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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 
aplicación, metodología, resultados i conclusiones del trabajo. 

La reducción dimensional es el proceso por el que el número de variables observado 
en un estudio es reducido a una cantidad menor. El término “linfoma” define un grupo 
de cánceres de glóbulos blancos que afectan tanto a adultos como a niños. El 
diagnóstico y tratamiento correcto del linfoma ofrece una tasa de supervivencia 
significativa. La “Maldición de la Dimensionalidad” es un problema común en el que la 
adición de dimensiones en conjuntos de datos produce una dilución de la información. 
Esto puede ser evitado mediante técnicas de reducción dimensional. Este estudio se 
enfoca en la comparación de la eficiencia de PCA, ICA, Análisis de Factores y LDA. 
PCA, LDA y Análisis de Factores demuestran buenos resultados. Los mismos se 
muestran en una tabla comparativa. 

 

 

  Abstract (in English, 250 words or less): 

 

Dimension reduction, or dimensionality reduction, is the process through which the 
number of variables observed in a study is reduced to a smaller number. The term 
Lymphoma defines a group of very common white blood cell cancers that affect both 
adult individuals and children. The correct diagnosis and treatment of lymphoma offers 
a significant survival rate. The Curse of Dimensionality is a common problem in which 
additional dimensions in data sets make information sparser. This can be managed by 
dimension reduction techniques. This study aims to compare the performance of PCA, 
ICA, Factor Analysis and LDA. LDA, PCA and Factor Analysis are shown to yield good 
results. A comparative table is given. 
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1. Introduction 
 
The current project is framed in the context of lymphocyte classification. Lymphocyte 
classification is achieved through the evaluation of morphologic, geometric and 
colorimetric features. Dimension reduction, or dimensionality reduction, is the process 
through which the number of variables observed in a study is reduced to a “manageable” 
number, considering as “manageable” that which produces the best prediction accuracy 
while keeping the noise and processing requirements to a minimum. 
 
Machine learning algorithms are expensive in processing power and benefit from 
appropriate data representations in the form of constructed features derived from the 
original input. There are a number of feature construction methods, both supervised and 
unsupervised, such as clustering (replacing a number of similar variables by a cluster 
centroid), basic linear transforms (such as SVD, Singular Value Decomposition, which 
reconstructs the data in the form of the best linear combination in the least square sense), 
Fourier Transforms, and also simple, task-specific functions (Guyon and Elisseeff 
2003). 
 
While dimension reduction is useful in every field of application of Machine Learning, 
the proposed area for this project is the morphological analysis of lymphocytes. 
Lymphocytes are classified as normal, abnormal or reactive attending to morphological 
features, being neoplasic lymphoid cells the most difficult to be recognized by only 
qualitative morphologic features (Puigví et al. 2017). The chosen topic for this project is 
the comparison of the behaviour of different dimension reduction techniques applied to 
this study. 
 

1.1 – Context and justification for this project 
 
The term Lymphoma defines a group of very common white blood cell cancers that affect 
both adult individuals and children. Symptoms include sweating, itches, enlarged lymph 
nodes, fever and a prolonged feeling of fatigue. It is classified into many subtypes, being 
first and mainly divided into Hodgkins and non-Hodgkins lymphomas, and then 
subdivided in dozens of subtypes. The correct diagnosis and treatment of lymphoma 
offers a significant survival rate. 
 
This diagnosis involves, as part of the protocol, visual morphological analysis of 
peripheral blood cells in the form of a blood smear (Fig. 1). This is an expert-driven field 
in which interobserver and intraobserver variations may supose a hindrance (Puigví et 
al. 2017). The categorisation of cells depends on morphological features such as 
nucleus morphology, hairiness or nucleus-cytoplasm proportions. 
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Figure 1: Microscopic image of blood smear containing lymphocytes (purple, with granulated nuclei) (Source: Euthman, 

https://www.flickr.com/photos/euthman/2869815349 ) 

 
As blood smear image examination is a tedious and time consuming process (Naugler 
et al. 2014), many algorithms have been developed to automate the process. Image 
recognition and segmentation is used to prepare the input, usually dividing the cell image 
into masks. A cell mask is produced, by selecting the cell amongst the other elements of 
the image. The cell is then divided into semantically significant regions (e.g. nucleus 
mask or cytoplasm mask) through image segmentation, via techniques such as: 
Thresholding, the Watershed Transformation Algorithm or unsupervised machine 
learning algorithms as Color Clustering. This image processing step is crucial for a good 
classification workflow, as it prepares the input for the following steps. 
 
The next step is feature selection/extraction, in which a group of features is measured; 
these quantitative values are used for classification. Good features must be informative. 
Features that largely overlap between classes do not offer a significant amount of 
distinctiveness. The selected or extracted features must be very similar inside the 
same class and distinctive between classes. White blood cells are wildly different 
between them, varying substantially between cell families, and although there are 
features that are observably different between families, not all features will be significant 
for a classification task. 
 
The last step is the classification itself. Classification searches for a pattern that can 
reliably assign a given class to a given sample. There are many machine learning 
algorithms used to find these patterns, such as ANNs (Artificial Neural Networks) or 
SVMs. For the purposes of this project, a focus will be given to SVMs. 
 
Support Vector Machines are a machine learning algorithm first introduced by Vladimir 
Vapnik (Leslie, Eskin, and Noble 2002). They aim to find one or a set of hyperplanes that 
divide the sample space into categories, as cleanly as possible and with as little 
interference of samples from one space into another. These hyperplanes are then used 
to classify new test samples into one of the original classe. 
 
In a non-ideal, more realistic background, samples will not be always cleanly separated 
into smooth groups. This situation is managed by searching for a compromise between 
maximum classification accuracy and a reasonable classification error. Different kernels 
can also be introduced in the SVM algorithm to improve the classification results. 
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The morphological features of peripheral blood cells were first translated into a 
mathematical scoring system by Benattar and Flandrin (Benattar and Flandrin 2001). 
Mathematical measurement of these features induce intraobserver and interobserver 
objectivity and allow for a quantitative assesment of the cell’s features, being the ones 
in abnormal lymphocytes the most difficult to identify. Thus, mathematical tools have 
been developed with the aim of processing peripheral blood cell images and extracting 
sets of features which are used to classify the cell. These features need to be constructed 
and optimized to obtain the best classification performan, or risk the Curse of 
Dimensionality. 
 
The Curse of Dimensionality is a common problem for many data analysis fields, in which 
the dimensionality (number of observed features) of the data grows. The analytic space 
grows exponentially with each added dimension, even though the initial number of 
samples may be optimized for a study, the real quantity of information quickly grows 
“sparse” as the dimensionality of the study increases. 
 
The Curse of Dimensionality can be managed by dimension reduction methods, as it has 
been proposed in (Puigví et al. 2017) and (Alférez 2015). The most complete set of 
features is described in detail in the former, in the Materials and Methods section. In this 
(Puigví et al. 2017), a total of 325 patients were included (Fig.2), for a total of 12574 cell 
images. This images were obtained using the CellaVision DM96. 
 

 
Figure 2: Distribution of lymphoid cell groups, number of patients and images included in the study; Cell group 
abbreviation meanings are as follows: AL-CLL, abnormal lymphocyte of chronic lymphocytic leukaemia; AL-FL, 

abnormal lymphocyte of follicular lymphoma; AL-MCL, abnormal lymphocyte of mantle cell lymphoma; ALL, acute 
lymphocytic leukaemia; B-PL, B prolymphocyte; LB, lymphoid blast; LGL, large granular lymphocyte; ML, mature 

lymphocyte; RL, reactive lymphocyte; SC, Sézary cell; T-PL, T prolymphocyte; VL-HCL, villous lymphocyte of hairy cell 
leukaemia; VL-SMZL, villous lymphocyte of splenic marginal zone lymphoma. (Source: Puigví et al.) 

 
Three ROIs (Regions of Interest) are obtained (nucleus, whole cell and peripheral zone 
around the cell), and a fourth ROI is obtained as the difference between cell and nucleus 
regions. Features are divided in geometric features and color-texture features, all of them 
measured quantitatively. 
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Figure 3: Examples of different cells, showing differential nucleus/cytoplasm ratio, with associated boxplots (Source: 

Puigví et al.) 

 
27 geometric features (including area, perimeter and N/C ratio) and 2649 colour-texture 
features (43 texture features applied through six colour spaces: RGB, CMYK, XYZ, Lab, 
Luv and HSV) are extracted, for a total of 2676 features. 
 

 
Figure 4: Magenta component grayscale decomposition and associated histogram (Source: Puigví et al.) 

 
The problem of dimensionality is solved through dimension reduction techniques 
(theoretic feature selection), decreasing the number of features to a more relevant, less 
redundant subset of 20 features (Fig.5), and malignant diagnoses were confirmed 
following the WHO classification. 
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Figure 5: 20 most relevant, less redundant features selected (Source: Puigví et al.) 

 
Data analysis was performed with R code, validating for residual normality through 
Kolmogorov-Smirnov, homocedasticity through Flingner-Killeen, significance through 
Kruskal-Wallis and multiple comparisons through Kruskal-Wallis after Dunn tests 
applying a Bonferroni adjustment. 
 
The selected features allowed for the quantification of different morphological 
characteristics with significant p-values, being N/C ratio the best feature for distinction. 
 
As has been mentioned, the correct diagnosis of lymphoma offers a significant survival 
rate. Then, every single step of the classification protocol should be optimised for best 
performance, both in terms of accuracy and costs. Thus, the justification for this project 
on a scientific level is to compare the feasibility of several dimension reduction 
techniques applied to the classification of lymphoma. This comparison will be made 
through an accuracy scoring result. 
 
The accuracy of a prediction is the proportion of true positives plus true negatives against 
the total prediction result. It measures the amount of cases in which the observed results 
matched the expected results. Errors in prediction may or may not have the same 
“weight” for a given problem (as an example, a false positive in cancer diagnosis may 
raise an unnecesary alarm; a false negative may cause a lack of treatment and so, a 
serious health issue). This project will, through understanding of the context of the 
mentioned study, establish an accuracy scoring system, determine if different errors 
have different costs, compare scores, and analyse the results for conclusions both on 
comparison of techniques and the implications of the scoring system. 
 
 

1.2 - Project goals 

1.2.1 - General goals 

The goal of this project is to compare several techniques of dimension reduction 
through the construction of significant features and their respective results given a 
classification workflow. This classification workflow should differentiate normal, abnormal 
and reactive lymphoid cells. The resulting accuracy values will serve as scoring for the 
features constructed for the objective assesment of the behaviour of the dimension 
reduction techniques behind them. 
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1.2.2 - Specific goals 

 
Specific goals for Phase 1 (17-10-2017 through 20-11-2017) 
 
1 - To design a comparison protocol for different dimension reduction techniques. 

1.1 - To research, understand, brief on, and choose an array of dimension 
reduction techniques for comparison. 

1.2 - To choose a programming environment to work with (languages, 
frameworks. . . ) 

1.3 - To assess the methods of, understand and ultimately extract a subset of 
functions from the appointed languages and frameworks to apply to the test data. 
 
Specific goals for Phase 2 (21-11-2017 through 18-12-2017) 
 
2 - To apply this protocol to each technique within the frame of lymphocyte classification, 
achieving an objectively quantifiable scoring system. 

2.1 - To set a scoring system to satisfy the need for an objective measure of 
accuracy. This scoring System will include weighing of types of errors. 
2.2 - To apply each of the selected dimension reduction techniques, under 
equivalent parameters, to the test data. 
2.3 - To classify the behaviour of the referred techniques, based on the selected 
scoring system, as applied to the stated problem (lymphocyte classification) 

 

1.3 - Focus and followed method 
 
Given the particular goal of this project (the comparison of dimension reduction 
techniques), the focus to accomplish it is directed to the evaluation of the accuracy of 
classification tasks implementing each of these techniques. Feature construction aims 
to explain the most variance through the less possible, most explicative, features. For a 
constant given amount of variance explained through variables in a classification 
task, the accuracy of the predicted classes improves while the number of dimensions 
decreases. 
 
The method to accomplish this is a selection of dimension reduction techniques, 
including PCA, ICA and Factor Analysis amongst others, applied to the problem dataset 
and used as input for the same Machine learning classification algorithm (SVM with a 
Radial Basis Function or RBF kernel). 
 
This method has been evaluated as the most appropriate, as it makes it possible to 
subject the objects of evaluation to an equal environment, under equal conditions, and 
give out a numerical, objective measure of correlation with observed results. 
 
 

1.4 - Project plan 

1.4.1 – Tasks 

 
Tasks for Phase 1: 

1.1.1 - Choose a subset from the most used and widely applied dimension 
reduction techniques appliable to the present topic, including PCA, ICA and Factor 
Analysis. (1 week, 21 hours equivalent) 

1.2.1 - Elaborate a list of widely bioinformatics-applied languages (and 
frameworks, if used within one). (7 days, 21 hours equivalent) 
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1.2.2 - Choose a subset from those languages and frameworks and elaborate a 
briefing of characteristics and examples of application. (3 days, 9 hours equivalent) 

1.3.1 - Elaborate a list of dimension reduction packages and functions from 
chosen languages. (7 days, 21 hours equivalent) 

1.3.2 - Choose a subset and elaborate a briefing of package traits: optimal 
application, parameters, exemple workflows it has actually been used for, etc. (4 days, 
12 hours equivalent) 

1.3.3 - Elaborate monitoring report for Phase 1. (7 days, 21 hours equivalent) 
 

Tasks for Phase 2: 
2.1.1 - Elaborate a short briefing on the value of prediction accuracy as output by 

this packages. (4 days, 12 hours equivalent) 
2.1.2 - Assess the validity of it for all the packages selected, and, if it is not valid 

for all of them, extrapolate a valid, normalized scoring system. (6 days, 18 hours 
equivalent) 

2.2.1 - Apply each and every package’s or function’s workflow to the supplied 
lymphocyte data. (4 days, 12 hours equivalent) 

2.3.1 - Present the score output of each of the applications in a user-friendly 
manner. (3 days, 9 hours equivalent) 

2.3.2 - Extract behaviour/comparison conclusions from this score output. (4 days, 
12 hours equivalent) 

2.3.3 - Elaborate monitoring report for Phase 2. (8 days, 24 hours equivalent) 
 

1.4.2 - Calendar 

The following Gantt diagram represents the division of time through the proccess of this 
project: 
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1.4.3 – Milestones 

 
The following tables represent the milestones for each development phase. 
 

 
 

1.4.4 - Risk analysis 

 
Some of the factors that could hinder the proposed work frames are the following: 
 

1. Technical problems: a short buffer of time must be allocated for unexpected 
technical problems stemming from equipment malfunction, infrastructure breakdown, 
etc. Measures covering these problems include a recurrent backup system, cloud 
storage and accessibility to the project and its resources from several, if controlled, 
workstations. 

 
2. Goal overextension: an incorrect or exaggerated choice of dimension 

reduction techniques or an overambitious reach could mean an ineffective use of time. 
This is controlled by allocating an initial time for a detailed judgement and selection of 
techniques to include in this project’s comparison goal. 

 
3. Incompatibilities: accuracy measurements between packages or functions in 

different languages or frameworks could demonstrate to be incompatible between them, 
or not fit to compare; this is avoided through both the allocation of time for a strict 
selection of these languages and frameworks, and for the production of a normalized 
scoring system. 
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Although there are many other factors that could mean an obstacle for the correct 
development of each phase, they are not foreseeable and are, thus, to be assessed on 
an occurrence basis. 
 

1.4.5 - Associated project costs 

 
Economical costs for the present project will be only those associated with infrastructural 
uses (power and time used for computation), as all implemented software will be Open 
Source. 
 

1.4.6 - Ethical and legal data implications 

 
All data included in this project is anonymous and carries no risk for specific study 
patients. Even so, no data set will be made available for the public, and all computation 
and data presented will be in the form of final results in which no specific person will be 
addressed. 
 

1.4.7 - Briefing: first monitoring report - November 2017 

 
Development state: 
 
Up to this date, a complete background for the project has been researched. The goal of 
the project is clear, and a good wealth of literature on the topic and multiple sub-topics 
at hand has been sought, found and studied. The ups and downs of both dimension 
reduction techniques and programming languages and packages have been assessed, 
evaluated and discriminated. The redaction of a complete report is on its way, and the 
general state of development is in accordance with both the official timetables and the 
personally scheduled tasks. 
 
Undertaken tasks: 
 

1.1.1 - Choose a subset from the most used and widely applied dimension 
reduction techniques appliable to the present topic, including PCA, ICA and Factor 
Analysis. (1 week, 21 hours equivalent) 
State: Complete - In schedule. Two additional techniques (Autoencoders and T-
distributed Stochastic Neighbor Embedding) have been added to the pool for the reasons 
stated in the report. 
 

1.2.1 - Elaborate a list of widely bioinformatics-applied languages (and 
frameworks, if used within one). (7 days, 21 hours equivalent) 
State: Complete - In schedule. Languages such as SPSS, Matlab or Haskell have 
been assessed and evaluated for their usefulness and fit to the goals of this project. 
 

1.2.2 - Choose a subset from those languages and frameworks and elaborate a 
briefing of characteristics and examples of application. (3 days, 9 hours equivalent) 
State: Complete - In schedule. The final candidates for comparison, due to the factors 
described in the project, are Python and R. 
 

1.3.1 - Elaborate a list of dimension reduction packages and functions from 
chosen languages. (7 days, 21 hours equivalent) 
State: Complete - In schedule. 



10 

 
1.3.2 - Choose a subset and elaborate a briefing of package traits: optimal 

application, parameters, exemple workflows it has actually been used for, etc. (4 days, 
12 hours equivalent) 
State: Complete - In schedule. The chosen packages have been listed with a historical 
and mathematical background where appliable, and reasons for selection. 
 

1.3.3 - Elaborate monitoring report for Phase 1. (7 days, 21 hours equivalent) 
State: Complete - In schedule. 
 
Incomplete tasks: 
 
As of this monitoring report there are no incomplete tasks. 
 
Hindrances and unforeseen circumstances: 
 
There have been neither hindrances nor unforeseen circumstances. 
 
Update - milestones: 
 
Up to this date, the original milestones still apply, as stated in the following table: 
 

 
 
All milestones have been completed and the grounds for the second phase of the project 
are established. 
 
List of products: 
 
Given the development state of the project, in which a theoretical background has been 
stated and tools have been selected, the only product for this phase is the current 
monitoring report. It is expected, as part of the project’s plan, that the second phase will 
yield the final products. 
 

1.4.8 - Briefing: second monitoring report - December 2017 

 
Development state: 
 
The project’s tasks have been largely completed by this point, given some extra tasks 
that are detailed here and unforeseen circumstances and hindrances that were buffered 
through corrective or paliative action. 
 
Undertaken tasks: 
 

2.1.1 - Elaborate a short briefing on the value of prediction accuracy as output by 
this packages. (4 days, 12 hours equivalent) 
State: Complete - In schedule. 
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2.1.2 - Assess the validity of it for all the packages selected, and, if it is not valid 
for all of them, extrapolate a valid, normalized scoring system. (6 days, 18 hours 
equivalent) 
State: Complete - In schedule. 
 

2.2.1 - Apply each and every package’s or function’s workflow to the supplied 
lymphocyte data. (4 days, 12 hours equivalent) 
State: Complete - Out of schedule. 
 

2.3.1 - Present the score output of each of the applications in a user-friendly 
manner. (3 days, 9 hours equivalent) 
State: Complete - Out of schedule. 
 

2.3.2 - Extract behaviour/comparison conclusions from this score output. (4 days, 
12 hours equivalent) 
State: Complete - Out of schedule. 

 
2.3.3 - Elaborate monitoring report for Phase 2. (8 days, 24 hours equivalent) 

State: Complete - Out of schedule. 
 
Unscheduled activities 
 
As part of the tasks undertaken, it has been necessary to upgrade the technical 
resources available to the author. The machine in which the project’s computation is run 
is a Hewlett Packard Proliant Gen 8 microserver. It has proven reliable and sturdy, 
but not powerful enough for some of the proceedings. As such, more RAM and a more 
powerful processor were acquired and the server was modded with them. This process 
took the best part of two days of work, from November 30th through December 2nd. 
 
Incomplete tasks: 
 
There were no incomplete tasks. 
 
Hindrances and unforeseen circumstances: 
 
In the original planning, possible sources of deviation and obstacles were proposed as: 
 

1. Technical problems: A single, important technical problem has arised when 
undertaking the second phase of this project: computing power. For some of the 
dimensional reduction techniques (PCA and ICA) the processing times and virtual 
memory requirements were met even under the most stringent parameters. On the other 
hand, some of the least tried or most resource-heavy techniques (Stacked Denoising 
Autoencoders and T-Stochastic Neighbor Embedding) repeatedly hit a technical roof 
which hindered the progress of this project. 

 
2. Goal overextension: no problems associated with overextension have arised. 

The scheduled objectives have been deemed by the author as realistic and, apart from 
other hindrances, achievable. 
 

3. Incompatibilities: no incompatibilities have been found neither in practice nor 
in literature.  

 
As such, technical buffering measures were undertaken. In the first place, method 
optimization techniques were tested, such as the use of resource-light variable structures 
as turning data frames into sparse matrices or garbage-collection methods after each 
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iteration of the processes, but none of them lowered the requirements in a manner 
significant enough to be able to complete them to satisfaction. 
 
As this was clearly a hard-cap problem, an Intel® Xeon R E3-1265L processor, and two 
8Gb Kingston DIMM 1600 Mhz 240 pins RAM chips were acquired in order to be able 
to parallelize processing and provide the machine with a higher virtual memory roof. This 
microserver modification took the best part of two days of work and brought with it a total 
blackout in computing during this time. This blackout time was put to use in redaction 
and problem-solving research. 
 

1.4.9 - Final Gantt Diagram (after alterations) 

 
Referring to the original the Gantt diagram presented within the initial plan: 
 

 
 
The planned tasks were slowed down by the aforementioned technical problem. 
Deviations were mainly focused in task 2.2.1 - Application of workflows. The unplanned 
use of two days was distributed evenly amongst all the following tasks, so the original 
Gantt diagram is recast as follows: 
 

 

 
 

1.4.9 – Final Gantt Diagram (after alterations) 

 
Referring to the original Gantt diagram, the planned tasks were slowed down by the 
aforementioned technical problem. Deviations were mainly focused in task 2.2.1 - 
Application of workflows. The unplanned use of two days was distributed evenly 
amongst all the following tasks, so the original Gantt diagram is recast as follows: 
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1.5 - Brief summary of products obtained 

1.5.1 - Work plan 

 
A document pertaining the project’s planification will be delivered by October the 16th, 
this being it. This document’s aim is to reflect the project’s expected goals and tasks to 
accomplish and the time frames in which to fit them. Pragmatism is expected in this 
planning, meaning the ability to fit realistic goals and tasks in realistic timeframes, 
acknowledge possible hindrances and obstacles, and establishing procedures to avoid 
or sort them out. 
 
This project’s work plan is been rendered via R, using packages Rmarkdown, ggplot2, 
knitr, and reshape2. The embedded Gantt graph is produced via ggplot2 and 
reshape2, from an input of tasks in data frame format and a series of graphic 
parameters. 
 
This document will also establish the products that will stem from the project, any 
additional outputs, and the monitoring and evaluation thereof. 
 

1.5.2 – Report 

 
Three reports will be made through this project’s duration, structured as follows: 
 
The first document will be a monitoring report, due November the 20th, in which the 
project’s ongoing evolution will be described. This will be composed of the description 
itself, a complete relation of overtaken activities, both foreseen and unforeseen, a 
relation of hindrances and obstacles and the measures taken to buffer them, complete 
with an update of time frames, a list of delivered partial results and any particular 
comment by the project’s tutor. 
 
Another monitoring report, due December the 18th, will be generated with contents similar 
to the first one, this time with a focus on the completed second phase of the project and 
the degree of accomplishment of the planned goals for it. 
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The final report, due January the 2nd, with a maximum length of 90 pages, will present 
the output of the project, with a justification of its interest, goals, methodology and 
materials, and results obtained. 
 

1.5.3 – Product 

 
In the course of this project, an automated comparison report script will be produced. 
The code used will be added as an addendum to the final report, along with code 
comments and protocols of use. The code will be stored in a GitHub repository, available 
for the public to clone, review and use. GitHub is a version-control platform used to store 
git repositories, with an emphasis on open-source, collaborative efforts and project 
versioning. Mendeley will be used as referencing tool, syncronized with R Markup 
through an embedded .bib file. 
 

1.5.4 - Virtual presentation 

 
The virtual presentation for this project will be carried out through Present@, a 
presentation tool offered by Universitat Oberta de Catalunya for the display of project 
results. This presentation will be comprised of approximately 20 slides with an oral 
presentation for a maximum of 20 minutes. This presentation’s aim is to be as concise 
and informational as possible, while delivering the results and conclusions of the project 
in a clean, outreaching way. 
 
The presentation will be produced between the 3rd and 10th of January 2018, January the 
10th being the deadline. Of special importance is the content, synthetic ability and clarity 
of purpose and expression. Evaluation criteria have been provided by the project’s tutor. 

1.5.5 - Project self-evaluation 

 
This project’s self-evaluation will confront it from two angles: first, a side-by-side 
comparison of initial goals and time schedules and final, actual results and time 
schedules, and second, a thorough analysis of style, clarity and informative value. Being 
this: 
 
Goals and schedules: 
 

1 - Correct assertion of techniques to compare: the techniques assessed are 
widely used, available to the general research personnel, and suited for the task at hand. 
Also, the number of techniques is decided pragmatically, avoiding overextension and, 
thus, decrease in effective time. 

 
2 - Validity of scoring system and conclusions: the scoring system is, by itself 

or through normalisation, fit to give an objective, comparable value. The conclusions that 
follow are in agreement with this scoring system. 

 
3 - Adecuation of assigned times: the assigned times corresponded to the 

times actually employed for each task, and so, milestones are accomplished within the 
expected period. 
 
Style and structure: 
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1 - Style: the project is easily readable, is expressed in a correct way, follows 
correct style guidelines, quotes and references are strictly marked. 

  
2 - Structure: the project follows the structure established by the documentation 

provided through the subject. Contents are correctly divided in sections. The project as 
a whole presents a semantic flow without logical leaps that may hinder the reader’s 
comprehension. 

 

1.6 - Brief description of other chapters 
 
2 - Dimension reduction: an introduction: A brief presentation of the main topic for this 
project. What they are, what they are useful for. 
 
2.1 - PCA: Historical and mathematical background of this technique, and reasons for 
its selection. 
 
2.2 - ICA: Historical and mathematical background of this technique, and reasons for its 
selection. 
 
2.3 - Factor Analysis: Historical and mathematical background of this technique, and 
reasons for its selection. 
 
2.3 - Autoencoders: Historical and mathematical background of this technique, and 
reasons for its selection. 
 
2.4 - T-distributed Stochastic Neighbor Embedding: Mathematical background of this 
technique, and reasons for its selection. 
 
2.5 - LDA: Historical and mathematical background of this technique, and reasons for its 
selection. 
 
3 - Tools: Languages and packages used for this project. 
 
3.1 - Criteria: Criteria through which these tools were selected. 
 
3.2 - Python: History, modules and implementations from this language used for the 
current project. 
 
3.3 - R: History, packages and libraries and implementations from this language used 
for the current project. 
 
4 - Comparative Scoring: Assessment of an objective, measurable way to compare 
dimension reduction techniques. 
 
4.1 - Classification Accuracy Metrics: A general look at the ways in which prediction 
accuracy is measured. 
 
4.2 - Binary Classification Versus Multiclass Classification Metrics: On how 
different accuracy metrics are best suited to evaluating classifiers with two classes or 
more. 
 
4.3 - Classification Rate: Focus on this multiclass accuracy metric. 
 
4.4 - Cohen’s Kappa: In-depth look at this multiclass accuracy metric. 
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4.5 - Chosen Scoring Metric: The metric to be used in this project and reasons for it. 
 
5 - Comparison Methods and Protocols: Previously explained techniques and 
implementations, put to work. 
 
5.1 - Introduction and General Data Set Description: A brief introduction to the data 
being treated, and ways to sort out imbalance. 
 
5.2 - Goals and techniques: Brief resume of techniques being implemented. 
 
5.3 - Dimension Reduction techniques - R: R implementations of the selected 
dimension reduction techniques. 
 
5.4 - Dimension Reduction techniques - Python: Python implementations of the 
selected dimension reduction techniques. 
 

2 - Dimension reduction: an introduction 
 
Data derived from actual studies, as opposed to ideal data is mudded by the complexity 
of reality, and in order to approximate it needs to be measured by large quantities of 
variables; this results in high dimensionality datasets, as may be the case of digital 
imaging, speech recognition or complex classification tasks. This high dimensionality 
needs to be adequately reduced in order to make studies attainable. In fact, not all the 
measured variables may be “important” to the goal of a study. 
 
This can be mathematically formulated as follows (Fodor 2002): 
 

Given the p-dimensional random variable 𝑥 =  (𝑥1, . . . , 𝑥𝑝)𝑇 , we need to find a lower 

dimensional representation of it, 𝑠 =  (𝑠1, . . . , 𝑠𝑘)𝑇 with 𝑘 ≤  𝑝 that captures the 
information in the original data. 
 
Ideally, this involves constructing a representation of the data according to its intrinsic 
dimensionality. The intrinsic dimensionality of data is the minimum number of parameters 
needed to account for the oberserved properties of the data (Van Der Maaten, Postma, 
and Van Den Herik 2009). As a result, many techniques have been developed, both 
supervised and unsupervised, to handle the construction of this representation. 
 
Traditionally, dimensionality reduction techniques relied in linear transformations, as 
those used in PCA (Principal Component Analysis), Factor Analysis or classical scaling. 
Linear techniques result in newly constructed features that are a linear combination of 
the originals. However, given that in many fields, complex, nonlinear data is obtained, 
many other nonlinear methods have been developed, like Autoencoders, nonlinear 
applications of PCA, Kernel PCA, Laplacian Eigenmaps, etc. 
 
The techniques used for this project are described in the next subsections. History, 
mathematical background and reasons for its selection are addressed where available. 
Further along this document, programming applications and protocols are addressed. 
 

2.1 – PCA 
 
PCA is the most used unsupervised, linear dimension reduction technique currently 
available. It is also the best, in the mean-square error sense (Fodor 2002). Its central 
idea is the construction of a set of features from a number of initial variables (Jolliffe 
2002). The number of new features will be less than the initial variables, while retaining 
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as much as possible of the initial variation. This is achieved by linear transformations of 
the original data, and then establishing a descending order of the new features attending 
to the amount of variation retained or explained by each of them. 
 
Given X, a vector of p random variables, as object of interest for any study, and given 
that X is complex enough, the raw study of the correlation between variables may get to 
be inefficient and expensive in time and effort. Instead of getting the p variances and the 
½ p(p − 1) correlations for each sample in the study, the goal is to search for less, equally 
(or effectively equally) explicative features. 
 

2.1.1 - Historical background 

 
PCA was invented in 1901 by Karl Pearson, the roots of it deeply burrowed in regression-
thinking. In its first approach, which independently builds up on singular value 
decomposition, Pearson is concerned with finding lines and planes that best fit a set of 
points in a p-dimensional space through geometric optimization (Jolliffe 2002). 
 
It has been mathematically reinterpreted several times along its history. In the thirties, 
Hotelling takes his own approach. He introduces the term “components”, as “factors”, 
which is used in psychological literature, may create confussion with other mathematical 
uses of this word. His motivation is the thought that there may be a smaller set of derived 
variables that explain the values of the original variables. It is his own interpretation that 
coins the term “method of principal components”. 
 
Hotelling gives more weight to the Principal Components axis’ directions, in a much more 
multivariate statistical approach. In Hotelling’s approach he defines the Principal Axis 
Property: the first component explains the most variation, the second component the 
second most variation, and so on. The first Principal Components define new axis to be 
taken into account for the next Principal Components. This means a rotation of the 
subspace has an effect on the resulting Principal Components (Bro and Smilde 2014). 
 
From then on further applications and extensions of PCA have been made by 
researchers such as Anderson (1963), Gower (1966) or Jeffers (1967). 
 
Even though it seems to be a simple technique and much has been discussed about it, 
it has been applied to an extensive range of fields and is still in research. 
 

2.1.2 - Mathematical background 

 
Let 𝑋 be a matrix with 𝐼 rows (𝑖 =  1, . . . , 𝐼). These I rows will usually be the observations 

or samples for the study. 𝑋 is also composed of 𝐽 columns (𝑗 =  1, . . . , 𝐽), that represent 
the measured variables. Each of these variables are denoted 𝑥𝑗, and thus the matrix is 

of 𝐼 𝑥 𝐽 dimensions. 
 
The linear combination of these variables can be written as 𝑡 = 𝑤1 ×  𝑥1 + ⋯ + 𝑤𝐽  × 𝑥𝐽. 

The new vector 𝑡 is in the same I-dimensional space as the original variables, and it is a 
linear transformation of these variables. This can be expressed, in matrix notation, as 
𝑡 = 𝑤𝑋, w being the linear factor vector with elements 𝑤𝑗 (𝑗 = 1, … , 𝐽) (Bro and Smilde 

2014). 
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As has been explained in former sections, as much information of 𝑋 should be carried 
on to t as possible. With enough of that information preserved, 𝑡 acts as a good summary 
of 𝑋. This information can be expressed as variance, 𝑣𝑎𝑟(𝑡). 
 

Variance, 𝑠2, is statistically almost identical to standard deviation (SD) (Smith 2002). The 
formula for variance is: 

 

𝑠2 =
∑ (𝑋𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
  (1) 

 
 
being this just the squared SD. 
 
So the goal is to choose a linear transformer 𝑤1, … , 𝑤𝐽 that maximizes 𝑣𝑎𝑟(𝑡). Since 

measures are subject to number sizes according to their own background, they need to 
be scaled down to a comparable scale, such that 𝑤 may really be appliable with 
significant results unaffected by arbitrary size changes. 
 
Then the problem can be expressed as  
 

argmax
‖𝑤‖=1

𝑣𝑎𝑟(𝑡)   (2) 

 
 
where 𝑎𝑟𝑔𝑚𝑎𝑥 is the argument 𝑤 of length 1 that maximizes 𝑣𝑎𝑟(𝑡). Returning to the 

matrix notation, and substituting equation 𝑡 = 𝑤𝑋 in equation (2): 
 

argmax
‖𝑤‖=1

(𝑡𝑇𝑡) =  argmax
‖𝑤‖=1

(𝑤𝑇 𝑋𝑇 𝑋 𝑤)   (3) 

 
Equiation (3) can be solved as an eigenvector problem, being the first eigenvector the 
first Principal Component, the second eigenvector the second Principal Component, and 
so on. 
 

2.1.3 - Reasons for selection 

 
PCA is an ubiquitous technique that is described and analyzed, in any of its many 
interpretations, almost in every book about feature analysis (Tipping and Bishop 1999). 
It’s a widely used linear dimension reduction technique that has been applied with good 
results in many areas and studies. It has been included in this comparison not only 
because of this, but also as a benchmark; other techniques’ performance can be 
compared with this standard. 
 
PCA has been implemented in many programming languages; it is present in almost 
every mathematical language. R and Python have their own implementations of this 
technique. 
 

2.2 – ICA 
 
Independent Component Analysis (ICA) is a dimension reduction technique; it aims to 
transform an observed multidimensional random vector into components that are 
statisticaly as independent from each other as possible, i.e., a tendency to redundancy 
reduction (Tobergte and Curtis 2013). In ICA’s linear approach, as with other dimension 
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reduction algorithms, the goal is to take a zero-mean, m-dimensional variable, and by 
means of a linear transformation, find an n-dimensional transform such that 𝑛 ≤  𝑚. The 
vectors obtained from this are neither orthogonal nor ranked in order. 
 
Feature extraction is a prominent application of ICA. It is originally motivated by results 
in neuroscience that suggest that the same cited principle of redundancy reduction is 
applied by the brain for the early processing of sensory data. 
 
ICA is a generative model (it describes how the observed data are generated by 
describing the components), and it seeks the minimization of mutual information between 
the transformed variables. ICA depends on the supposition of nongaussianity for the 
data; gaussian data is independent and of mean zero, it does not have skewness and 
can only be estimated up to an orthogonal transformation (Hyvärinen and Oja 2000). 
 

2.2.1 - Historical background 

 
ICA is relatively modern compared to other dimension reduction techniques. It’s originally 
introduced by Jeanny Hérault and Bernard Ans in 1984, by approach if not by name. 
This original application concerned neurological signals and muscle movement, and 
proposed a specific feedback circuit to explain how the nervous system was able to infer 
the position and velocity of these signals by measuring their responses (Hyvärinen, 
Karhunen, and Oja 2001). 
 
Christian Jutten retakes work on it by 1985, but among many other papers written in the 
middle 80’s, ICA is obscured by an interest in back-propagation, Hopfield networks, and 
Kohonen’s Self-Organizing Map (SOM). In the early 90’s, a nonlinear application of ICA 
is developed by Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. 
 
Also in the early 90’s A. J. Bell and T. J. Sejnowski publish their infomax approach to 
ICA, and S. I. Amari et al by using the natural gradient and maximum likelihood 
estimation. Some time later, Aapo Hyvärinen, Juha Karhunen, and Erkki Oja present the 
fixed-point or FastICA algorithm, a computation-efficient ICA algorithm. 
 
ICA is currently used in fields such as optical imaging, face recognition and prediction of 
apparently stochastic phenomena. 
 

2.2.2 - Mathematical background 

 

Using vector-matrix notation, let 𝑥 be the random vector whose elements are the 
mixtures 𝑥1, … , 𝑥𝑛, and by s the random vector with elements 𝑠1, … , 𝑠𝑛, being this the 
independent component; 𝐴 is the mixing matrix with elements 𝑎𝑖𝑗 (Hyvärinen and Oja 

2000). Using this notation, the model for this data is 𝑥 = 𝐴𝑠. Working with the columns 

of matrix 𝐴, and denoting them by 𝑎𝑖, the model can also be written as 
 

𝑥 =  ∑ 𝑎𝑖𝑠𝑖
𝑛
𝑖=1   (4) 

 
The mixing matrix is assumed to be unknown. As such, 𝐴 and 𝑠 must be estimated 

through the random vector x and the inverse of 𝐴, say W, may be computated, obtaining 
the independent component 𝑠, as 𝑠 = 𝑊𝑥. This is done under some assumptions, being 
these independence and non-gaussianity: 
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Independence: two variables 𝑦1 and 𝑦2 are said to be independent when information on 
the value of one doesn’t yield information on the value of the other, and viceversa. This 
means that the joint probability density function 𝑝(𝑦1, 𝑦2)  is factorizable as 𝑝1(𝑦1)  ×
𝑝2(𝑦2). This definition is applied given any number n of terms, in which case the joint pdf 

must be factorizable in 𝑛 terms. 
 
Nongaussianity: as stated in 2.3, data must be given in non-gaussian variables. 
Nongaussianity must be measurable, and the classical way to measure it is the kurtosis 
of the fourth order cumulant. Kurtosis of a variable y of mean zero and variance one is 
defined as: 
 

𝑘𝑢𝑟𝑡(𝑦) = 𝐸{𝑦4} − 3(𝐸{𝑦2})2 (5) 
 
As variance of y is stated to be of value one, it can be simplified to: 
 

𝑘𝑢𝑟𝑡(𝑦) = 𝐸{𝑦4} − 3 (6) 
 
For almost all nongaussian variables, kurtosis will be non-zero. Another measure of 
nongaussianity is negentropy. Entropy can be considered as the amount of information 
that a variable yields. Randomness and unpredictability of a variable are proportional to 
entropy. Negentropy is a variation of entropy that aims to be zero for a gaussian variable 
and always nonnegative. Negentropy of a variable y is defined as: 
 

𝐽(𝑦) = 𝐻(𝑦𝑔𝑎𝑢𝑠𝑠 − 𝐻(𝑦)) (7) 
 

Where 𝐻(𝑦𝑔𝑎𝑢𝑠𝑠) is the entropy value of a gaussian variable of the same covariance as 

𝑦. This way, negentropy is always nonnegative and 𝐽(𝑦) is only zero if the entropy of 𝑦 
is the same as that of its equivalent gaussian variable, this is, its gaussian itself. 
 

2.2.3 – Selection 

 
Other studies have already been centered around the comparison of PCA and ICA on 
different fields, such as (Tibaduiza Burgos et al. 2013). ICA is a widely-used, 
exhaustively applied to bioinformatics linear dimension reduction technique that rivals 
PCA in terms of use. Algorithms for this technique have been developed in popular 
bioinformatics programming languages, in Open Source environments, that are available 
for researchers to use. 
 
ICA uses a different method to derive principal components, being this nongaussianity. 
Even though this tecnique doesn’t rank principal components, this is not critical to the 
present study, as the main objective is the accuracy of prediction. 
 
For this reasons (wide use, availability in Open Source environments, different approach 
to principal components), ICA has been selected for this comparison study. 
 

2.3 - Factor Analysis 
 

The basic idea underlying Factor Analysis is that 𝑝 observed random variables, 𝑥, can 
be expressed, except for an error term, as linear functions of 𝑚 < 𝑝 hypothetical 
(random) variables or common factors (Jolliffe 2002). The aim of Factor Analysis is to 
group variables that share a “common theme” under the same grouping, such that the 
dimensionality of the dataset is decreased. 
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Factor Analysis has been applied in psychology (Jolliffe 2002) to identify groups of inter-
related variables, as those components of intelligence that can be placed under a single 
factor g or general intelligence, grouping factors such as broad visual perception (it 
includes all the intelligence variables related to visual tasks), or broad auditory percention 
(same as before, but with auditory tasks). This is interpreted as someone with a high g 
having good broad auditory and visual perceptions, and g sinthetically explaining the 
behaviour of the factors and variables “contained” within it. 
 

2.3.1 - Historical background 

 
The origin of factor analysis, initially applied to the field of psychology, is usually ascribed 
to Charles Spearman back in 1904. He worked to develop a psychological theory 
involving a single general factor and a number of specific factors. In this phase of 
development, “factors” were still not mentioned explicitly. In the next twenty years a lot 
of work would go into following advancements in this theory, with researchers such as 
Cyril Burt, Karl Pearson, Godfrey H. Thompson, J. C. Maxwell Garnett and Karl 
Holzinger. Special mention goes to Karl Pearson, who devoted the remaining forty 
years of his life to the study of Factor Analysis (Harry H. Harman 1976). 
 
The term “factors” as applied to latent-ability variables grouping other explicit variables 
comes with L. L. Thurstone in the 30s. He added a component of hyerarchically 
organization to the mind, and sought to find factors which related to observed variables 
in a way that each of them pertained as much as possible to one overlapping subset of 
them. 
 
In the 50s and 60s factor analysis entered the age of large-scale computing. It was 
applied blindly to all sorts of data, and whether it often succeeded in providing significant 
explanations for relationships between variables is a topic for debate. As an example, 
blind, computerised factor analysis failed to provide a meaningful account of the structure 
underlying Rorschach Test score variables. 
 
The major advancements, in a statistical, mathematical and computational sense, were 
made by Karl Jöreskog, in the University of Uppsala, in Sweden. He developed a 
maximum-likelihood estimation algorithm that has, since then, been applied in most 
commercial computer programs ever since. He himself, and Bock and Bargman (1966) 
pre-sprecify various parameters about the common factor analysis model relating 
manifest variables to latent variables according to a structural theory. This model is then 
used to generate a covariance matrix that is testes for goodness of fit to an empirically-
tested covariance matrix. This has had the effect of guiding later researchers to a 
protocol of action where variables are assessed before blind application of factor analysis 
to a dataset (Stanley A Mulaik 2009). 
 

2.3.2 - Mathematical background 

 
Factor analysis is a method for investigating whether a number of variables of interest 
𝑌1, 𝑌2, . . . , 𝑌𝑙, are linearly related to a smaller number of unobservable factors 𝐹1, 𝐹2, . . . , 𝐹𝑘. 
 
Let Y1, Y2 and Y3 be variables in a study (Gorsuch 1998). Through factor analysis, it may 
be postulated that these variables are functions of two underlying factors, F1 and F2, that 
can be described or named in a fitting way with the intent of handling them. It is assumed 
that the original variables linearly relate to the two factors as follows: 
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𝑌1 = 𝛽10 + 𝛽11𝐹1 + 𝛽12𝐹2 + 𝑒1       . 
𝑌1 = 𝛽20 + 𝛽21𝐹1 + 𝛽22𝐹2 + 𝑒2   (8) 

𝑌1 = 𝛽30 + 𝛽31𝐹1 + 𝛽32𝐹2 + 𝑒3       . 
 
The modeled formulas include an error term each. The β parameters are technically 
referred as loadings.  
 
Factor loadings are numerical measures of how much a factor explains a variable. 
Loadings can range from -1 to 1, with absolute values near 1 indicating that a factor 
strongly affects a variable. Factor loadings can be interpreted as standardized regression 
coefficients. Loadings as high as ~0.6 can be interpreted as strong associations between 
a factor and a variable. 
 
The simplest method of Factor Analysis is based on two assumptions: 
 
• That the error terms are independent, of mean 0 and variance σ2. 
• That the unobservable factors Fj are independent of one another and of the error terms, 
and of mean 0 and σ = 1. 
 
Given this assumptions, each variable can be formulated as: 
 

𝑌𝑖 = 𝛽𝑖0 + 𝛽𝑖1𝐹1 + 𝛽𝑖2𝐹2 + (1)𝑒𝑖  (9) 
 
And, to obtain the associated variance: 
 

𝑉𝑎𝑟(𝑌𝑖) = 𝛽𝑖1
2  𝑉𝑎𝑟(𝐹1) + 𝛽𝑖2

2  𝑉𝑎𝑟(𝐹2) + (1)2 𝑉𝑎𝑟(𝑒𝑖) = 𝛽𝑖1
2 + 𝛽𝑖2

2 + 𝜎𝑖
2 (10) 

 
Splitting this variance definition in two parts, β2

i1 + β2
i2 is what is called the communality, 

and σ2
i is the specific variance. The communality denotes the part of the variance that is 

explained by the common factors F1 and F2. The second, the specific variance, is the 
part of the variance of the variable Yi that is not explained by the common factors. The 
aim, then, is to minimise this specific variance, σ2

i. 
 
The loadings are not unique. There exist an infinite number of sets of values of βij that 
yield the same variances and covariances. 
 

2.3.3 – Selection 

 
Factor Analysis is inexpensive and simple to use. It has been extensively integrated in 
many programming languages, some of the most powerful, Open Source and 
community-supported, like R. It’s a great suport tool when used in conjunction with other 
dimension reduction methods, and it can yield not only the aforementioned dimension 
reduction, but also an insight on the relation between the original variables and structure 
that may be add a further value to this method. 
 
For all these reasons, Factor Analysis has been selected as one of the techniques to 
assess in this project. 
 

2.4 – Autoencoders 
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Even though there are many types of autoencoders and all will be at the very least 
mentioned in this section, denoising autoencoders will be the main subject of this project 
in this area, and they will be explained in more depth. 
 
An autoencoder is an unsupervised machine learning algorithm, with an emphasis on 
feature extraction, that applies backpropagation, setting the targets to be equal to the 
inputs. The aim of the autoencoder is to learn a function ℎ𝑊𝑏(𝑥)  ≈  𝑥 (University). 
 
Briefly explained, an autoencoder, through at least an input layer, an output layer and a 
hidden layer, tries to encode and decode data such that the output layer’s result is as 
similar as possible to the original data, and, in the process, attempts to learn the identity 
function, this is, the central layer is the real goal. Even though autoencoders have 
enough freedom to easily be able to overfit the model, when handicapped with different 
types of constraints they can find interesting traits of the data structure. There are 
different ways to achieve this: 
 

• Sparse autoencoders: Autoencoders can be imposed strong requirements for 
the units in its hidden layers to “fire up”. This may be achieved by adding terms to the 
loss function, or by considering as zero every activation score but for those nearest to 1. 
This produces the so called sparsity and makes it possible to learn structural traits about 
the studied data (Ng. A 2011). 
 

• Variational autoencoders: Variational autoencoders use Stochastic Gradient 
Variational Bayes (SGVB) to add losses by generating latent vectors that more or less 
follow a gaussian distribution (Kingma et al 2013). 
 

• Contractive autoencoders: Contractive autoencoders try to impose small 
variations on the mapping by the hidden layer when inducing similar small variations in 
the input data, which reduces the chance of overfitting and makes the function more 
applicable to generalised data (Rifai and Muller 2011). 
 

• Denoising autoencoders: Denoising autoencoders, which will be the focus of 
this study, are autoencoders that put an emphasis on constructing a good representation 
of a model, this being one that is able to fill in gaps in data. This is accomplished by 
introducing noise in the input (i.e. partially destroying it). If the output of the model is 
similar to the uncorrupted version of the input, then that is a good representaction 
(Vincent et al. 2008). Then repeat the process by corrupting the input in a different way. 
What was just described is an unsupervised initialization by explicit fill-in-the-blanks 
training. Other corruption processes are possible. 
 
Autoencoders’ extracted features can be used in other classification algorithms, as will 
be done in this project. 
 

2.4.1 - Historical background 

 
Not much autoencoder historical background is addressed in current literature. (T. Chen 
et al. 2017) states that, as autoencoders have evolved gradually and much of the 
terminology has changed and evolved with it, it’s difficult to put a finger on the origin of 
all ideas used in them. Even so, (Ballard 1987) first proposes them in 1987 as an 
unsupervised pre-training method for Artificial Neural Networks (ANNs). 
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2.4.2 - Mathematical background 

 
Let 𝑃(𝑋) be the data-generating distribution over observed random variable 𝑋 (Bengio 

et al. 2013). Let 𝐶 be a given corruption process that stochastically maps an 𝑋 to a �̅� 

through conditional distribution  𝐶(�̅�|𝑋). The training data for the generalized denoising 

auto-encoder is a set of pairs (𝑋, �̅�) with 𝑋 ~ 𝑃(𝑋) and �̅� ~ 𝐶(�̅�|𝑋). The Denoising 

Autoencoder is trained to predict 𝑋 given �̅� through a learned conditional Distribution 

𝑃𝜃(𝑋|𝑋) by choosing this conditional distribution within some family of distributions 
indexed by ϴ, not necessarily a neural net. The training procedure for the Denoising 

Autoencoder can generally be formulated as learning to predict 𝑋 given �̅� by possibly 
regularized maximum likelihood, i.e., the generalization performance that this training 
criterion attempts to minimize is 
 

𝐿(𝜃) = −𝐸[log 𝑃𝜃(𝑋|�̅�)]   (11) 
 
where the expectation is taken over the joint data-generating distribution 
 

𝑃(𝑋, �̅�) = 𝑃(𝑋)𝐶(�̅�|𝑋)   (12) 
 

2.4.3 – Selection 

 
Autoencoders, specifically stacked denoising autoencoders, have been stated to perform 
well as feature constructors in machine learning classification algorithms (Vincent et al. 
2008). This unsupervised algorithm is a modern addition to the pool of existing feature 
construction techniques, backed by a copious amount of literature, and applied to several 
bioinformatics-focused programming languages. Thus it has been selected for this 
project. 
 

2.5 - T-distributed Stochastic Neighbor Embedding 
 
T-distributed Stochastic Neighbor Embedding is a nonlinear algorithm for dimension 
reduction. It was developed in 2008 by Laurens Van der Maaten and Geoffrey Hinton (L. 
V. D. Maaten and Hinton 2008). It’s a variation of Stochastic Neighbor Embedding and 
improves it by allowing a better visualization of high-dimensional data lying in several, 
lower-dimension, related manifolds. This technique is allegedly able to capture much of 
the local structure of the original, high-dimensional data, while also revealing global 
structure such as the presence of clusters at several scales. 
 
SNE is a probabilistic approach to the visualization of the structure of complex data sets, 
preserving neighbor similiarities (Bunte et al. 2012). It was proposed by Hinton and 
Roweis (G. E. Hinton and Roweis 2002). 
 
SNE converts high dimensional Euclidean distances between data points into 
probabilities that represent similarities. The similarity of one point to another is the 
probability that the first would choose the second as its neighbor. For close points, this 

probability 𝑝 will be high. Due to the characteristics of the cost function, for widely 
separated points 𝑝 will be almost infinitesimal. 
 
The T-distributed Stochastic Neighbor Embedding differs from the basic SNE in its 
cost function. SNE’s cost function is difficult to optimize due what has been called the 
crowding problem (the artifact through which even the small attractive forces between 
the moderately distant points around the center of the low-dimensional map effect the 
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natural distances between clusters, decreasing them drastically), and applies a 
Gaussian distribution to compute similarity between two points in the lower-dimension 
space. The t-SNE algorithm uses instead a heavy-tailed Student-T distribution. This 
alleviates the crowding problem. 
 

2.5.2 - Mathematical background 

 
Assume we have a data set of high-dimensional objects 𝐷 =  {𝑥1, 𝑥2, . . . , 𝑥𝑁} and a 

function 𝑑(𝑥𝑖, 𝑥𝑗) to compute an Euclidean distance between two objects (L. van der 

Maaten 2014). The aim of the t-Distributed Stochastic Neighbor Embedding is to 

learn an n-dimensional embedding in which each object is represented by a point 𝜖 =
{𝑦1, 𝑦2, . . . , 𝑦𝑁} with 𝑦𝑖  ∈ 𝑅𝑆 (typical values for 𝑆 are 2 or 3). Let 𝑃 be the joint probability 
𝑝𝑖𝑗 that measures the similarity between 𝑥𝑖 and 𝑥𝑗 by symmetrizing two probabilities: 

 

𝑝𝑖|𝑗 =
exp (−𝑑(𝑥𝑖,𝑋𝑗)

2
/2𝜎𝑖

2)

exp (−𝑑(𝑥𝑖,𝑋𝑘)2/2𝜎𝑖
2)

,           . 

 

𝑝𝑖|𝑗 = 0,     (13) 
 

𝑝𝑖𝑗 =
𝑝𝑗|𝑖+𝑝𝑖|𝑗

2𝑁
          . 

 
In the low-dimensional ϵ, the similarity 𝑄 between 𝑦𝑖 and 𝑦𝑗 are measured using the 

already mentioned heavy-tailed, normalized Student-T distribution with a single degree 
of freedom. 
 

𝑞𝑖|𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖)−1)

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖)−1)𝑘≠𝑙
 

                                                                     (14) 
𝑞𝑖𝑖 = 0 

 

The locations of the 𝑦 points in ϵ are determined by minimizing the Kullback-Leibler 
distance between 𝑃 and 𝑄. 
 

𝐾𝐿(𝑃||𝑄) = ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑖≠𝑗     (15) 

 
T-SNE scales exponentially to the number of observations, so the processing power 
required to apply it scales non-efficiently beyond a few thousands of observations. 
 

2.5.3 – Selection 

 
The T-SNE algorithm is a useful dimension reduction technique that allegedly gives a 
better visualization of complex data sets and solves the original problem of the technique, 
namely the crowding problem. It has been applied in the fields of computer security, 
cancer research, image recognitiona and bioinformatics, and given the current state of 
its application in bioinformatics programming languages and frameworks, it is deemed 
to be a qualitative addition to this study. 
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2.6 – LDA 
 
Linear Discriminant Analysis, or LDA, is a generalization of Fisher’s Linear 
Discriminant. It is a well-known technique for feature extraction, and it has been widely 
used for such uses as facial recognition, image retrieval or microarray data classification. 
LDA focuses on the response variable classes. It projects the data onto a lower-
dimensional vector space such that the ratio of the between-class distance to the within-
class distance is maximized, thus achieving maximum discrimination. 
 
Mathematically, given a data matrix 𝐴, classical LDA aims to find a transformation that 

maps each column 𝑎𝑖 of A, for 1 ≤   𝑖 ≤   𝑛 in the N-dimensional space to a vector bi in 
the l-dimensional space. It creates clusters, such that the quality of each cluster is high 
if it is well-separated from other clusters and tightly grouped (Klecka 1980). 
 

2.6.1 – Selection 

 
The Linear Discriminant Analysis technique has been selected because of its pattern 
recognition capabilities, and the fact that it has been shown to perform well in multiclass 
classification. It’s been implemented in both of the programming languages that will be 
used in this project, and it is included in packages and modules of wide use and tested 
good performance. 
 

3 – Tools 
 
The digital tools used for this project are described in this section. It will cover a brief 
definition, some background where available, and a collection of packages, libraries, 
modules, etc. to be used for each. All code used or created is available on Annex I: Code. 
 

3.1 – Criteria 
 
The tools to be used in this project must fulfill some basic criteria to be considered as fit. 
This criteria are as follows: 
 
• Open Source. Given the nature of research, and the specific circumstances and 
parameters that derive from it, any tool used in this project must be flexible to adapt and 
re-code, and subsequently make available to other researchers under an Open Source 
agreement. 
 
• Wide application. Any language, package or toolkit used in this project must have 
been backed, tested and reviewed by the community as a valid tool based on sound 
workflows and methods. This adds reproducibility to the project and avoids “it worked in 
my environment” situations. 
 
• Accessibility for non-computer-science oriented users (i.e. biologists). A 
researcher aiming to use these tools must only fulfill the requirement of understanding 
the probabilistic implications of the methods applied, and has to be able to apply them 
without the risk of being confused by arcane or excessively-complex frameworks or 
workflows which would only add another layer of error. 
 
As such, some programming languages have been discarded, either for not being Open 
Source  (like SPSS or MATLAB) or for being obscure or niche-focused (like Haskell). 
The selected languages and tools are below. 
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3.2 – Python 
 
Python is a powerful, system accessible, interpreted scripting language (B. W. J. Chun 
and Chun 2006). Data types like lists (resizable arrays) and dictionaries (hash tables) 
are built-in, providing a dynamic typing instead of having to declare types of variables, 
as is the case in C++. This reduces the framework development time. 
 
Python is an OOJ (Object-Oriented Programming), high-level, general-purpose 
language. It is initially developed with a focus on being easy to read and write (Granger 
and Hunter 2011), while also granting access to low-level proccesses, offering simple 
portability and well-defined exception catching and handling. Even so, it doesn’t force 
this work model on the user, and can be actuated upon in a procedural way if needed. 
 
In Python programs are organized as packages (packs of modules), modules (related 
code grouped together), classes, methods and functions. It offers a creative, Open 
Source environment suited to the development of new, more focused tools and objects, 
such as NumPy or Scikit-learn, both libraries specially developed for the scientific 
treatment of data, each with its own goal. 
 
Python can be used as a scripting language; it’s able to use modular components written 
in other languages. An example would be coding a program in C++ and importing it as a 
module in Python, then creating a GUI for it (Nosrati 2011). It supports other 
technologies, such as .net objects, even going as far as specific modules having been 
created to interface with them. 
 
Last, but not less important, Python relies on a wide support by its community. Everyday 
modules and packages are improved, developed and distributed in a collaborative 
environment, making it accessible to everyone, and giving researchers a fast, powerful 
tool for their goals. Literature and documentation is vastly available in digital and physical 
formats. 
 
For the purposes of this project, Python 2.7 is used. 
 

3.2.1 - History 

 
Python is created in the late 1989/early 1990 by Guido Van Rossum at the CWI 
(Centrum voor Wiskunde en Informatica, the National Research Institute for Mathematics 
and Computer Science) (B. W. J. Chun and Chun 2006). It’s developed as a research 
tool substituting another language called ABC, as Van Rossum felt it lacked scalability 
with his own needs and didn’t want to fall back to using languages like C++ or LISP. 
Python is released for public distribution in 1991. Several releases of version 1 are 
published by CWI, until Guido Van Rossum moves to Reston, Virginia, to the CNRI 
(Corporation for National Research Initiatives), where he releases versions of Python up 
until 1.6. 
 
Changing to commercial software development in 2000, Guido Van Rossum felt that the 
ability to work under the GNU Public License was desirable. Both versions 1.6.1, with 
the collaboration if the CNRI and the FSF (Free Software Foundation), and Python 2.0 
conform to this license. 
 
Python 2.0 is released under BeOpen.com as a derivative work from Python 1.6.  
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Guido Van Rossum and the other PythonLabs developers have since then joined Digital 
Creations. All their work from then on is owned by the PSF (Python Software 
Foundation), a non-profit foundation modeles after the Apache Software Foundation. 
 

3.2.2 – Modules 

 
The following Python modules and functions are used in this project. Every module is 
provided with citation  where available. 
 
Scikit-learn (Pedregosa et al. 2012): Scikit-learn is a “toolbox” of implementations of 
many popular machine learning algorithms. It has been developed with researchers from 
fields outside of computer sciences to use, thus its simplicity of application for many 
machine learning problems. It is distributed under a BSD license, and it only has NumPy 
and SciPy as dependencies. It has even been distributed as part of main OS distributions 
such as Ubuntu or Debian. 
 
• PCA: sklearn.decomposition.PCA(). 
This implementation of Principal Component Analysis uses SVD to project the data to a 
lower dimensional level, using either a LAPACK implementation of the full SVD, the 
method of (Halko, Martinsson, and Tropp 2009), or the SciPy module’s own ARPACK 
implementation of the truncated SVD. 
 
• ICA: sklearn.decomposition.FastICA(). 
This function applies the FastICA method to the data, accepting parameters like number 
of components to use, iterations to fit or a stated mixing matrix. 
 
• Factor Analysis: sklearn.decomposition.FactorAnalysis() 
This function performs a maximum-likelihood estimate of the loading matrix (what loading 
is has been assessed in section 2.3.2). 
 
• Stacked Denoising Autoencoders: Keras (Chollet 2015): 
Keras is a high-level neural networks API developed for Python and developed for direct 
and simple application. In the author’s own words, “being able to go from idea to result 
with the least possible delay”. 
 
• T-Distributed Stochastic Neighbor Embedding: sklearn.manifold.TSNE(). 
Even though this implementations documentation states the need for a previous 
dimension reduction technique for fully significant results, for the sake of comparison 
equality it will be used on the data set as is, with all the original variables. 
 
• Linear Discriminant Analysis: sklearn.discriminant_analysis. 
LinearDiscriminantAnalysis(). 
 
This function is a classifier with a linear decision boundary. It’s implemented in Scikit-
learn, as part of the main module. 
 
• NumPy and SciPy: these two modules act as dependencies for Scikit-learn. NumPy 
(Walt et al. 2011) arrays are the standard object for data representation in Python. These 
arrays can have any number of dimensions and can contain other kinds of elements. 
ScyPy (Jones, Oliphant, and Peterson 2001), is a collection of algorithms and functions 
built on Numpy. It adds high-level commands and classes for manipulating and 
visualizing data. 
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3.3 – R 
 
R (Team 2008) is a quite modern statistics-focused programming language. It is an 
implementation of the S language with lexical scoping semantics inspired by Scheme. S 
was developed at Bell Laboratories by John Chambers and coleagues, while R was 
developed by Ross Ihaka and Robert Gentleman at the University of Auckland, New 
Zealand. 
 
The project started its development in 1992, with a first release in 1995 and a stable beta 
in 2000. The base package of the program provides with native functions for many 
common-use mathematical workflows, and it is easily expanded via libraries and 
packages delivered in an Open Source environment through the CRAN site cluster. 
 
R’s main advantages are: 
 
• Effective data handling and storage capabilities. 
• Many generic and specific object families, flexible enough to cover most uses. 
• Powerful graphical tools, either for direct display or hard copy, with output of publication-
level quality. 
• User-defined function creation for adaptation of R’s capabilities to each individual 
requirements. 
• Community-supported development environment. R is distributed as Free Software 
under the terms of the Free Software Foundation’s GNU General Public License in 
source code form. It is multiplatform, running seamlessly in MacOS, Windows and a wide 
variety of UNIX platforms, even being distributed natively with some of them. It is 
documented via its own LaTeX documentation format. 
 

3.3.1 - Packages and libraries 

 
The following R packages and libraries are used in this project. Every library is provided 
with citation where available. 
 
• Base package: 
The base package for R implements many generalistic functions for data handling, 
information structure, basic mathematical functions and more. 
 
• Base package::prcomp() (https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/prcomp.html): 
Prcomp() is R’s native implementation of Principal Component Analysis. It is 
parameterized with the options to scale and center data before the analysis, rank (the 
maximum number of principal components to be used) or the magnitude of the standard 
deviation below which components should be omitted. 
 
• ICA package::icafast() (A. N. E. Helwig and Helwig 2015): 
This package assesses the implementation of several ICA algorithms, including FastICA, 
Infomax and JADE. FastICA (Hyvärinen and Oja 2000) will be used for this project, 
accepting parameters like the number of components to extract, options to center data 
before ICA decomposition or convergence tolerance. 
 
• Stats package::factanal() (https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/factanal.html): 
This function performs maximum-likelihood factor analysis on a covariance matrix or a 
data matrix. As parameters it accepts the number of factors to be fitted, the type of scores 
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to be output (Thompson’s, Bartlett’s, etc), or the number of observations if the input given 
to the function is a covariance matrix. 
 
• RcppDL package::RsdA() (Package, Kou, and Sugomori 2015): 
The RcppDL package includes a kit of basic, multilayer machine learning algorithms, 
Restricted Boltzmann Machines and Deep Belief Networks amongst them. The rsda() 
function is a wrapper to initialise a deeplearning object implementing stacked denoising 
autoencoding on a set of data. It can be then pretrained, fine tuned and used for 
prediction or classification. 
 
• Tsne package::tsne() (Package 2016): 
The Tsne package contains only one function, namely tsne(), an implementation of the 
T-distributed Stochastic Neighbor Embedding for R. It provides an interface for the 
application of t-SNE on R matrices or dist objects. 
 
• MASS package::lda() (Brian et al. 2017): 
The MASS package contains datasets and functions used in Venables and Ripley 
Modern Applied Statistics with S. As part of the package it includes several feature 
extraction techniques, amongst which is LDA. 
 

4 - Comparative scoring 
 
This section covers the topic of accuracy scoring. Although this may seem like a simple 
topic (“best prediction makes best score”) there are nuances to the concept of “best 
prediction”. 
 
Measures of classification accuracy are usually extracted from a confusion matrix 
composed of true positives and true negatives in a diagonal row, and an assortment 
of false negatives and false positives on the other cells. The most simple, most direct 
measure of accuracy is the proportion between true positives and negatives and the 
total number of observations; but, as is often the case, most simple is not always more 
fitting. 
 

4.1 - Classification accuracy metrics 
 
There are several metrics commonly used to measure accuracy. Each kind of metric 
focuses on one or a few aspects of concordance between observed and expected results 
(Sokolova, Japkowicz, and Szpakowicz 2006). In the following section’s mathematical 
expressions, true positives are referred to as tp, true negatives as tn, false positives 
as fp and false negatives as fn. 
 
Accuracy: the most direct metric; it’s a partial one, even if logically correct. Accuracy is 
the proportion of correct labels of the studied classes. Thus: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
   (16) 

 
This meaning total correct predictions divided by total observations. Although it correctly 
assesses the proportion of concordance, it takes only this into account. Many times 
different kinds of errors have a different weight or cost to them. Not being able to 
distinguish total true positive accuracy and total true negative accuracy is a hindrance in 
real life context, where failing to correctly identify, as an example, the malignancy of a 
tumour as positive, may carry more dire consequences than incorrectly identifying an 
otherwise harmless growth as malignant. 
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This need for more specific assessment is reflected in the following metrics. 
 
Sensitivity: Also called Recall. It’s the ratio of true positives to total real positives (true 
positives + false negatives). It focuses on the accuracy of the positive class, which in 
biomedical environments is usually the most important class. 
 
Values nearest to 1 are better. It’s expressed as: 
 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
    (17) 

 
Specificity: It’s the true negative rate (true negatives + false positives). It focuses on the 
accuracy of the negative class. Values nearest to 1 are better. 
 
Precision: It’s the ratio of true positives to total predicted positives (true positives + false 
positives). It focuses on how well the model distinguishes factual positive cases. Values 
nearest to 1 are better. It’s expressed as: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
    (18) 

 
Fallout: Also called False Alarm Rate or False Positive Rate, it’s the complementary 
rate to specificity, or 𝑓𝑎𝑙𝑙𝑜𝑢𝑡 =  1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. It’s the ratio of false positives to total 
real negatives (false positives + true negatives), and it is expressed as: 
 

𝑓𝑎𝑙𝑙𝑜𝑢𝑡 =
𝑓𝑝

𝑓𝑝+𝑡𝑛
    (19) 

 
Depending on the context, False Alarm Rate as an error can be equivalent in cost to 
false negatives or differ in cost. In a medical assesment, where failing to reject the null 
hypothesis of normality of conditions when it should have been rejected can mean 
decease or loss of life quality, false positives are usually less costly than false negatives. 
 
F-Score: F-Score is a technique that measures the discrimination of two sets of real 
numbers (Y.w. Chen and Lin 2006). The F-Score or F1 Score considers both the 
precision and recall to compute its value; it’s the harmonic average of both, and F1 
Scores near 1 are best (Hutchison and Mitchell 2013). 
 
It is expressed as:  
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(𝛽2+1)×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
    (20) 

 
In this expression, β is the ratio of weight given to Recall over Precision.  
 
F-Score has been used many times in language recognition, and also in document 
classification and speech pattern recognition. 
 
ROC: (Hanley and McNeil 1982) A Receiver Operating Characteristic curve is a graphical 
interpretation of sensitivity against fallout in the context of predictive diagnosis. This 
curve can be plotted as the cumulative distribution function of sensitivity in the vertical 
axis against fallout on the horizontal axis. The function for the ROC curve is expressed 
as: 
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𝑅𝑂𝐶 =  
𝑃(𝑥|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑃(𝑥|𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
   (21) 

 
Where P(x|C) denotes the conditional probability that a data entry will belong to the C 
class label (Sokolova, Japkowicz, and Szpakowicz 2006). ROC and the Area Under the 
Curve have been widely used as accuracy metrics in studies with assymetric cost 
functions and imbalanced data sets. ROC results can be analyzed in various ways and 
extracted in many experimental protocols. Usually, the slope and intercept of the curve 
are used to measure the probability of hits and false alarms. (Yonelinas and Parks 2007) 
 

4.2 - Binary classification versus multiclass classification mètrics 
 
Classification can be primarily divided by the number of class labels potentially 
assignable to a sample. With this discriminator in mind, classification can be binary or 
multiclass. Binary classification ussually takes the form of a positive label or a 
negative label. Multiclass classification takes more than two states. 
 
Although it would seem like a moot difference, depending on a critical analysis of the 
classification it can be profoundly important for the process of accuracy analysis. 
 
Most of the accuracy metrics that have been described in the present document depend 
on the concept of positive or negative to sort out their measure. Depending on the 
presented problem, class labels may or may not be ascribed to a positive or a negative 
state. Neutral-value, descriptive labels won’t be able to be classified this way, as their 
values will be neither positive nor negative, just a neutral value, distinct and definable 
state. 
 
Even so, there may be ways to assimilate these kind of problems to a binary 
classification. Decomposing class labels in a state of “being or not being”, this meaning 
belonging or not belonging to a given class, is one way. If the labels are not neutral 
states, but levels of “positive” and “negative” states, a boundary can be established so 
that everything above it is positive and everything below it is negative. 
 
For the problem stated in this document there are three possible labels: 
ATYPICAL_LYMPHOCYTE, LYMPHOCYTE and VARIANT_LYMPHOCYTE. Atypical 
lymphocytes are found in patients with lymphoid neoplasms, including prolymphocytes. 
Variant lymphocytes are reactive lymphocytes, found in patients with viral infections (e.g. 
Influenza, VIH...). Lymphocytes are normal cells. All this means is that all three are 
distinct states that can’t be ascribed to a binary classification, at the risk of losing 
important information. 
 
An accuracy metric that can be applied to a multiclass classification is needed in order 
to assess the accuracy of this study. Multiclass accuracy metrics are described in 
(Luengo 2009). Multiclass variants to ROC are mentioned, although it’s stated to be 
computationally restrictive. Classification Rate and Cohen’s Kappa are also 
mentioned as simple and successful in their application. 
 

4.3 - Classification Rate 
 
This metric is described as the number of successful hits relative to the total number of 
classifications. It’s been stated to be the most commonly used metric for assessing the 
performance of classifiers for years.  
 

4.4 - Cohen’s Kappa 
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Cohen’s Kappa (Luengo 2009) is an alternative to Classification Rate that takes into 
account random correct hits. It was originally used to measure the degree of agreement 
between two subjects describing the same event. In the meantime it has been adapted 
for classification tasks, as it compensates for random hits in the same way that AUC 
does for ROC. The mathematical expression for Cohen’s Kappa is applied to the 
contingency table (this is, a table showing the observed classification results versus the 
expected classification results to visualize their correlation) of an event in the following 
way: 
 

𝑘𝑎𝑝𝑝𝑎 =
𝑛 ∑ 𝑥𝑖𝑖−𝐶

𝑖=1 ∑ 𝑥𝑖.𝑥.𝑖
𝐶
𝑖=1

𝑛2−∑ 𝑥𝑖.𝑥.𝑖
𝐶
𝑖=1

 (22) 

 
Where 𝑥𝑖𝑖 is the cell count in the main diagonal, 𝑛 is the number of examples, 𝐶 is the 

number of class values and 𝑥𝑖.𝑥.𝑖 are the total columns and rows counts, respectively. 

 
The value range of Cohen’s Kappa goes from -1 (total disagreement) to 1 (perfect 
agreement). 
 

4.5 - Chosen scoring metric 
 
For this project, the chosen accuracy metric is Cohen’s Kappa. The reasons are as 
follows: 
 
• The data set upon which it is going to be used has a multiclass factor response variable. 
• Those labels are not ascribable to a binary synthetic class system. 
• Cohen’s Kappa yields a scalar, simple value well suited for multiclass classification. 
• It is more powerful than Classification Rate, because it takes into account random 
hits, scoring successes separately for each class and aggregating them. 
 
For these reasons, the scoring metric to be applied in this project is Cohen’s Kappa. 
 

5 - Comparison methods and protocols 
 

5.1 - Introduction and general data set description 
 
The current data set is a study on abnormal lymphoid cells circulating in peripheral blood, 
as stated in (Puigví et al. 2017). The study included mature lymphocytes from healthy 
individuals, abnormal lymphocytes from patients with Chronic Lymphocytic Leukaemya 
(CLL), B prolymphocyte Leukaemia (B-PLL), Hairy Cell Leukaemia (HCL), Splenic 
Marginal Zone Lymphoma (SMZL), Mantle Cell Lymphoma (MCL), Follicular Lymphoma 
(FL), T prolymphocyte Leukaemia (T-PLL), T Large Granular Lymphoma (T-LGL), 
Sézary syndrome, Lymphoid Blast (LB) from patients with B-lymphoid precursor 
neoplasms and Reactive Lymphocite (RL) from patients with viral or other infections, in 
which 2867 numerical variables, based on colorimetric and geometric features have 
been measured. 
 
The current data set has 13074 observations for 2874 variables, of which 7 (in which the 
response variable, originally names tipoCelula, cellType from here on, is included) are 
factors and 2867 are numeric predictor variables. 
 
The response variable, cellType, has three levels, ATYPICAL_LYMPHOCYTE, 
VARIANT_LYMPHOCYTE and LYMPHOCYTE. Two subsets are generated with this 
data: a training set comprising 66% of all data after balancing (the problem of class 
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imbalance is explained in section 5.1.2), and a test set formed by the remaining entries. 
Both sets are generated by defining a random seed with the set.seed() function (the seed 
beeing 123) and applying that seed, either to the sample() function in R, or to the 
train_test_split() function in Python to generate, respectively, either an array of indexes 
or the training-test subsets themselves. 
 

5.1.2 - Class imbalance problem 

 
While dyagnosing the data set, a single look at the response classes is enough to find a 
pronounced imbalance in the number of observed classes. There is an important 
proportion of atypical lymphocytes, in respect to the variant and normal lymphocytes. 
Such imbalance can create an artifact of classification. In this case, this artifact would be 
less costly, as it would skew towards an excessive zeal when classifying atyipical 
lymphocytes, but still, it’s a source of noise that should be avoided when possible. 
 
Highly imbalanced datasets bring with them the problem of random accuracy. If a data 
set, such as the one being assessed in this project, has, let it be said 75% of samples in 
one class, there’s an initial chance that by pure, random luck, predicting all test samples 
as belonging to that class will yield a 75% accuracy score. 
 
There are several class balancing techniques designed to avoid this artifact. As stated 
in (Barandela et al. 2004), basic methods for reducing class imbalance can be sorted in 
three groups: 
 
• Over-sampling, which aims to replicate samples in the minority group to artificially 
augment its representation. 
• Under-sampling, which serves the opposite goal, to cut samples from the majority 
group. 
• Internally biasing the discrimination based process in order to balance the classes. 
 
Also, there is a hybrid approach, which relies on both over- and under-sampling to bring 
the classes to a balance. This is the approach that will be used and discussed in this 
project. 
 

5.1.3 - The SMOTE() function 

 
SMOTE (Synthetic Minority Oversampling Technique) (Ramentol et al. 2012) is a data-
level balancing approach, in opposition to learning-algorithm approaches. These are said 
to be more versatile, as its use is independent of the protocol followed and can then be 
used to train any classifier. 
 
The SMOTE algorithm oversamples the minority class by introducing synthetic minority 
class examples along the line segments that join the k nearest neighbors. What it does 
is take each of these k nearest neighbors, randomly chosen, and substract it from the 
sample in question. Then multiply the difference by a random value between 0 and 1, 
and add this point as a new minority class example. 
 
Even though SMOTE itself is an over-sampling method, it is implemente as a hybrid 
approach by R in the SMOTE() function, from the DMwR package. This function, which 
will be used for this dataset, under- and over-samples the data set, with parameters 
allowing to put focus on one or both. For this project, SMOTE() is run once on the sample 
data on its default parameters. In trials, stacked SMOTE() executions were tested; this 
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resulted in improved class balance and, subsequently, better classification results for 
techniques such as PCA or ICA, but they created a problem of reciprocity for some 
techniques like Factor Analysis. 
 

5.2 - Goals and techniques 
 
This script aims to assess the comparative performances of different dimension 
reduction techniques. They are measured for a common accuracy metric and judged by 
their processing performance. Being PCA the most used, most assessed technique, it is 
used as a kind of touchstone in respect to requirements for the other techniques in R. 
This techniques are then replicated in their Python implementations keeping, as much 
as possible, all parameters as a measure of objectivity between both languages. 
 
Other optional parameters, where possible, will be kept to a minimum. The reason for 
this is to assess the validity of techniques out of fine-tuning, in their most raw conditions, 
as fine-tuning each of them is out of the scope of this project. 
 
For the effects of this project, the benchmark minimum number of extracted features is 
that which satisfies one condition, being this that these extracted features account for an 
accumulated 95% of variance explained in the reference dimensionality reduction 
technique, PCA. Having determined this, a continued test of cumulative numbers of 
extracted features, between a floor of 10 and an estimative limit of 250 yields the 
following result: this requirement for a 95% of accumulated explained variance is met at 
210 PCs. This is the number of components to be used for every technique. 
 
With a single plot of the variance explained by the first PC’s the fact that the most 
variance is mainly explained by the most influential PC’s is clearly visible: 
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With this number of extracted features as an objective benchmark, the following 
techniques will be conducted: 
 
• PCA 
• ICA 
• Factor Analysis 
• Linear Decomposition Analysis 
 
The resulting features are divided in training and test sets, and used as input, first, for 
the fitting and training of an SVM function (svm(), from the caret package for R and 
sklearn.svm.SVC() for Python), and then as input of a predict() function, from the stats 
package for R, and a fit().predict() pipeline for Python. The predicted classes will then 
be cross-tested with the actual test classes. A confusion matrix and a Cohen’s Kappa 
weighted value will then be output, and used as that technique’s entry in the final 
performance comparison. 
 
A weighted value of Cohen’s Kappa will be given. Weighted and unweighted values of 
Cohen’s Kappa differ, as their name implies, in that weighted scores take into account 
the differential weights of several levels of disagreement between observed and 
predicted classes. This is a level of information that is lost in binary classification, as all 
disagreements between observed and predicted classes share the same level of 
disagreement. 
 

5.3 - Dimension Reduction Techniques – R 

5.3.1 – PCA 

 
PCA is the most used unsupervised, linear dimension reduction technique currently 
available. It is also the best, in the mean-square error sense (Fodor 2002). Its central 
idea is the construction of a set of features from a number of initial variables (Jolliffe 
2002). The number of new features will be less than the initial variables, while retaining 
as much as possible of the initial variation. This is achieved by linear transformations of 
the original data, and then establishing a descending order of the new features attending 
to the amount of variation retained or explained by each of them. 
 
For this project, 210 components, as explained in 5.2, are retained and use in the fitting, 
training and prediction of classes. The following section depicts the results of this 
protocol. 
 
The data set, previously scaled and balanced via a SMOTE function, is fitted to a PCA. 
The optimal amount of PC’s (Principal Components) is retained, and the resulting, 
transformed data set, is subset into training and test sets. They are then used to train an 
SVM C-clasiffication type protocol with a Radial Basis Function (RBF) kernel, and 
predict the test classes. 
 
After fitting and predicting, the hit and hit percentage values are extracted and 
represented in Table 1 and Table 2, in absolute and percentage values, respectively.  
 

Table 1: PCA observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1267 56 3 

LYMPHOCYTE 109 1011 0 

VARIANT_LYMPHOCYTE 29 0 116 
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Table 2: PCA observed (vertical) versus predicted (horizontal) results - percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 48.90 2.16 0.11 

LYMPHOCYTE 4.20 39.01 0 

VARIANT_LYMPHOCYTE 1.12 0 4.47 

 
 
PCA yields a weighted Cohen’s Kappa value of 0.84, which will be a benchmark for other 
techniques. As a visual, informative measure, it is interesting to have the PCA fitted 
components plotted, coloured by cellType label. With other, less dimensional examples, 
plotting PCA would be more informative, as a small number of PCs would be plottable in 
a few graphs without too much cluttering, something that doesn’t happen with the 210 
components extracted in this study. Even so, the points transformed to the 2 main PCs 
are plotted here, and their centroid is pointed in red. 
 

 
 
Points in space are grouped by PC and colored by response label. 
 

5.3.2 – ICA 

 
Independent Component Analysis (ICA) is a statistical method for transforming an 
observed multidimensional random vector into components that are statisticaly as 
independent from each other as possible. 
 
The data set, previously scaled and balanced via a SMOTE function, is fitted to an ICA. 
The optimal amount of extracted features is retained, and the resulting, transformed data 
set, is subset into training and test sets. They’re are then used to train an SVM C-
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clasiffication type protocol with a Radial Basis Function (RBF) kernel, and predict the 
test classes. 
 
After fitting and predicting, the hit and hit percentage values are extracted and 
represented in Table 3 and Table 4, in absolute and percentage values, respectively. 
 

 
Table 3: ICA observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1269 54 3 

LYMPHOCYTE 111 1009 0 

VARIANT_LYMPHOCYTE 29 0 116 

 
Table 4: ICA observed (vertical) versus predicted (horizontal) results - percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 48.97 2.08 0.11 

LYMPHOCYTE 4.28 39.94 0 

VARIANT_LYMPHOCYTE 1.12 0 4.47 

 
 
ICA yields accuracy results similar to PCA, varying in the fourth decimal position, with a 
rounded weighted Cohen’s Kappa of 0.84. Even though this puts it at the same level as 
PCA, the processing power needed for this technique is noticeably larger, and thus, the 
hollistic assessing of ICA still has it behind PCA. 
 

5.3.3 - Factor Analysis 

 
Factor Analysis is applied here on the given data set, with a lower tolerance boundary of 
0.07, found through trial to get to convergence. 
 
The data set, previously scaled and balanced via a SMOTE function, is fitted to a Factor 
Analysis workflow. The optimal amount of extracted features is retained, and the 
resulting, transformed data set, is subset into training and test sets. They’re are then 
used to train an SVM C-clasiffication type protocol with a Radial Basis Function (RBF) 
kernel, and predict the test classes. 
 
After fitting and predicting, the hit and hit percentage values are extracted and 
represented in Table 5 and Table 6, in absolute and percentage values, respectively. 
 

 
Table 5: Factor Analysis observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1253 68 5 

LYMPHOCYTE 100 1020 0 

VARIANT_LYMPHOCYTE 29 1 115 

 
Table 6: Factor Analysis observed (vertical) versus predicted (horizontal) results - 

percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 48.36 2.62 0.19 

LYMPHOCYTE 3.85 39.36 0 

VARIANT_LYMPHOCYTE 1.12 0.03 4.43 
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This technique gives a weighted Cohen’s Kappa Value of 0.83. This value puts the 
Factor Analysis technique’s accuracy near the PCA’s, which is a good result without fine 
tuning. This can be a specific case in which Factor Analysis is near PCA in a metric 
sense, while it is clearly more costly in processing power. 
 
As a visual, informative measure, it is interesting to have the Factor Analysis output fitted 
components plotted, coloured by cellType label. Once again, only the two main extracted 
factors will be plotted, as plotting the whole set of 210 factors would clutter the plot and 
make it unintelligible. The centroid for this two factors is pointed in red. 
 

 
 
In addition to the above results, this technique yields an additional output. Factor 
Analysis produces loadings which are used to cluster the original variables into semantic 
groups. These groups reveal new relationships between variables that may lead to a 
better understanding of the data. 
 
Given these new relationships, it is up to the analyst to name them in a semantically 
comprising manner (let it be said, as an example, that two theoretical variables “speed” 
and “agility” were revealed to be bound; the wrapping extracted feature could be named, 
maybe, “mobility”). In this project these complex relationships are not named, but given 
more time, the traits that bind these variables together could be analyzed and these new 
features named.  

5.3.4 – LDA 

 
LDA is an unsupervised dimensional reduction technique. It is a generalization of 
Fisher’s Linear Discriminant widely used for dimension reduction and feature extraction. 
Here it will be used to find a linear combination of features able to classify the data set’s 
entries into its correct class. 
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The data set, previously scaled and balanced via a SMOTE function, is fitted to a Linear 
Discriminant Analysis function. LDA, by nature, is not able to return the same number of 
components as the other techniques, so as an exception, this protocol will return two 
extracted features, and the resulting transformed data set is used to continue the protocol 
as standard and subset into training and test sets. They’re are then used to train an SVM 
C-clasiffication type protocol with a Radial Basis Function (RBF) kernel, and predict the 
test classes. 
 
After fitting and predicting, the hit and hit percentage values are extracted and 
represented in Table 7 and Table 8, in absolute and percentage values, respectively. 
 

Table 7: LDA observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1319 6 1 

LYMPHOCYTE 2 1118 0 

VARIANT_LYMPHOCYTE 1 0 144 

 
Table 8: LDA observed (vertical) versus predicted (horizontal) results - percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 50.90 0.23 0.03 

LYMPHOCYTE 0.07 43.14 0 

VARIANT_LYMPHOCYTE 0.03 0 5.55 

 
This technique gives a weighted Cohen’s Kappa Value of 0.99. It seems a high value is 
extracted from a data set with well defined class groupings, but, after a search of the 
trace output produced by the process, warnings about collinearity are found. This is 
important, as data sets with a collinearity problem may alter LDA and give a false level 
of accuracy. 
 

5.4 - Dimension Reduction Techniques – Python 
 
During coding, it was discovered that even in a streamlined coding and editing 
environment like R Markdown and Knitr, where chunks of different programming 
languages can be concatenated and run in the same script and then rendered into a 
TeX-PDF document, Python variables and objects do not persist between chunks. 
 
For this reason, data had to be loaded and preprocessed for every technique. Where 
necessary, a randomizer seed (123) was used to make results replicable. 
 
On the subject of data balancing, SMOTE functions are different in R and Python. If left 
unchecked, Python’s SMOTE function creates a bias that produces a false accuracy 
artifact. In order to solve this, the balanced R data is written into a temporal file and used 
as input for Python protocols. This serves a double goal: it makes results comparable 
between both programming languages, and also saves processing time in Python 
protocols. 
 
Cohen’s Kappa and Confusion Matrices were extracted via R functions. This was done 
to streamline the process, via extraction of observed and predicted labels to secondary 
files and using them as input for the R functions. 
 
The implementation of each of them is undertaken in this section. 
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5.4.1 – PCA 

 
PCA in Python is undertaken via Scikit-learn, a Python module built on Numpy, Scipy 
and Matplotlib for machine learning tasks. As in R, the basic function for PCA is of a 
basic simplicity. 
 
As the SMOTE implementation in Python can’t be set up to work under the same 
parameters as its R analogue, the data scaled and balanced by R’s SMOTE are written 
to a temporal file and used as input for this protocol. They are subset into training and 
test sets via a randomizing splitter function (train_test_split(), from 
sklearn.model_selection), and then reduced via PCA. It is subsequently used for an SVM 
training and testing protocol with a Radial Basis Function (RBF) kernel. 
 
For this project, 210 of the features extracted by PCA are retained and used in the fitting, 
training and prediction of classes, in order to replicate R parameters where possible. The 
following section depicts the results of this protocol. 
 
After fitting and predicting, hit and hit percentage values are extracted and represented 
in Table 9 and Table 10. It must be noted that the overall process of PCA in Python is 
faster than in R, but yields a lower Cohen’s Kappa value of 0.49.  
 

Table 9: PCA (Python) observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1320 0 0 

LYMPHOCYTE 444 690 0 

VARIANT_LYMPHOCYTE 101 0 37 

 
Table 10: PCA (Python) observed (vertical) versus predicted (horizontal) results - 

percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 50.92 0 0 

LYMPHOCYTE 17.12 26.62 0 

VARIANT_LYMPHOCYTE 3.89 0 1.42 

 

5.4.2 – ICA 

 
ICA in Python is undertaken via Scikit-learn too. It doesn’t need to be overly 
parameterized in order to run a basic ICA protocol. As the SMOTE implementation in 
Python can’t be set up to work under the same parameters as its R analogue, the data 
scaled and balanced by R’s SMOTE are written to a temporal file and used as input for 
this protocol. They are subset into training and test sets via a randomizing splitter 
function (train_test_split(), from sklearn.model_selection), and then reduced via ICA. It 
is subsequently used for an SVM training and testing protocol with a Radial Basis 
Function (RBF) kernel. 
 
For this project, 210 of the features extracted by ICA are retained and used in the fitting, 
training and prediction of classes, in order to replicate R parameters where possible. 
Also with this goal in mind, tolerance and maximum iterations before convergence were 
adjusted to mimic the R defaults (tolerance: 0.000001 and maximum iterations: 100). 
The following section depicts the results of this protocol. 
 
It is discovered that the predicted values all yield an ATYPICAL_LYMPHOCYTE result. 
This is due to the fact that if tuned with the same default parameters as its R analogue, 
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Python’s FastICA does not even get to convergence, apart from taking a lot of 
processing time; still, it provides an interesting result: this technique’s Cohen’s Kappa 
is zero, which is remarkable. In the observed test labels the ATYPICAL_LYMPHOCYTE 
result is registered a majority of times, which, if only raw accuracy was used as metric, 
would yield a high random hit rate. Instead, Cohen’s Kappa takes into account the 
probability of this one being the result, which in the predicted values is of a 100%, and 
lowers the expected validity of such a prediction from the high random accuracy potential 
yield to a round zero. Even though the raw ICA-constructed prediction is of an 
underwhelming precision, the solidity of Cohen’s Kappa as a metric is supported by this 
occurrence. 
 
The reason for this lack of convergence may be a higher sensitivity to collinearity in 
Python’s implementation of ICA. Still, it merits a further research which surpases the 
scope of this project. 
 
Hit and hit percentage values, although invalid for comparison, are nevertheless 
represented in Table 11 and Table 12. 
 

Table 11: ICA (Python) observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1320 

LYMPHOCYTE 1134 

VARIANT_LYMPHOCYTE 138 

 
Table 12: ICA (Python) observed (vertical) versus predicted (horizontal) results - 

percentage 

 
 ATYPICAL_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 50.92 

LYMPHOCYTE 43.75 

VARIANT_LYMPHOCYTE 5.32 

 

5.4.3 - Factor Analysis 

 
Factor Analysis in Python is undertaken via Scikit-learn’s function FactorAnalysis(), 
using as parameter the number of features to be extracted. 
 
As the SMOTE implementation in Python can’t be set up to work under the same 
parameters as its R analogue, the data scaled and balanced by R’s SMOTE are written 
to a temporal file and used as input for this protocol. They are then reduced via Factor 
Analysis, and subset into training and test sets via a randomizing splitter function 
(train_test_split(), from sklearn.model_selection). It is subsequently used for an SVM 
training and testing protocol with a Radial Basis Function (RBF) kernel. 
 
For this project, 210 of the features extracted by Factor Analysis are retained and used 
in the fitting, training and prediction of classes, in order to replicate R parameters where 
possible. The following section depicts the results of this protocol. 
 
After fitting and predicting, hit and hit percentage values are extracted and represented 
in Table 13 and Table 14. The confusion matrix and Cohen’s Kappa score show n 
improvement over PCA and ICA. 
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Table 13: Factor Analysis (Python) observed (vertical) versus predicted (horizontal) 
results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1252 62 6 

LYMPHOCYTE 109 1025 0 

VARIANT_LYMPHOCYTE 25 1 112 

 
Table 14: Factor Analysis (Python) observed (vertical) versus predicted (horizontal) 

results - percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 48.30 2.39 0.23 

LYMPHOCYTE 4.20 39.54 0 

VARIANT_LYMPHOCYTE 0.96 0.03 4.32 

 
 
This technique gives a weighted Cohen’s Kappa Value of 0.83. This value is similar to  
that given by PCA, in some degree of accordance to the R results, and also similar to 
the R implementation of this technique. 
 

5.4.4 – LDA 

 
LDA in Python is undertaken via Scikit-learn’s function FactorAnalysis(), from the 
submodule discriminant_analysis, using as parameter the number of features to be 
extracted. 
 
As the SMOTE implementation in Python can’t be set up to work under the same 
parameters as its R analogue, the data scaled and balanced by R’s SMOTE are written 
to a temporal file and used as input for this protocol. It is then reduced via Linear 
Discriminant Analysis, and subset into training and test sets via a randomizing splitter 
function (train_test_split(), from sklearn.model_selection). It is subsequently used for an 
SVM training and testing protocol with a Radial Basis Function (RBF) kernel. 
 
For this project, 210 of the features extracted by LDA are retained and used in the fitting, 
training and prediction of classes, in order to replicate R parameters where possible. The 
following section depicts the results of this protocol. 
 
After fitting and predicting, hit and hit percentage values are extracted and represented 
in Table 15 and Table 16. LDA in Python yields a high Cohen’s Kappa score, 0.99, in 
accordance to the results from the R implementation of this technique. Still, it also hits a 
collinearity warning. The high accuracy value shown in both implementations of this 
technique is not reliable, as it seems to be an artifact of this collinearity. 
 

Table 15: LDA (Python) observed (vertical) versus predicted (horizontal) results 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 1318 2 0 

LYMPHOCYTE 3 1131 0 

VARIANT_LYMPHOCYTE 1 0 137 

 
Table 16: LDA (Python) observed (vertical) versus predicted (horizontal) results - 

percentage 

 
 ATYPICAL_LYMPHOCYTE LYMPHOCYTE VARIANT_LYMPHOCYTE 

ATYPICAL_LYMPHOCYTE 50.84 0.07 0 

LYMPHOCYTE 0.11 43.63 0 

VARIANT_LYMPHOCYTE 0.03 0 5.28 



44 

 
 

5.5 - Missing techniques 
 
Two more techniques have been mentioned in this project that didn’t make the final cut 
to this report. These are T-Stochastic Neighbor Embedding and Stacked Denoising 
Autoencoders. The reasons why have been explained in the partial reports for this 
project, and are as follows: 
 
T-Stochastic Neighbor Embedding: This visualization technique, even although it 
produces a kind of dimension reduction, has been dropped mainly for two resons, being 
these its performance and its function. Its function, in the end, was more of a visualization 
tool, which finally didn’t fit this project’s interest spectrum. 
 
Its performance, on the other hand, and at least for this kind of data, was appaling, having 
exhausted during trials both the resources of an HP Proliant Gen8 upgraded 
microserver and a c3.2xlarge EC server from Amazon Web Services. In both cases, 
the workflow didn’t even get to a significant point before running out of virtual memory. 
 
For the purposes of this project, this is considered as a result in and of itself for this 
technique. 
 
Stacked Denoising Autoencoders: This dimension reduction technique, being 
especially constructed with digital image reconstruction in mind, didn’t finally fit the goals 
of this project. As an input, this technique uses boolean matrices, and the current data 
set couldn’t be coerced to such a data structure without either becoming impracticably 
complex or losing a significant amount of information in the process. 
 
This is also considered as a result, even if a negative one. 
 

6 – Conclusions 
 
The values for the Cohen’s Kappa for each programming language’s technique and a 
brief commentary for each are presented in Table 17, and the following conclusions are 
extracted. 
 

Table 17: Cohen’s Kappa comparative and additional comments 

 
 Cohen’s Kappa Additional comments 

PCA – R 0.839245 Standard results, benchmark processing time 

ICA – R 0.839277 Processing time higher than PCA 

Factor Analysis – R 0.832651 Longest processing time, added value 

LDA – R 0.991421 Affected by collinearity effect 

PCA – Python 0.499053 Streamlined, worse results than R analogue 

ICA – Python 0 Unable to reach convergence 

Factor Analysis – Python 0.836059 Shorter process than its R analogue, added value 

LDA – Python 0.995098 Affected by collinearity effect 

 
 
First, focusing on programming languages, Python, in respect to statistics-oriented 
modules, is a more-streamlined, less flexible language than R. R offers more 
implementations of even obscure or little known protocols and algorithms, and offers 
better flexibility to tamper with them, if the user is adept at coding. R also gives, on 
average, better outputs. This may be derived from the fact that while Python is a 
generalistic language, well suited for scripting and supported by countless modules out-
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of-the-box, R is a specialized language, developed first and foremost for statistics 
workflows. 
 
Second, on dimension reduction techniques, PCA is reaffirmed as a golden standard of 
dimension reduction. With relatively sparse requirements its outputs are good, setting a 
benchmark for other techniques.  
 
ICA, while giving, in its R implementation, similar results with a slightly higher processing 
time than PCA, fails to reach convergence even at high tolerance levels in Python. This 
point, the fine tuning of ICA in Python, is left for a future work either focused on it or with 
a wider scope than the current study. 
 
Factor Analysis, while heavier in requirements, yields an added value to dimension 
reduction: while its output is of similar accuracy to ICA or PCA, it also gives loadings 
which group the original variables up in semantic groups, which can be analyzed for 
underlying relationships between them. 
 
LDA suffers from a sensitivity to collinearity that creates artifacts of high accuracy (). If 
this technique is to be used, it must be supported with a correlation-elimination workflow. 
This kind of workflow is not within this work’s scope, but it is an interesting topic to cover 
on future projects. 
 
Third, on scoring metrics, Cohen’s Kappa has been shown to perform well as an 
accuracy metric: it’s able to catch random hits and take them into account when 
addressing the validity of a classification work, and is apt for multiclass classifications. 
 
Fourth, on preproccessing of data: class imbalance is a problem for classification 
workflows, and is shown here to be buffered by balancing techniques such as SMOTE. 
 
Finally, on goals and objectives for this study: several techniques have been assessed 
and compared, ending in a better understanding of all of them and an effective 
comparison of the techniques. Two of them, T-sne and Denoising Autoencoders have 
shown themselves not to be valid for the scope of this study. An accuracy scoring has 
been successfully proposed and applied, and conclusions steming from this scoring have 
been extracted. Effectively, all goals have been accomplished. 
 
As an addendum, this study merits a longer research. As such, milestones along a 
theoretical future roadmap should include: 
 
• Implementing a processing objective metric, such as System.time() or tictoc in R or 
time() in Python, and a trial protocol, such that differences in processing time can be 
objectively measured and cross-tested. 
 
• A better implementation of Python code, more object-oriented, as to optimise 
processing. 
 
• Cross-testing of different parameter setups, in order to better understand not only the 
best performers, but the best configurations. 
 
• A visualization module or script for both Python and R. Right now, while R offers direct 
applications of plotting systems for the practical majority of its functions, Python requires 
a lot of tweaking of its modules (mainly matplotlib), especially for data sets with so many 
features, even when reduced to such a number as 210. 
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8 – Glossary 
 
Dimension reduction: Process by which the number of random variables under 
consideration is reduced either by obtaining a set of transformations, combinations of 
variables or selection of most informative traits. 
 
Feature (statistics): Equivalent to variable or attribute. 
 
Gaussianity: Equivalent to Normality. 
 
Normality: The quality of adjusting to a normal distribution. 
 
Lymphoblast: Activated form of a lymphocyte with an increased volume and protein-
synthesis activity. 
 
Lymphocyte: White blood cell subtype, part of the immune system, which includes 
adaptive and innate immunity cells. 
 
Object-oriented: Programming paradigm focused on the creation of objects, entities or 
classes, with a complete semantic body, full with attributes and methods. 
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10 - Annexes 
 

Annex 1 - R comparison code 
 
require(knitr) 
require(stats) 
require(caret) 
require(e1071) 
require(ica) 
require(psych) 
require(MASS) 
require(ggplot2) 
require(ggfortify) 
require(DMwR) 
 
# Data metavariables 
data_class_factors <- 7 
data_class_numeric <- 2867 
data_response_index <- 2 
 
# Classes of variable by column 
colClasses <- append(c(rep("factor", data_class_factors)), 
c(rep("numeric", data_class_numeric))) 
 
# Load CSV data 
data_df <- read.csv2(file = "data/data.csv", sep = ",", 
dec = ".", colClasses = colClasses, stringsAsFactors = FALSE) 
 
# Model formula 
data_formula <- as.formula(paste(colnames(data_df[data_response_index]), 
"~", paste(colnames(data_df)[-(1:data_class_factors)], 
collapse = " + "))) 
 
# Balance out data with SMOTE, as ROSE only works 
# on binary classifications. 
data_df_bal <- SMOTE(data_formula,data_df) 
 
# Write balanced data to file as input for python functions 
write.table(data_df_bal, file = 
"data/data_df_bal.csv",row.names=FALSE,col.names=TRUE,quote=FALSE,sep=",") 
 
# Seed for controlled randomization 
set.seed(123) 
 
# Response and predictor subsets 
data_df_predictors <- data_df_bal[, 8:2874] 
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data_df_predictors <- scale(data_df_predictors) 
data_df_responses <- data_df_bal[, data_response_index] 
 
# Training indices 
data_train_index <- sample(1:nrow(data_df), ceiling(nrow(data_df) * 
0.66)) 
write.table(as.vector(data_train_index), file = "data/data_train_index.csv", 
row.names = FALSE, col.names = FALSE, sep = ",") 
 
# Training responses subset 
data_df_train_responses <- data_df_responses[data_train_index] 
 
# Test responses subset 
data_df_test_responses <- data_df_responses[-data_train_index] 
 
# Fit PCA 
data_pca <- prcomp(data_df_predictors) 
 
# Summarize PCA 
data_pca_summary <- summary(data_pca) 
 
# Get the number of variables explaining at the 
# very least 85% of variance 
for (i in seq(from = 10, to = 250, by = 10)) { 

data_varExp <- sum(data_pca_summary$importance[2,1:i]) 
if (data_varExp >= 0.95) { 

varImpMessage <- paste("For ", i, " components, the percentage of variance 
explained is ", 
data_varExp, ".", sep = "") 
data_optimal_exfeat <- i 

return(print(varImpMessage)) 
} 

} 
cat(varImpMessage) 
 
# Choose the selected number of PCs 
data_pca_exfeat <- data_pca$x[, 1:data_optimal_exfeat] 
 
# Generate training and test sets 
data_pca_train <- subset(data_pca_exfeat[data_train_index, 
]) 
data_pca_test <- subset(data_pca_exfeat[-data_train_index, 
]) 
 
# Fit SVM with training sets 
data_pca_svm <- svm(data_pca_train, y = data_df_train_responses, 
type = "C-classification", kernel = "radial") 
 
# Feed SVM with test data for prediction 
data_pca_predict <- stats::predict(data_pca_svm, data_pca_test) 
 
# Tabulate and solve Cohen's Kappa 
data_pca_table <- table(data_pca_predict, data_df_test_responses) 
data_pca_perc_table <- prop.table(data_pca_table) * 100 
data_pca_perc_hit <- sum(diag(data_pca_perc_table)) 
data_pca_cohen <- cohen.kappa(data_pca_table, n.obs = length(data_df_test_responses)) 
kable(data_pca_table, caption = "PCA observed versus predicted results", digits = 2, format = 
"latex") 
kable(data_pca_perc_table, caption = "PCA observed versus predicted results - percentages", digits 
= 2, format = "latex") 
 
# Choose the selected number of features while 
# fitting ICA 
data_ica <- icafast(data_df_predictors, nc = data_optimal_exfeat) 
data_ica_exfeat <- data_ica$S 
 
# Generate training and test sets 
data_ica_train <- subset(data_ica_exfeat[data_train_index,]) 
data_ica_test <- subset(data_ica_exfeat[-data_train_index,]) 
 
# Fit SVM with training sets 
data_ica_svm <- svm(data_ica_train, y = data_df_train_responses, type = "C-classification", kernel 
= "radial") 
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# Feed SVM with test data for prediction 
data_ica_predict <- stats::predict(data_ica_svm, data_ica_test) 
 
# Tabulate and solve Cohen's Kappa 
data_ica_table <- table(data_ica_predict, data_df_test_responses) 
data_ica_perc_table <- prop.table(data_ica_table) * 100 
data_ica_perc_hit <- sum(diag(data_ica_perc_table)) 
data_ica_cohen <- cohen.kappa(data_ica_table, n.obs = length(data_df_test_responses)) 
kable(data_ica_table, caption = "ICA observed versus predicted results", digits = 2, format = 
"latex") 
kable(data_ica_perc_table, caption = "ICA observed versus predicted results - percentages", digits 
= 2, format = "latex") 
 
# Choose the selected number of features with a 
# lower tolerance boundary extracted on trial and 
# error to be the best in convergence 
data_factanal <- factanal(data_df_predictors, factors = data_optimal_exfeat, scores = "Bartlett", 
lower = 0.07) 
 
# Use loadings to transform preditor values 
data_factanal_exfeat <- data_df_predictors %*% data_factanal$loadings 
 
# Generate training and test sets 
data_factanal_train <- subset(data_factanal_exfeat[data_train_index,]) 
data_factanal_test <- subset(data_factanal_exfeat[-data_train_index,]) 
 
# Fit SVM with those factors 
data_factanal_svm <- svm(data_factanal_train, y = data_df_train_responses, 
type = "C-classification", kernel = "radial") 
 
# Use fitted SVM to predict test responses 
data_factanal_predict <- stats::predict(data_factanal_svm, data_factanal_test) 
 
# Tabulate and solve Coehn's Kappa 
data_factanal_table <- table(data_factanal_predict,data_df_test_responses) 
data_factanal_perc_table <- prop.table(data_factanal_table) * 100 
data_factanal_perc_hit <- sum(diag(data_factanal_perc_table)) 
data_factanal_cohen <- cohen.kappa(data_factanal_table) 
kable(data_factanal_table, caption = "Factor Analysis observed versus predicted results", digits 
= 2, format = "latex") 
kable(data_factanal_perc_table, caption = "Factor Analysis observed versus predicted results -  
percentages", digits = 2, format = "latex") 
 
# Fit LDA with predictors 
data_lda <- lda(data_df_predictors, grouping = data_df_responses) 
 
# Transform predictors with linear discriminants 
data_lda_predictors_trans <- data_df_predictors %*% data_lda$scaling 
 
# Generate training and test sets 
data_lda_train <- subset(data_lda_predictors_trans[data_train_index,]) 
data_lda_test <- subset(data_lda_predictors_trans[-data_train_index,]) 
 
# Use training values to fit SVM 
data_lda_svm <- svm(data_lda_train, y = data_df_train_responses, type = "C-classification", kernel 
= "radial") 
 
# Feed test data to SVM and predict 
data_lda_predict <- stats::predict(data_lda_svm, data_lda_test) 
 
# Tabulate and solve Cohen's Kappa 
data_lda_table <- table(data_lda_predict, data_df_test_responses) 
data_lda_perc_table <- prop.table(data_lda_table) * 100 
data_lda_perc_hit <- sum(diag(data_lda_perc_table)) 
data_lda_cohen <- cohen.kappa(data_lda_table) 
kable(data_lda_table, caption = "LDA observed versus predicted results", digits = 2, format = 
"latex") 
kable(data_lda_perc_table, caption = "LDA observed versus predicted results - percentages", digits 
= 2, format = "latex") 
 

 

Annex 2 - Python comparison code 
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#Import all necessary modules 
import scipy 
import numpy 
import pandas as pd 
from sklearn.decomposition import PCA 
from sklearn import svm 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import confusion_matrix 
 
#Define data metavariables and load data 
data_pydf_predictor_ids = range(7,2874) 
data_pydf_predictors = pd.read_csv('data/data_df_bal.csv', usecols=data_pydf_predictor_ids) 
data_pydf_predictors = data_pydf_predictors.values 
data_pydf_responses = pd.read_csv('data/data.csv', usecols=['tipoCelula']) 
data_pydf_responses = data_pydf_responses.values 
 
#Configure PCA object 
data_pca_py = PCA(n_components=210,copy=True) 
 
#Fit PCA with predictors 
data_pca_py_fit = data_pca_py.fit(data_pydf_predictors, data_pydf_responses.ravel()) 
 
#Transform predictors on selected PCs 
data_pca_py_transf = data_pca_py_fit.transform(data_pydf_predictors) 
 
#Subset transformed data into test and training subsets 
data_pca_predictors_train,data_pca_predictors_test,data_pca_responses_train,data_pca_responses_t
est = train_test_split(data_pca_py_transf, data_pydf_responses, train_size = 0.66, test_size = 
0.34, random_state=123) 
 
#Convert response array to 1D for prediction 
data_pca_responses_test_1D = data_pca_responses_test[:,0] 
 
#Initialize SVM 
data_pca_py_svm = svm.SVC(kernel='rbf') 
 
#Fit SVM 
data_pca_py_svm_fit=data_pca_py_svm.fit(data_pca_predictors_train, 
data_pca_responses_train.ravel()).predict(data_pca_predictors_test) 
 
#Put classification results in temp file 
numpy.savetxt("data_pca_responses_test_1D.csv", data_pca_responses_test_1D, delimiter=",", 
fmt="%s") 
numpy.savetxt("data_pca_py_svm_fit.csv", data_pca_py_svm_fit, delimiter=",", fmt="%s") 
 
#Load classification data as R objects 
require(knitr) 
require(psych) 
data_pca_responses_test_1D<-read.csv(file="data_pca_responses_test_1D.csv",sep = ",", header = 
FALSE) 
data_pca_responses_test_1D <- data_pca_responses_test_1D[,1] 
data_pca_py_svm_fit <- read.csv(file = "data_pca_py_svm_fit.csv", sep = ",", header = FALSE) 
data_pca_py_svm_fit <- data_pca_py_svm_fit[, 1] 
 
#Tabulate and solve Cohen's Kappa 
data_pca_py_table <- table(data_pca_py_svm_fit, data_pca_responses_test_1D) 
data_pca_py_perc_table <- prop.table(data_pca_py_table) * 100 
data_pca_py_perc_hit <- sum(diag(data_pca_py_perc_table)) 
data_pca_py_cohen <- cohen.kappa(data_pca_py_table, n.obs = length(data_pca_responses_test_1D)) 
kable(data_pca_py_table, caption = "PCA observed versus predicted results", digits = 2, format = 
"latex") 
kable(data_pca_py_perc_table, caption = "PCA observed versus predicted results - percentages", 
digits = 2, format = "latex") 
 
#Import all necessary modules 
import scipy 
import numpy 
import pandas as pd 
from sklearn.decomposition import FastICA 
from sklearn import svm 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import confusion_matrix 
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#Define data metavariables and load data 
data_pydf_predictor_ids = range(7,2874) 
data_pydf_predictors = pd.read_csv('data/data_df_bal.csv', usecols=data_pydf_predictor_ids) 
data_pydf_predictors = data_pydf_predictors.values 
data_pydf_responses = pd.read_csv('data/data.csv', usecols=['tipoCelula']) 
data_pydf_responses = data_pydf_responses.values 
 
#Configure ICA object 
data_ica_py = FastICA(n_components=210) 
 
#Fit ICA with predictors 
data_ica_py_fit = data_ica_py.fit(data_pydf_predictors, data_pydf_responses.ravel()) 
 
#Transform predictors on selected factors 
data_ica_py_transf = data_ica_py_fit.transform(data_pydf_predictors) 
 
#Subset transformed data into test and training subsets 
data_ica_predictors_train, data_ica_predictors_test, data_ica_responses_train, 
data_ica_responses_test = train_test_split(data_ica_py_transf, data_pydf_responses, train_size = 
0.66, test_size = 0.34, random_state=123) 
 
#Initialize SVM 
data_ica_py_svm = svm.SVC(kernel='rbf') 
 
#Fit SVM 
data_ica_py_svm_fit = data_ica_py_svm.fit(data_ica_predictors_train, 
data_ica_responses_train.ravel()).predict(data_ica_predictors_test) 
 
#Put classification results in temp file 
numpy.savetxt("data_ica_responses_test_1D.csv", data_ica_responses_test_1D, delimiter=",", 
fmt="%s") 
numpy.savetxt("data_ica_py_svm_fit.csv", data_ica_py_svm_fit, delimiter=",", fmt="%s") 
 
#Load classification data as R objects 
data_ica_responses_test_1D <- read.csv(file = "data_ica_responses_test_1D.csv",sep = ",", header 
= FALSE) 
data_ica_responses_test_1D <- data_ica_responses_test_1D[,1] 
data_ica_py_svm_fit <- read.csv(file = "data_ica_py_svm_fit.csv",sep = ",", header = FALSE) 
data_ica_py_svm_fit <- data_ica_py_svm_fit[,1] 
 
# Tabulate and solve Cohen's Kappa 
data_ica_py_table <- table(data_ica_py_svm_fit, data_ica_responses_test_1D) 
data_ica_py_perc_table <- prop.table(data_ica_py_table) * 100 
data_ica_py_perc_hit <- sum(diag(data_ica_py_perc_table)) 
data_ica_py_cohen <- cohen.kappa(data_ica_py_table, 
n.obs = length(data_ica_responses_test_1D)) 
kable(data_ica_py_table, caption = "ICA observed versus predicted results", digits = 2, format = 
"latex") 
kable(data_ica_py_perc_table, caption = "ICA observed versus predicted results - percentages", 
digits = 2, format = "latex") 
 
#Import all necessary modules 
import scipy 
import numpy 
import pandas as pd 
from sklearn.decomposition import FactorAnalysis 
from sklearn import svm 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import confusion_matrix 
 
#Define data metavariables and load data 
data_pydf_predictor_ids = range(7,2874) 
data_pydf_predictors = pd.read_csv('data/data_df_bal.csv', usecols=data_pydf_predictor_ids) 
data_pydf_predictors = data_pydf_predictors.values 
data_pydf_responses = pd.read_csv('data/data.csv', usecols=['tipoCelula']) 
data_pydf_responses = data_pydf_responses.values 
 
#Configure Factor Analysis object 
data_factanal_py = FactorAnalysis(n_components=210) 
 
#Fit FA with predictors 
data_factanal_py_fit = data_factanal_py.fit(data_pydf_predictors, data_pydf_responses.ravel()) 
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#Transform predictors on selected factors 
data_factanal_py_transf = data_factanal_py_fit.transform(data_pydf_predictors) 
 
#Subset transformed data into test and training subsets 
data_factanal_predictors_train, data_factanal_predictors_test, data_factanal_responses_train, 
data_factanal_responses_test = train_test_split(data_factanal_py_transf, data_pydf_responses, 
train_size = 0.66, test_size = 0.34, random_state=123) 
 
#Convert response array to 1D for prediction 
data_factanal_responses_test_1D = data_factanal_responses_test[:,0] 
 
#Initialize SVM 
data_factanal_py_svm = svm.SVC(kernel='rbf') 
 
#Fit SVM 
data_factanal_py_svm_fit=data_factanal_py_svm.fit(data_factanal_predictors_train, 
ata_factanal_responses_train.ravel()).predict(data_factanal_predictors_test) 
 
#Put classification results in temp file 
numpy.savetxt("data_factanal_responses_test_1D.csv",data_factanal_responses_test_1D, 
delimiter=",", fmt=="%s") 
numpy.savetxt("data_factanal_py_svm_fit.csv", data_factanal_py_svm_fit, delimiter=",", fmt="%s") 
 
#Load classification data as R objects 
data_factanal_responses_test_1D <- read.csv(file = "data_factanal_responses_test_1D.csv",sep = 
",", header = FALSE) 
data_factanal_responses_test_1D <- data_factanal_responses_test_1D[,1] 
data_factanal_py_svm_fit <- read.csv(file = "data_factanal_py_svm_fit.csv",sep = ",", header = 
FALSE) 
data_factanal_py_svm_fit <- data_factanal_py_svm_fit[,1] 
 
#Tabulate and solve Cohen's Kappa 
data_factanal_py_table <- table(data_factanal_py_svm_fit, 
data_factanal_responses_test_1D) 
data_factanal_py_perc_table <- prop.table(data_factanal_py_table) * 100 
data_factanal_py_perc_hit <- sum(diag(data_factanal_py_perc_table)) 
data_factanal_py_cohen <- cohen.kappa(data_factanal_py_table,n.obs = 
length(data_factanal_responses_test_1D)) 
kable(data_factanal_py_table, caption = "Factor Analysis observed versus predicted results",digits 
= 2, format = "latex") 
kable(data_factanal_py_perc_table, caption = "Factor Analysis observed versus predicted results - 
percentages",digits = 2, format = "latex") 
 
#Import all necessary modules 
import scipy 
import numpy 
import pandas as pd 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn import svm 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import confusion_matrix 
 
#Define data metavariables and load data 
data_pydf_predictor_ids = range(7,2874) 
data_pydf_predictors = pd.read_csv('data/data_df_bal.csv', usecols=data_pydf_predictor_ids) 
data_pydf_predictors = data_pydf_predictors.values 
data_pydf_responses = pd.read_csv('data/data.csv', usecols=['tipoCelula']) 
data_pydf_responses = data_pydf_responses.values 
 
#Configure LDA object 
data_lda_py = LinearDiscriminantAnalysis(n_components=210) 
 
#Fit LDA with predictors 
data_lda_py_fit = data_lda_py.fit(data_pydf_predictors, data_pydf_responses.ravel()) 
 
#Transform predictors on selected factors 
data_lda_py_transf = data_lda_py_fit.transform(data_pydf_predictors) 
 
#Subset transformed data into test and training subsets 
data_lda_predictors_train, data_lda_predictors_test, data_lda_responses_train, 
data_lda_responses_test = train_test_split(data_lda_py_transf, data_pydf_responses, train_size = 
0.66, test_size = 0.34, random_state=123) 
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#Initialize SVM 
data_lda_py_svm = svm.SVC(kernel='rbf') 
 
#Fit SVM 
data_lda_py_svm_fit=data_lda_py_svm.fit(data_lda_predictors_train, 
data_lda_responses_train.ravel()).predict(data_lda_predictors_test) 
 
#Put classification results in temp file 
numpy.savetxt("data_lda_responses_test_1D.csv",data_lda_responses_test_1D,delimiter=",",fmt="%s"
) 
numpy.savetxt("data_lda_py_svm_fit.csv", data_lda_py_svm_fit, delimiter=",", fmt="%s") 
 
#Load classification data as R objects 
data_lda_responses_test_1D <- read.csv(file = "data_lda_responses_test_1D.csv",sep = ",", header 
= FALSE) 
data_lda_responses_test_1D <- data_lda_responses_test_1D[,1] 
data_lda_py_svm_fit <- read.csv(file = "data_lda_py_svm_fit.csv",sep = ",", header = FALSE) 
data_lda_py_svm_fit <- data_lda_py_svm_fit[,1] 
 
#Tabulate and solve Cohen's Kappa 
data_lda_py_table <- table(data_lda_py_svm_fit, data_lda_responses_test_1D) 
data_lda_py_perc_table <- prop.table(data_lda_py_table) * 100 
data_lda_py_perc_hit <- sum(diag(data_lda_py_perc_table)) 
data_lda_py_cohen <- cohen.kappa(data_lda_py_table, 
n.obs = length(data_lda_responses_test_1D)) 
kable(data_lda_py_table, caption = "LDA observed versus predicted results", 
digits = 2, format = "latex") 
kable(data_lda_py_perc_table, caption = "LDA observed versus predicted results - percentages", 
digits = 2, format = "latex") 


