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Abstract— This article reports on a lossless data hiding mehtor digital images where
the data hiding capacity is either determined byimiim acceptable subjective quality or
by the demanded capacity. In the proposed methda idahidden within the image
prediction errors, where the most well-known prédic algorithms such as the median
edge detector (MED), gradient adjacent predict@®AR) and Jiang prediction are tested
for this purpose. In this method, first the histogrof the prediction errors of images are
computed and then based on the required capacitgsired image quality, the prediction
error values of frequencies larger than this capaaee shifted. The empty space created
by such a shift isusedfor embedding the data. Experimental results shkiastinct
superiority of the image prediction error histograswer the conventional image
histogram itself, due to much narrower spectrunthef former over the latter. We have
also devised an adaptive method for hiding dateereisubjective quality is traded for
data hiding capacity. Here the positive and negadiror values are chosen such that the
sum of their frequencies on the histogram is jusiva the given capacity or above a
certain quality.

Key words: Loss less data hiding; reversible datiry; image watermarking,
prediction

1. Introduction

With the broad use of the Internet and the escajagrowth of the information
technology, users can easily retrieve multimediat@ats with their own
computers or mobile phones. Multimedia relatedarsdees and applications have
extensively increased in the last two decades. dBssimultimedia signal
processing, data hiding techniques focusing oreptioig copyright-related issues
are of considerable interest in academia and inglust

Data hiding methods can conceal additional inforomain media. Most data
hiding schemes distort the cover media in orderemtobed the secret data.

Although the distortion is often small and impeltdg, the reversibility is



crucial to some sensitive applications. In appia#, such as in law enforcement,
medical image systems, it is required to be ableverse the marked image back
to the original cover image for legal consideratibmremote sensing and military
imaging, high accuracy is demanded. In some séiemgsearch, experimental
data are expensive to be achieved. Under thesentstances, the reversibility of
the original media is desired. Reversible datangdil,2] is a novel category of
data hiding schemes, where at present, there avergy interest in their lossless
version.

For the purpose of increasing the embedding capdsiidrich et al. [3] presented
a new lossless data hiding method based on modifyia least significant bits
(LSBs). Their algorithm compresses the least siggnit bit plane of the cover
image and then mixes them alongside the embeddadrda the cover image. To
improve the data hiding potential of Fridrich et'salmethod, Celik et al. [4]
proposed a generalized-LSBs algorithm where thenttqgaion residues of the
cover image after the CALIC (context-based adaptassless image codec)
lossless compression algorithm is used to gendénateompressed residues. The
remainder of the compression space is used to ethbeskcret information.

A main category of high-capacity reversible datdbedding algorithms may
be classified as expansion-embedding approachesormon aspect of these
approaches is the use of some decorrelating opsr@tanake features with small
magnitudes. The data embedding process is dongganding these features in
order to prepare vacancies into which the data &ies embedded. The first
algorithm in this category was proposed by TiandBfl then improved by [6],
[7], and [18]. Tian [5] suggested a difference-axgan (DE) scheme that divides
the image into pairs of pixels within three groupsxpandable, changeable, and
nonembeddable—in which information was recordedgisi location map. In this
method, one hidden bit can be embedded into ondhef changeable or
expandable pairs. A generalized version of Tiarckesme was enhanced by
Alattar [6] to improve the payload, in which instieaf pixel pairs the difference
expansion of vectors is usdtamstra et al. [7] have also extended Tian’s method
by using the information in the low-pass band tadfiappropriate expandable
differences in the high-pass band. Recently Kinalef18] improved [5], [7] by
introducing a new location map and a new embeddiethod. Chang et al. [8]

suggested a reversible embedding scheme for sidehnmwector quantization



(SMVQ) compressed images. Their scheme can recavgrthe SMVQ image
instead of the vector quantized (VQ) image. Chand hin [9] introduced a
completely reversible embedding scheme for VQ cesged images. However,
the computational cost of their method is high, @nd not suitable for real-time
applications.

Following the methods of LSB, difference-expansand vector quantization
algorithm groups, the last category of data hidieygorted in [10], [11],[12],[13]
and[14] which have attracted great interests iemegears began by the work of
Ni et al [10]. The main idea in this category isuse distribution of numbers.
These numbers can be the original values of pixedasformed pixels, etc. Ni et
al.[10] introduced a lossless data embedding algoribased on the spatial
domain histogram shifting. An extension to Ni etzvark was carried out in [11],
where a higher capacity was achieved by relocadiomeros and peaks of the
image histogram in image blocks. Recently, Lin aftgleh [12] presented a
reversible method based on increasing the diffeaenoetween two adjacent
pixels. Xuan et al. [13] ,[14] reported a remarlaléversible method where
operations are carried out in the integer wavedgtsform domain.

Gao et al. [19] use average of differences betvpeels of non-overlap image
blocks and the block skipping scheme as well a®welnparameter model to
guarantee the lossless recovery of the originagendhey claim that the method
is robust against salt-and-pepper noise and hasptiential for capacity
adjustment. Algorithm in [20] utilizes a peak powoiftimage histogram and the
location map which increases amount of embeddifgrrmation of [10] at the
price of distortion. In [21] a simple and efficierg@versible data hiding algorithm
is presented which uses the histogram of the éifflees between sub images
obtained through subsampling to enhance [10]. Rcéfong et al. [22] take
advantages of median edge detector to design amsclased on histogram
shifting. Tsai et al. [23] with a predictive codimdgorithm propose a technique
for medical images which improves Ni et al. [10f Bmme images by about 1.5
dB. However performance of their method is imageteot dependent and for
some images under the same capacity, the qualpyaser than [10].

In these algorithms although through use of pteafic the capacity is
improved, but less consideration is paid on theepiable quality of marked

images. What would be more useful, if the capacityld be increased up to the



level that marked image quality is still acceptallpis is what we intend to do in
this work, where the embedding capacity is tradedrfarked image quality.

Our proposed method, named adaptive shifted prediarror (ASPE), is
based on hiding data at the locations of ladjéerences between the pixels of
the cover image and their prediction values, to deom spatial masking of the
human visual system. To gain larger masking effath maximum data hiding
capacity, the prediction error at which the numdieprediction errors is equal to
or larger than the needed capacity is selectethted the message. Thus one can
trade visual quality for the embedding capacity.this method, the prediction
errors larger than the selected error are incremdebly “1”. Furthermore, the
selected prediction error is left unchanged orenwnted by “1” if the embedded
bit is “0” or “1”, respectively. Adaptive shiftedr@diction error (ASPE) method is
able to embed a huge amount of data (15-120 kla f6t2 x 512 x 8 grayscale
image) while guaranteeing the peak signal-to-noéd® (PSNR) of the marked
image with respect to the original image to be &bthe perceptual threshold of
human visual system (e.g. 40 dB). Moreover, sincéaife given capacity, the data
are hidden at the maximum possible prediction etteen the subjective quality
due to special masking is even more impressives iBhibecause, larger prediction
errors do normally occur at edges or highly texduaeeas of the cover image,
where the human visual system is very toleranthase high spatial frequency
distortions (spatial masking). In addition, simplic short execution time and
applicability to almost all types of images makes tmnethod superior to most of
the existing reversible data hiding techniques.

The remaining parts of the paper are organizelews. Section 2 briefly
describes most effective pixel prediction strategi®ur proposed algorithm is
presented in section 3. Experimental results avengin section 4, with some

concluding remarks in section 5.

2. Prediction algorithms

From the literature on prediction techniques, thedian edge detector (MED)
[15] and the gradient adjusted prediction (GAP)| [d& the states of the art pixel
predictors that are used in LOCOdlow Complexity Lossless Compression for

Images) and CALIC image encoders, respectively2000, Jiang et al. [17]



proposed a predictor that can be thought of as difred version of MED. For
convenience, in this paper, we refer to it thendigredictor’. In this Section, we
briefly introduce the MED, GAP and Jiang predictols the following
subsections, the pixel to be predicted is denotedc{the current pixel), and its
predicted value chosen by a predictor is denotegl Ghe casual template used in
the predictors is shown in Fig. 1, where the shadeea represents the
neighboring pixels of the current pixel that may be used for prediction. For
simplicity, a, b, c, d, e, f, gandx also denote both the pixel values and their

locations in the figure.
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Fig 1. Casual template for pixel prediction

2.1 MED prediction
The MED prediction algorithm is a low-complexitygalithm, operating on three
neighborsa, b andc of the current pixek of the cover image. Applying MED

prediction onx , its predicted valug is computed according to:

min(a, b), if ¢ > max(a,b)
X = {max(a,b), if ¢ < min(a, b)
a+b-c, otherwise

The MED predictor results in a prediction imagehwtedicted pixel values.

2.2 Gradient adjacent prediction (GAP)
The gradient adjusted prediction algorithm operatesseven neighbors of the
current pixel of a cover image Applying GAP prediction onx , its predicted

valuex is defined according to the following rules:

dp=la—e|l+|b—c|+|b—d|
dy=la—cl+|b-fl+ld—gl
if (d, —dy > 80){sharp horizontal edge}

X=a

else if(d,, — d, <—-80){sharp vertical edge}
X=b

else{

X=(a+b)/2+ (d—c)/4 {Smooth area}



if (d, —d; > 32 { horizontal edge}
I=(F+a)/2

if (d, —dy > 8) { weak horizontal edge}
x=0Bx+a)/4

if (d, —dp <-32 { vertical edge}
Xx=((&+b)/2

if (d, —d > 32 {weak vertical edge}

£=3%+Db)/4

2.3 Jiang prediction

The Jiang predictor in addition to detecting theizemtal and vertical edges as
MED does also consider the diagonal edges. Thibademnodifies the conditions
c > max(a,b) and c< min(a,b) of MED asymmetrically.-The algorithm of the
Jiang predictor is defined as:

if (c>maxa, b))
{
if (c—max(a, b) >10 and d<b and a — b>5)
X =(d + min (a, b))2;
else
X =min (a, b);

else if(c< min(a, b))
if (10< d—b<50)and |b—-a[<10andmin(a, b)—c »>5))
X = (d +max(a, b) )2;
else
X = max(a, b);

}

else
X=a+b-c;

3. Proposed method

Use of histogram of image for data hiding was fpstposed by Ni et. al [10].
Then in [11] through image tiling the data hidirgpacity was increased. The key
point in the histogram based algorithms is theawaer is the histogram the more
capacity is available for data hiding. This is hesmaa narrower histogram has a
higher peak (as shown in Fig 2) and the positiohthe peaks are shifted for
maximum capacity of embedding. Hence it is expedtexl histogram of the
prediction error of an image to be able to accomam®mdnore data than the

histogram of the image itself. In our adaptive t&uifprediction error, ASPE, data
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hiding is carried out under two steps of embeddind extraction processes. The
embedding process includes selection of the priedi@rror values according to
the required capacity and then shifting the prealicerror values according to the

rules defined below. The data extraction proceska reverse of data embedding.

His_tograrn of Lena Histogram of prediction error
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Fig2. Histogram of Lena (a) image itself (b) preidic error of the image

3.1 Embedding

All kind of lossless predictions can be employethi@ ASPE method. Selection of
the prediction type depends on the application. Example for real time
applications MED may be preferred over GAP becdhsecomputational burden
and the demanded memory of MED predictor is lean that of GAP. Thus based
on the limitations and requirements of the applicatone can select the most
suitable predictor and then the embedding algoritimthis predicted error is as
follows:

1) With a chosen prediction algorithm a predictadrthe cover image is derived.
Steps (2-7) are then performed on this predictexyen

2) The prediction error (PE) matrix elements arkewated by subtracting the
predicted image from the cover image;; = I; ; — 1},]-.

3) The number of prediction errors inside thervaé[d , d+1) is denoted by
D(d). S value is found such that B(is equal to or larger than the demanded
capacity.

4) To prevent overflow and error in extracting émbedded data, the positions of
all pixels with a value of 258&re recorded as side information. Also steps 5 and
6 are carried out for elements wit}y < 255.

5) In the shifting stage, the modified PE matrixiesived from the PE matrix by

the following rule: For every;; ( (i #1andj#1)for MED and Jiang

predictions, andi > 2 and j > 2) for GAP prediction) if e; ; is equal to or



larger tharS+1, then the modified PE called;; =e¢; ; + 1, otherwisee ; ; =
ei,j.

6) In the embedding stage, eaczﬁi,j (i#1andj # 1) for MED and Jiang
predictions and(i > 2 andj > 2) for GAP prediction) with value inside the
interval [S, S+1) is incremented by one if the correspondingobiihe data (to
be embedded) is "1”, otherwise it will not be maoelif. After concealing the
error data to the modifiect’; ; , the embedded PE’; ; is obtained.

7) Finally, the marked image pixd) ; is reconstructed by;; =1, ; +e";; . If
I;j = 255 then I;; = 255.

If there are no limits on the computational compiexpayload capacity and
image quality of all prediction types are compuged then the best predilection
type could be selected. This is due to fact thepedding on image content, one

type of prediction may lead to a narrower distiidmitthan the other. Thus with
the above embedding steps, the marked plzgél with the embedded bit, can

be formulated as:

ii’]'+ei‘j+1 If ei,j25+1
Ii»j/ = ii,j te;+ by, If e ij € [S,S+ 1)
IAi,j+el-,j If ei,j <S

Note that, depending on the prediction matrix, e¢ry prediction error can be
used for bit embedding. In fact, in MED and Jiamgdictions the pixels on the
top-most row and the left-most column and for GAB two top-most rows and
the two left-most columns of a cover image areusad for hiding data. To obtain
original values of the pixels and the secret infation these row/rows and
column/columns are reserved and are the same inover and marked images.
The most right column is not predictable by GAPcsitfior pixels in this column
there are no neighbors thg. Thus this column is not useful for embedding secr
bits. The gray value @&, positions of all pixels with value 255 and preitinttype
will be treated as side information that need tdrbasmitted to the receiving end
for data retrieval.
The side information could not be embedded in tlagked image and they could
be transmitted in a secured channel. At the recaide, this information would
be passed through an extractor to recover the hidd&a. A second possibility is
to introduce a secret key when the side informaisorequired to be embedded
8



into marked image. This is when a separate charareiot be provided. In this
case, the values should not be embedded as cldaiTtee bits which form the
values must be scrambled using a Pseudo RandonmryB8equence (PRBS)
generated through a secret key (seed) and the emthechlues would be the
result of an XOR sum of the bits of the originalues and the bits of the PRBS.
The secret key would be also needed at the deteidterin order to unscramble
the values. Among all possible positions for emliegi@ide information (original
or scrambled) LSB bits of the down-most row which aot used for prediction in
all three prediction types seem suitable. It isttvoroting that data embedding at
the encoder and extraction at the decdokows theraster scan order.

3.2 Detection

The following process is used for extracting thersemessage from a marked

image and lossless recovery of the cover image wheh aid of the side

information. Let the marked image pixellsil-,]- be the received image at the
decoder.

1) As the pixels in the top-most row and left-mosiumn (two top-most rows and
two left-most columns in GAP) do not carry anyrsédata, they can be easily
restored byl :Ii’,j for i=1 or j=1 (<3 or j<3 in GAP). Startingfrom
pixel I, ,( 133 in GAP), the following steps (2-5) are carried éuteach pixel
completely and then iterated for the next pixell;|f was recorded as side
information then; ; = Il-',j and steps (2-5) are carried out for the next pixel

2) The predicted pixefi,j of I; jis reconstructed through the reverse of the
prediction algorithm with the pixels that have ablg been restored.

3) If the embedded PE,;; = I';; — I;;, is inside the intervalg+1 , S+2), then
it is concluded that the embedded data bit tasin this caseg’; ; should be
decremented by one to obtain the modified RE;=e";; — 1. If e';; is
inside the intervalS, S+1) the embedded data bit was “0” andl; ; = e”; ;,
otherwise there was no embedded data bit and aggin=e";; . Then to
calculate the original prediction error signal,ei’l-,j > St2 then the prediction
error e; ;= e;; — 1, otherwisee; ; = e’;; , whereb', is the k-th extracted

secret bit. The above extracting steps can beuiated as:



(e”i,j—l If e”i,j25+2

. e i,j_l'b’kzl If e//i,jE[S+1,S+2)
LJ e”i,j , b’k = O If e”i’j € [Sl S + 1)
e”i,j If e"i,j <S

4) Finally, e; ; should be added to the prediction valigg to recover the original
cover image pixell; ; = IAiJ- + e;j , which is used for the reconstruction of the
next pixels.

Fig. 3 shows an example of a 5x5 grey scale image tive GAP prediction.
The encoder scans the cover image, Fig. 3(clhenraster-scan order pixel by
pixel and subtracts the predicted pixels, Fig. B(&@@m the cover image pixels.
Assume the bit stream to kenbedded is “010”. In the PE matrix, Fig. 3(cBg t
obtainedSis equal to “0” and ¥) = 3. The encoder scans the PE matrix and all
elements(i > 2 and j > 2) equal to or larger than 1 are increased by one, Fig
3(c4), andthen the modified prediction errom interval [0, 1) are chosen for
embedding data. If the corresponding bit of theretedata is "1”, the modified
prediction value is added by one, otherwise it wit be modified, Fig. 3(c5).
Marked image, Fig. 3(c6), is obtained by addingeheedded prediction errors,
Fig. 3(c5), to the predicted pixels, Fig. 3(cR)has been already explained that
the pixels withi < 3 or j < 3 are the same in the marked and cover images.

The decoder scans the marked image, Fig. 3(dItjngtdfrom the pixel at
position (3,3), and does all the steps pixel bypwith the following rules: Based
on the restored cover image pixels, Fig. 3(d2), pnediction pixel value is
computed, Fig. 3(d3). If the embedded PE, Fig. B(d4in [0, 1) the embedded
data bit will be “0” and the modified PE Fig. 3(d55 equal to the embedded PE,
Fig. 3(d4). If the embedded PE is in [1, 2) the edded data bit will be “1” and
to obtain the modified PE, the embedded PE shoalddzremented. In case the
modified PE is equal to or larger than 2, predict@rror, Fig. 3(d6), will be
obtained by decrementing the modified PE by onegretise PE will be equal to
the modified PE. Finally, the restored cover imagesl, Fig. 3(d2), is computed
by adding PE to the prediction pixel, Fig. 3(d3).

10
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(c1) (c2) (c3) (c4)
0 0 O 8 4 4 7 6 8 4 4 7 6 8 4 4 7 6
0 0 0 7 5 6 5 8 7 5 6. 5 8 7 5. 6 5 8
0 2505175 3.5 8 7 10 3,5 8 7 10 3. 57 7 9
0 -0.5-3 3.75 9.5 6 4 9 9 5 6 4 9 9 5 6 4 8
0 0.753.52.75 5 5 6 9 12 5 5 6 9 12 5 5 6 8 11
(c5) (c6) (d1) (d2)
4 4 7 6 0O 0 0 O O 0O 0 0 O O 0O 0 0 0 O
5. 6. 5 8 0O 0 0 O O 0O 0.0 O O 0O 0.0 0 O
5 5565825 0 0 2505175 0 0 25050.75 0 0 15 050.75
5/65 7 525 0 0 -05-33.75 0 0 -05-33.75 0 0 -05-3275
5 5255925 ' 0 0 07535275 0 0 07535275 0 0 0.75251.75
(d3) (d4) (d5) (d6)

Fig. 3 (c1) — (c6) Embedding steps (d1) — (d6) Diixte steps
3.3 Adaptive algorithm

In the shifted histogram based algorithm, the midaa is to create an empty
space for the embedding of hidden data. For maxirdata hiding capacity, the

space belongs to the maximum frequency of the drato. In fact the narrower

the histogram, the more capacity is created. Howevieen the histogram of the
image prediction errors is used, the maximum fraqueoccurs at zero, as shown
in Fig. 4a, which is not suitable for data hidinchis is because, zero valued
prediction errors normally occur at the plain arebpictures, where prediction is
more precise and hence the embedded data canilyepeaseptible. To alleviate

this problem, one may choose the hidden data pasitat the textured areas or
near the edges of the image, where the human wisasking can be exploited.
This is the beauty of the prediction error, whdsehistogram, unlike the image
itself, reflects the image texture and edges. @fs®, in this case prediction is not
perfect, and also the histogram frequency is ndsabhaximum, lowering the data
hiding capacity. Fortunately, since prediction esrdo have an almost symmetric

distribution around the maximum frequency, the cépas twice the frequency
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of the chosen space. Due to this double endedkdison, the sum of positive and
negative error frequencies can be even largerttietrof frequency at zero.

Fig. 4(a) shows the histogram of the predictiorewith the main peak at level
zero. The distribution decays towards larger evadues where larger prediction
errors belong to the textured and edges of therdovege. Thus one can trade the
data hiding capacity for the perceived embeddimsgodion. This means that, the
system is capacity/quality adaptive and adaptasdmased on choosing positive
and negative prediction errors, where their sunfrefuencies is just above the
given capacity. In practice, we start from both wf the histogram, from the
prediction values of255 towards the origin and when the sum of freqesnis
just above the required capacity, the positionthefpositive and negative errors
are identified for data embedding, as shown in&m. It should be born in mind
that, since the prediction error might be non-ieteghen within the unit interval
of [d, d+1), there might exist several predictioroes, whose sum will constitute
the frequency in that interval. Here, due to douitled exponential decay of the
histogram, as we move towards the origin, the agpacincreased, but since the
prediction error due to lower textures is redudde, distortion becomes more
visible.

It should also be noted that the better the prexficstrategy, the narrower
would be the histogram, increasing the data hidtagacity of the system.
Moreover, with good predictors, one can even geeesaall errors at the highly
textured areas. This not only increases the capabiit also, due to spatial
masking at the textured areas, makes them invjsibiproving the subjective

guality of the marked image.
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4. Experimental results and evaluations

Before evaluating the performance of our adaptiuftesi prediction error (ASPE)
algorithm, let us examine which type of predictin most suitable for this
scheme. Table 1, summarizes the experimental seslitained by using the main
peak in ASPE with these three prediction typed fara, Barbara, Boat, Goldhill,
Baboon, Peppers, and Zelda images (512x512x8edke#t images of UWaterloo
database[24]. Since the precision of the prediatimars of these prediction types
differ, for faire comparison, all error values witta unit interval §l, d+1), is taken
as the representative frequency (cumulative frequef the unit range) of that
interval. With the main peak at the centre, in Right Shifted type, the created
empty spaces is equal to the prediction error of value “0” and thwediction
errors larger than or equal to “1” are incremeritgcone and the secret bits are
embedded in [0,1). In the Left Shifted type thedbcBon errors smaller than
“0” are decremented by one and the embedded bitsbeiat the prediction
errors of [-2,1). Thus, in Right-Left (RL) Shiftagpe, Right Shifted and Left
Shifted types are used simultaneously.

The table shows that RL-shift of all prediction égphave almost double the
capacity of the right (or left) shift type, indigag the prediction histogram is
almost symmetric for all images. Moreover the gyaif the marked image in the
right shift is almost 3 dB better than in the RIliftsiThis is due to the fact that, in
Table. 1 PSNR (dB) and payload capacities (bits) of tls¢ itmages of UWaterloo database[24].

Prediction Type GAP Jiang MED

Image Right RL Right RL Right RL
shift shift shift shift shift shift
Payload 28971 57949 29624 53963 30031 53836

Lena PSNR 52.1 49.2 51.3 48.8 51.67  48.68
cabaa | PVoad 23816 47363 22554 43477 23005 43995
PSNR  51.9 49 51.2 48.5 51.59  48.55
o Payload 28941 56850 27454 53275 27883 53313
PSNR  52.1 49.2 51.2 48.6 51.65  48.63
oy Pavioad 20837 41466 20252 39408 20646 40318
PSNR 52 48.9 51.1 485 51.63 4851
B, | Pvoad 9629 10277 9008 17792 9412 17932
PSNR  51.5 48.5 51.2 48.3 51.38  48.3
peppers | "0Rd 22841 45669 20194 39189 20605 39608
PSNR  51.9 49 51.2 48.5 51.55  48.51
e Pvioad 28906 57908 26016 51039 26434 51347

PSNR 52.2 49.2 51.2 48.6 51.66 48.61
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the right shift almost half of the pixels are uasdd. In general alteration of all
pixels by one level (Mean squared error. MSE=19ults in a PSNR of:
PSNR = 10log,¢(255 * 255/MSE) = 48.13dB

As the table shows all the PSNR of the RL shiftabyeve 48.13 dB, as not all the
error pixels are moved and consequently those gitRshift are not less than 51
dB.

It should be noted that the value of predictioroerd, also controls the quality
and hence the capacity of the embedding systemeXample, when d=0, only
the whole Right shift elements are displaced by lemel, resulting in a PSNR=
51 dB, but for larger d, where values greater taare altered and since the
majority of prediction errors are around the centnen the number of changed
pixels is reduced. Our tests for Image Lena, sh@t ford=0, d=2, d=4 andd=6,
the PSNR becomes 52.1, 54.7, 57.2 and 59.5 dBatagplg. Therefore changing
d, can also regulate the image quality.

The table also shows that the gradient adjacerdigiren has not only larger
capacity for data hiding than the other predicibeso has a better quality. The
reason is that GAP with seven neighboring pixeksus better predictor than the
other two. Better predictors create smaller presicerrors and hence make the
prediction histogram more peaky towards the cemtewever, its computational
complexity is higher than the MED and Jiang preadiet The computation time of
GAP is about 4.2 times of MED and 2.2 times of dipredictor.

Considering the GAP is the best predictor of ale wow compare the
performance of the ASPE with the GAP predictor agiathe well known high
capacity data hiding schemes reported in the titeeasuch as [5], [7], [10], [11],
[12], [13], and [18]. Figure 5 contrasts the penfance of ASPE (with the GAP
prediction) against these methods for Lena and @arlmages in terms of PSNR
and data hiding payload (bpp: bits per pixel). Tigure clearly shows the
superiority of the ASPE over the other methods. €h#edding capacity was
limited for a minimum 40 dB in quality. The figurghows that use of more
number ofSthe capacity and distortion increase. In generatiotgata for ASPE,
we have usedd] d+1) for right shift and incremented all errors equeor larger
than d+1 to create an empty space id+], d+2), then the secret bits were
embedded ind, d+1). For the left shift [¢—1, -d) was used and the prediction
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errors less thand-were decremented to create a vacant spacedii[—€) and

then the secret bits were embedded ind-R; -d-1). For optimum

capacity/distortiond was chosen as large as possible, and more pairsiod €
were used to reach the required capacity. i.eedchr a requested capacity a pair
of d and d is chosen and decreaséo achieve needed capacity. In case if pairs of
d=0 do not prepare requested capacity in additiot=tb another pairs should be
selected for embedding which are selected basedeeded capacity in a same

way. Thus by increasing the number of pairs mapeacity can be achieved.

Lena Barbara

=0—ASPE
7+ Kim et al [18]

=»=Lin & Hsuehs method [12]
=0+ Xuan et al s algorithm [13]
=~ F&S with 16 blocks [11]
=p-kamstra [7]

=& Nij et al s algorithm [10]

—-0-ASPE

-7+ Kim et al [18]

=m=Lin & Hsuehs method [12]
~B+ Xuan et al s algorithm [13]
=k F&S with 16 blocks [11]
=b- kamstra[7]

=&=Ni et al s algorithm [10]
=@-Tian ithm [5]

== Tian algorithm [5]
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Fig. 5 Comparison among several reversible methadsASPE for Lena and Barbara images.

One of the main features of our scheme is thatqtieity of marked image is
impaired proportional to the required capacity. leger, ASPE has also
additional advantage that the rate of decay of impent is small. To verify this,
we implemented this trade off on the Ni et al [19¢ng et al. [22], and Tsai et al.
[23] schemes such that frequencies were chosdahdarequired capacity for Lena
and Barbara images, shown in Fig. 6. As the figlmaws, while for a capacity of
5 kbits, with Ni et al.[10] PSNR =47.8 dB, and tlodtASPE is 59.4 dB, when the
capacity is increased to 50 kbits, the quality led tmarked image under [10] is
dropped below 27 dB, but that of ASPE at this reteore than 46 dB. However,
the PSNR in Hong et al. [22] and Tsai et al. [28hemes are much better
than [10], as shown in Fig. 6, but they are stilerior to ASPE. The main problem
with these methods is the lack of efficiency, ashbmethods suffer the same
distortion at 5 and 20 Kbits, which means the dat@bedding method is not
capacity efficient. This is not the case with AS&#ktl [10], where increasing the
capacity the marked image quality degrades acogigdiivioreover the subjective
quality of the marked image under ASPE is very gaaan at very low PSNRs

(the subjective quality of the marked images, dd sbow any noticeable
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distortions to be shown in the paper). As mentiotieel reason for good subjective
quality is that, generally histograms of predictiemors do identify the textured
and edges and the embedded distortions are magkéebtm. This is not true for

the histogram of the image itself, as used in [18&t cannot exploit the spatial
masking property of the human eye. This is in addito the larger embedding
capacity of the former over the latter one.

PSNR (dB)
PSNR (dB) o

60 Ni et al. [10]
Ni et al. [10] m Hong et al. [22]

® Hong et al. [22] 55
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Fig.6 Rate of trade off in capacity versus quabigégween Ni et al [10], Hong et al. [22], Tsai et al
[23] and ASPE.

5. Conclusion

This paper has introduced a high-capacity revergilata hiding algorithm, based
on the shifted prediction error histogram. It's l&pifor adaptively trading
capacity for quality, makes sure the highest reglizapacity is gained at the cost
of least quality degradation. Moreover, workingtba prediction error histogram,
visibility of the hidden data is masked by the tegtand edges of the cover image.
It was shown that the proposed method outperforinsost all the known
reversible data hiding methods and working on ptkéferences, the subjective
quality of the marked image is even more impressive

The high capacity of the proposed method is mathlg to the fact that the
histograms of predicted error pixels are very pedlys not only increases the
data hiding capacity, but due to narrower densggridution of errors, the marked
image is less distorted. Designing of more effitipredictors, particularly better
matched to image texture, will undoubtedly imprinagh the data hiding capacity

of the system and the subjectively quality of therked images.
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