract the features of these images to build the feature index.
We will match the feature index with all the pictures of our dataset to categorize them.
Immediately, we train, validate and test the network.

Finally, we will explain what the system is doing and how can classify the images.

4.1. Feature extraction

4.1.1. Tolerance to aberrations of the feature extractors

Observing how people acquire (scan) documents, the physical state of the documents and
the scanners themselves we have identified some input image issues that can compromise
the feature extraction:

• Low image contrast
• bended document
• lousy condition document (scratches and blemishes)
• non-uniform illumination
• light flares (internal lens reflections)
• gaussian noise (blurred document, not in focus)
• laplacian noise
• poisson noise
• salt-and-pepper noise
• linear motion (extract document from scanner before the scan is completed)
• pixelation
• lens refraction (wide angle lens)
• rotation (the document is not straight on the scanner)
• partially occluded document

Listing 3 Aberrate an image

convert $1 -blur 2 gaussian2x2.jpg
convert $1 -blur 5 gaussian5x5.jpg
convert $1 +contrast +contrast +contrast +contrast +contrast contrast.jpg
convert $1 +noise laplacian +noise laplacian laplacian.jpg
convert $1 +noise multiplicative +noise multiplicative multiplicative.jpg
convert $1 +noise poisson +noise poisson poisson.jpg
convert $1 -motion-blur 5x5+145 motion-linear-5x145.jpg

It is possible to artificially create and automate some of these aberrations with libraries
like imagemagik[20] and observe how to affect to the extractors. On listing 3 we have an
example.
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Each of the extractors has strengths and weaknesses regarding image aberrations. We have
prepared set of tests for ORB, BRISK, and AKAZE for the specific domain of document
identification. We present here some of our results.

4.1.2. Test image

Figure 21. Test image

Fig. 21 is our test image with akaze key points, we can see that all relevant features are
detected.

4.1.3. Bended document

Figure 22. Bend
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Bend does not have a substantial effect because the method has some invariance to rota-
tion, but we lose points in the bottom right area.

4.1.4. Flares and gaussian blur

Figure 23. AKAZE. Flares and gaussian2x2

The flares and gaussian blur2x2 doesn’t affect the extraction but in the title area for
AKAZE.

We incresase the gaussian kernel to 5x5 and compare akaze with brisk on fig.24 we see
that the blurred image retain some good points yet on both, but AKAZE performs slightly
better.

This type of aberration can come from hand held cameras like webcams or smartphones
but is rare in table scanners.

4.1.5. Motion

When we extract the document from the scanner before the scan is terminated, it can
appear a distortion named motion (linear).

Comparing akaze and brisk (fig. 25), we can see that the second can be more resistant to
motion.

(a) akaze (b) brisk

Figure 24. AKAZE and BRISK. Blured versions with gaussian kernel 5x5
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(a) akaze (b) brisk

Figure 25. Tolerance to motion

4.1.6. Low contrast

Figure 26. Effects of low contrast in feature extractors: we lost several key points.

On fig. 26, notice that in the regular focused left image we have a high number of points
spread over all the document. On the low contrasted picture of the right, there are fewer
points and quite anyone on the title of the material.Expresely comparing BRISK and ORB
on the same low-contrast image like fig.27 we found that orb performs better but the result
is barely usable to perform matching.

Going to an extreme, in the example given on fig. 28, we have reduced the contrast 90
times. Only 3 points are recognized. Although it is possible to enhance the histogram of
a low contrasted image with an operation named equalisation thre results are not much
better due to the low dynamic range of the image.

(a) brisk (b) orb

Figure 27. Effects of low contrast on BRISK and ORB
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Figure 28. AKAZE with contrast reduced 90 times.

(a) akaze (b) brisk

Figure 29. Effects of noise

4.1.7. Salt-and-peeper noise

Regarding this type of noise, AKAZE is quite tolerant, but brisk becomes unusable when
it is present because the noise points are recognized as key points. See fig. 29.

4.1.8. Relevancy

Perhaps the most important characteristic. On fig. 30, we compare AKAZE and ORB to
visually decide which will give us better results when matching documents with an index.
In other words, which of them will be able to discern between two models of similar
documents. Note that AKAZE detects points spread over all the document and so it is
more suitable to compare the document with an index.
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Figure 30. Example of feature extraction: AKAZE on the left and ORB on the
right.

4.1.9. Speed

He have timed and averaged the extraction of 4000 document images. The original data
can be found on appendix A.

Figure 31. Extraction speed. Average of 4000 images.

BRIEF and ORB have the best results while BRISK and AKAZE have the worst. We
must take in account that BRISK and AKAZE extract a total of 4836 and 1317 points
what contrasts with 462 and 500 of the two first.

4.1.10. Conclusion about feature extractors

Our very early tests showed that HOG+Kmeans is not very precise (around 60%) because
HOG has difficulties with very similar images like distinct versions of the same docu-
ments. The need to guess the final number of clusters for kmeans is a headache as well.
For that reason we started our investagations about feature extractors and kNN.

We have tested SIFT, SURF, ORB, BRIEF, BRISK and AKAZE feature extractors under
different conditions. We have considered the absolute number of key points detected, their
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variance and their relevance in order to recognise a document. The test were made over
the documents AUS-AD-02001, BGR-JO-09001, FIN-AO-06001 and FRA-CO-02001.
On the appendix A there are the results of AUS-AD-02001, for each method column
we have the three first detected models ordered by its probabilities. The probabilty is
calculated as the number of matching key points of the two images over the total key
points of the index image.

On the table 1 we have summarized some of the results. Note that, in addition to the
absolute numerical information we have taken into account the quality of the key points
distribution over the image features that can best separate two similar document models.

AKAZE BRISK ORB

Bend Good Good Good
Flares Good Good Good
Gaussian 2x2 Good Good Bad
Gaussian 5x5 Good Good Bad
Motion Bad Good Good
Low contrast Bad Good Bad
Noise Good Bad Good
Speed Bad Bad Good
Relevancy Very good Good Bad

Table 1. Comparison of feature extractors for identity documents

We say an extractor is better than other concerning matching reliability with our category
database.

AKAZE gives richer key points on the faces, id numbers and texts while ORB seems to
focus on the center area of the document.

Facing low contrast, we can see that BRISK performs slightly better than AKAZE and
ORB is definitively more resistant. Unfortunately, we extract features to categorize the
document, and this ORB-point distribution is familiar to many models of passports and
this fact makes it useless for our needs. This explains why the methods that extract an
absolute number of points bigger than others are not necessarily better.

AKAZE performs good on all tests but fails on low-contrast images. BRISK performs
better on low-contrast but poorly on noisy images.

In our tests, we have found that AKAZE surpasses other extractors in the task to obtain
features from id documents.

As the quality of the identification is our main issue we conclude that

AKAZE seems to be the best general extractor method to work with id
documents.
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4.2. Utility web applications

We need some help to handle the target better than the raw files and a database with tags.
We can write a small python script that generates dynamic web pages.

To navigate the PRADO database, we wrote one, and we called it prado-explorer. See
fig. 32.

Figure 32. PRADO explorer web server

The task of visually inspecting and correcting the training dataset can be tedious but it is
not difficult to program an small web server that links to the database and allows us to
visualize and correct the training set.

Figure 33. The labeler webapp
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The labeler (see fig. 33) web app connects the SQL document database and the images.
On the right, we can see the PRADO explorer. If we select the ”Change model” checkbox
and press the right Prado image, the model is saved for the picture. All are made with
ajax calls to avoid rebuilding the whole page on each document change.

4.3. Preprocessing the images

Each image that enters the system must be preprocessed. Moreover, before make infer-
ence of new images they must be preprocessed in the same way that the training images
in order to obtain consistent results.

Before process any image we will be sure that:

• it has the same resolution and color channels
• it has the same size
• it is straight

We cannot be sure that the input image is straight. Quite the contrary, it can be rotated
and shifted. Also, note the use of the OpenCV library.

4.3.1. The rectification pipeline

Basically, once detected the contour of the document, we calculate the slope θ of the
border and counter rotate the whole document atan(θ). We also need to add a margin
before the rotation because not to overlap the rotated document.

Algorithm 6 List of sequential operations to rectify an incoming image
Resize
Add a border to avoid cut an area if the document is somewhat rotated
Binarize
Determine the contour (area of maximum luminance change)
Deskew
Rotate
Translate
Crop

The author entirely creates the function rectify that accepts an image and returns an
straight and standard resized image. It can be found on the appendix B.

We believe that, although the function is a bit large, it is not difficult to follow. For the
interested readers, it is worth to have the OpenCV reference at hand and follow the steps
sequentially.

4.4. Downlading and formatting PRADO

As PRADO uses ISO-3 codes[15] on the URL, it would suffice to get the pages for all
countries usign this key. A few lines of javascript or python can do the job as in appendix
C.
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Figure 34. Pipeline to rectify an image
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With the HTML code downloaded, we may find the URL of the image of interest
div.doc-thumbnails a img and the document model. The function format doc
on lin. 42 creates the SQL code to insert the document into the database.

4.5. Extracting and matching features of the images

One relevant characteristic of our extractor implementation is that it is optimized to work
in a parallel way. We use the multiprocessing python module because, in our tests, the
overall performance is better than using one process with multithreaded jobs. The main
loop looks like in listing 4.

Listing 4 Feature extractor main loop

1 jobs = []
2 j_count = 0
3 for image_fn in files:
4 p = mp.Process(target=spawn,
5 args=( ms, image_fn,
6 args.debug, args.dump))
7 jobs.append(p)
8 p.start()
9 j_count += 1

10 if j_count \% MAX_THREADS == 0:
11 for j in jobs:
12 j.join()
13
14 print('Terminating computations')
15 for j in jobs:
16 j.join()

We can see the jobs list, in line 4 we create the processes and append them to the jobs,
finally we join them in line 10 to wait until the last execution.

The spanw itself spawns processors of one or several of this types of feature extractors.
Note that the OpenCV library has moved the copyrighted processors to cv2.xfeatures2d
while the free remains on cv2.

We have extracted the key points of the PRADO index images and grouped them in a
single pickle file. It is faster than load each image keypoint file because it is loaded only
one time on memory. Otherwise we would need num query images × index size file
loadings.

Regarding the feature matching process, we have used a Pool to handle the jobs. On
listing 5 line 6 pool.map maps the jobs to the function load and match that creates
the matchers for the wanted methods and calls to match. Note that we cannot reuse the
matcher because they store internal state variables that would be overridden by other
processes.

4.5.1. Matching with the index

The function match it is a bit long, but we know it is important enough in the project to
completely describe it.
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Listing 5 Pool of matchers

1 pool = mp.Pool(NUM_CORES)
2 print('Final number of image matches\
3 to calculate: {}'.format(len(jobs)))
4 print('Identification process started. Please wait...')
5 ts = get_time()
6 pool.map(load_and_match, jobs)
7 pool.close()
8 pool.join()
9 conn.close()

10 print(print_time('Identification process ended', ts))

Remember that the trained image is the comparison image (a picture of the category
index) while the query image is the image that we are evaluating.

The complete python implementation of the funtcion match is found on appendix D.
All of the concepts have been explained before. On listing 20, line 26 we define the
ratio distance between two points to be considered neighbors and the minimum number
of matches to consider that the two images can be of same document. In line 41 we
perform the matching using the k-nearest neighbor’s algorithm. In line 65 we try to find
the homography between the index and the input (this allows to match a rotated and
shifted image). Finally, in line 68 we take account of the matching points over the total
points. That gives us the probability that the two images belong to the same document.

Listing 6 A matching run

1 (venv)myMac:scan-id-documents pvilas$ ./match.py
2 -m akaze
3 --directory /Users/pvilas/Downloads/images/03
4 --database docs/docs2.db
5 --update
6 Loading features
7 Points of 2317 trained documents loaded in 1.946526102s
8 System with 4 cores
9 Feature processor/s: ['akaze']

10 Number of query images: 671
11 Number of featured trained images: 2317
12 Max number of matches to calculate (without country filter): 1554707
13 Preparing task list and processing. Please wait...
14 Final number of image matches to calculate: 32822
15 Identification process started. Please wait...
16 Identification process ended in 138.527946s
17 Preparing summary. Please wait...
18 Summary: 671 files, 671 results
19 Updating database with 671 results
20 Update terminated
21 Process terminated in 184.059734s

On listing 6 we give a run on a Mac of 2014 (i5, 4 cores, 8GB), AKAZE only. The
PRADO index is 2.317 in size and takes almost 2s to load. Note that in this example we
have 671 query images, that is a total of 671× 2.317 = 1.554.707 image comparaisons!.
Fortunately, we can apply a country filter (see section 3. Design) and the image compara-
isons down to 32.822. As a regular AKAZE description of a document has 1.188 points,
the total points compared by the function in this run is 32.822 × 1.188 = 38.992.536.
With four cores we have a matching speed of 3.6 images/sec.

We have rented a 16-core (c4.4xlarge) Intel Xeon machine with Ubuntu on Amazon AWS
(see fig. 35). After many experimentations on the workstation, we finally optimized a
process to parallelize the extraction. The cost of this machine in these moments (Nov-
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2017) with 200Gb of SSH disk is 0.9$/hour but we reached 16.2 images/sec.

Figure 35. A beautiful image: 16 cores extracting features in parallel.

Now we have our dataset categorized. We will organize it slightly different for the next
step.

4.6. Preparing the data for the network

Handling high volume of images is not easy, but most AI libraries have utilities to process
the data in batches and feed the network. In the case of keras it implements a python
generator interface that returns bunches from directories. Each directory represents a
category, and all the images in this directory are supposed to belong to this category.

As we have explained later, we must divide the dataset into three parts. We need to convert
a dataset organized by (image, category) to another (partition, category,
image). See listing 7.

Listing 7 Preparing the dataset

1 # list_doc has the list of tuples (image, category)
2 # labels has the list of labels
3
4 num_labels = len(labels)
5 num_train_images = round(numdocs * PART_TRAIN_IMAGES) # 80\%
6 num_val_images = round(numdocs * PART_VAL_IMAGES) # 20\%
7 num_test_images = round(numdocs * PART_TEST_IMAGES) # 20\%
8
9 # shuffle documents

10 random.shuffle(list_doc)
11
12 # make partition
13 pre_train_images = list_doc[0:num_train_images]
14 pre_val_images = list_doc[num_train_images:num_train_images + num_val_images]
15 pre_test_images = list_doc[num_train_images + num_val_images:]
16
17 # copy images into its directories train, validation, test...

We must make sure that each directory (train, validation, test) have the same categories.
We have created some helper functions like in listing 8. It is easy in python to calculate
the intersection of two sets using list comprenhensions like in line 3. Being cat train,
cat val, cat test the categories of each partition, the function categories are not disjoint
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must be true for each tuple (cat train, cat val), (cat train, cat test),
(cat val, cat test).

Listing 8 Checking categories are disjoint

1 def returnNotMatches(a, b):
2 """ return categories of two sets that do not intersect """
3 return [[x for x in a if x not in b], [x for x in b if x not in a]] \label{intersection}
4
5 def categories_are_not_disjoint(a, b):
6 """ return True if any element of a is not in b
7 or any element of b are not in a
8 """
9 dis = returnNotMatches(a, b)

10 for d in dis:
11 if len(d) > 0:
12 print('{}'.format(dis))
13 return True
14 return False

The network training works best if we first normalize the data like in listing 9. In the
case of the color images, we only rescale the tensor and convert it to float32 by dividing
each element by 255. It is not necessary to shift the data to mean zero. The preprocess-
ing.image.ImageDataGenerator can do the escalation of each image before passing it to
the trainer. Note that we define the batch size on line 10. This is the number of images
that will go in one batch and it will depend of each system but should not exceed the
amount of the GPU memory.

Listing 9 Normalizing images and creating generators

1 from keras.preprocessing.image import ImageDataGenerator
2
3 # All images will be rescaled by 1./255
4 train_datagen = ImageDataGenerator(rescale=1. / 255)
5 test_datagen = ImageDataGenerator(rescale=1. / 255)
6
7 train_generator = train_datagen.flow_from_directory(
8 train_dir,
9 target_size=RESIZE_TO,

10 batch_size=BATCH_SIZE,
11 class_mode='categorical')
12 validation_generator = ...
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4.7. Convolutional Neural Network

The implementation of our model is straightforward with keras. On lst.10 we create an
instance of models.Sequential and then we add the layers discussed on the design section,
model summary (see listing 2).

Listing 10 CNN model to classify identity documents

1 # create a convolution layer
2 def conv(num_filters):
3 return layers.Conv2D(num_filters, KERNEL_SIZE, activation='relu')
4
5 # craete a maxpooling layer
6 def maxp():
7 return layers.MaxPooling2D((2, 2))
8
9 # create model

10 model = models.Sequential()
11 model.add(layers.Conv2D(64, (3, 3),
12 activation='relu',
13 input_shape=(IMAGE_WIDTH,
14 IMAGE_HEIGHT,
15 3
16 )))
17 model.add(conv(64))
18 model.add(maxp())
19
20 model.add(conv(64))
21 model.add(maxp())
22
23 model.add(conv(64))
24 model.add(maxp())
25
26 model.add(layers.Flatten())
27 model.add(layers.Dense(512, activation='relu'))
28 model.add(layers.Dropout(0.5))
29 model.add(layers.Dense(train_generator.num_classes,
30 activation='softmax'))

Once the model is defined and compiled, we start the network training like in listing 11.
If we are running on AWS, we must be aware of not to waste time because it is almost 1
euro/hour!.

We may start with a low number of epochs and if the network performs well we can
increase it while does not overfitting. In our case, it will converge from the very first
epochs.

Listing 11 Training the CNN

1 history = model.fit_generator(
2 train_generator,
3 steps_per_epoch=train_generator.samples//BATCH_SIZE,
4 epochs=EPOCHS,
5 validation_data=validation_generator,
6 validation_steps=validation_generator.samples//BATCH_SIZE)
7
8 model.save('40epochs.h5')

Observe the object history in line 1. After the training, we can use it to plot the loss
and the accuracy over the epochs like in fig. 36 where we can observe that the model
slightly overfit from the twelfth epoch. It is not worth to train the network more than this.

Finally, we test the accuracy of our model with images that have never seen by the network
in the train nor the validation steps.
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Figure 36. Train and validation loss

Listing 12 Testing the CNN

1 test_loss, test_acc = model.evaluate_generator(test_generator)
2 print("Model accuracy: {}".format(test_acc))

Model accuracy: 98%

On listing 12, the function evaluate generator takes the test partition and averages the
accuracy of the predictions. Our model accuracy after 12 epochs is 98%.

4.8. Making predictions

Making inference is very straightforward. We load the trained model and use the pre-
dict classes and the predict proba to get the prediction and its probability. Note that we
preprocess the image and normalize the tensor image before making the prediction.

Listing 13 Making predictions

1 prediction = model.predict_classes(img_tensor, batch_size=1)[0]
2 proba=np.max(model.predict_proba(img_tensor)[0])
3
4 # get a list of category names
5 category_names=list(train_generator.class_indices.keys())
6
7 print("The document seems to be a {} with a probability of {}".format(
8 category_names[prediction], proba))

The document seems to be a ESP-BO-03001
with a probability of 0.974

It is worth to comment that the inferences can be made with very little computing power
like any smartphone what profoundly contrasts with the training phase.
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4.9. What is the network seeing?

We can visualize the intermediate convolution outputs to understand how the network is
generalizing an image until finally classify it.

To do this, we input an arbitrary image, and we plot the output of the successive layers.
These feature maps have three dimensions because each color channel has its map.

It is important to note that the following ideas are an adaptation from F. Chollet[10].

Let’s load and display an image on fig. 37.

Figure 37. A test image from PRADO

Now, on lst. 14 we check the prediction

Listing 14 Check the prediction

1 # category index with max probability
2 prediction = model.predict_classes(img_tensor, batch_size=1)[0]
3 proba=np.max(model.predict_proba(img_tensor))

Document category is BEL-BO-07001 with a probability of 0.99
BEL-BO-07001: IDENTITEITSKAART_CARTE DIDENTITE
PERSONALAUSWEIS_IDENTITY CARD
Belgium Identity Card ordinary document

Note the pixelation due to downsample the image, typical on image classifiers as high-
resolution images tend to confuse the network.

We now take the layers as outputs and create a model that returns these outputs to a given
input (see lst:15). In line 2 we create a list for the layers and in line 4 we assign the output
of the model to these layers. Next, we feed the model with the image. It will return one
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Figure 38. Response of the 17th filter of the first layer
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Listing 15 Creating an activation model

1 # extract the outputs of the first layers
2 layer_outputs = [layer.output for layer in model.layers[:8]]
3 # creates a model that return these outputs given the model input
4 activation_model = models.Model(inputs=model.input, outputs=layer_outputs)
5 # feed model with an image
6 activations = activation_model.predict(img_tensor)
7 # take 17th filter of the first layer
8 fl=activations[0]
9 plt.matshow(fl[0, :, :, 16], cmap='viridis')

array per layer activation, i.e. the same shapes than the model.summary. Each of these
layers has 64 filters, in line 9 we examine the 17th of the first layer.

The plot of the activated filter is on fig. 38. We can appreciate signal on the borders
of the face and some prominent characters. This filter responds to some rounded-border,
diagonal-like feature on the image. Each filter of the bank will respond to specific features
on the image.

We can group the responses of the layers and plot them in one single map, see appendix
E, listing 21 and the figure 39 where the conv1, conv2, and maxpool1 output layers are
plotted. We can observe how the filters extract several features of the input image: some
respond to high frequencies while others react to rounded diagonal features. Those that
respond to the background of the document are especially noteworthy as it is not readily
disguisable in the original image.

The black responses simply have not output signal for its activation pattern, i.e., the pat-
tern is not found on the input image.

Note how the max pooling ”summarizes” the output while reducing the ”complexity”
grouping the most destacable features of each filter.

The response to last three layers is on fig. 40. Note how the response is more and more
generalized until the final pool layer. We are making more abstract representations as we
deep into layers.

On the training phase, the network will adjust their weights to recognize these activation
maps as a category BEL-BO-07001 Belgium Identity Card.
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Figure 39. Responses of conv1, conv2 and maxpool1 output layers
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Figure 40. Last three layers activation maps
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5. Conclusions and future work
5.1. Conclusions

We have reached a 98% of accuracy with our model but we believe we could have
achieved better results if we would have had more time to try with different hyperpa-
rameters as there is not a way to find the best architecture other than trial and error.

We would need also more computational resources in the form of virtual machines or
on-site GPUs.

And of course, more test data would be useful to be sure our network generalizes well
with data captured on a diversity of situations.

As we do state, most of the hard work of building such type of systems is to get a suit-
able training dataset. Acquiring, handling and managing these big sets of data can be a
specialitation by itself.

By way of conclusion, it is remarkable that a one-person team have created, in two
months, a system that classifies 144 different identity documents, even in the bad state,
and performs almost like a human being (two errors every hundred documents).

The final though of this work is about how surprisingly could be the future as AI technol-
ogy became more and more available to the nonspecialist people.

5.2. Future work

The logical next step in this work seems to be to do the OCR of the documents like the
professional software does.

Figure 41. Binary classifier over a sliding window
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5. CONCLUSIONS AND FUTURE WORK

We have done some promising experiments on enhancing the contrast of the text on the
document over the background. At this moment we can extract the text part of the record
based on the font size. Other geometric extracting methods like MSER are promising too
but it would be worth to try with the approach enunciated by the professor Ng on their
Coursera course of Machine Learning[23] based on a logistic binary NN.

Figure 42. Segmenting the word JUN. The red arrows indicate the segments that
a binary classifier recognizes as a space between characters

We prepare images with characters and images that don’t contain a character, or it includes
only a part (see fig. 41). Train a logistic binary classifier with these images. Then, we
can slide a window over the document image and use this network to check if there is a
character in the window. In the affirmative case, another network like the presented in this
work will classify it on the alphabet.

Regarding the word segmentation, we can similarly address the problem (see fig. 42): a
window slides from left to right and for each step tries to classify if it is in space or not
with another binary classifier.
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Glossary

Glossary
affine transformation In geometry, an affine transformation is a function between affine

spaces which preserves points, straight lines and planes. Also, sets of parallel lines
remain parallel after an affine transformation. An affine transformation does not
necessarily preserve angles between lines or distances between points, though it
does preserve ratios of distances between points lying on a straight line. 23, 24

BRIEF Binary Robust Independent Elementary Features. 43
BRISK Binary Robust Invariant Scalable Keypoints. 43

CNN Convolutional neural network. 6, 16, 34, 53

feature In computer vision and image processing, a feature is a piece of information
which is relevant for solving the computational task related to a certain applica-
tion. 10–13, 15, 16, 19, 20, 22, 24

homography a type of transformation that maps straight lines onto another plane. 23,
24, 49

inference Statistical inference is the process of deducing properties of an underlying
probability distribution by analysis of data. 25, 29, 46, 53

MSER Maximally stable extremal region extractor. 60

ORB Oriented FAST and Rotated BRIEF. 43

PRADO Public Register of Authentic travel and identity Documents Online. 31

rectify Correct or adjust the measurements and orientation of an image. 24, 46

SIFT Scale-invariant feature transform. 43
SURF Speeded Up Robust Features. 43
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A. EXTRACTION SPEED

Appendix A Extraction speed
In this table, we compare the extraction speed of several methods averaged over 4000
documents.

iMac 2014

Method Mean Time Std. Dev. Points/regions

brief 0.009680336 0.000465094 462.0
sift 0.14352594 0.018444292 3221.5
brisk 0.070546037 0.026112355 4836.0
kaze 0.228964102 0.014583509 1466.5
akaze 0.047307038 0.000482393 1317.5
mser 0.0366598845 0.0085691335 831.5
orb 0.009431679 0.001127997 500.0
surf 0.022489961 0.008004123 205.5

Table 2. Speed of extraction on iMac2014. Average of 4000 images

On a better machine the results are similar because the extractor uses only one core.

AWS c4.4xlarge amazon instance

Method Mean Time Std. Dev. Points/regions

brief 0.00945078146612 0.00106868660076 492.2
sift 0.0617583851528 0.0071591356382 2700.5
brisk 0.0566153216137 0.0251370948462 3452.2
kaze 0.16076961502 0.0107957820419 1595.8
akaze 0.0400814163854 0.00119664243422 1187.9
mser 0.0530032530082 0.0199428392754 1197.5
orb 0.00895235451532 0.00145218528445 497.6
surf 0.013524252921 0.00380727612299 305.8

Table 3. Speed of extraction on AWS c4.4xlarge instance. Average of 4000 images

65



B. RECTIFY AN IMAGE

Appendix B Rectify an image
The function accepts an image and returns another straight and with the standard size.

Listing 16 Rectify an image

1 def rectify(image):
2 # 1. resize to an initial known size
3 rsz_img = cv2.resize(image, dim, interpolation=inter)
4 # 2. make a black border and translate to prevent corner clipping
5 brd_img = cv2.copyMakeBorder(
6 rsz_img,
7 MARGIN_OFFSET, MARGIN_OFFSET, MARGIN_OFFSET, MARGIN_OFFSET,
8 cv2.BORDER_CONSTANT, BACKGROUND_COLOR)
9 # 3. convert the image to grayscale, blur it and pass Solvel filter

10 gray_img = cv2.cvtColor(brd_img, cv2.COLOR_BGR2GRAY)
11 gray_gauss = cv2.GaussianBlur(gray_img, (5, 5), 0)
12 edged_img = cv2.adaptiveThreshold(gray_gauss, 255,
13 cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
14 cv2.THRESH_BINARY_INV, 51, SOBEL_MARGIN)
15 # 4. find the contours in the edged image, keeping only the
16 # largest ones, and initialize the screen contour
17 (_, cnts, _) = cv2.findContours(edged_img,
18 cv2.RETR_EXTERNAL,
19 cv2.CHAIN_APPROX_SIMPLE)
20 # 5. Deskew the image
21 # order by max area contour
22 cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
23 # bounding rectangle
24 x, y, w, h = cv2.boundingRect(cnts[0])
25 # rotated rectangle containing document
26 box = np.int0(cv2.boxPoints(cv2.minAreaRect(cnts[0])))
27 # order points of de rectangle
28 box=self.order_points(box)
29 (tl, tr, br, bl) = box
30 # find the gradient of the border top line
31 if (tr[0]-tl[0]!=0):
32 gradient=(tr[1]-tl[1])/(tr[0]-tl[0])
33 # calculate the angle with x axis
34 theta=np.arctan(gradient)
35 else:
36 theta=0
37 theta_deg=180*theta/np.pi
38 # calculate rotation center
39 rot_x=tl[0]
40 rot_y=tl[1]
41 inf_corner=br # to crop the resulting image
42 # test w>h
43 delta_prop=0
44 if FORCE_PROPORTION:
45 lon_hline = np.abs(tr[0]-tl[0])
46 lon_vline = np.abs(bl[1]-tl[1])
47 if lon_vline>lon_hline:
48 # if the document is so rotated, add up pi/2 rad to rot
49 theta_deg+=90
50 delta_prop=np.pi/2 # to rotate inferior corner
51 rot_x=tr[0]
52 rot_y=tr[1]
53 inf_corner=bl
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C. DONWLOADING PRADO IMAGES

Listing 17 Rectify an image. Cont.

1 # the document is rotated
2 # we must straight it
3 if theta!=0:
4 # calculate the rotation matrix
5 M=cv2.getRotationMatrix2D((rot_x,rot_y), theta_deg, 1.0)
6 # rotate the resized image
7 rot_img=self.rotate_img(brd_img, M)
8 # calculate coords of the rotated inferior corner (resized image)
9 t=theta+delta_prop

10 Mr=np.array([[np.cos(t), -np.sin(t)],[np.sin(t),np.cos(t)]])
11 m_inf=np.array([[inf_corner[0]-rot_x, inf_corner[1]-rot_y]])
12 nr_inf=np.dot(m_inf, Mr) # rotate the inferior corner
13 r_inf_x=int(nr_inf[0][0]+rot_x)
14 r_inf_y=int(nr_inf[0][1]+rot_y)
15 doc_w=np.abs(r_inf_x-rot_x) # rotated document width
16 doc_h=np.abs(r_inf_y-rot_y) # rotated document height
17 else:
18 rot_img=brd_img
19 doc_w=np.abs(rot_x-br[0]) # document width
20 doc_h=np.abs(rot_y-br[1])
21 # 6. Translate to the origin and crop, add 1/4 of margin
22 Mt = np.float32([[1,0,-1*(rot_x+SOBEL_MARGIN)],[0,1,-1*(rot_y+SOBEL_MARGIN)]])
23 (ih, iw) = brd_img.shape[:2]
24 trs_img = cv2.warpAffine(rot_img, Mt, (iw, ih))
25 # 7. Crop image
26 crop_img=trs_img[0:int(doc_h-(2*SOBEL_MARGIN)), 0:int(doc_w-(2*SOBEL_MARGIN))]
27 # return the cropped resized image
28 return self.resize(crop_img, width=BASE_SIZE)

Appendix C Donwloading PRADO images

Listing 18 Getting the pages of each country

1 /* iso3 country code*/
2 var iso3=[ 'abw', 'afg', ..];
3
4 /* root url for all documents of de country */
5 var url_pre = 'http://www.consilium.europa.eu/prado/en'+
6 '/prado-documents/'
7 var url_post = '/all/index.html'
8
9 for (var a=0; a<=iso3.length; a++) {

10 extract_docs(url_pre+iso3[a]+url_post);
11 }
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C. DONWLOADING PRADO IMAGES

Listing 19 Download image documents of each country

1 function extract_docs(page_url) {
2 $.get( page_url, function( data ) {
3 /* for each document */
4 $(data).find('div.doc-info').each(function(index,element) {
5 /* get description and doc code*/
6 var doc_info =
7 $(element).find('p.doc-info-other a').text();
8 var toks=doc_info.split(" ")
9 var doc_code = toks[toks.length-1]

10 var doc_desc=toks[0]
11
12 doc_desc=String(doc_desc).replace(/"/g,"")
13 doc_desc=String(doc_desc).replace(/''/g,"")
14
15 /* image number of recto and verso */
16 var recto="", verso="";
17 $(element).
18 find('div.doc-thumbnails a img').
19 each(function() {
20 var source = $(this).attr('src').split("_")
21 if (recto=="")
22 recto=source[1]; else verso=source[1];
23 })
24
25 /* obtain country, category, type and number */
26 var cod_tok=doc_code.split('-')
27 var country=cod_tok[0]
28 var category=cod_tok[1][0]
29 var type=cod_tok[1][1]
30 var number=cod_tok[2].substring(0,2)
31 var version=cod_tok[2].substring(2,6)
32
33 /* obtain date first issued */
34 var first_issued=""
35 $(element).find('p.doc-info-other').each(function() {
36 var text=$(this).text()
37 if (text.includes('First Issued On:')) {
38 first_issued=$(this).text().split(':')[1]
39 }
40 })
41
42 format_doc(doc_code, country, category, type,
43 number, version, doc_desc,
44 recto, verso)
45 })
46 }).fail(function() {
47 console.log('Failed to download ', page_url)
48 })
49 }
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D. THE MATCH FUNCTION

Appendix D The match function
Listing 20 Matching function

1 def match(name='DOC', method='', query=[], trained=[]):
2 """ perform the match
3 name - to identify the document on the jobs list
4 method - desired matching method
5 query - dict of method with tuples with
6 (kps, des) of the query image
7 trained - dict of methods with tuples with
8 (kps, des) of the trained image
9

10 return a dict with method/result
11 The result is the \% of points that are found
12 in the homography
13 """
14 # create and initialize the results dict
15 # one key for each method
16 results = {}
17 for k in matchers.keys():
18 results[k] = 0.0
19
20 # iterate over methods
21 for key_matcher in matchers.keys():
22 matcher = matchers[key_matcher]
23
24 ratio=0.9 if key_matcher=='orb' else 0.7
25 minMatches=20 if key_matcher=='orb' else 40
26
27 kpsA = np.array(query[key_matcher][0])
28 feaA = np.array(query[key_matcher][1])
29 kpsB = np.array(trained[key_matcher][0][0])
30 feaB = np.array(trained[key_matcher][1])
31
32 """
33 Nearest neighbors are defined by the smallest Euclidean
34 distance between feature vectors. The two feature vectors
35 with the smallest Euclidean distance are considered to be
36 neighbors
37 """
38 try:
39 rawMatches = matcher.knnMatch(feaB, trainDescriptors=feaA, k=2)
40
41 # take only matches that are on the ratio distance
42 matches = []
43 for m in rawMatches:
44 if len(m) == 2 and
45 m[0].distance < m[1].distance * ratio:
46 matches.append((m[0].trainIdx, m[0].queryIdx))
47 """
48 if there is more matches than the
49 thresold, calculate homography.
50 the hessian matrix H will contain
51 the parameters to perform the inverse
52 affine transform
53 """
54 if len(matches) > minMatches:
55 try:
56 # convert to fp32
57 ptsA = np.float32([kpsA[i] for (i, _) in matches])
58 ptsB = np.float32([kpsB[j] for (_, j) in matches])
59
60 # find homography
61 (H, status) =
62 cv2.findHomography(ptsA, ptsB, cv2.RANSAC, 4.0)
63 # return \% of matching keypoints
64 # store result in a dict with key matcher-name
65 results[key_matcher] =
66 float(status.sum()) / status.size
67 except Exception as ex:
68 print('ERROR: {} file {} method {} - {}'.format(
69 funcname(), name, key_matcher, ex
70 ))
71 results[key_matcher] = 0.0
72 except Exception as ex:
73 print('ERROR knnMatcher: {} file {} method {} - {}'.format(
74 funcname(), name, key_matcher, ex
75 ))
76 results[key_matcher] = 0.0
77
78 # convert results to ordered list
79 l = []
80 for m in method:
81 l.append(results[m])
82 return (name, l)
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Appendix E Plotting filter responses
Listing 21 Plotting the responses

1 layer_names = []
2 for layer in model.layers[:7]:
3 layer_names.append(layer.name)
4
5
6 images_per_row = 16
7
8 # Now let's display our feature maps
9 for layer_name, layer_activation in zip(layer_names, activations):

10 # This is the number of features in the feature map
11 n_features = layer_activation.shape[-1]
12
13 # The feature map has shape (1, size, size, n_features)
14
15 size_h = layer_activation.shape[1]
16 size_w = layer_activation.shape[2]
17
18 # We will tile the activation channels in this matrix
19 n_cols = n_features // images_per_row
20 display_grid = np.zeros((size_h * n_cols, images_per_row * size_w))
21
22 # We'll tile each filter into this big horizontal grid
23 for col in range(n_cols):
24 for row in range(images_per_row):
25 channel_image = layer_activation[0,
26 :, :,
27 col * images_per_row + row]
28 # Post-process the feature to make it visually palatable
29 channel_image -= channel_image.mean()
30 channel_image /= channel_image.std()
31 channel_image *= 64
32 channel_image += 128
33 channel_image = np.clip(channel_image, 0, 255).astype('uint8')
34 display_grid[col * size_h : (col + 1) * size_h,
35 row * size_w : (row + 1) * size_w] = channel_image
36
37 # Display the grid
38 scale = 1. / size_w
39 plt.figure(figsize=(scale * display_grid.shape[1],
40 scale * display_grid.shape[0]))
41 plt.title(layer_name)
42 plt.grid(False)
43 plt.imshow(display_grid, aspect='auto', cmap='viridis')

Appendix F Matching with aberrated images
This table shows the results to try to match the aberrated image with the PRADO index.
For each method (AKAZE, BRIS, ORB) we see the three first recognized documents and
their probability.

These tables can be used to find the optimal method for matching.
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Listing 22 Results of matching with aberrated images. page 1/2

# Results of matching with aberrated images
## AUS-AD-02001
Command used
```shell
./match.py -m all --features helpers/prado/prado-features
-d docs/tolerance/AUS-AD -c AUS
```
Filename: docs/tolerance/AUS-AD/AUS-AD-02001_verso-original.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (100.000) AUS-AD-02001 (100.000) AUS-AD-02001 (100.000)
AUS-AO-02002 (86.688) AUS-AO-02002 (90.878) AUS-AO-02002 (49.446)
AUS-AS-02002 (86.688) AUS-AS-02002 (90.878) AUS-AS-02002 (49.446)
Filename: docs/tolerance/AUS-AD/bend.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (84.028) AUS-AD-02001 (83.507) AUS-AD-02001 (58.788)
AUS-AO-02002 (74.951) AUS-AO-02002 (75.610) AUS-AO-02002 (40.784)
AUS-AS-02002 (74.951) AUS-AS-02002 (75.610) AUS-AS-02002 (40.784)
Filename: docs/tolerance/AUS-AD/contrast-90.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (0.000) AUS-AD-02001 (62.255) AUS-AD-02001 (80.902)
AUS-AO-02002 (0.000) AUS-AO-02002 (29.927) AUS-AO-02002 (36.719)
AUS-AS-02002 (0.000) AUS-AS-02002 (29.927) AUS-AS-02002 (36.719)
Filename: docs/tolerance/AUS-AD/contrast.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (70.109) AUS-AD-02001 (92.120) AUS-AD-02001 (42.969)
AUS-AO-02002 (57.895) AUS-AO-02002 (70.513) AUS-AO-02002 (21.951)
AUS-AS-02002 (57.895) AUS-AS-02002 (70.513) AUS-AS-02002 (21.951)
Filename: docs/tolerance/AUS-AD/flare-on-name.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (99.044) AUS-AD-02001 (99.066) AUS-AD-02001 (81.058)
AUS-AO-02002 (91.699) AUS-AO-02002 (90.650) AUS-AO-02002 (37.719)
AUS-AS-02002 (91.699) AUS-AS-02002 (90.650) AUS-AS-02002 (37.719)
Filename: docs/tolerance/AUS-AD/gaussian2x2.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (96.010) AUS-AD-02001 (88.686) AUS-AD-02001 (80.282)
AUS-AO-02002 (93.978) AUS-AO-02002 (77.673) AUS-AO-02002 (43.657)
AUS-AS-02002 (93.978) AUS-AS-02002 (77.673) AUS-AS-02002 (43.657)
Filename: docs/tolerance/AUS-AD/gaussian5x5.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (94.388) AUS-AD-02001 (96.547) AUS-AD-02001 (77.562)
AUS-AO-02002 (91.435) AUS-AO-02002 (84.127) AUS-AO-02002 (43.846)
AUS-AS-02002 (91.435) AUS-AS-02002 (84.127) AUS-AS-02002 (43.846)
Filename: docs/tolerance/AUS-AD/laplacian.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (97.125) AUS-AD-02001 (98.637) AUS-AD-02001 (79.639)
AUS-AO-02002 (86.879) AUS-AO-02002 (87.824) AUS-AO-02002 (44.649)
AUS-AS-02002 (86.879) AUS-AS-02002 (87.824) AUS-AS-02002 (44.649)
Filename: docs/tolerance/AUS-AD/motion-linear-5x145.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (89.418) AUS-AD-02001 (76.699) AUS-AD-02001 (36.170)
AUS-AO-02002 (84.314) AUS-AO-02002 (64.246) AUS-AO-02002 (35.533)
AUS-AS-02002 (84.314) AUS-AS-02002 (64.246) AUS-AS-02002 (35.533)
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Listing 23 Results of matching with aberrated images. page 2/2

Filename: docs/tolerance/AUS-AD/multiplicative.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (85.806) AUS-AD-02001 (92.895) AUS-AD-02001 (49.213)
AUS-AO-02002 (79.938) AUS-AO-02002 (85.024) AUS-AO-02002 (35.398)
AUS-AS-02002 (79.938) AUS-AS-02002 (85.024) AUS-AS-02002 (35.398)
Filename: docs/tolerance/AUS-AD/noise20.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (89.167) AUS-AD-02001 (93.084) AUS-AD-02001 (41.767)
AUS-AO-02002 (88.066) AUS-AO-02002 (92.045) AUS-AO-02002 (30.698)
AUS-AS-02002 (88.066) AUS-AS-02002 (92.045) AUS-AS-02002 (30.698)
Filename: docs/tolerance/AUS-AD/noise40.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AO-02002 (85.714) AUS-AD-02001 (86.747) AUS-AD-02001 (26.562)
AUS-AS-02002 (85.714) AUS-AO-02002 (70.690) AUS-AO-02002 (14.773)
AUS-AD-02001 (75.497) AUS-AS-02002 (70.690) AUS-AS-02002 (14.773)
Filename: docs/tolerance/AUS-AD/pixelize2x2.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (97.674) AUS-AD-02001 (85.424) AUS-AD-02001 (75.783)
AUS-AO-02002 (92.391) AUS-AO-02002 (81.313) AUS-AO-02002 (43.295)
AUS-AS-02002 (92.391) AUS-AS-02002 (81.313) AUS-AS-02002 (43.295)
Filename: docs/tolerance/AUS-AD/poisson.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (85.417) AUS-AD-02001 (92.035) AUS-AD-02001 (42.742)
AUS-AO-02002 (75.197) AUS-AO-02002 (73.203) AUS-AO-02002 (31.081)
AUS-AS-02002 (75.197) AUS-AS-02002 (73.203) AUS-AS-02002 (31.081)
Filename: docs/tolerance/AUS-AD/refraction105.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AO-02002 (90.818) AUS-AO-02002 (87.423) AUS-AD-02001 (43.986)
AUS-AS-02002 (90.818) AUS-AS-02002 (87.423) AUS-AO-02002 (40.304)
AUS-AD-02001 (79.799) AUS-AD-02001 (81.369) AUS-AS-02002 (40.304)
Filename: docs/tolerance/AUS-AD/rotate4offset5.jpg
----------------------------------------------------------------
akaze brisk orb
AUS-AD-02001 (97.029) AUS-AD-02001 (96.825) AUS-AD-02001 (65.749)
AUS-AO-02002 (95.681) AUS-AO-02002 (87.543) AUS-AO-02002 (45.522)
AUS-AS-02002 (95.681) AUS-AS-02002 (87.543) AUS-AS-02002 (45.522)
total execution time: 22.606020873s
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