
Monero
privacy in the blockchain

MISTIC: Màster Interuniversitari en Seguretat de les Tecnologies
de la Informació i de les Comunicacions

Thesis pursuant to a Master’s degree
Author: Kurt M. Alonso

Supervisor: Jordi Herrera Joancomart́ı

Universitat Autònoma de Barcelona

Abstract

A cryptocurrency blockchain is commonly understood as a public distributed ledger

containing transactions verifiable by third parties, be it the mining community or

the public in general. It would seem that transactions would need to be sent and

stored in clear text format in order to make them publicly verifiable.

As we will show in this thesis, this is an incorrect assumption. It is indeed possible

to use cryptographic artifacts to conceal participants of transactions as well as the

amounts involved. And yet, allow transactions to be verified and consensuated by

the mining community.

Furthermore, we will also show that transaction privacy does not automatically

entail lawlessness nor a total lack of insight. There are mechanisms built into the

cryptocurrency studied here that allow for selective access to transactions by, say,

authorities, without resulting in a conflict with user privacy.

per tot el que tu ets

A Anna

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Readership . 2

1.3 Origins of the Monero cryptocurrency . 3

1.4 Outline . 3

2 Basic concepts 4

2.1 A few words about notation . 4

2.2 Elliptic curve cryptography . 5

2.2.1 What are elliptic curves . 5

2.2.2 Public key cryptography with elliptic curves 6

2.2.3 Diffie-Hellman key exchange with elliptic curves 6

2.2.4 DSA signatures with elliptic curves (ECDSA) 7

2.3 Curve Ed25519 . 8

2.3.1 Binary representation . 9

2.3.2 Point compression . 9

2.3.3 EdDSA signature algorithm . 9

iv

3 Ring signatures 11

3.1 Linkable Spontaneous Anonymous Group Signatures (LSAG) 12

3.2 Back Linkable Spontaneous Anonymous Group Signatures (bLSAG) 13

3.3 Multilayer Linkable Spontaneous Anonymous Group Signatures (MLSAG) 14

3.4 Borromean Ring Signatures . 16

4 Pedersen commitments 18

4.1 Pedersen commitments . 18

4.2 Monero commitments . 19

4.3 Range proofs . 20

4.4 Range proofs in a blockchain . 21

5 Monero Transactions 22

5.1 User keys . 22

5.2 One-time addresses . 22

5.2.1 Multi-output transactions . 23

5.3 Transaction types . 24

5.4 Ring Confidential Transactions of type RCTTypeFull 24

5.4.1 Amount Commitments . 25

5.4.2 Commitments to zero . 25

5.4.3 Signature . 26

5.4.4 Transaction fees . 27

5.4.5 Avoiding double-spending . 27

5.4.6 Space requirements . 28

5.5 Ring Confidential Transactions of type RCTTypeSimple 29

5.5.1 Amount Commitments . 29

5.5.2 Signature . 30

5.5.3 Space Requirements . 31

6 Privacy of Monero 32

6.1 Transaction confidentiality . 32

6.2 Untraceability . 33

7 Conclusion 35

7.1 Is privacy synonymous with opacity? . 35

7.2 Should you use or invest in Monero? . 36

7.3 Future work . 36

Bibliography 38

Appendices 39

A RCTTypeFull Transaction structure 41

B RCTTypeSimple Transaction structure 45

CHAPTER 1

Introduction

The purpose of blockchains is to furnish trust to operations between unrelated parties, without

requiring the collaboration of a trusted third party.

Trust is attained through the use of cryptographic artifacts which cater for virtual immutability

and non-falsifiability of data registered in a readily accessible database — the blockchain. In

other words, a blockchain is a public distributed database, containing data whose legitimacy

cannot be disputed by any party.

Cryptocurrencies store transactions in the blockchain. The latter acts as a public ledger of all

the consensuated currency operations. Most cryptocurrencies store transactions in clear text,

so that the receiver of a payment can easily verify that the sender is indeed in possession of the

currency at hand.

Clearly, an open blockchain defies any basic understanding of privacy, since it virtually publicizes

complete transaction histories of its users.

To address the lack of privacy, Bitcoin users can obfuscate transactions by using temporary

intermediate addresses [17]. However, in spite of such measures, with appropriate tools it is

possible to analyze flows and to a large extent link true senders with receivers [24, 7, 21].

In contrast, the cryptocurrency Monero, attempts to tackle the issue of privacy by storing only

stealth, single-use addresses in the blockchain. In this manner, there is no effective way of linking

senders with receivers nor tracing the origins of funds [1].

Additionally, transaction amounts in the Monero blockchain are concealed behind cryptographic

constructions, so as to render more complicated to infer currency flows.

1

2 CHAPTER 1. INTRODUCTION

The result is a high level of privacy, possibly unmatched by other common cryptocurrencies.

And yet, privacy does not have to be in conflict with justifiable or lawful insight. Monero users

have two private keys, one for viewing and another one for spending. An authorized third party

could have unabridged read access to the transaction history of a user by accessing his view key,

without impacting privacy nor security.

1.1 Objectives

Monero is a cryptocurrency of recent creation, yet it displays a steady growth in popularity1.

Unfortunately, there is little comprehensive documentation available describing the mechanisms

it uses. Even worse, important parts of the theoretical framework in the currency have been

published in non peer-reviewed papers which are incomplete and/or contain errors. Quite often,

only the software implementation is reliable enough as a source of information.

We intend to palliate this situation by collecting in-depth information about Monero’s inner

workings, reviewing algorithms and cryptographic schemes, and by discussing the degree to

which they might afford sufficient transaction privacy and security to its users.

We have centered our attention on release 0.11.1.0 of the Monero software suite, the most recent

release at the moment this is written. All transaction related mechanisms described here belong

to this version. Deprecated transaction schemes have not been explored to any extent, even if

they may be partially supported for backward compatibility reasons.

1.2 Readership

We expect the reader to possess a basic understanding of discrete mathematics and algebraic

structures, but possibly only fundamental insights in the field of cryptography. We also expect

the user to have a basic understanding of how a cryptocurrency like Bitcoin works.

A reader with this background should be able to follow our constructive, step-by-step description

of the elements of the Monero cryptocurrency.

We have omitted on purpose some mathematical technicalities, when they would be in the way

of clarity. We have also omitted concrete implementation details where we thought they were

not essential. Our objective has been to present the subject half-way between mathematical

cryptography and computer programming, aiming at completeness and conceptual clarity.

Using a consistent notation, a succinct and single-threaded explanation, we believe that it is

possible to lead a reader with this background to a deep understanding of the essential aspects

of the Monero cryptocurrency.

1As of December 28th, 2017, Monero occupies the 10th position as regards market capitalization, see
https://coinmarketcap.com/

https://coinmarketcap.com/

CHAPTER 1. INTRODUCTION 3

1.3 Origins of the Monero cryptocurrency

The cryptocurrency Monero, originally known as BitMonero, was created in April, 2014, as a

derivative of the proof-of-concept currency CryptoNote.

The latter is a cryptocurrency devised by an individual or team under the pseudonym of Nicolas

van Saberhagen. His/their work was published in October 2013 in [25]. It offered sender and

receiver anonymity through the use of one-time addresses, and untraceability of flows by means

of ring signatures.

Since its inception, Monero has further strengthened its privacy aspects by implementing amount

hiding as described by Greg Maxwell, among others in [15], as well as Shen Noether’s improve-

ments on ring signatures [19].

1.4 Outline

As hinted earlier, our aim has been to deliver a self-contained and step-by-step description of

the Monero cryptocurrency. This thesis has been structured to fulfill this objective and lead the

reader through all elements needed to describe the inner workings of the currency.

In our quest for comprehensiveness, we have chosen to present all the basic elements of cryp-

tography needed to understand the complexities of Monero. In Chapter 2 we develop essential

aspects of Elliptic Curve cryptography.

Chapter 3 outlines the ring signature related algorithms that will be applied to achieve confi-

dential but linkable transactions.

In Chapter 4 we introduce the cryptographic mechanisms used to conceal amounts.

Finally, with all the participating elements in place we will be able to expose the transaction

schemes used in Monero in Chapter 5.

Chapter 6 is dedicated to discuss the degree to which all the artifacts employed by Monero do

deliver transaction privacy.

In Chapter 7 we convey a few concluding remarks.

Appendices A and B describe the structure of sample transactions in the blockchain, providing

a connection between the theoretical elements described in earlier sections with their real-life

implementation.

CHAPTER 2

Basic concepts

We will use this section to introduce basic cryptographic building elements that will pervade

the rest of this thesis.

2.1 A few words about notation

One main objective in this thesis has been to collect, review, correct and homogenize all existing

information concerning the inner workings of the Monero cryptocurrency. And at the same time

supply all the necessary details to present all this material in a constructive and single-threaded

manner.

An important instrument to achieve this has been to settle for a number of notational conven-

tions that we think contribute to make this material more readable.

Among others, we have used

• lower case letters to denote simple values, integers, strings, bit representations, etc

• upper case letters to denote curve points and complex constructs

For items with a special meaning, we have tried to use in as much as possible the same symbols

throughout the whole document. For instance, a curve generator is always denoted by G, its

order is N , private/public keys are denoted whenever possible by k/K respectively, etc.

4

CHAPTER 2. BASIC CONCEPTS 5

Beyond that, we have aimed at being conceptual in our presentation of algorithms and schemes.

A reader with a computer science background could consider that we have neglected questions

like the bit representation of items, or in some cases, how to carry out concrete operations.

However, we don’t see this as a loss. A simple object such as an integer or a string can always

be represented by a bit string. So-called endianness is rarely relevant, and is mostly a matter

of convention for our algorithms.

Elliptic curve points would normally be represented by pairs (x, y), and therefore could be rep-

resented as two integer. However, in the world of cryptography it is common to apply point

compression techniques, which allow representing a point using only the space of one coordi-

nate. For our conceptual approach it is quite often accessory whether point compression is used

or not. But most of the times it is implicitly assumed.

We have also used freely hash functions without specifying any concrete algorithms. In the case

of Monero, it will typically be SHA3 , but if not explictly mentioned then it is not important to

the theory.

These hash functions will be applied to any objects, integers, strings, curve points, or combina-

tions of these objects. These occurrences should be interpreted as hashes of bit representations,

or the contatenation of such representations.

2.2 Elliptic curve cryptography

2.2.1 What are elliptic curves

A finite field Fp where p is a prime number, is the field formed by the set {0, 1, 2, ..., p−1}. with

arithmetic operations (+, ·) calculated (mod p).

Typically, elliptic curves are defined as the set of points (x, y) satisfying a Weierstraß equation:

y2 = x3 + ax+ b where a, b, x, y ∈ Fp

However, the cryptocurrency Monero uses a special curve known to offer improved security over

other commonly used NIST curves, as well as excellent performance of cryptographic primitives.

The curve used belongs to the category of s.c. Twisted Edwards curves, which are commonly

expressed as:

ax2 + y2 = 1 + dx2y2 where a, d, x, y ∈ Fp

In what follows we will prefer this second form. The advantage it offers over the previously men-

tioned Weierstraß form is that basic cryptographic primitives require less arithmetic operations.

This results in faster cryptographic algorithms, see Bernstein et al. in [5] for details.

6 CHAPTER 2. BASIC CONCEPTS

Let P1 = (x1, y1) and P2 = (x2, y2) be 2 points belonging to an elliptic curve. We can proceed

to define the addition operation P1 + P2 = P3 in the following manner

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
(mod p)

y3 =
y1y2 − ax1x2
1− dx1x2y1y2

(mod p)

These formulas for addition will also apply for point doubling, that is, when P1 = P2.

It turns out that elliptic curves have abelian group structure under the addition operation de-

scribed1.

The order N of an elliptic curve EC can be loosely defined as the number of points in the curve.

Clearly, by the definition of addition above it follows that an elliptic curve over a finite field will

be equally finite.

A generator G of EC is a point in the curve such that for every other point P in EC there

exists n satisfying that P = nG.

Calculating the scalar product nP can be done without difficulties. However, finding n such that

P1 = nP2 is known to be computationally hard. By analogy to modular arithmetic, this problem

is often called the discrete logarithm problem (DLP). In other words, scalar multiplication can

be seen as a one-way function, which paves the way for using elliptic curves for cryptography.

2.2.2 Public key cryptography with elliptic curves

Public key cryptography algorithms can be devised in an analogous way as with modular arith-

metic.

Let k be a randomly selected number satisfying 1 < k < N , and call it private key. Calculate

the corresponding public key K = kG.

Due to the hardness of the discrete logarithm problem (DLP) we can not easily deduce the value

k from K alone. This property allows us to use the values in (k,K) in common public key

cryptography algorithms.

2.2.3 Diffie-Hellman key exchange with elliptic curves

A basic Diffie-Hellman exchange of a shared secret between Alice and Bob could take place in

the following manner:

1. Alice and Bob generate their own private/public keys (kA,KA) and (kB,KB). Both

publish or exchange their public keys, and keep the private keys for themselves.

1A concise definition of this notion can be found under https://brilliant.org/wiki/abelian-group/

https://brilliant.org/wiki/abelian-group/

CHAPTER 2. BASIC CONCEPTS 7

2. Clearly, it holds that

S = kAKB = kAkBG = kBkAG = kBKA

Therefore, Alice could calculate S = kAKB and Bob S = kBKA, and use this single value

as a shared secret.

An external observer would not be able to calculate easily the shared secret due to the hardness

of the DLP.

2.2.4 DSA signatures with elliptic curves (ECDSA)

Typically, a cryptographic signature is performed on a cryptographic hash of a message rather

than the message itself. However, in this whole thesis we will loosely use the term message

indistinctly to refer to the message properly speaking and/or its hash value.

Signature

Assume that Alice has the private/public key pair (k,K). To sign univocally an arbitrary

message m, she could execute the following steps [10]:

1. Calculate a hash of the message using a cryptographically secure hash function, h = H(m)

2. Generate a random integer r such that 1 < r < N and compute P = (x, y) = rG.

If x = 0 generate another random integer.

3. Calculate s = r−1(h+ xk) (mod N). If s = 0 then go to previous step and repeat

4. The signature is (x, s)

Verification

Any third party can verify the signature by calculating

u1 = s−1h

u2 = s−1x

Q = u1G+ u2K

The signature will be valid if and only if the first coordinate of Q = (xQ, yQ) satisfies that

xQ = x (mod p)

.

8 CHAPTER 2. BASIC CONCEPTS

Correctness

This stems from the fact that

Q = u1G+ u2K

= s−1hG+ s−1xkG

= s−1(h+ xk)G

Since s = r−1(h+ xk), it follows that r = s−1(h+ xk), whereby it becomes proved that

Q = rG

.

2.3 Curve Ed25519

Monero uses a particular Twisted Edwards elliptic curve for cryptographic operations, Ed25519,

birational equivalent2 of the Montogomery curve Curve25519.

Both Curve25519 and Ed25519 were released by Bernstein et al. [3, 4, 6].

The curve is defined over the prime field F2255−19 by means of the following equation:

−x2 + y2 = 1− 121665

121666
x2y2

This curve addresses many concerns raised by the cryptography community. It is well known

that NIST3 standard algorithms have issues. In recent times it has become clear that the ran-

dom number generation algorithm PNRG is flawed and could contain a potential backdoor [9].

Seen from a broader perspective, curves endorsed by the NIST, are also indirectly endorsed by

the NSA, something that the cryptography community sees with suspicion.

Curve Ed25519 is not subject to any patents (see [12] for a discussion on this subject), and

the team behind it has developed and adapted basic cryptographic algorithms with efficiency in

mind [6]. More importantly, it is currently thought to be secure.

Twisted Edwards curves have order expressable as 2cq, where q is a prime number and c a

positive integer. In the case of curve Ed25519, its order is

23 · 7237005577332262213973186563042994240857116359379907606001950938285454250989

2Without giving further details, birational equivalence can be thought of as an isomorphism that can be
expressed using rational terms

3National Institute of Standards and Technology, https://www.nist.gov/

https://www.nist.gov/

CHAPTER 2. BASIC CONCEPTS 9

2.3.1 Binary representation

Elements of F2255−19 are 256-bit integers. In other words, they can be represented using 32

bytes.

Consequently, any point in Ed25519 could be represented using 64 bytes. Applying Point com-

pression techniques, described here below, however, it is possible to reduce this amount by half,

to 32 bytes..

2.3.2 Point compression

The Ed25519 curve has the property that its points can be easily compressed, so that representing

a point will consume only the space of one coordinate. We will not delve into the mathematics

necessary to justify this, but we can give a brief insight into how it works.

Assume that we want to compress a point (x, y). We will employ a little-endian representation

of integers.

Encoding The most significant bit of the y coordinate will always be 0. We set this bit to 0 if

x is even, and 1 if it is odd. The resulting value y will represent the curve point.

Decoding Retrieve and clear the most significant bit of the stored value and that will be y.

Let u = y2 − 1 and v = dy2 + 1.

Compute x = uv3(uv7)(p−5)/8

1. If vx2 = u (mod p) then keep x

2. Else set x = x2(p−1)/4 (mod p)

3. Use the parity bit b retrieved in the first step, if b 6= x (mod p) then return p − x,

otherwise return x

2.3.3 EdDSA signature algorithm

Bernstein and his team have developed a number of basic algorithms based on curve Ed25519.

For illustration purposes we will describe here a highly optimized and secure alternative to

the ECDSA signature scheme which according to the authors allows producing over 100 000

signatures per second using a commodity Intel Xeon processor [4]. The algorithm can also be

found described in Internet RFC8032 [11].

Among other things, instead of generating random integers every time, it uses a hash value

derived from the private key of the signer, and the message itself. This circumvents security

flaws related to the implementation of random number generators. Also, another goal of the

algorithm is to avoid accessing secret or unpredictable memory locations to prevent so-called

cache timing attacks,

We provide here an outline of the steps performed by the algorithm for illustration purposes

only. A complete description and sample implementation in the Python language can be found

in [11].

10 CHAPTER 2. BASIC CONCEPTS

Signature

1. Let hk be a hash H(k)of the signer’s private key k. Compute r as a hash r = H(hk,m) of

the hashed private key and message.

2. Calculate R = rG and s = (r +H(R,K,m) · k))

3. the signature is the pair (R, s)

Verification

Verification is performed as follows

1. Compute h = H(R,K,m)

2. If the equality (2cs)G = 2cR+ 2cH(R,K,m)K holds then the signature is valid

Correctness

Why the signature verification works can be derived from

2csG = 2c((r +H(R,K,m) · k) ·G = 2cR+ 2cH(R,K,m) ·K)

Binary representation

By default, an EdDSA signature would need 64+32 bytes to be represented. However, RFC8032

assumes that point R is compressed, whereby space requirements become reduced to 32 + 32

bytes only.

CHAPTER 3

Ring signatures

Ring signatures are signatures generated with a single private key and a set of unrelated public

keys. The whole set of public keys, including the one corresponding to the private key at hand,

is usually called a ring. Somebody verifying the signature would not be able to tell which private

key from the ring was used to produce the signature.

Ring signatures were originally called Group Signatures in that they were thought of as a way of

proving that a signer belongs to a group, without necessarily identifying the individual at hand.

In the context of Monero transactions, they will help making currency flows untraceable.

Ring signature schemes can display a number of properties that will be useful for producing

confidential transactions:

Anonymity An observer should not be able to determine the identity of the true signer of the

message. Only that the private key used corresponds to one of the public keys in the ring.

Linkability If a private key is used to sign two different messages, then the messages will

become linked and the duplicity will be uncovered. In the case of Monero, this property

will help preventing double-spending attacks.

Exculpability The linkability property does not apply to non-signing public keys. That is,

a ring member whose public key has been used twice in different signatures will not be

linked.

11

12 CHAPTER 3. RING SIGNATURES

3.1 Linkable Spontaneous Anonymous Group Signatures (LSAG)

Originally (for instance in [8]), group signature schemes required trusted group members to

manage the collective signatures, who had the theoretical possibility of disclosing the original

signer.

Relying on a single signature manager is not at all desirable, since it causes a dependency on a

single group member, something that translates into a disclosure risk

A more interesting scheme was presented by Liu et al. in [14]. The authors detailed an algorithm

to cater for Linkable and Spontaneous group signatures, not requiring the collaboration of any

possible co-signers. In other words, the signer could select any set of involuntary co-signers to

anonymize his own signature.

Signature

Let m be the message to sign, R = {K1,K2, ...,Kn} a set of distinct public keys (a group/ring),

kπ the private key corresponding to Kπ ∈ R. Assume also the existence of two hash functions,

Hn and Hp, mapping to integers and curve points respectively1.

1. Compute K̃ = kπHp(R)

2. Generate random numbers α ∈R Zq and ri ∈R Zq for i ∈ {0, 1, ..., n} and i 6= π

3. Calculate

cπ+1 = Hn(R, K̃,m, αG, αK̃)

4. For i = π + 1, π + 2, ..., n, 1, 2, ..., π − 1 calculate, replacing n+ 1→ 1

ci+1 = Hn(R, K̃,m, riG+ ciKi, riHp(R) + ciK̃)

5. define rπ = α− kπcπ (mod N)

The signature will be σ(m) = (c1, r1, ..., rn, K̃)

Verification

The verification of a signature is done in the following manner

1. For i = 1, 2, ..., n compute, replacing n+ 1→ 1

z′i = riG+ ciKi

z′′i = riHp(R) + ciK̃

c′i+1 = Hn(R, K̃,m, zi′, zi′′)

2. if c′1 = c1 then the signature is valid
1A simple definition for Hp could be Hp(x) = Hn(x)G

CHAPTER 3. RING SIGNATURES 13

Correctness

We can convince ourselves that the algorithm works by observing the following:

If i 6= π then c′i+1 is defined as in the signature algorithm.

If i = π then

z′i = riG+ ciKi = (α− kπcπ)G+ cπKπ = αG

z′′i = riHp(R) + ciK̃ = (α− kπcπ)Hp(R) + cπkπHp(R) = αK̃

So even in this case the expression c′i+1 = Hn(R, K̃,m, zn′, zn′′) will equal ci+1

Linkability

Given a fixed set of public keys R, and two valid signatures for different messages,

σ = (c1, s1, ..., sn, K̃)

σ′ = (c′1, s
′
1, ..., s

′
n, K̃

′)

if K̃ = K̃ ′ then clearly both signatures come from the same signing ring and private key

In other words, the LSAG signature scheme yields mutually linkable signatures in the case a

ring and a private key would be re-used.

Exculpability

At the same time, given that K̃ = kπHp(R), we can readily see that linkability would only apply

if private key kπ were re-used. Hence, no other group/ring member could be accused of signing

twice.

3.2 Back Linkable Spontaneous Anonymous Group Signatures

(bLSAG)

In the LSAG signature scheme, linkability of signatures can only be guaranteed if the ring is

constant. This can be seen by looking at the definition of K̃.

In this section we present an enhanced version of the LSAG algorithm that provides linkability

of the private key used, allowing the ring to contain different spurious keys.

The modification was unraveled in [18]. It is based on a publication by A. Back regarding the

CryptoNote ring signature algorithm, see [2] for details.

14 CHAPTER 3. RING SIGNATURES

Signature

1. Calculate K̃ = kπHp(Kπ)

2. Generate random numbers α ∈R Zq and ri ∈R Zq for i ∈ {0, 1, ..., n} and i 6= π

3. Compute

cπ+1 = Hn(m, αG, αHp(Kπ))

4. For i = π + 1, π + 2, ..., n, 1, 2, ..., π − 1 calculate, replacing n+ 1→ 1

ci+1 = Hn(m, riG+ ciKi, riHp(Ki) + ciK̃)

5. Define rπ = α− kπcπ (mod N)

The signature will be σ(m) = (c1, r1, ..., rn, K̃).

As in the original LSAG scheme, verification takes place by recalculating the value c1.

Correctness of the approach can be verified in a similar way.

The alert reader will no doubt notice that the value K̃ depends only on the keys of the true

signer. In other words, two signatures will now be linkable if and only if the same private key

was used for create the signature, independently of the ring used to anonymize the signer.

This notion of linkability will prove to be more useful for Monero than the one offered by the

LSAG algorithm, as it will allow detecting double-spending attempts without putting constraints

on the ring members used.

3.3 Multilayer Linkable Spontaneous Anonymous Group Signa-

tures (MLSAG)

In order to be able to sign multi-input transactions, one has to be able to sign with m private

keys. In [18, 19], Noether S. et al. describe a multi-layered generalization of the bLSAG signature

scheme applicable when we have a set of n ·m keys, that is, the set

R = {Ki,j} for i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}

for which we know the private keys {kπ,j} corresponding to the subset {Kπ,j} for some index π.

Such an algorithm would indeed address our multi-input needs, provided we generalize the notion

of linkability.

Linkability: if any of private keys kπ,j would be used in 2 different signatures, then these

signatures would be automatically linked.

CHAPTER 3. RING SIGNATURES 15

Signature

The MLSAG algorithm would be described by the following steps:

1. Calculate K̃j = kπiHp(Kπ,j) for all j ∈ {1, 2, ...,m}

2. Generate random numbers αj ∈R Zq, and ri,j ∈R Zq (excluding all rπ,j) for j ∈ {1, 2, ...,m}

3. Compute

cπ+1 = Hn(m, α1G,α1Hp(Kπ,1), ..., αnG,αnHp(Kπ,m))

4. For i = π + 1, π + 2, ..., n, 1, 2, ..., π − 1 calculate, replacing n+ 1→ 1

ci+1 = Hn(m, ri,1G+ ciKi,1, ri,1Hp(Ki,1) + ciK̃1, ..., ri,mG+ ciKi,m, ri,mHp(Ki,m) + ciK̃m)

5. Define rπ,j = αj − kπ,jcπ (mod N)

The signature will be σ(m) = (c1, r1,1, ..., rn,1, ..., r1,m, ..., rn,m, K̃1, ..., K̃m).

Verification

The verification of a signature is done in the following manner

1. For i = 1, ..., n compute, replacing n+ 1→ 1

c′i+1 = Hn(m, ri,1G+ ciKi,1, ri,1Hp(Ki,1) + ciK̃1, ..., ri,mG+ ciKi,m, ri,mHp(Ki,m) + ciK̃m)

2. if c′1 = c1 then the signature is valid

Correctness

Just as with the original LSAG algorithm, we can readily observe that

if i 6= π then clearly the values c′i+1 are calculated as described in the signature algorithm

if i = π then, since rπ,j = αj − kπ,jcπ

rπ,jG+ cπKπ,j = (αj − kπ,jcπ)G+ cπKπ,j = αjG

rπ,jHp(Kπ,j) + cπK̃j = (αj − kπ,jcπ)Hp(Kπ,j) + cπK̃j = αjHp(Kπ,j)

In other words, it holds also that c′π+1 = cπ+1

Linkability

In case a private key kπ,j would be re-used, then the corresponding value K̃j supplied in the

signature would reveal it. This observation matches our generalized definition of linkability.

16 CHAPTER 3. RING SIGNATURES

Space requirements

Assuming point compression, an MLSAG signature would clearly consume a total of

(1 + nm+m) · 32 bytes

3.4 Borromean Ring Signatures

We will see in later sections of this thesis that it will be necessary to prove that transaction

amounts are within expected ranges. This can be acomplished with ring signatures. However,

to this particular end it is not necessary that signatures be linkable, which allows us to select

more efficient algorithms in terms of space consumed.

In this context, and for the specific purpose of proving amount ranges, Monero uses a signature

scheme developed by G. Maxwell, which he described in [15]. We present here a simplified

version of the scheme, in that we will assume that we have the same number of keys for any

value of the first index i.

In our case, range proofs will require exactly 2 keys for each digit, so this simplification will not

have any negative impact.

Assume that we have a set of public keys {Ki,j} for i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}.

Furthermore, we assume also that for each i there is an index πi such that signer knows the

private key ki,πi corresponding to Ki,πi .

In what follows we will use m for the hash of the message concatenated with keys {Ki,j}.

Signature

1. For each i = 1, ..., n:

(a) generate a random value αi ∈R Zq
(b) set ci,πi = Hn(m, αiG, i, πi)

(c) for j = πi + 1, ...,m− 1 generate random numbers ri,j ∈R Zq and compute,

ci,j+1 = Hn(m, ri,jG− ci,jKi,j , i, j)

2. For i = 1, ..., n generate random numbers ri,m ∈R Zq and compute

c1 = Hn(r1,mG− c1,mK1,m, ..., rn,mG− cn,mKi,m)

3. For i = 1, .., n:

CHAPTER 3. RING SIGNATURES 17

(a) for j = 1, ..., πi − 1 generate random numbers ri,j ∈R Zq and compute

ci,j+1 = Hn(m, ri,jG− ci,jKi,j , i, j)

Here we interpret references to ci,1 as c1, see previous step

(b) set ri,πi = αi + ki,πici,πi

The signature will be

σ = (c1, r1,1, r1,2, ..., r1,m, ..., rn,m)

Verification

As before, let m be the hash of the message to sign and the set of signing keys.

The verification of a given signature is performed as follows:

1. For i = 1, ..., n and j = 1, ...,m compute:

R′i,j+1 = ri,jG− c′i,jKi,j

c′i,j+1 = Hn(m, R′i,j+1, i, j)

Interpret any c′i,1 as c1

2. Compute c′1 = H(R′1,m, ..., R
′
n,m)

The signature will be valid if c′1 = c1.

Correctness

1. For j 6= πi and for all i we can readily see that c′i,j+1 = ci,j+1

2. When j = πi, for all i

R′i,j+1 = ri,jG− c′i,jKi,j

= (αi + ki,πic
′
i,πi)G− c

′
i,πiKi,πi

= αiG+ ki,πic
′
i,πiG− c

′
i,πiki,πiG

= αiG

In other words, c′i,πi = Hn(m, αiG, i, πi) = ci,π+1.

Therefore we can conclude that the verification step identifies correctly valid signatures.

CHAPTER 4

Pedersen commitments

Generally speaking, a cryptographic commitment scheme is a way of publishing a commitment

to a value without revealing the value itself.

As an example, in a flip-coin game, Alice could commit to one outcome before Bob flips the

coin, by publishing the value hashed with secret data. After flipping the coin, Alice could prove

which value she committed to by publishing her secret data, so that Bob could verify that she

did indeed hash the outcome she later declared.

In other words, assume that Alice has a secret string b and that the value she wants to commit

to is v. She could simply hash H(b||v) and tell the result to Bob. Bob flips the coin and then

Alice could prove that she guessed the right outcome v by telling Bob what the secret string b

was. Bob would then recalculate H(b||v) and verify that Alice did indeed guess right.

4.1 Pedersen commitments

A Pedersen commitment [22] is a commitment that has the property of being additive. In

other words, if C(a) and C(b) denote the commitments for amounts a and b respectively, then

C(a + b) = C(a) + C(b) is a commitment for a + b. This property is useful when committing

transaction amounts, as one could prove, for instance, that inputs equal outputs, without un-

veiling the amounts at hand.

Fortunately, Pedersen commitments are easy to implement with elliptic curve cryptography, as

the following holds trivially

aG+ bG = (a+ b)G

18

CHAPTER 4. PEDERSEN COMMITMENTS 19

.

Clearly, with a simple definition of commitment like C(a) = aG, we would recognize immediately

commitments to 0. We could also end up creating cheat tables of commitments to help us

recognize common amounts.

To attain information-theoretical privacy, one needs to add a secret blinding factor and another

generator H, such that it is unknown for which value of γ the following holds H = γG. The

hardness of the discrete logarithm problem ensures the unfeasibility of calculating this value.

We can then define the commitment of an amount a as C(x, a) = xG+aH, where x is a blinding

factor.

In the case of Monero, H = to point(SHA3 (G)), where SHA3 stands for the novel Keccak

hashing algorithm, and to point is a function mapping scalars to curve points.

4.2 Monero commitments

A transaction in a cryptocurrency is a collection of inputs and outputs, which must balance.

That is, if Alice spends 100 units of the currency (the inputs), then the receiver(s) should receive

exactly 100 units in total. In case the payment to Bob is of 50 units only, then a second output

of 50 units back to Alice should be added.

In other words, if we had a transaction with inputs a1, ..., an and outputs b1, ..., bm, then an

observer would justifiably expect that:∑
i

ai −
∑
j

bj = 0

Since commitments are additive, then their sum would also equal zero:

∑
i

Ci,in −
∑
j

Cj,out = 0

This fact would be used by the network to verify that the sender of the transaction is not spend-

ing more money than he has previously received.

However, to avoid identifiability of a sender, Shen Noether proposes in [18] verifying instead

that the commitments sum to certain non-zero value:

∑
i

Ci,in −
∑
j

Cj,out = zG

∑
i

(xiG+ aiH)−
∑
j

(yjG+ bjH) = zG

∑
i

xi −
∑
j

yj = z

20 CHAPTER 4. PEDERSEN COMMITMENTS

The reasons why this is useful will become clear later, when we discuss the structure of trans-

actions.

Nevertheless, while not really summing up to 0, we will still refer to valid transaction commit-

ments as Commitments to zero, as long as the private key z is known to the committer.

4.3 Range proofs

One problem with additive commitments is that, if we have commitments for a, b and z and

we intend to use them to prove that a+ b = z, then those commitments would also apply if we

replace each value in the equation by its additive inverse (mod q).

For instance, if our base field were Z7 and a = 3, b = 2, z = 5, then the equation would also

hold for a = 4, b = 5 and z = 2 (mod 7).

Therefore, any commitments we could create for the amounts at hand would also apply to the

inverses of the amounts. So we could effectively claim later that the amounts were different,

whereby we would be creating money!

The solution used in Monero to address this issue is to sign the ranges of the numbers at hand

using a Borromean signature scheme described in Section 3.4, in the manner described here.

For any amount a, use its binary representation (a0, a1, ..., ak) such that

a = a02
0 + a12

1 + ...+ ak2
k

.

Generate random numbers x1, ..., xk ∈R Z to be used as blinding factors. Define also Pedersen

commitments for each ai, Ci = xiG+ ai2
iH, and derive public keys {Ci, Ci − 2iH}.

Clearly one of those public keys will equal xiG:

if ai = 0 then Ci = xiG+ 0H = xiG

if ai = 1 then Ci − 2iH = xiG+ 2iH − 2iH = xiG

In other words, a blinding factor xi will always be the private key corresponding to one of

{Ki,Ki − 2iH}. Therefore we will be able to sign an amount a in a transaction using the

Borromean Ring Signature scheme of Section 3.4 with the ring:

{{C0, C0 − 20H}, ..., {Ck, Ck − 2kH}}

CHAPTER 4. PEDERSEN COMMITMENTS 21

4.4 Range proofs in a blockchain

In the context of Monero we will use range proofs to commit to individual bit components and

to prove that their sum equals the total amount committed. Therefore, it will not be necessary

for the receiver nor any other party to know the blinding factors xiG. In other words, it is

sufficient to know that
k∑
i=0

Ci = C

In the blockchain we will store only the commitments/keys Ci. The mining community will have

to check that the equation above holds and that the private key of either Ci or Ci − 2iH has

been used to sign the amount.

The Borromean signature scheme requires knowledge of xi to produce a signature. In conse-

quence, upon verifying this relationship between keys, any third party will be able to convince

herself that amounts fall within ranges and that money is not being artificially created.

CHAPTER 5

Monero Transactions

5.1 User keys

Unlike Bitcoin, Monero users have two sets of private/public keys. (k1,K1) and (k2,K2), gen-

erated as described in Section 2.2.2.

The address of a user is the pair of public keys (K1,K2). Her private keys will be the corre-

sponding pair (k1, k2).

Using two sets of keys allows segregation of functions. The rationale will become clear later in

this thesis, but for the moment being let us advance that private key k1 will be called view key

whereas k2 will be the spend key. The former key will be used to determine whether an output

is addressed to the user at hand, and the second one will be necessary to use the output in a

spend transaction.

5.2 One-time addresses

As described, every Monero user has a pair of public keys as public address. However, this

address is never used directly. Instead, new addresses based on a Diffie-Hellman-like exchange

are created every time an amount is to be paid to a user. In this way, external observers will

not be able to identify receivers in transactions.

Imagine a very simple transaction, containing exactly one input and one output — a payment

from Alice to Bob.

22

CHAPTER 5. MONERO TRANSACTIONS 23

Bob has private/public keys (kB1 , kB2) and (KB1 ,KB2). To create one-time keys, Alice would

proceed as depicted here (see [25]):

1. Alice generates a random number r such that 1 < r < N , and calculates the output public

key Ko = Hn(rKB1)G+KB2

2. Alice sets Ko as the addressee of the payment, adds the value rG to the transaction data

and submits it to the network. The value rG will be used by the receiver to calculate a

Diffie-Hellman-like shared secret.

3. Bob receives the data and sees the value rG. Hence, he can calculate kB1rG = rKB1 .

Therefore, he will also be able to calculate Ko = Hn(rKB1)G + KB2 . When he sees the

addressee of the output he will know that it is addressed to him.

4. The one-time keys for the output are

Ko = Hn(rKB1)G+ kB2G = (Hn(rKB1) + kB2)G

ko = Hn(rKB1) + kB2

While Alice can calculate the public key for the address, she can not compute the correspond-

ing private key, since it would require either knowing Bob’s second private key, or solving the

discrete logarithm problem for KB2 = kB2G, which we assume to be hard.

As mentioned earlier, the private key kB1 is often called the view key. The reason is that it

allows a third party to verify if an output is addressed to Bob, and yet, without the knowledge

of the other private key, kB2 , this third party would not be able to spend the amount, as he

would not be able to sign with the private key of the one-time address.

Such a third party could be a trusted custodian, an auditor, a tax authority, etc. Somebody

who would have read access to the user’s transaction history, without any further rights. This

third party would also be able to decrypt the amounts of Section 5.4.1.

The private key ko can only be calculated with knowledge of kB2 . As we will see, spending an

output will require calculating ko, which in turn entails knowing the spend key kB2 .

5.2.1 Multi-output transactions

Most transactions will contain more than one output. If nothing else, to transfer back any

change to the sender himself.

Monero senders generate only one random value r. The value rG is normally known as the

Transaction public key and is published in the blockchain.

To ensure that all output addresses in a transaction are different even in cases where the same

addressee is used twice, Monero uses the output index. Every output will have an index l ∈

24 CHAPTER 5. MONERO TRANSACTIONS

{1, ..., s}. By appending this value to the shared secret before hashing it, one can ensure that

the resulting addresses will be unique:

Ko = Hn(rKB1 , l)G+ kB2G = (Hn(rKB1 , l) + kB2)G

ko = Hn(rKB1 , l) + kB2

5.3 Transaction types

Monero is a cryptocurrency under steady development. Transaction structures, protocols and

cryptographic schemes are always prone to evolve to meet new objectives, or to avoid newly

discovered threats.

In this thesis we have focused our attention on Ring Confidential Transactions as they are im-

plemented in the current version of Monero. Therefore we will not describe here any other

transaction types, even if they are still partially supported,

The transaction types we will describe in this section are RCTTypeFull and RCTTypeSimple.

The former category follows closely the ideas exposed by S.Noether at al. in [19]. At the time

the paper was written, the intention was most likely to replace fully the original CryptoNote

transaction scheme by the new scheme.

However, for multi-input transactions and with the formulation used in the paper mentioned,

the signature scheme used was thought to entail a risk on traceability. This will become clear

when we supply technical details, but as it stands let us advance that if one spent output would

become identifiable, then the rest of the spent outputs would also become identifiable. This

would have an impact on the traceability of currency flows, not only for the transaction origi-

nator affected, but also for the rest of the blockchain.

To mitigate this risk, the Monero Research Lab decided to use a related, yet different signature

scheme for multi-input transactions. The transaction type RCTTypeSimple is the one used in

these occasions. The main difference, as we will see later, is that each input will be signed

independently.

5.4 Ring Confidential Transactions of type RCTTypeFull

By default, the current code base applies this type of signature scheme when transactions have

only one input. The scheme itself allows multi-input transactions, but when it was introduced,

the Monero Research Lab decided that it would be advisable to use it only on single-input

transactions. For multi-input transactions, existing Monero wallets use the RCTTypeSimple

scheme described later.

CHAPTER 5. MONERO TRANSACTIONS 25

Our perception is that the decision of doing so was rather hastily taken, and that it might

change in the future, perhaps if the algorithm to select additional mix-in outputs is improved

and the ring sizes are increased. Also, S. Noether’s original description in [19] did not envision

constraints of this type. At any rate, this is not a hard constraint. An alternative wallet might

indeed choose to sign transactions using either scheme, independently of the number of inputs

involved.

We have therefore chosen to describe the scheme as if it were meant also for multi-input trans-

actions.

An actual example of transactions of this type, with all its components, can be inspected in

Appendix A.

5.4.1 Amount Commitments

Recall from Section 4.2 that we had defined a commitment to an amount b as:

C(b) = xG+ bH

In the context of Monero, it is necessary that the receiver can verify that the amount in an output

is the one promised. This means that the blinding factor xG must be somehow communicated

to the receiver.

The solution adopted in Monero is to transmit this value to the receiver by using the Diffie-

Hellman shared secret rKB1 . For each transaction output in the blockchain there will be 2

values called mask and amount satisfying

mask = x+Hn(rKB1)

amount = b+Hn(Hn(rKB1))

The receiver will be able to calculate backwards the blinding factor x and the amount b. He

will also be able to check that the commitment provided in the transaction corresponds to the

amount at hand.

Furthermore, a third party with access to the view key mentioned earlier would also be able to

decrypt the amount at hand.

5.4.2 Commitments to zero

Assume that the sender of the transaction has previously received amounts a1, ..., am from various

outputs, addressed to one-time addresses Kπ,1, ...,Kπ,m and with commitments Caπ,1, ..., C
a
π,m.

This sender knows the private keys kπ,1, ..., kπ,m corresponding to the one-time addresses. The

sender knows also the blinding factors used in commitments Caπ,i.

26 CHAPTER 5. MONERO TRANSACTIONS

A transaction consists of inputs a1, ..., am and outputs b1, ..., bs such that
∑
j
aj −

∑
i
bi = 0.

The sender re-uses the commitments from the previous outputs, Caπ,1, ..., C
a
π,m, and creates

commitments for b1, ..., bs. Let these commitments be Cbπ,1, ..., C
b
π,s

As hinted in Section 4.2, the sum of the commitments will not be truly 0, but a curve point zG:∑
j

Caπ,j −
∑
i

Cbπ,i = zG

It is precisely the knowledge of value z by the sender what characterizes this equation as a

commitment to zero. Indeed, it will be the case that

∑
j

Caπ,j −
∑
i

Cbπ,i

=
∑
j

xjG−
∑
i

yiG+ (
∑
j

aj −
∑
i

bi)H

=
∑
j

xjG−
∑
i

yiG

=zG

The values xj will be the hash of shared secrets from previous transactions, and the values yi
will correspond to the shared secrets of the current transaction.

5.4.3 Signature

The sender selects q sets of size m, of additional unrelated addresses from the blockchain,

corresponding to apparently unspent outputs. She mixes the addresses in a ring, adding false

commitments to zero, as follows:

R = {{K1,1, ...,K1,m, (
∑
j

C1,j −
∑
i

Cbπ,i)},

...

{Kπ,1, ...,Kπ,m, (
∑
j

Caπ,j −
∑
i

Cbπ,i)},

...

{Kq+1,1, ...,Kq+1,m, (
∑
j

Cq+1,j −
∑
i

Cbπ,i)}}

CHAPTER 5. MONERO TRANSACTIONS 27

Looking at the structure of the key ring, we see that if it were the case that∑
j

Caπ,j −
∑
i

Cbπ,i = 0

then any observer would recognize the set of addresses

{Kπ,1, ...,Kπ,m}

as the ones in use as inputs, and therefore currency flows would be traceable.

With this observation made we can see why commitments to zero means in reality that they

sum to a value zG.

Step 1: Signature of outputs The private keys for {Kπ,1, ...,Kπ,m, (
∑
j
Cπ,j −

∑
i
Cbπ,i)} are

kπ,1, ..., kπ,m, z, which are known to the sender. Hence, he will be able to apply the MLSAG

signature scheme to sign the set of outputs/commitments {(Kt,1, Cb,1), ..., (Kt,s, Cb,s)} with

the whole ring.

Step 2: Range proofs To avoid the amount ambiguity of outputs described in Section 4.3,

the sender must also employ the Borromean signature scheme of Section 3.4 to sign ranges.

The corresponding inputs do not need to be signed explicitly, since the commitments stem

from previously signed outputs.

In the current version of the Monero software, each amount is expressed as a fixed point

number of 64 bits. Hence the ring will contain 2 · 64 keys.

5.4.4 Transaction fees

Transaction fees are stored in clear in the data transmitted to the network. Miners must be able

to verify that zG includes a transaction fee, in order to add the corresponding additional output

to themselves. In turn, this means that this amount must also be turned into a commitment.

The solution is to calculate the commitment of the fee f without the masking effect of any

blinding factor. That is C(f) = fH.

To verify the correctness of zG, the network can therefore compute

(
∑
j

Caπ,j −
∑
i

Cbπ,i)− fH = zG

.

5.4.5 Avoiding double-spending

An MLSAG signature contains images K̃π,j of private keys kπ,j . An important property in any

cryptographic signature scheme is that it should not be forgeable with non-negligible proba-

bility. Therefore, to all practical effects, we can assume that the key images must have been

deterministically produced from the private keys at hand.

28 CHAPTER 5. MONERO TRANSACTIONS

The network needs only verify that these key images included in MLSAG signatures have not

appeared before in other transactions. If they have, then we can be sure that we are witnessing

an attempt to spend twice a previously received output Caπ,j , addressed to Kπ,j .

5.4.6 Space requirements

MLSAG signature

From Section 3.3 we recall that an MLSAG signature would be expressed as

σ(m) = (c1, r1,1, ..., rq+1,1, ..., r1,m+1, ..., rq+1,m+1, K̃1, ..., K̃m)

As a result of the heritage from CryptoNote the values K̃j are not referred to as part of the

signature, but rather as images of the private keys kπ,j (and z). These values are normally stored

separately in the transaction structure as they are used to detect double-spending attacks.

With this in mind and assuming point compression, an MLSAG signature will require ((q+ 1) ·
(m+ 1) + 1) · 32 bytes of storage. In other words, a transaction with 1 input and a ring size of

32 would consume (32 · 2 + 1) · 32 = 2080 bytes.

To this value we would add 32 bytes to store the key image of an input, and additional space

to store the ring member offsets in the blockchain. These offsets are stored as variable length

integers, hence we can not quantify exactly the space needed.

The Monero Research Lab is currently developing an alternative signature algorithm to MLSAG.

In its current version, space requirements for signatures with the new scheme are logarithmic,

or in big-O notation, O(log n). We are not able to provide references, as no information has yet

been published concerning this new signature scheme.

Range proofs

From Section 3.4 and Section 4.3 we obtain that a Borromean signature takes the form of an

n-tuple

σ = (c1, r1,1, r1,2, r2,1..., r64,2)

In the case of Borromean signatures, the ring keys are considered part of the signature. However,

for verifiability it is only necessary to store the commitments Kj , as the ring key counterparts

can be derived as Kj − 2jH.

Respecting this convention, a range proof will require (1 + 64 · 2 + 64)32 = 6176 bytes for each

output.

CHAPTER 5. MONERO TRANSACTIONS 29

5.5 Ring Confidential Transactions of type RCTTypeSimple

In the current Monero code base, transactions having more than one input are signed using a

different scheme, referred to as RCTTypeSimple.

The main characteristic of this approach is that instead of signing the entire set of inputs as a

whole, the sender signs each of the inputs individually.

Among other things, this has the consequence that one can not use commitments to zero in

the same way as for RCTTypeFull transactions. The rationale is that a public key zG is a

commitment to zero if and only if the sender knows the corresponding private key z. If the

amounts alone do not sum to zero, then due to the hardness of determining γ such that H = γG,

it would not be possible to know z.

In more detail, assume that Alice wants to sign input j. Imagine for a moment that we could

sign with an expression like the following

Caj −
∑
i

Cbi = xjG−
∑
i

yiG+ (aj −
∑
i

bi)H

Since aj−
∑
i
bi 6= 0, Alice would have to solve the DLP for H = γG in order to obtain the private

key of the expression, something we have assumed to be a computationally difficult problem.

5.5.1 Amount Commitments

As explained, the sender is not able to sign against the outputs of the current transaction. On

the other hand, the sender is spending previous outputs addressed to him, whose amounts are

equal the current inputs. Therefore, the sender could create new commitments to the input

amounts and commit to zero respect to each of the previous outputs being spent. In this way,

the sender would be proving that the transaction spends exactly the outputs from previous

transactions being used.

In other words, assume that the amounts being spent are a1, ..., am. These amounts were outputs

in previous transactions, in which they had commitments

Cj = xjG+ aiH

The sender can create new commitments to the same amounts but using different blinding

factors, that is

C ′j = x′jG+ aiH

Clearly, she would know the private key of the difference between the two commitments:

Cj − C ′j = (xj − x′j)G

30 CHAPTER 5. MONERO TRANSACTIONS

hence, she would be able to use this value as a commitment to zero.

Similarly to RCTTypeFull transactions, the sender can include the encoded blinding factor and

amount in the transaction (see Section 5.4.1), which will allow the receiver to decode the corre-

sponding values using the shared secret.

Before committing a transaction to the blockchain, the network will want to verify that the

transaction balances. In the case of RCTTypeFull transactions, this was simple, as the signature

scheme implied that the sender had signed with the private key of a commitment to zero.

For RCTTypeSimple transactions, the solution used by Monero is to select blinding factors for

input and output commitments such that

∑
i

xi −
∑
j

yj = 0

This will have the effect that

(
∑
j

Caj −
∑
i

Cbi)− fH = 0

.

Fortunately, choosing such blinding factors is simple. In the current version of Monero, xm will

be simply set to

xm =
∑
i

yi −
m−1∑
j=1

xj

5.5.2 Signature

As we advanced earlier, in transactions of type RCTTypeSimple each input is signed individually.

Furthermore, the signature scheme employed will be the same as for RCTTypeFull transactions,

except that the signing keys will be different.

Assume that Alice is signing input j. This input spends a previous output with key Kπ,j that

had commitment Cπ,j . Let C ′π,j be a new commitment for the same amount but with a different

blinding factor.

Similarly to the previous scheme, the sender selects q unrelated outputs and their respective

commitments from the blockchain, to mix with the real output

K1,j , ...,Kπ−1,j ,Kπ+1,j , ...,Kq+1,j

C1,j , ..., Cπ−1,j , Cπ+1,j , ..., Cq+1,j

CHAPTER 5. MONERO TRANSACTIONS 31

She can then sign using the following ring:

Rj = {{K1,j , C1,j − C ′π,j},
...

{Kπ,j , Cπ,j − C ′π,j},
...

{Kq+1,j , Cq+1,j − C ′q+1,j}}

Indeed, Alice will know the private key for Kπ,j as well as the one for the commitment to zero

Cπ,j − C ′π,j . Therefore she will be able to sign the input with the ring at hand.

Each input in RCTTypeSimple transactions is signed individually, applying the scheme described

in Section 5.4.3, but using rings like Rj as defined above.

The advantage of signing inputs individually is that the set of real inputs and commitments to

zero are not placed at the same index, according to the formulation of the MLSAG algorithm.

Therefore, even if the origin of one input became traceable, the rest of the inputs would not.

5.5.3 Space Requirements

MLSAG signature

Each ring Rj contains (q + 1) · 2 keys. From Section 3.3 we then derive that using point

compression, an input signature will require (2(q + 1) + 1) · 32 bytes.

A transaction with 20 inputs using rings with 32 members will need ((32 · 2 + 1) · 32)20 = 41600

bytes.

For the sake of comparison, if we were to apply the RCTTypeFull scheme to the same transaction,

the MLSAG signature itself would require (32 · 21 + 1) · 32 = 21536 bytes.

Range proofs

The size of range proofs is constant for each output. As we calculated for RCTTypeFull trans-

actions, a single proof will require 6176 bytes of storage.

CHAPTER 6

Privacy of Monero

If interpreted at nominal value, one-time addresses, hidden amounts and ring signatures should

together grant a high degree of confidentiality. In this chapter we will discuss whether this is a

warranted assumption.

6.1 Transaction confidentiality

The use of cryptographically secure one-time addresses for outputs ensures that the true receiver

of an amount will not be easily identifiable. The hardness of the DLP will prevent connecting

user addresses with output addresses. In principle, an observer would not be able to determine

whether a given transaction output is destined to a given user. Expressed differently, it is

impossible to prove that two outputs in different transactions have been sent to the same receiver.

Also, transaction amounts are effectively hidden behind commitments, which in turn also rely

on the hardness of the DLP to be effective.

In sum, if we look at a single isolated transaction we would not be able to tell who the

sender(s)/receiver(s) is/are. We would not even be able to tell what the amounts involved

are.

However, looking at isolated transactions is not sufficient to determine the level of confidentiality

in Monero. A more interesting measure of confidentiality is whether currency flows in the

blockchain can be determined. If that were the case, then the confidentiality of individual

transactions would not help, as it would be possible to narrow down sources, destinations and

intermediaries in those flows.

32

CHAPTER 6. PRIVACY OF MONERO 33

6.2 Untraceability

The MLSAG signature algorithm should further support transaction anonymity, by not dis-

closing the identity of a signer when mixed with a set of unrelated public keys. In Monero

transactions, MLSAG signatures are meant to hide which previous outputs are being spent in a

transaction. Thereby, currency flows should become untraceable.

However, in a sequence of transactions there may exist frequent patterns that could be exploited

with statistical tools to break untraceability.

For instance, it is clear that if a given public key has appeared in n different signatures, due to

the linkability property, we can conclude that it is a non-signing key in at least (n− 1) of those

transactions. This observation might be used to carry out a statistical analysis and narrow down

signers in some cases.

An interesting analysis of the actual effectiveness of MLSAG ring signatures can be found in [16].

The version of Monero they analyzed was 0.10, which is more than 1 year old at the time this

is written. The findings described have been addressed to a large extent, but are nevertheless

interesting since they unveil pitfalls in the application of ring signatures. Hence, even if some

risks may have been mitigated it is important to not trust theoretical principles alone without

considering how they are applied.

Among other findings, they describe that up to 66% of pre-version 0.11 transactions have ring

size 1. That is, they did not mix in any additional output keys. Any observer would be able

to tell that the previous outputs referenced have been spent. Therefore, if those outputs were

included in other user transactions, then the linkability of those transactions would increase.

This possible chain reaction effect was already described in [20], but had not been studied in

practice before.

As of version 0.11.0.0 of Monero (live since September 17th, 2017), the network enforces a

minimum ring size of 5 sets of non-duplicate keys. Hence, this particular vulnerability affecting

traceability should no longer be there, as long as older transactions are not invoked as ring

mix-ins.

Using Monte-Carlo simulations on the ring sampling function in Monero, the authors were able

to make another interesting finding. Using a ring size of 5, up to 45% of the times the output

spent was the newest one in the blockchain.

Under the current Monero version, around 25% of the mix-in outputs are selected from the

blocks created in the last 5 days. This measure mitigates somewhat the risk of analysis of trans-

action timelines, but clearly, it doesn’t removes it altogether.

Similar observations are made by Kumar et al. in [13]. They analyzed the impact of rings of size

1, commonly appearing outputs and timeliness of transactions. However, they do not provide a

precise quantification of the impact.

34 CHAPTER 6. PRIVACY OF MONERO

Monero is not yet a mainstream cryptocurrency. The body of research around it has not reached

the levels of, say, Bitcoin. Hence, it is currently difficult to ascertain the true effectiveness of

ring signatures in making payments untraceable. Presumably, ring signatures make it difficult

to link inputs to previous outputs, but they can not prevent it altogether.

CHAPTER 7

Conclusion

The main goal of this thesis has been to present a complete picture of the cryptographic mech-

anisms used in Monero to attain confidential transactions. There is a notable lack of docu-

mentation of the currency, and in particular, the cryptographic aspects are only described in

incomplete and non peer-reviewed papers, which contain important errors.

All of this justified our endeavour. We have aimed at producing a self-contained, consistent and

single-threaded description, with sufficient, but not overwhelming, mathematical rigor. Balanc-

ing on a thin line between mathematical cryptography and computer science, we think we have

successfully targeted readers from both fields without sacrificing rigor nor applicability.

7.1 Is privacy synonymous with opacity?

Cryptocurrencies have often been associated with obscure underworld transactions. At first

sight it might seem that the privacy mechanisms offered by Monero are a step further on the

way to make transactions even more opaque to justifiable insight.

However, this is not necessarily the case. We have shown that it is possible to meet the desire

for privacy of cryptocurrency users, yet allowing for transparency when needed.

An authority could have access to the transaction history of a user without putting at risk pri-

vacy, as it is commonly understood. This is conveyed by the segregation of roles of user keys,

where one allows viewing and another one spending.

In other words, it is possible to attain the benefits of a decentralized blockchain without com-

promising lawful transparency.

35

36 CHAPTER 7. CONCLUSION

7.2 Should you use or invest in Monero?

In view of the hype currently surrounding cryptocurrencies, many a reader will no doubt wonder

if investing in cryptocurrencies is a good idea. We have not aimed at all at answering such

questions in this thesis.

In our opinion, however, at its core, a currency is only a means of facilitating exchange of wares.

Without financial instruments in a currency it is hardly possible to invest. Existing cryptocur-

rencies do not have financial instruments at the moment this is written, with the only feeble

exception of the newly created Bitcoin Futures.

In sum, we do not think it is possible to invest, properly speaking, in cryptocurrencies. At most,

one can speculate or bet on rising exchange rates.

The current rise in exchange rates is undoubtedly due to the ever increasing flows of money

into the currencies, and the fact that supply is limited. This contributes further to characterize

so-called investments as speculation.

Monero is still a relatively small cryptocurrency. As we have shown here, the cryptographic

artifacts it uses are purposeful and well designed. However, our impression is that there is still

a gap in research around confidentiality. In Chapter 6 we presented 2 research papers that

tried to quantify the degree of untraceability of transactions. They are in no way conclusive

and we think more is needed to be able to reasonably ascertain whether transactions are truly

confidential.

For mass-scale usage, the currency has the problem of the space it consumes in the blockchain,

which in the end limits the maximum throughput in terms of transactions.

Also, we feel that the Monero Research Lab should adopt a more structured approach to soft-

ware releases. Our impression is that some releases contain important last-minute decisions.

Additionally, the standard code base suffers from readability issues, a consequence of the fact

that it has been produced mainly by a few non-software developers. For production usage of

something as important as a currency, one would desire a more disciplined software engineering

approach.

Should one use the Monero currency? Perhaps, but being aware of the real risks.

7.3 Future work

We believe that our work could have an intrinsic value for the Monero community. As mentioned,

there is little documentation available. In consequence, we intend to make an edited version of

this thesis available to the community.

Beyond that, we are intrigued about coming developments of new signature schemes, which

consume O(log n) space, and which would allow for larger ring sizes. As we have hinted earlier,

CHAPTER 7. CONCLUSION 37

ring sizes as well as a careful selection of members is critical to ensure untraceability. Therefore,

a new signature scheme consuming space as described would be a welcome development and

worth researching.

Bibliography

[1] How does monero’s privacy work? https://www.monero.how/how-does-monero-privacy-work.

[2] Adam Back. Ring signature efficiency. BitcoinTalk, 2015. https://bitcointalk.org/index.php?topic=

972541.msg10619684#msg10619684.

[3] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards Curves,

pages 389–405. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[4] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sep 2012.

[5] Daniel J. Bernstein and Tanja Lange. Faster Addition and Doubling on Elliptic Curves, pages 29–50. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2007.

[6] Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. Cryptology ePrint

Archive, Report 2007/286, 2007. http://eprint.iacr.org/2007/286.

[7] Karina Bjørnholdt. Dansk politi har knækket bitcoin-koden, May 2017. http://www.dansk-politi.dk/

artikler/2017/maj/dansk-politi-har-knaekket-bitcoin-koden.

[8] David Chaum and Eugène Van Heyst. Group signatures. In Proceedings of the 10th Annual International Con-

ference on Theory and Application of Cryptographic Techniques, EUROCRYPT’91, pages 257–265, Berlin,

Heidelberg, 1991. Springer-Verlag.

[9] Thomas C Hales. The NSA back door to NIST. Notices of the AMS, 61(2):190–192.

[10] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[11] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC 8032,

January 2017.

[12] Alexander Klimov. ECC patents?, October 2005. http://article.gmane.org/gmane.comp.encryption.

general/7522.

[13] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of monero’s

blockchain. In Computer Security - ESORICS 2017 - 22nd European Symposium on Research in Computer

Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II, pages 153–173, 2017.

[14] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous Anonymous Group Signature for

Ad Hoc Groups, pages 325–335. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[15] Gregory Maxwell and Andrew Poelstra. Borromean ring signatures *. 2015.

[16] Andrew Miller, Malte Möser, Kevin Lee, and Arvind Narayanan. An empirical analysis of linkability in the

monero blockchain. CoRR, abs/1704.04299, 2017.

38

https://www.monero.how/how-does-monero-privacy-work
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
http://eprint.iacr.org/2007/286
http://www.dansk-politi.dk/artikler/2017/maj/dansk-politi-har-knaekket-bitcoin-koden
http://www.dansk-politi.dk/artikler/2017/maj/dansk-politi-har-knaekket-bitcoin-koden
http://article.gmane.org/gmane.comp.encryption.general/7522
http://article.gmane.org/gmane.comp.encryption.general/7522

BIBLIOGRAPHY 39

[17] Arvind Narayanan and Malte Möser. Obfuscation in bitcoin: Techniques and politics. CoRR, abs/1706.05432,

2017.

[18] Shen Noether. Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report

2015/1098, 2015. http://eprint.iacr.org/2015/1098.

[19] Shen Noether, Adam Mackenzie, and the Monero Research Lab. Ring confidential transactions. Ledger,

1(0):1–18, 2016.

[20] Surae Noether, Sarang Noether, and Adam Mackenzie. A note on chain reactions in traceability in cryptonote

2.0. CryptoNote, September 2014. https://lab.getmonero.org/pubs/MRL-0001.pdf.

[21] Michael Padilla. Beating bitcoin bad guys, August 2016. http://www.sandia.gov/news/publications/

labnews/articles/2016/19-08/bitcoin.html.

[22] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing, pages

129–140. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992.

[23] Seigen, Max Jameson, Tuomo Nieminen, Neocortex, and Antonio M. Juarez. Cryptonight hash function.

CryptoNote, March 2013. https://cryptonote.org/cns/cns008.txt.

[24] QingChun ShenTu and Jianping Yu. Research on anonymization and de-anonymization in the bitcoin system.

CoRR, abs/1510.07782, 2015.

[25] Nicolas van Saberhagen. Cryptonote v2.0.

http://eprint.iacr.org/2015/1098
https://lab.getmonero.org/pubs/MRL-0001.pdf
http://www.sandia.gov/news/publications/labnews/articles/2016/19-08/bitcoin.html
http://www.sandia.gov/news/publications/labnews/articles/2016/19-08/bitcoin.html
https://cryptonote.org/cns/cns008.txt

Appendices

40

APPENDIX A

RCTTypeFull Transaction structure

We present in this chapter a dump from a real Monero transaction of type RCTTypeFull, together

with explanatory notes for relevant fields.

The dump was obtained executing command print tx <TransactionID> in the monerod dae-

mon run in non-detached mode. The first line printed shows the actual command run, which

the interested reader can use to replicate our results.

For editorial reasons we have shortened long hexadecimal chains, presenting only the beginning

and end as in 0200010c7f[...]409.

Component rctsig prunable, as indicated by its name, is in theory prunable from the blockchain.

That is, once a block has been consensuated and the current chain length rules out all possibili-

ties of double-spending attacks, this whole field could be pruned. This is something that has not

yet been done in the Monero blockchain, but it is nevertheless a possibility. This would yield

considerable space savings.

Key images and ring keys are stored separately, in the non-prunable area of transactions. In-

deed, these components are essential for detecting double-spend attacks and can not be pruned

away.

Our sample transaction has 1 input and 2 outputs.

1 print_tx b43a7ac21e1b60ad748ec905d6e03cf3165e5d8c9e1c61c263d328118c42eaa6

2 Found in blockchain at height 1467685

3 0200010c7f[...]409

41

42 APPENDIX A. RCTTYPEFULL TRANSACTION STRUCTURE

4 {
5 "version": 2,

6 "unlock_time": 0,

7 "vin": [{
8 "key": {
9 "amount": 0,

10 "key_offsets": [799048, 782511, 1197717, 216704, 841722

11],

12 "k_image": "595a612d0df27181c46a8af70a9bd682f2a000124b873ba5d2b9f4b4e4efd672"

13 }
14 }
15],

16 "vout": [{
17 "amount": 0,

18 "target": {
19 "key": "aa9595f55f2cfaed3bd2a67453bb064dc7fd454a09c2418d7338782790185fe3"

20 }
21 }, {
22 "amount": 0,

23 "target": {
24 "key": "0ccb48ed2ebbcaa8e8831111029f3300069cff0d1408acffbfc3810b362ea217"

25 }
26 }
27],

28 "extra": [2, 33, 0, 129, 70, 77, 194, 248, 93, 24, 94, 15, 107, 233, 0, 229, 82,

29 175, 243, 123, 58, 204, 135, 171, 100, 101, 192, 42, 187, 157, 168, 222, 98, 192,

30 110, 1, 1, 185, 87, 22, 38, 116, 81, 124, 85, 68, 36, 44, 229, 235, 46, 159, 139,

31 114, 234, 211, 50, 41, 28, 92, 26, 249, 184, 228, 197, 64, 139, 5

32],

33 "rct_signatures": {
34 "type": 1,

35 "txnFee": 26000000000,

36 "ecdhInfo": [{
37 "mask": "68f508c5515694ce5a33b316b990e8b67a944725c93d806767e61b2e0b13d300",

38 "amount": "913372a2424b22bd9712183f5a7c8027c8d9af89b52d1e7d06fd1f87a1e5d20d"

39 }, {
40 "mask": "fbc3e5bdb36fc58e5800ffc549ab7bd533fadb7e6b64898c82ea620d749fc80e",

41 "amount": "b9335c3dc0afb774f812f9f58a412c849f3c828d873f1c16ab102963799d9809"

42 }],
43 "outPk": ["cf141f5dfe04df14afad6b451d600aa5826a9be44a76a1630850c1d5951d482e",

44 "e10bb69b66af5dabec765c7f5f7528926088877fa36746833828a0575896ae57"]

45 },
46 "rctsig_prunable": {
47 "rangeSigs": [{
48 "asig": "b9b544a7[...]d4c5726e81c4c4b6205dacc05208",

APPENDIX A. RCTTYPEFULL TRANSACTION STRUCTURE 43

49 "Ci": "bc7ae457[...]fe490458"

50 }, {
51 "asig": "9c457b41[...]545b60c",

52 "Ci": "ce9b4d8e[...]03a6752"

53 }],
54 "MGs": [{
55 "ss": [["a8120b96f5f2ac5bceab37f7d6bf8d86554d87c4af3441007cad92f54a24d908",

56 "2e6bc016297a5d398936c9f45e7a80215138f69e55179b337922e2d51c1a9f00"],

57 ["1e1052a68c38bb88b6e8f257d999c13f1d5f4fa219cc23479ccbfa6b14b5960a",

58 "e914d35eed0d27344fbc3a89b91bd445d433b561efc844c9f466a61ebb5f6d09"],

59 ["e04d011f515461fdbd8d13536c23143dc365d87dd323defb1af834e540a8fc0e",

60 "f9b41a117a1415fec54f1cc16aeef859b2cab1494b9e26a95fc9eaf4f571fa00"],

61 ["de7a7b30795cab310b632f708c6c2546847a5cbcc27ff48e75c1556c3f6f180c",

62 "6218695558359d115e308b008d9aa368c38672732d2fc21c6317ad7d15918c05"],

63 ["0ca70bbdea0e391b1e24e2540f33b48dd9dc554c61ebf23bb3691aab5094e40f",

64 "dafecd436b2448504c0a3a1997b356c141f1d4b5977cc66e5f55592f13731501"]],

65 "cc": "5059757cf06216215955aaa108e8dd40be157856749a9d883bcac611e395a409"

66 }]
67 }
68 }
69

Transaction components

• vin (line 7-14) - List of inputs

• amount (line 9) - Deprecated amount field for type 1 transactions

• key offset (line 10) - Relative offsets respect to previous block of ring components, spent

output and mixin outputs. As an illustration, 799048 is to be interpreted as the 799048th

transaction counting backwards from the current transaction and starting from the previ-

ous block

• k image (line 12) - Key image K̃j from Section 3.3

• vout (lines 16-27) - List of outputs

• amount (line 17) - Deprecated amount field for type 1 transactions

• key (line 19) - One-time destination key as described in Section 5.2

• extra (lines 28-32) - Miscellaneous data, including the Transaction key, or share secret rG

of Section 5.2

• rct signatures (lines 33-45) - First part of signature data

• type (line 34) - Signature type, in this case RCTTypeFull

44 APPENDIX A. RCTTYPEFULL TRANSACTION STRUCTURE

• txnFee (line 35) - Transaction fee in clear, in this case 0.026 XMR

• ecdhInfo (lines 36-42) - Encrypted mask and amount of each of the outputs

• mask (line 37) - Field mask as described in Section 5.4.1

• amount (line 38) - Field amount as described in Section 5.4.1

• outPk (lines 43-44) - Output commitments

• rctsig prunable (lines 46-67) - Second part of signatures

• rangeSigs (lines 47-53) - Range proofs for output commitments

• asig (line 48) - Borromean signature of the amount, see Section 5.4.6

• Ci (line 49) - Borromean commitments (ring keys), as described in Section 5.4.3. As hinted

in Section 5.4.6 only the Kj need to be stored, as the values Kj−2jH can be easily derived

by the network.

• MGs (lines 54-66) - Remaining elements of the MLSAG signature

• ss (lines 55-64) - Components ri,j from the MLSAG signature

σ(m) = (c1, r1,1, ..., rn,1, ..., r1,m, ..., rn,m, K̃1, ..., K̃m)

• cc (line 65) - Component c1 from aforementioned MLSAG signature

APPENDIX B

RCTTypeSimple Transaction structure

In this section we show the structure of a sample transaction of type RCTTypeSimple. The

transaction has 4 inputs and 2 outputs.

1 print_tx 3ebf45fc5f8fd683037807384122817d5debfa762c7a7845cb7ccfe9ee20940b

2 Found in blockchain at height 1469563

3 020004[...]923b3d70d

4 {
5 "version": 2,

6 "unlock_time": 0,

7 "vin": [{
8 "key": {
9 "amount": 0,

10 "key_offsets": [1567249, 1991110, 349235, 15551, 3620

11],

12 "k_image": "9661119b4b54529e1be14ef97fbdc0504d17a6c8dfedd55d2455b93a6336bb41"

13 }
14 }, {
15 "key": {
16 "amount": 0,

17 "key_offsets": [2502375, 650851, 337433, 396459, 39529

18],

19 "k_image": "2102414d8edfa229f9ebf32ab90acd9cf23963a8c3b6ba0e181fc1d5782c046c"

20 }
21 }, {
22 "key": {

45

46 APPENDIX B. RCTTYPESIMPLE TRANSACTION STRUCTURE

23 "amount": 0,

24 "key_offsets": [1907097, 696508, 806254, 510195, 6709

25],

26 "k_image": "de14ec8958b311bd38a05aa3fb08fdd360001f1b9c060264eecdd8c08c9e83c4"

27 }
28 }, {
29 "key": {
30 "amount": 0,

31 "key_offsets": [1150236, 1943388, 788506, 37175, 7462

32],

33 "k_image": "e470f77dd5a4149210cb61ee107e73caea1ef9f61d05384e3bd4372fdc85bf17"

34 }
35 }
36],

37 "vout": [{
38 "amount": 0,

39 "target": {
40 "key": "787cad1ebb181e1fc04b24d4d06c3d2882c38b262a7635de8ad487c536e40a12"

41 }
42 }, {
43 "amount": 0,

44 "target": {
45 "key": "faf4137928392b39ccf0a830c0261573009959787697f9d4fb769c25781fb911"

46 }
47 }
48],

49 "extra": [1, 20, 56, 120, 111, 89, 89, 64, 10, 98, 96, 255, 202, 235, 203,

50 255, 2, 197, 176, 147, 61, 60, 41, 145, 207, 178, 212, 71, 37, 69, 19,

51 147, 205],

52 "rct_signatures": {
53 "type": 2,

54 "txnFee": 558805800000,

55 "pseudoOuts": ["64dea29ac5560f93773240d58ca5768b879fd3c95e0b3b50a80ec36a6ff3a6da",

56 "a60e7a00e65ff2a6299b92b166a629e9b0d62f6df50e40535140716757efe4c0",

57 "4c67403adbc9dc0ca5a1a6abc846ab6d232dc3fa295099b3c7a9d005bac60eba",

58 "635b26d78117d77899859ecb61e10125c3956a5c113b932f33c92c561acddaa3"],

59 "ecdhInfo": [{
60 "mask": "ccffac42a86bec7b36ce9957cbdfe481d419bc5353335d0c236c347aea758d0c",

61 "amount": "c0d6cf3e1db55dd459b73faf34d7339c3fa1b3d3356cfb2adc3faf798264b00e"

62 }, {
63 "mask": "62cc846003d9c5425c6cf33b30754a4c044f5d9d02621460e45664b886673109",

64 "amount": "726dbacad62022bf0f5af05c72482b3f040d631d3f576b5e2615ea72f84c5f06"

65 }],
66 "outPk": ["cb3b729b4fca6e66736666201633e3f905c367a2f3d18e31fe3d3c18d2be93fd",

67 "1e8c86b7f211a99e1762bf62254efe65ea5c5328b62b0ea8d679b2e52800f633"]

APPENDIX B. RCTTYPESIMPLE TRANSACTION STRUCTURE 47

68 },
69 "rctsig_prunable": {
70 "rangeSigs": [{
71 "asig": "9bb7cce09[...]61de7ce0a",

72 "Ci": "50dfd2e8[...]b3a7c8fca1b1"

73 }, {
74 "asig": "e3905fa5c[...]b5213444908",

75 "Ci": "595c2cec5f2[...]72a628ab5c"

76 }],
77 "MGs": [{
78 "ss": [["3b2d26ea7628015fd8317e4e298ceda6b534ac894b83f7b6190a353cee6ec702",

79 "2d772ad7b7ff2ba8a1a66c8d69c0a0d49d72808eaf803c59f13c3d78b653440c"],

80 ["c188891fb37d76305f0209222f52d22ede43018facfe91f949ecb8dcf709b30a",

81 "303896ca67ea7969544641d5bb94a436558bcf6522bb9bc77bd1abb5f2146c08"],

82 ["e01c88b7308403a9dd023d9eacf1ade17ab0fa54250148431b5a33c98e636100",

83 "ba36e34e5245e89c7c21af845b949cf3e82188df639390f094e31c9ba773060c"],

84 ["37175d72d2bef3f8bd9e65fb2861f7bce91e3b1e30278b2dcf26112831ac9405",

85 "8e77a5dd641a89e86dbe0708e8f59d0e2dc9fe4ddfd9b367c3a93522198a4706"],

86 ["fbb4f94f9ce0f081421e63677a63d5914f0536a481d57b6e5fc5379c84dfcb05",

87 "1ec40aa3c8a94c6b1915b7796423b0d7d6011aa2d6af636aff309b832f193408"]],

88 "cc": "a03119e4257cca37f89ac3e97f0598b712c79162c73932d58ab4ce08c4ad6709"

89 }, {
90 "ss": [["f7aedeec462d7588330c71589fde5f0f234a627a6e5ed72cff34825a04d41707",

91 "31d7a5ba4e782db5c0704ab751a2ef8c4732f3cf699bc8f9994e79a97cd3190e"],

92 ["00e1d1ecdf31fdf7d57661f2234bfc859cfdc4dbfdfd0f5eec0576ef22592203",

93 "fdf08b803fa6de18bf0e0dc6855e877877bda0101eceb81e2223fe0175606300"],

94 ["3397ba3f9e8db066e3c4911b896debefbc73efbac4988e6aff5731ff8db15405",

95 "43d2b03d5263de99f56c256e646be503edd63dd03d377a469379fbf487e8600e"],

96 ["31afd1d5c3b07170ac127605fc35cbcc19cf963a35b2ff8f804e17e3b804000d",

97 "3a3bc124a10b0cf416656f8f682a427445140895440cca644c6aa38966399f0c"],

98 ["f499f0e4922d5cba35e3cc033489b60ec7ea26ff19cc9dd29357670f4bf8790b",

99 "1a4732b31f0f1a7d3322be5c4baca098f0a032c192bf9f8a6b5fd83cbdd9d401"]],

100 "cc": "095fcab7ebf64c2ffecdacf11b70f97f0e709de0a84b3a13abca627f9df2c901"

101 }, {
102 "ss": [["1808924b4154118c48f0b305562b6ffba86f38c64d4d8a087823f3383cddd006",

103 "4b18544be50aee8c4594b568d6be741c155a132cb83392d9b1a4cf35c3d5760c"],

104 ["9a95eeeecf3c3a48c43873a372c263357ff5f258a7bf8ed29a767237b0b0f202",

105 "4f1ea4d9d4b56db780dd078a3e8219d0f54eaccc197901671002a206f063cb0e"],

106 ["2c800017cab2b8388f58fed0d61a46570f64cacd8fabc4e84ddee735b3135f0a",

107 "458016f6fdf58b329fae0f929226ee2b8e410a14db8c6ede9b74fb718de71507"],

108 ["ea0fcaf793602dce25c8b2c4d17163f4298933b3fb09874307d8cde9a63c2c0c",

109 "df76fbcd336c07f37e90e1a0d0db1ba49519ba4325062228bc9242af2c525703"],

110 ["e3a7a0477eeb602a9a8203a6a496cca90c4769d57410246c4c8d665df34df900",

111 "44d206154f0ca85e12a92eefdbc3784e17e701a32ff93b550467679f67500c0d"]],

112 "cc": "6f80de1c1d566776d2831f15c9a85fb1d8e8cecfd0d2753b318f0e84d89d3b08"

48 APPENDIX B. RCTTYPESIMPLE TRANSACTION STRUCTURE

113 }, {
114 "ss": [["5b82b4644b57e3d623de7c72c6ebd52959815c12c80b479e4cbe5437cf67640c",

115 "b70e0b69c75faba6a1630429f9f497db351347c210467f69e1b1c5f1a72afe02"],

116 ["f25a93a98f980cf489eb8f69369f4ec63eaea91fd677decab9b6ca0fe2feb606",

117 "124536c374cb6023a6aa6f22ae6e115a1ba12cb36c48f5f5ad43ce90f471da02"],

118 ["151ddc82322456d7f31b8b4b2290098c3bf2428370c7ef325660b5463ff26404",

119 "2fb9d2979e16c2b1131686bb85068ec559f9c6c64581e609b451bb2cd9d5740d"],

120 ["c03bed01d6ad60b3da5d2c88cf2e5023b51133c37e4917511715a11f09d8740d",

121 "432e01c2075ab6361af8636cc1c9254e12db98f5c323088792dfb42a1c894401"],

122 ["52206d801214e70d20ee7ca53823c143aa06c3d1b22b118cc8a15c9f861f0102",

123 "563c134f56f7a290e0980877e93bc4b08651e53dade079b1e6c066b70fb81406"]],

124 "cc": "4102cd245db3e0d7c0e2280cfdba38b9b7a7ad8715b8fe68c1170cf923b3d70d"

125 }]
126 }
127 }
128

129

130

Transaction components

What follows is a short explanation of most important elements in transactions. We do only

mention components that are specific or differ from the previous RCTTypeFull transaction type.

• type (line 53) - Signature type, in this case the value 2, corresponding to RCTTypeSimple

transactions

• pseudoOuts (lines 55-58) - Pseudo-outputs used for commitments to zero against the

real previous outputs, as described in Section 5.5.1. Please recall that the sum of these

commitments will equal the sum of the 2 output commitments of the transaction.

APPENDIX B. RCTTYPESIMPLE TRANSACTION STRUCTURE 49

Kurt M. Alonso

Frankfurt am Main, 2017

50

	Introduction
	Objectives
	Readership
	Origins of the Monero cryptocurrency
	Outline

	Basic concepts
	A few words about notation
	Elliptic curve cryptography
	What are elliptic curves
	Public key cryptography with elliptic curves
	Diffie-Hellman key exchange with elliptic curves
	DSA signatures with elliptic curves (ECDSA)

	Curve Ed25519
	Binary representation
	Point compression
	EdDSA signature algorithm

	Ring signatures
	Linkable Spontaneous Anonymous Group Signatures (LSAG)
	Back Linkable Spontaneous Anonymous Group Signatures (bLSAG)
	Multilayer Linkable Spontaneous Anonymous Group Signatures (MLSAG)
	Borromean Ring Signatures

	Pedersen commitments
	Pedersen commitments
	Monero commitments
	Range proofs
	Range proofs in a blockchain

	Monero Transactions
	User keys
	One-time addresses
	Multi-output transactions

	Transaction types
	 Ring Confidential Transactions of type RCTTypeFull
	Amount Commitments
	Commitments to zero
	Signature
	Transaction fees
	Avoiding double-spending
	Space requirements

	 Ring Confidential Transactions of type RCTTypeSimple
	Amount Commitments
	Signature
	Space Requirements

	Privacy of Monero
	Transaction confidentiality
	Untraceability

	Conclusion
	Is privacy synonymous with opacity?
	Should you use or invest in Monero?
	Future work

	Bibliography
	Appendices
	RCTTypeFull Transaction structure
	RCTTypeSimple Transaction structure

