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ABSTRACT Context:GitHub, nowadays the most popular social coding platform, has become the reference
for mining Open Source repositories, a growing research trend aiming at learning from previous software
projects to improve the development of new ones. In the last years, a considerable amount of research papers
have been published reporting findings based on data mined from GitHub. As the community continues
to deepen in its understanding of software engineering thanks to the analysis performed on this platform,
we believe that it is worthwhile to reflect on how research papers have addressed the task of mining
GitHub and what findings they have reported. Objective: The main objective of this paper is to identify the
quantity, topic, and empirical methods of research works, targeting the analysis of how software development
practices are influenced by the use of a distributed social coding platform like GitHub.Method:A systematic
mapping study was conducted with four research questions and assessed 80 publications from 2009 to 2016.
Results: Most works focused on the interaction around coding-related tasks and project communities.
We also identified some concerns about how reliable were these results based on the fact that, overall, papers
used small data sets and poor sampling techniques, employed a scarce variety of methodologies and/or were
hard to replicate. Conclusions: This paper attested the high activity of research work around the field of
Open Source collaboration, especially in the software domain, revealed a set of shortcomings and proposed
some actions to mitigate them. We hope that this paper can also create the basis for additional studies on
other collaborative activities (like book writing for instance) that are also moving to GitHub.

INDEX TERMS GitHub, open source software, systematic mapping study.

I. INTRODUCTION
Software forges are web-based collaborative platforms pro-
viding tools to ease distributed development, especially use-
ful for Open Source Software (OSS) development. GitHub
represents the newest generation of software forges, since it
combines the traditional capabilities offered by such systems
(e.g., free hosting capabilities or version control system) with
social features [1]. In recent years, the platform has witnessed
an increasing popularity, in fact, after its launch in 2008,
the number of hosted projects and users have grown expo-
nentially,1 passing from 135,000 projects in 2009 to more
than 35 million projects in 2015.

At the heart of GitHub is Git [2], a decentralized ver-
sion control system that manages and stores revisions of
projects based on master-less peer-to-peer replication where
any replica of a given project can send or receive any

1http://redmonk.com/dberkholz/2013/01/21/github-will-hit-5-million-
users-within-a-year/

information to or from any other replica. Despite the close
relationwithGit, GitHub comeswithmany of its own features
specially aimed at facilitating the collaboration and social
interactions around projects (e.g., issue-tracker, pull request
support, watching and following mechanisms, etc.). Addi-
tionally, the platform provides access to its hosted projects’
metadata, available through the GitHub API,2 thus facilitat-
ing further analysis.

Such social features, its openAPI plus its popularity among
the software developer community make GitHub the best
candidate to provide the raw data required to analyze and
better understand the dynamics behind (OSS) development
communities as well as the impact of social features in
(distributed) software development practices [3], [4]. There-
fore, more and more Software Engineering (SE) researchers
have turned to GitHub as the center of their empirical studies.

2https://developer.github.com/v3/
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FIGURE 1. Systematic mapping study process [5].

In this paper, we present a systematic mapping study of
all papers reporting findings that rely on the analysis and
mining of software repositories in GitHub. After a systematic
selection and screening procedure, we ended up with a set
of 80 papers that were carefully studied. Our goal was to
study how software development practices have changed due
to the popularization of social coding platforms like GitHub
and how project owners, committers and end-users could
optimize their way of collaborating. A secondary goal was
to analyze different quality aspects of the empirical methods
employed by the research works themselves in order to assess
the representativeness and reliability of those findings. As far
as we know this is the first work conducting a meta-analysis
of papers reporting results based on GitHub data mining.

This paper is organized as follows: Section II describes the
procedure we followed in this study. Section III presents the
research questions, Section IV describes the data acquisition
process and Section V reports on the analysis and results
obtained. Section VI presents some discussion about our
findings. Section VII discusses related work and Section VIII
comments on the threats to validity. Finally, Section IX con-
cludes the paper and presents some further work.

II. METHODOLOGY
To perform our mapping study we followed a procedure
inspired by previous works [5], [6]. The procedure has five
phases, shown in Fig. 1, namely: (1) definition of research
questions; (2) conduct search, where primary studies are
identified by using search strings on scientific databases
or browsing manually through relevant venues; (3) screen-
ing of papers, where inclusion/exclusion criteria are applied
to remove those works not relevant to answer the defined
research questions; (4) classification scheme, where dimen-
sions to classify each paper according to each research ques-
tion are identified; and (5) data extraction and mapping study,
where the actual data extraction takes place.

We have organized these phases into three main groups
(see gray boxes in Fig. 1): (1) research questions, (2) data
acquisition, where we describe how we selected and screened
papers (i.e., second and third phases); and (3) analysis and
results, where we report on the classification employed and
the resulting systematic mapping (i.e., the last two phases).
This structure allows us to report on both the classification

scheme and the results for each research question in the same
section, which we believe improves the reading flow. Next
sections describe each one of these phase groups.

III. RESEARCH QUESTIONS
The main goal underlying our work is to provide an overview
of research efforts focusing on the analysis of all kinds of soft-
ware development practices relying on / influenced by the use
of the GitHub platform as the most representative example
of the current generation of software forges. This overview
must be accompanied with a characterization of the empir-
ical methods used in those analysis, the tools employed in
them and the research community behind those works. There-
fore, our mapping study addresses the following research
questions:

RQ1: What topics/areas have been addressed?
Rationale: Our interest is finding out the main areas (and

key topics in those areas) that have been targeted while study-
ing how GitHub has influenced software development.

RQ2: What empirical methods have been used?
Rationale: Our intent here is to analyze and classify

the methods commonly applied in research works around
GitHub.

RQ3: What technologies have been used to extract and build
datasets from GitHub?
Rationale: The study of GitHub generally implies first the

selection and retrieval of a subset of GitHub repositories.
Our goal is to catalogue the main technologies used for that
purpose.

RQ4: What is the research community behind these works
like?
Rationale: GitHub papers are published in multiple and

different venues by a sizable set of researchers. Our goal is
to characterize this research sub-community and the publica-
tion venues they focus on. This can help to interpret better
the results of previous questions, to encourage new collab-
orations among isolated subgroups and to help identifying
potential venues to publish new results in this area.

IV. DATA ACQUISITION
This section describes the search process and the selection
criteria for our mapping study.
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A. CONDUCT SEARCH FOR PRIMARY SOURCES
The goal of this step is to build an exhaustive collection
of works in the field of study. We defined a three-phased
collection process in order to make the set of evaluated works
as complete as possible.

TABLE 1. Digital libraries selected and main features provided.

The first phase consisted in selecting a set of digital
libraries, defining the corresponding search queries and
finally executing those. The selection of the digital libraries
was driven by several factors, specifically: (1) number of
works indexed, (2) update frequency, and (3) facilities to
execute advanced queries and navigate the citation and ref-
erence networks of the retrieved papers. We selected 6 digital
libraries (see Tab. 1) that presented a good mix of the desired
factors.

TABLE 2. Executed queries for each digital library.

Once the digital libraries were determined, search queries
were defined to retrieve the initial selection of works to be
filtered and screened later on. Table 2 shows the queries
we defined for each digital library. In general, we searched
for all works that contained the word GitHub (or varia-
tions of it, i.e., github, git hub) in either the title, abstract,
author keywords or index terms. This resulted in a collection
of 488 works (removing duplicates). To refine the search,
a title/abstract pruning process was applied to discard
those works which clearly were not studying GitHub itself
(e.g., papers just mentioning GitHub as the platform where
they were making publicly available their artifacts or research
data) and therefore out of the scope of our study. The pruning
process removed 173 papers. Thus, we ended up this first
phase with 315 works.

The second phase took the previous set and performed
a breadth-first search using backward and forward snow-
ball methods by navigating their citations and references.
To this aim, citation and reference networks provided by
the digital libraries were used (when possible, otherwise we
followed a manual approach). Each newwork found was then
used in turn to identify subsequent new ones. We collected
65 additional papers as a result of this phase, to which we
also applied a title/abstract pruning process. As a result, only

21 new papers were finally added to the collection due to
snowballing. At the end of this second phase, our collection
contained 336 works.

TABLE 3. Selected venues.

In the third phase, an edition-by-edition (or issue-by-issue)
manual browsing of the main conference proceedings and
journals was performed. The goal of this phase was to com-
plete the list of the initial works and also assess the complete-
ness of the selection obtained so far. We selected 24 venues
in total (16 conferences and 8 journals, shown in Tab. 3) from
January 2009 until July 2016. This phase identified 6 new
works. Again, we applied a title/abstract pruning process but
no work was discarded so the 6 works were added to our
collection.

TABLE 4. Number of works considered in the search and
selection/screening processes.

At the end of the search process we obtained a total of
342 works, 92.10% coming from the first phase, 6.14% from
the second one and 1.76% from the third phase. The upper
part of Tab. 4 summarizes the number of works initially
collected, pruned and eventually selected in each phase of this
process.

B. SELECTION CRITERIA AND SCREENING
Next, we applied a two-phased selection process in order to
determine which works were considered relevant to answer
our research questions.
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First, the collected works were classified into three dimen-
sions according to how they used GitHub.

• Papers usingGitHub simply as a ‘‘project warehouse’’ to
draw repositories from were classified as source, as they
relied on GitHub just as a source of repositories and did
not benefit or study any specific GitHub feature (i.e., the
paper would be the same if instead of GitHub projects
had been stored in file folders in a server).

• Papers analyzing how software projects were using
GitHub features were classified as target, as the
GitHub platform itself was the main object of
study.

• Works studying GitHub as part of a comparative stud-
ies on open-source development environments and plat-
forms (GitHub was studied but only in relationship to
other platforms and therefore it was not the main object
of study) were classified as description.

In total we found 167 source papers, 157 target papers and
18 description papers. In our study we are interested in those
works classified as target, as they are the ones that aim to
provide insights on how the platform and its characteristics
are being used in software development.

These target papers were the input of the subsequent
screening process. At this point, we discarded the following
groups of papers as we considered irrelevant for this particu-
lar study:

• Papers studying the use of GitHub in non-software
development projects (e.g., education [7], collabora-
tion on text documents [8], [9], open government prac-
tices [10], for replicability of scientific results [11]).

• Papers analyzing niche technologies (e.g., development
and distribution of R packages [12], adoption of database
frameworks in Java projects [13]) due to the challenge
of generalizing those results to any kind of software
project.

• Papers subsumed by another paper from the same
authors presenting more complete results. In those cases
we only kept the extended version.

• Papers not written in English, masters and PhD thesis.
• Papers that rely on GitHub to evaluate new algo-
rithms or tools (e.g., recommenders [14], [15],
predictors [16], [17]). Although the algorithms/tools are
related to a GitHub feature, the papers use GitHub like
a validation platform.

After running the screening process according to this cri-
teria, we retained 80 and discarded 77 of the papers.3 The
bottom part of Tab. 4 shows the number of works classified
and screened during these phases.

V. ANALYSIS AND RESULTS
In the following we address each research question and end
the section performing a cross-analysis among them.

3The full list of collected and selected/discarded papers is available at
https://github.com/SOM-Research/github-selection

A. RQ1: WHAT TOPICS/AREAS HAVE BEEN ADDRESSED?
In this section we summarize the main findings reported by
the selected works, grouped in topics and areas of research
interest to get a better overview of what the contributions of
those papers are and what we can learn from them.

To classify the papers we applied a grounded theory
approach to analyze those findings. First, each paper was
labeled with an identifier and analyzed to summarize its main
findings . We then performed open coding on such findings
with the purpose of assigning them to specific topics. Finally,
we grouped the topics conceptually similar, resulting into
four main areas of research, focused on: (1) development,
(2) projects, (3) users and (4) the GitHub ecosystem itself.

Topic identificationwas based on the common terminology
employed around the field of software forges, with special
attention to specific vocabulary linked to GitHub features and
development model. As a web-based hosting service for col-
laborative development projects using the Git control system,
projects and users can be considered the main assets of the
platform. Each project keeps track of the submitted issues,
pull requests and commits, which are therefore other potential
topics of study. Pull requests are the main means to contribute
to a project. To create a pull request, the user has first to fork a
project, and once her changes have been completed, send the
pull request to the original project asking for those changes
to be integrated (i.e., ‘‘pulled’’) in the project. GitHub also
supports social features like followers and watchers which
have been also the topic of study for some research works.

TABLE 5. Distribution of works across the areas of interest and topics.

Table 5 summarizes the paper distribution along the
4 areas of research interest and the corresponding topics.
Note that some works may report findings for different topics
and areas at the same time and therefore the total number is
higher than the size of our paper collection set. The software
development area contains findings about code contributions,
issues and forking. The project area includes findings about
the different types of project in GitHub, their popularity,
communities and teams in them and the characterization of
the discussions that may arise in the community during the
development. The third area reports findings about different
types of users, such as popular users (i.e., rockstars), issue
reporters and assignees, watchers and followers. The last area
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contains findings about the GitHub ecosystem, such as its
characterization, transparency, and the relations with other
platforms (e.g., Twitter, StackOverflow).

With regard to areas, findings concerning projects (46)
overtake those about software development (34), users (34)
and platform (23). On the topic side, the ones that have
received more attention concern code contributions (21) and
general findings about users (21). Next sections report on
the findings according to the areas of interests and topics
identified.

1) SOFTWARE DEVELOPMENT - CODE CONTRIBUTIONS
a: CONTRIBUTIONS ON THE PLATFORM ARE
UNEVENLY DISTRIBUTED
Most code contributions are highly skewed towards a
small subset of projects [18], [19], exhibiting a power-law
distribution.

b: FEW DEVELOPERS ARE RESPONSIBLE FOR A LARGE
SET OF CODE CONTRIBUTIONS
Avelino et al. report that most projects have a low truck
factor4 (i.e., between 1 and 2), meaning that a small group
of developers is responsible for a large set of code con-
tributions [20]. A similar finding is reported also by other
works, Kalliamvakou et al. [21] claim that more than two
thirds of projects have only one committer (the project’s
owner). Pinto et al. [22] note that a large group of contributors
is responsible for a long tail of small contributions, while
Yamashita et al. [23] acknowledge that the proportion of code
contributions does not follow the Pareto principle,5 on the
contrary, a larger number of contributions is made by few
developers.

c: MOST CONTRIBUTIONS COME IN THE FORM
OF DIRECT CODE MODIFICATIONS
A code contribution can be made either directly (pushed
commits) or indirectly (pull requests). The former are
exclusively performed by developers granted write permis-
sion on the project, while the latter can come from any-
one. Most code contributions are performed by direct code
modifications [24].

d: PULL REQUESTS’ CHARACTERIZATION
Most pull requests are less than 20 lines long, processed
(merged or discarded) in less than 1 day and the discussion
spans on average to 3 comments [24]. Furthermore, they are
evaluated using manual and automatic testing as well as code
reviews [25].

e: IMPORTANCE OF CASUAL CONTRIBUTIONS
A specific type of pull request is defined as ‘‘drive-by’’
commits [26] or casual contributions [22]. According to [24],

4The truck factor is a measurement of the concentration of information in
individual team members. It connotes the number of team members that can
be unexpectedly lost from a project before the project collapses due to lack
of knowledgeable or competent personnel.

5The Pareto principle or the so-called ‘‘80-20 rule’’ states that 80% of the
contributions are performed by roughly 20% of the contributors

casual contributions account for 7% of the pull-requests made
to GitHub projects in 2012, and a more recent study [22]
reports that casual contributions are rather common inGitHub
(48.98%), and even if a significant proportion of them are
minor fixes (e.g., typos and grammar issues), other ones
are far from being trivial (e.g., fixing bugs and adding new
features).

f: TECHNICAL FACTORS TO ACCEPT PULL REQUESTS
Some works have identified technical factors that influence
on the acceptance (or rejection) of an indirect code con-
tribution. Pull requests fully addressing the issue they are
trying to solve, self contained and well documented [25]
as well as including test cases [27], [28] and efficiently
implemented [29] are more likely to be accepted, since they
come with enough means to ease their comprehension and to
assess their quality. In addition, pull requests targeting rele-
vant project areas or recently modified code [24], [30], fixing
known project bugs, updating only the documentation [31]
or easily verifiable [32] have also higher probability to get
accepted, since they have higher priority or are simpler to
check.

g: TECHNICAL FACTORS TO REJECT PULL REQUESTS
On the contrary, pull requests containing unconventional
code (i.e., code not adhering to the project style) [24], [33],
suggesting a large change [34], introducing a new feature,
or conflicting with other existing functionality [32] are less
likely to go through.

h: SOCIAL FACTORS TO ACCEPT PULL REQUESTS
Social factors also influence the acceptance of pull
requests [27], [28], [34], [35]. Contributions from submitters
with prior connections to core members, having stronger
social connection (e.g., number of followers) or holding a
higher status in the project are more likely to be accep-
ted [27], [28], [35]. In particular, Soares et al. report that
contributions made by members of the main team increase
in 35% the probability of merge and when a developer has
already submitted a pull request before, his or her contribu-
tion has 9% more chance of being merged [34].

i: SOCIAL FACTORS TO REJECT PULL REQUESTS
A pull request from an external collaborator have 13% less
chance of being accepted, and if it is the first contribution to
the project, the chance of merge is decreased in 32% [34].
Also, contributions sent to popular, well-established
(i.e., mature) projects or with a high amount of discussion
are less likely to be accepted [27], [33].

j: GEOGRAPHICAL FACTORS TO ACCEPT PULL REQUESTS
When submitters and integrators are from the same geograph-
ical location there is 19% more chances that the pull requests
will get accepted [36]. This is due to the fact that in general
integrators (i) perceive that it easy to work with submitters

VOLUME 5, 2017 7177



V. Cosentino et al.: Systematic Mapping Study of Software Development With GitHub

from the same geographical location and (ii) encourage sub-
mitters from their geographical location to participate [36].

k: PULL REQUEST EVALUATION TIME
The latency of processing pull requests has been discussed in
different works. Complex and large pull requests, arising long
discussions, undergoing code review processes, touching key
parts of the system or having low priority are associated
with longer evaluation latencies [24], [30], [37]. Also pull
requests from unknown developers undergo a more thorough
assessment, while contributions from trusted developers are
merged right away [26]. Note that the increase in the time
needed to analyze a pull request reduces the chances of its
acceptance [34].

Moreover, Yu et al. report also that a minor impact on
the evaluation time is due to pull requests submitted outside
‘‘business hours’’ and on Friday andmissing links to the issue
reports [37]. On the other hand, pull requests submitted by
core team members, contributors with more followers, more
social connections within the project, and higher previous
pull request success rates are associated with shorter eval-
uation latencies. Also the use of @-mention (to ping other
developers) and code reviews help reducing the evaluation
time. In particular, two works report that even if @-mention
is not widely used in pull requests, pull requests using
@-mention tags tend to be processed quicker [37], [38].

2) SOFTWARE DEVELOPMENT - ISSUES
a: ISSUES TRACKER ARE SCARCELY USED
Even if issue trackers are only explicitly disabled in 3.8%
of the projects, 66% of the projects do not actually use
them [39].

b: FEW PROJECTS ATTRACT MOST OF THE ISSUES
Issues are unevenly distributed on the projects that actively
use the GitHub issue tracker. In particular, the distribution of
open issues follows a power-law distribution [40]. Issues are
generally sent to popular projects, with large code bases and
communities [39].

c: DISTRIBUTION OF ISSUES IN A PROJECT
The number of opened issues is on average higher right after
the project creation, while it tends to decrease few months
later. However, the number of opened issues is stable or
exhibits slightly negative trend over time. Conversely, pend-
ing issues are constantly growing [41].

d: SMALL NUMBER OF LABELS ARE USED TO TAG ISSUES
GitHub offers a label mechanism to ease the categorization of
issues, however less than 30% of issues are tagged [39], [42].
The vast majority of projects that use labels, only use
1 or 2 different ones (45.53% and 25.42% respectively) [42].
The most common ones are bug, feature and documen-
tation [39], [42]. Bug and enhancement are often used
together [42].

e: ISSUE LIFETIME
Issue lifetimes are generally stable in a project [41].
In particular, the response time to address issues is generally
fast. However, the older an issue is, the smaller is the chance
that it will be addressed [43]. It is important to note that
the size of the community behind a project does not seem
to reduce the time to handle issues [39], [41]. Finally, the
number of projects/developers followed by team members
has a positive effect on fixing long-term bugs, not on ‘rapid
response’ to user issues [43].

f: THE USE OF LABELS AND @-MENTIONS IS
EFFECTIVE IN SOLVING ISSUES
The use of labels [42] and @-mentions [44] has a positive
impact on the issue evolution by enlarging the visibility
of issues and facilitating the developers’ collaboration, and
eventually leading to an increase in the number of issues
solved. However, labeled and @-mentioned issues are likely
to need more time to deal with than other issues [42], [44].

3) SOFTWARE DEVELOPMENT - FORKING
a: FORKING IS UNEVENLY DISTRIBUTED
Most of the projects in GitHub are never forked [18], [21],
[29], [45]. In particular, the distribution of forks follows a
power-law distribution [40], [46], meaning that there are lots
of projects with few forks and few projects forked a very large
number of times [18].

b: FORKING AS GOOD INDICATOR OF PROJECT LIVELINESS
The number of forks of a project is positively correlated with
the number of open issues, watchers [40] and stars [47],
as well as with number of commits and branches [43],
thus reflecting that active projects are often more popular.
However, it is important to note the number of forks does not
correlate with the number of pull requests accepted [48].

c: FORKS ARE MOSTLY USED TO FIX BUGS
There exist 3 kinds of forks in GitHub according to Rastogi
and Nagappan. In particular, Contributing forks are those
forks aimed to end up as pull requests to the forked project
to integrate changes, independently developed forks are forks
that do not send pull requests to the forked project but have
internal commits probably deviating from the mother project;
and inactive forks do neither send nor receive pull requests
nor have internal commits [49]. The last two categories are the
common ones, since most forks do not retrieve new updates
from original projects [50]. Instead, the contributing forks can
be further classified. In particular, forks are mostly used to fix
bugs and add new features [46], [50], and less frequently to
add documentation [46].

d: FORKING IS BENEFICIAL
Forking is considered positive for several reasons such as to
preserve abandoned programs, to improve the quality of a
project (e.g., adding testing and debugging), give developers
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control over the code base (e.g., experiments and customiza-
tion of existing projects) [50] as well as submitting pull
requests and making contributions to the original reposito-
ries [46]. Moreover, even if forking could also have some
drawbacks, such as confusion (e.g., many instances of the
same project), fragmentation (e.g., development efforts over
frommultiple project versions, bug-fixes not propagated) and
compatibility between the forked and original projects [50], it
seems this is not often the case as reported by Jiang et al. [46]
(i.e., forking does not split developers into different compet-
ing and incompatible versions of repositories).

e: FORKABILITY
The chances to get a project forked depends on different
factors. Project where developers provide additional publicly
contact information (emails and personal web site’s urls) [51],
that are clearly active or with popular project’s owners [46]
are more probable to be forked. Prior social connections
between the project owner and the forker, an increase in
developer community size for medium-size projects [49] and
projects written in the forker preferred programming lan-
guage can increase the chances of forking [46].

4) PROJECTS - CHARACTERIZATION
a: MOST PROJECTS ARE PERSONAL
Most projects are personal and little more than code dumps
such as example code, experimentation, backups or exercises
not intended for customer consumption [21], [29], [45], [52].
Thus, they exhibit very low activity (e.g., commits) and attract
low interest [21], [45] (e.g., watchers and downloads [53]).

b: MOST PROJECTS CHOOSE NOT TO
BENEFIT FROM GitHub FEATURES
Most projects ignore GitHub collaboration capabili-
ties [45], [54]. In particular, the pull request mechanism is
rarely employed [21], [29] (according to Gousios et al. [24],
14% of projects used it) as well as the use of the issue
tracker, fork and issue label mechanisms [40], [42]. Some-
times, these projects rely on external tools to manage the
collaboration [21].

c: COMMERCIAL PROJECTS ON GitHub
GitHub is not only for open source software. Commercial
projects also use GitHub and the functionalities provided by
the platform. In particular, they adopt a workflow that builds
on branching and pull requests to drive independent work.
Pull requests are also used to isolate individual development
and perform code review before merging as well as to act
as coordination mechanism. Coordination is also achieved
using GitHub’s transparency and visibility, while conflict
resolution is often based on self-organization when assigning
tasks [55].

d: PROJECT DOMAINS
GitHub projects can be classified according to the type of
software they aim to develop. Popular ones are Application
software that offers software functionalities to end-users, like

browsers and text editors; system software, which provides
services and infrastructures to other systems, like operating
systems, middleware, servers, and databases; software tools,
which provides support to software development tasks, like
IDEs, package managers, and compilers; documentation that
hosts tutorials and source code examples, and web and
non-web libraries and frameworks. The top three domains
are system software, web and non-web libraries, followed by
software tools [47].

e: PROJECT LANGUAGES
JavaScript, Ruby, Python, Objective-C and Java are the
top used languages in terms of number of projects in
GitHub [56], [57]. Furthermore, the top 5 projects in terms
of the number of contributors are Linux kernel related, and
two of which are owned by Google [58].

f: USER BASE AND DOCUMENTATION
KEEP THE PROJECT ALIVE
Projects that are actively maintained are more likely to be
alive in the future than projects that only show occasional
commits [59], as well as a good interaction with the user
base [59], [60]. The presence of documentation correlates as
well with future project survival (in particular the projects that
include contributing.md are 25% to 45% more likely to be
alive) [59].

g: ATTRACTING AND RETAINING CONTRIBUTORS
The ability to attract and retain contributors can influence
the projects survival. Simple contribution processes [61],
presence of documentation [62], project complexity and
popularity [40] are generally associated with the abil-
ity to attract contributors. Conversely, projects used pro-
fessionally [61], the adoption of more distributed and
transparent (non-centralized) practices as pull requests are
generally associated to projects with higher contributor reten-
tion [60], [63]. Projects are better at retaining contributors
than at bringing on new ones [61].

5) PROJECTS - POPULARITY
a: FEW PROJECTS ARE POPULAR
Only few projects are popular, in particular the distribution
of stars and downloads [43], [53] (key metrics for popularity)
follows a power-law distribution.

b: BENEFIT OF PROJECT POPULARITY
Popularity is useful to attract new developers [40], [51], [61],
since the project is perceived as a high quality and worth-
while.

c: PROJECT ACTIVITY AND PROJECT POPULARITY
For GitHub projects, good indicators of popularity
are the number of forks, stars, followers and watc-
hers [19], [29], [46]. The number forks positively and strongly
correlates with the number of stars and watchers [40], [47],
as well as with the number of commits and branches [43],
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furthermore the number of stars grows exponentially with the
number of contributors [43].

d: DOCUMENTATION AS A FACTOR
FOR PROJECT POPULARITY
There exists a clear relationship between the popularity and
the documentation effort [62], [64], [65]. In particular, popu-
lar projects exhibit higher and more consistent documenta-
tion activities and efforts [64], 95% popular projects have
nonempty READMEs (and larger than unpopular counter-
parts) [65], setting up useful documents can be the key
of attracting coding contributors [62]. Moreover, popular
projects often specify the programming language used [43],
rely on testing mechanisms [65], and have a wiki [53].

e: FAME OF PROJECTS DRIVEN BY ORGANIZATIONS
Projects owned by organizations tend to be more popular than
the ones owned by individuals [47].

f: TRENDS IN PROGRAMMING LANGUAGES AND DOMAIN
AS FACTORS FOR PROJECT POPULARITY
The adoption of a given programming language and the
application domain may also impact the project popular-
ity [47], [60]. Themost popular projects are the ones adopting
Ruby, JavaScript, Java or Python [40]. However, JavaScript is
responsible for more than one third of them [47], and together
with Ruby, accounts for most of the projects in GitHub [66].

g: PROJECT POPULARITY VS. USER POPULARITY
According to Jarczyk et al. [43], projects whose develop-
ers follow many others are in general more popular. Con-
versely, this does not happen for projects whose developers
are followed by many others (i.e., having popular developers
in the project). Calvo-Villagran and Kukreti confirm this
finding by reporting that the involvement of one or more
popular users on a project does not influence on the project’s
popularity [66].

6) PROJECTS - COMMUNITIES & TEAMS
a: SMALL DEVELOPMENT TEAMS
Most of the projects have small development teams [53].
Kalliamvakou et al. [21] claim that 72% of projects have
only have a single contributor, Lima et al. [18] report that
74.22% of projects have two, while Avelino et al. report
that a small group of developers is responsible for a large
set of code contributions [20]. Similarly, the work in [52]
states that the vast majority of projects in GitHub have
fewer than 10 contributors, and the work in [23] affirms
that 88%-98% of projects have fewer than 16.

b: TYPES OF TEAM
Vasilescu et al. report that 4 different kinds of communi-
ties exist in GitHub, called fluid, commercial, academic and
stable respectively. Fluid communities are composed of
voluntary developers that ‘‘come and go as their interest
waxes and wanes’’. Commercial communities are made of
professionals, thus changes in team composition are mostly

due to the company’s dynamics. Academic communities are
made by people working in academia, thus such communities
are less dynamics then the previous ones. Finally, stable com-
munities do not exhibit at all changes in their composition,
since they are mostly personal or small-team projects [67].

c: TEAMS AND DIVERSITY
There exist a positive impact on the collaboration experi-
ence and productivity in diverse (gender, tenure, nationality)
teams, despite some possible drawbacks such as improper
contributions by newcomers and difficulties in communi-
cation due to different user origins [67], [68]. Location
diversity is not a rare occurrence in GitHub [68], but is
generally observed in teams with more than 40 users, while
small teams tend to have developers concentrated in the
same location [18], [40]. Tenure diversity is made possible
by the lowered barrier to participation GitHub offers [68].
It may increase attrition between team members, however
this negative effect appears to be mitigated when more expe-
rienced people are present) [68]. Finally, regarding gen-
der diversity, only 1% of projects in GitHub are all-female
projects [68], [69].

d: COMMUNITY COMPOSITION
The definition of who is part of the project community varies
across projects. Many works have proposed classifications
of the users involved to a project. Vasilescu et al. reports
that ‘‘everyone who does something in the project’’ (e.g.,
pushes code, submits pull requests, reports issues) is con-
sidered part of the community [67], while Yamashita et al.
identify two kinds of users, core and non-core developers
(where the former are granted with write permission on the
project while the latter are not) [23]. Other works [70]–[73]
provide more detailed structures by relaying on the user expe-
rience, coding activity, popularity and actions on the platform
(e.g., watching, forking, commenting, etc.).

e: STABILITY OF CORE DEVELOPERS
The proportion of core developers remains stable as the
project gets larger [23], [72].

f: FEW USERS BECOME CORE DEVELOPERS
. Commonly, long-term contributors are turned into core
developers, so that they can help developing big projects.
However, this kind of collaboration is quite rare in
GitHub [18]. In addition, it may not be possible when the
contributions are done to popular projects [33], [74] or to
projects that rely on paid developers [43], [62].

7) PROJECTS - GLOBAL DISCUSSIONS
a: MOST DISCUSSIONS REVOLVE AROUND
CODE-CENTER ISSUES
Discussions are engaged by core and non-core developers in
order to evaluate both the problem identified and the solution
proposed [28]. Discussion topics are mostly around the code,
due to the code-centric view of the collaboration in GitHub.
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b: LONG DISCUSSIONS HAVE A NEGATIVE EFFECT
Long discussions generally entail a negative effect on the final
decision about the contribution [27], [28], [32], [33], [37].
However, they show that project’s developers are willing to
engage with users to clarify issues [75].

c: MOOD IN DISCUSSIONS
Mood in discussions is generally neutral due to their technical
nature [76]. However, negative emotions can be identified in
discussions on Monday, in projects developed in Java [76]
and in security-related discussions [77]. Finally, country loca-
tion diversity has a positive effect on discussions [67], [76].

d: BARRIERS AND ENABLERS IN DISCUSSIONS
Paid developers can be a barrier to attract users for
discussion [62], while generally discussions using label
and @-mention mechanisms tend to involve more
people [28], [38], [42].

8) USERS - CHARACTERIZATION
a: A MAJORITY OF USERS COME FROM THE UNITED STATES
Several works [18], [31], [56], [74], [78] report that most
of the users in GitHub come from North America, Europe
and Asia. In particular, United States accounts for the largest
share of the registered user accounts [78].

b: GitHub IS MAINLY DRIVEN BY MALES
AND YOUNG DEVELOPERS
Most of users in GitHub are males, while females account
only for a small percentage of GitHub [56], [68]. In addition,
most of the users are between 23-32, and only a tiny percent-
age is older than 60 [56]. A similar finding is reported by
Vasilescu et al. where the median and mean of the users’ age
in their survey is 29 and 30 respectively [68]. Users in GitHub
have more than 6 years of development experience [68], [79].

c: HOBBYISTS AS MAIN CITIZENS
The large majority of users are hobbyists who make occa-
sional contributions, while a tiny percentage are dedicated
developers who produce a stream of contributions over long
term [29] with peaks during the working hours in Europe and
North America [80].

d: USERS AND PRIVATE PROJECTS
Approximately half of GitHub’s registered users work in
private projects, thus their activities on the platform are not
publicly visible [21].

e: INDICATORS TO ASSESS THE EXPERTISE, INTEREST
AND IMPORTANCE OF USERS
The features provided by the platform offer hints to iden-
tify users’ expertise, interests and their importance in the
community, thus supporting more accurate impressions of
contributors [19], [81]. In particular, the user expertise is
often judged by the breadth and depth of the projects the

user owned, and the coding languages she uses; while hints
to her interests are often signaled by the feed of her actions
across projects [29], [32], [82]. Furthermore, Badashian and
Stroulia report that the number of times the repositories of
a user have been forkedİ is an indicator of the value of the
content produced by the user [57]. This information is heavily
used in hiring processes.

f: COMMITMENT
Sustained contributions and volume of activity of a user are
considered as a signal of commitment to the project [19],
[29], [32], [82]. The commitment of the users in a project
may highly differ each other. For instance, Bissyande et al.
report that 42% of issue reporters generally do not contribute
to the code base of the target project, while Onoue et al. [83]
claim that some developers are balanced in writing code,
commenting, and handling issues, while others prefer to focus
more on coding or commenting activities.

g: PRODUCTIVITY
User productivity depends on factors such as the num-
ber of projects the user is involved and her commitment
to the project. In particular, a user that focuses on many
projects may decrease the quality of his contributions to
the single projects (e.g., increase the number of bugs in the
code) [43], [84]. Furthermore, distractions and interruptions
from communication channels negatively impact developer
productivity as well as geographic, cultural, and economic
factors can pose barriers to participation through social chan-
nels [56]. Conversely, prior social connections [35], proper
onboarding support and an efficient and effective communi-
cation of testing culture [26] can increase the productivity of
new contributors, that will face less pull request rejections.

9) USERS - ROCKSTARS
a: WHO IS A ROCKSTAR?
A rockstar, or popular user, is characterized by having a
large number of followers, which are interested in how
she codes, what projects she is following or working
on [19], [29], [57]. The number of followers a user has
is interpreted as a signal of popularity/status in the com-
munity [19], [29]. Rockstars are loosely interconnected
among them and tend to have connections with unpopular
users [18], [85]. In addition, rockstars exert their influence
in more than one programming languages [57].

b: HOW TO BECOME A ROCKSTAR?
Users become popular as they write more code and monitor
more projects. However, while low popularity levels can be
attained with a little effort, achieving higher levels requires
much more effort [86]. Popularity is not gained through
development alone, in fact Lima et al. [18] report that the
relation between the number of followers of a user and
her contributions is not strong, meaning that a higher level
of activity does not directly translate into a larger number
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of followers. Thus, there are other factors that improve the
user popularity such as participating in different projects and
discussions [86].

c: IMPACT ON THE PROJECT
Rockstars play an important role on the project dissem-
ination and attractiveness. In particular, when a rockstar
increases her activity on a project, it attracts more followers
to participate (e.g. opening/commenting issues) on the same
project [82], [87], [88]. However, it is worth noting that the
involvement of one or more popular users will not influence
on the project’s popularity [57], [66].

10) USERS - ISSUE REPORTERS AND ASSIGNEES
a: ACTIVITY
A vast majority of issue reporters are not active on code
contributions, do not participate in any project and do not
have followers [89], in addition they often have an empty
profile [32]. On the other hand, a considerable number of
assignees is very active, and in comparison with reporters,
they are more popular, exhibit higher code activity and have
been on GitHub for more years [89].

11) USERS - FOLLOWERS
a: FOLLOWING IS NOT MUTUAL
The following relationships in GitHub are characterized by
low reciprocity and follow a power-law distribution, meaning
that given two users, they do not follow each others back in
general, and only few users have a high number of followers
while the majority does not [18], [53], [58], [82], [90].

b: WHY FOLLOWING OTHER USERS?
The mechanism of following allows users to receive noti-
fications about what others are working on and who they
are connecting with. Following is an action that is used
with different intents. It is used as an awareness mechanism,
to discover new projects and trends, for learning, social-
izing and collaborating as well as for implicit coordina-
tion [46], [88], [91] and when looking for a job [40].

c: FOLLOWERS ARE NOT SPECIAL
Users who follow many others are not much more active
than those who do not [18]. In the same direction,
Alloho and Lee [40] claim that there exists a weak correlation
between the number of users that follow many others and the
number of project participations.

d: THE SMALL WORLD OF FOLLOWERS
The following networks in GitHub fit the theory of the
‘‘six degrees of separation’’ in the ‘‘small world’’ phe-
nomenon, meaning that any two people are on average sepa-
rated by six intermediate connections [85].

12) USERS - WATCHERS
Why Watching Projects? Watching is a social feature on
GitHub that allows users to receive notifications on new
discussions and events for a given project. Watching is

generally used to assess the quality, popularity and worth-
while of a project [19], [29]. In fact, the number of watch-
ers positively correlates with the number of issues and
forks [39], [40]. Watching is also used as implicit coordina-
tion mechanism [91]. Watchers represent a valuable resource
for a project and can influence its health since they represent
a pool for recruiting the project’s future contributors [92].

13) ECOSYSTEM - CHARACTERIZATION
a: TYPICAL ECOSYSTEMS IN GitHub
A software ecosystem is defined as a collection of software
projects which are developed and co-evolve together (due to
technical dependencies and shared developer communities)
in the same environment [93]. Most ecosystems in GitHub
revolve around one central project [94], whose purpose is
to support software development, such as frameworks and
libraries [47], [66], [94] on which the other projects in the
ecosystem rely on.

b: POPULAR ECOSYSTEMS ARE USUALLY
INTERCONNECTED
Most ecosystems are interconnected, while small, unpopular
ones remain isolated and tend to contain projects owned by
the same GitHub user or organization [90], [94].

c: MUTUAL EVOLUTION IN LINKED ECOSYSTEMS
Ecosystems in GitHub can be modeled with a mutualistic
behavior [95], meaning that the evolution of the population of
developers and projects evolve over time following biological
models used for describing host-parasite interactions.

d: JAVASCRIPT, JAVA AND PYTHON
DOMINATE THE ECOSYSTEMS
In GitHub, there are two clear dominant clusters of pro-
gramming languages. One cluster is composed by the web
programmingİ languages (Java Script, Ruby, PHP, CSS),
and a second one revolves around system oriented program-
ming languages (C, C++, Python) [58]. JavaScript, Java
and Python are the top 3 languages in GitHub [56]–[58].
In particular, until 2011 Ruby was the dominant program-
ming language on GitHub. Until 2012, Java Script, Ruby and
Python were the top 3 programming languages. In 2013 and
2014, Java took the second place, after JavaScript [58].

14) ECOSYSTEM - TRANSPARENCY
a: TRANSPARENCY AND USERS
GitHub’s transparency helps in identifying user skills as well
as enabling learning from the actions of others, facilitating the
coordination between users in a given ecosystem [19], [26],
[29], [55], [81], and lowering the barriers for joining specific
projects [26], [52], [63], [96].

b: TRANSPARENCY AND PROJECTS
The transparency provided by GitHub can help in making
sense of the project (or ecosystem) evolution over time [29].
In particular, the amount of commits, branches, forks as well
as open and closed pull requests and issues are meant to
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reflect the project activity and size and how the project is
managed [19], [43]. For instance, lots of open and ignored
pull requests signal that external contributions are often not
taken into account, since each open pull request indicates
an offer of code that is being ignored rather than accepted,
rejected or commented upon [19], [29].

15) ECOSYSTEM - RELATIONSHIP WITH OTHER PLATFORMS
a: GitHub AND MORE
Activities around a software development project are not
exclusively performed in GitHub [21], but they leverage
on other platforms and channels with superior capabilities
in terms of social functions, making user connections eas-
ier [91]. This reveals the existence of an ecosystem on the
Internet for software developers which includes many plat-
forms, such as GitHub, Twitter and StackOverflow, among
others [91]. In particular, Storey et al. report that developers
in GitHub use of average 11.7 communication channels such
as face-to-face interactions, Q&A sites, private chats (Skype,
Google chat, etc.), mailining lists, etc. [56].

b: GitHub AND TWITTER
Twitter is used by developers to stay aware of industry
changes, for learning, and for building relationships, thus it
helps developers to keep up with the fast-paced development
landscape [91], [97]. However, Twitter (together with other
web sites and search engines) is also used to identify GitHub
projects to fork [46].

c: GitHub AND StackOverflow
StackOverflow is often used as a communication chan-
nel for project dissemination. In addition, there exists
a relation between the users’ activities across the two
platforms [86], [98]. However, while Vasilescu et al. report
that active GitHub contributors provide more answers (and
ask fewer questions) on StackOverflow, and active Stack-
Overflow answerers make more commits on GitHub [98],
Badashian et al. admit that interdependencies between the
users’ activities across the two platforms exists, but the rela-
tionship is weak, thus the activity in one platform cannot
predict the activity in the other one [86].

B. RQ2: WHICH EMPIRICAL METHODS HAVE BEEN USED?
In this section we characterize the methodological aspects of
the empirical process followed by the selected papers when
inferring their results and take a critical look at them to
evaluate how confident we can be about those results and how
generalizable they might be.We classified the selected papers
according to:

• Type of Methods Employed for the Analysis. This
dimension can take four values, namely: (1) Metadata
observation, when the work relies on the study of Github
metadata; (2) surveys; (3) interviews; or (4) a mixture
of methods. Other kinds of empirical methods are not
added as dimensions since no instance of them were
found.

• Sampling techniques used, which classifies the sampling
techniques used to build the datasets out of GitHub
(i.e., subsets of projects and users input of the analysis
phase for the papers). This dimension can take three
values, namely: (1) non-probability sampling, (2) prob-
ability sampling; or (3) no sampling.

• Self-awareness, which analyzes whether a paper reports
on its own limitations (i.e., threats to validity).

Next we report on the classification of the selected papers
according to these dimensions.

1) TYPE OF METHODS EMPLOYED
Figure 2a shows the results of the study of empirical methods
employed. As can be seen, the great majority of the works
(71.25%) rely on the direct observation andmining of GitHub
metadata. The use of surveys and interviews was detected in
12.5% of the works, while the remaining 16.25% combine
pairs of the previous methods (e.g., metadata observation and
interviews). It is important to note that only 22.5% of the
selected works applied longitudinal studies,6 an issue that
seems to be common in Open Source studies [21], [99].

2) SAMPLING TECHNIQUES USED
Figure 2b shows that most of the works (68.82%) use non-
probability sampling, while around a third (20.43%) rely on
probability sampling. Interestingly enough, stratified random
sampling,7 which takes into account the diversity of projects
and users [100], is used just in 11.25% of the works. 10.75%
of the analyzed works do not use sampling techniques at all.

This range of sampling strategies can bias the generaliza-
tion of the findings where representativeness is important.
For instance, most of the non-probability sampling papers
handpick successful projects (in terms of popularity, code
contributions, etc.) and therefore cannot be used to represent
the average GitHub project. This can be justified in some
cases (where, for instance, we want to study specific groups
of projects, e.g., only highly popular ones) but not as general
rule.

3) SELF-AWARENESS
By analyzing the limitations self-reported in the selected
papers, we can assess their degree of self-awareness regarding
potential threats to validity. Interestingly enough, 33.75% of
them did not comment on any threat. For the rest, we iden-
tified four categories of publicly acknowledged limitations:
(1) limitations on the empirical method employed, (2) on
the data collection process, (3) on the generalization of the
results and (4) on the dataset and use of third-party services.
Figure 2c shows the results. Note that works may report
limitations covering several categories.

6A longitudinal study is a correlational research study that concerns
repeated observations of the same variables over long periods of time

7Stratified random sampling involves the division of population into
smaller groups (strata), that share same characteristics before the sampling
takes place.
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FIGURE 2. (a) Empirical methods, (b) sampling techniques employed and (c) classification of the
limitations reported.

Around half of the works (51.25% of the works reporting
limitations) reported threats due to the empirical method
employed, which included potential errors and bias intro-
duced by the authors, techniques and tools used. With respect
to the data collection (22.50%), it is interesting to note that
around half of them explicitly commented on problems with
the GitHub API (e.g., limited quota of requests or events not
properly returned). The issues regarding the generalization of
the results (40.00%) was mainly due to the non-probability
sampling techniques chosen. Instead, the generalization of
the results to Open Source in general is not regarded as a
threat and assumed to be true given the current dominance
of GitHub as Open Source code hosting platform. Finally, we
detected someworks (23.75%) which reported problems with
datasets and third-party services mirroring GitHub, mostly
related to their size and data freshness.

C. RQ3: WHICH TECHNOLOGIES HAVE BEEN USED TO
EXTRACT AND BUILD DATASETS FROM GitHub?
Papers studying GitHub must first collect the data they need
to analyze, which can either be created from scratch or by
reusing existing datasets. We classified the selected papers
according to:
• Data collection process, which reports on the tool/s used
to retrieve the data. Currently there are six possible
values for this dimension according to the tool used: (1)
GHTorrent [80], (2) GitHub Archive, (3) GitHub API,
(4) Others (e.g., BOA [101]), (5) manual approach and
(6) a mixture of them.

• Dataset size and availability, which reports on the num-
ber of users and/or projects of the dataset used in the
study, and indicates whether the dataset is provided
together with the publication. This may help to evaluate
the replicability of the work.

1) DATA COLLECTION PROCESS
Figure 3a depicts the frequency of each data source, show-
ing that the main ones are GHTorrent and the GitHub API.

This figure illustrates a clear trade-off when deciding the data
source: curated data vs. fresh data. Third party solutions offer
a more curated dataset that facilitates the analysis while the
GitHub API guarantees an up-to-date information. Moreover,
the GitHub API request limit acts as a barrier to get data from
GitHub. This affects, both, curated datasets (that take their
data raw also via the GitHub API) and individual researchers
accessing directly the API.

2) DATASETS SIZE
In total, 36.56% of the works reported the dataset size
in terms of projects, while 36.56% of them used the
number of users. 26.88% of the works provided the
two dimensions. Figures 3 summarizes the number and
size of the datasets according to the number of projects
(see Fig. 3b), number of users (see Fig. 3c) and both
(see Fig. 3d).

Regarding the dataset availability, there are 43.75%
(35 papers) of the works providing either a link to down-
load the datasets used or use datasets freely available on
the Web. The remaining 56.25%, although mostly explaining
how the datasets were collected and treated, do not pro-
vide any link to the dataset nor to an automatic process to
regenerate it.

D. RQ4: WHAT ARE THE RESEARCH COMMUNITIES
AND THE PUBLICATION FORA USED?
We believe it is also interesting as part of a systematic map-
ping study to characterize the research community behind the
field, both in terms of the people and the venues where the
works are being published. According to this, we analyzed
the two following dimensions:
• Researchers, which we propose to analyze by building
the co-authorship graph of the selected papers. In this
kind of graphs, authors are represented as nodes while
co-authorship is represented as an edge between the
involved author nodes. Furthermore, the weight of a
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FIGURE 3. (a) Tools used to collect data from GitHub. Number of works reporting the size of
their datasets according to (b) the number of projects, (c) number of users and (d) both.

node represents the number of papers included in the set
of selected papers for the corresponding author while
the weight of an edge indicates the number of times
the involved author nodes have coauthored a paper. By
using co-authorship graphs, we can apply well-known
graph metrics to analyze the set of selected papers from
a community dimension perspective.

• Publication fora, which requires a straightforward analy-
sis as we only have to use the venue where each selected
paper was published.

1) RESEARCHERS
Figure 4 shows the co-authorship graph for the set of
authors of the selected papers. The graph includes 179 nodes
(i.e., unique authors) and 316 edges (i.e., co-authorship rela-
tions). We analyzed the number of connected components
in the graph, which helps to identify sets of authors that
are mutually reachable through chains of co-authorships.
In total, there are 39 connected components and, as can be
seen, there are 9 major sub-graphs including more than 5
author nodes. One of them (see bottom part of the graph) is the
largest sub-graph including 41 author nodes (almost 22.91%
of the total number of authors). We consider each of these

connected components as sub-communities of collaboration.
This last connected component also contributes to a global
graph diameter of 7 (largest distance between two author
nodes). On the other hand, the average path length in the
graph is 2.94.

We also calculated the betweenness centrality value for
each node, which measures the number of shortest paths
between any two nodes that pass through a particular node
and allows identifying prominent authors in the community
that act as bridges between group of authors. The darker a
node is in Fig. 4, the higher the betweenness centrality it has
(i.e., the more shortest paths pass through).

Finally, we also measured the graph density, which is
the relative fraction of edges in the graph, that is, the ratio
between the actual number of edges and the maximum
number of possible edges in the graph. When applied to
co-authorship graphs, this metric can help us to measure the
collaboration by studying how connected are the authors.
In our graph, the graph density is 0.02, which is a very low
value due to the existence of numerous connected compo-
nents. This open the door to further collaborations between
authors in the different subcomponents to enrich the research
results in the area.
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FIGURE 4. Co-authorship graph for the selected papers. Nodes represent authors and edges represent co-authorships. The
bigger the node, the more papers such author has. The thicker the edge, the more papers the involved authors have
coauthored. The darker the node, the higher the betweenness centrality.

TABLE 6. Distribution of works along the years.

2) PUBLICATION FORA
Table 6 shows the distribution along the years of the number
of papers both collected and finally selected, as well as the
publication type for the latter group. They span from 2009 to
(July) 2016, and, as can be seen, the number of papers has
been definitely increasing. From the selected works, 72.50%
are conference papers, 11.25% are technical reports, while
journal and workshop papers account for 11.25% and 5.00%,
respectively. Figure 5 depicts the number of primary sources
for each publication forum.

E. CROSS ANALYSIS
In this section we perform an initial cross analysis among
research questions (e.g., areas vs. limitations, areas vs.
datasets, etc.) to identify possible relationships among
them, e.g., are papers studying ecosystems more prone

to use a certain collection process or a specific sampling
technique?

We first studied the dimensions of study for each research
question and then performed the analysis in a pairwise basis.
We identified 10 dimensions in total: (1) areas and (2) topics
regarding RQ1; (3) empirical methods employed, (4) sam-
pling techniques used, (5) limitations, (6) replicability,
(7) diversity and (8) longitudinal studies regarding RQ2; and
(9) data collection process and (10) datasets size regard-
ing RQ3. We studied each pair of dimensions8 and report on
some of the findings in what follows.

The most illustrative findings involve the use of the
areas dimension. Figure 6 shows some results obtained
when cross-analyzing this RQ1 dimension with the others.

8The results of each combination are available at https://github.com/SOM-
Research/github-selection
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FIGURE 5. Publications fora summary.

FIGURE 6. Cross analysis. Results for the areas and (a) replicability, (b) longitudinal studies, (c) limitations
and (d) data collection process dimensions.

Figure 6a shows the results for the areas and replicability
dimensions where the horizontal axis shows the main areas
and the vertical axis the number of works that promoted
replicability by providing a link to the dataset used. As can
be seen, the number of works for the users area is very low
in contrast with the rest, which may be due to the fact that
building and publishing datasets for code artefacts (required
for the software development, projects and ecosystems areas)
is usually easier than collecting data concerning users and
communities (where additional sources like forums or issue
trackers may be required).

The study of areas with longitudinal studies dimensions
(see Fig. 6b) reveals that only the projects area shows a high

value with respect to others, as project history information is
usually available; while the study of areas with limitations
dimensions (see Fig. 6c) shows that most of the works classi-
fied in the users area usually do not self-report limitations of
the study.

Finally, when studying the areas and data collection pro-
cess dimensions (see Fig. 6d), we observed that while studies
on software development and project areas favor the use
of GHTorrent, studies on users tend to rely more on the
GitHub API and works on ecosystems depend more on man-
ual collection processes. Based on our experience, a plausible
explanation is that GitHub API offers richer data concern-
ing user interactions (required for user studies) and that the
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complexity of analyzing ecosystems forces researchers to
always have a direct participation in the data collection
process.

VI. DISCUSSION
In this section we highlight and discuss some of the findings
from our study. This section extends our early analysis [102],
relying on a more recent and different selection of papers.
Note that these findings stand even if we look at specific
subsets of papers, with the few exceptions mentioned before
in the cross-analysis section.

A. LACK OF SPECIFIC DEVELOPMENT AREAS
AND INTERDISCIPLINARY STUDIES
Our analysis of areas/topics reveals a lack of works
studying GitHub with a more interdisciplinary perspective,
e.g., from a political point of view (e.g., study of governance
models in OSS), complex systems (e.g., network analysis) or
social sciences (e.g., quality of discussions in issue trackers).
We also miss works targeting early phases of the develop-
ment cycle (e.g.s studying requirements and design aspects).
Obviously, this kind of studies are more challenging since
there is typically less data available in GitHub or needs more
processing.

B. OVERUSE OF QUANTITATIVE ANALYSIS
Right now, a vast majority of studies rely only on the anal-
ysis of GitHub metadata. We hope to see in the future a
better combination of such studies (typically large regard-
ing the spectrum of analyzed projects but shallow in the
analysis of each individual project) with other studies tar-
geting the same research question but performing a deeper
analysis (e.g., including also interviews to understand the
reasons behind those results) for a smaller subset of projects.
We detected some evidences of this shift in the number of
works applying longitudinal studies, where we found a pos-
itive trend, thus improving the situation detected in OSS by
other works [21], [99].

C. POOR SAMPLING TECHNIQUES
We believe that the GitHub research community could benefit
from a set of benchmarks (with predefined sets of GitHub
projects chosen and grouped according to different charac-
teristics) and/or from having trustworthy algorithms respon-
sible for generating diverse and representative samples [100]
according to a provided set of criteria to study. These sam-
ples could, in turn, be stored and made available for further
replicability studies.

D. SMALL DATASETS SIZE
Most papers use datasets of small-medium size, which are
an important threat to the validity of results when trying
to generalize them. Also, more than half of the analyzed
paper did not provide a link to the dataset they used nor an
automatic process to regenerate it, whichmay also hamper the
replicability of the studies. However, it is important to note

that the number of works sharing their datasets is increasing
over time.

E. LOW LEVEL OF SELF-AWARENESS
We believe the limited acknowledgment of their threats to
validity (around 34% do not report any) puts the reader in
the very difficult situation of having to decide by herself the
confidence in the reported results the work deserves. Works
reporting partial results or findings on very concrete datasets
are perfectly fine but only as long as this is clearly stated.
However, we detected an upward trend in reporting threats to
validity in recent years.

F. NEED OF REPLICATION AND COMPARATIVE STUDIES
Clearly urgent since almost none exist at the moment.
Replicability is hampered by some of issues above and the
difficulties of performing (and publishing) replicability stud-
ies in software engineering [103]. Comparative studies need
to first set on a fixed terminology. Some papers may seem
inconsistent when reporting on a given metric but a closer
look may reveal that the discrepancy is due to their different
interpretation. For instance, this is common when talking
about success, popularity or activity in a project (e.g., one
may consider a project successful as equivalent to popular,
and by popular mean to be starred a lot, while the other
may interpret successful as a project with a high commit
frequency). Replicability is also threaten in studies involving
user interviews, as the material produced as a result of such
interviews is normally not provided.

G. API RESTRICTIONS LIMITS THE
DATA COLLECTION PROCESS
GitHub self-imposed limitations on the use of its API hinders
the data collection process required to perform wide studies.
A workaround can be the use of OAuth access tokens from
different users to collect the information needed. An OAuth
access token9 is a form to interact with the API via automated
scripts. It can be generated by a user to allow someone else to
make requests on his behalf without revealing his password.
Still, researchers may need a large number of tokens for some
studies. To deal with this issue, we propose that GitHub either
lifts the API request limit for research projects (pre-approving
them first if needed) or offers an easy way for individual users
to donate their tokens to research works they want to support.

H. PRIVACY CONCERNS
Data collection can also bring up privacy issues. Through
our study, we discovered that GitHub and third-party ser-
vices, built on top of it, are sometimes used to contact users
(using the email they provide in their GitHub profile) to find
potential participants for surveys and interviews [26], [30],
[55], [67], [68], [88], [97]. This potential misuse of user
email addresses can raise discontent and complaints from

9https://developer.github.com/v3/oauth/
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the GitHub users.10 Even when it is not clear whether such
complaints are reasonable, the controversy alonemay hamper
further research works and therefore must be dealt with care.
As with the tokens before, we would encourage GitHub to
also have an option in the user profile page to let users say
whether they allow their public data to be mined as part of
research works and under what conditions.

TABLE 7. Existing related work and dimensions considered.

VII. RELATED WORK
Only few works have focused on the study of how software
development practices evolved and may be improved thanks
to social coding platforms like GitHub. Table 7 shows a
summary of the relevant related work and how they cover the
main dimensions considered per research question. As can
be seen, none of the previous studies covers the full range of
dimensions identified in our work and, in most cases, even if a
study does cover one of the dimensions, it does not do it with
the level of detail and precision (e.g., by providing the exact
set of papers in that dimension or giving the precise number
of papers therein) as we do in this survey.

Amannn et al. [104] address as well our RQ1 but partially,
as they present main areas in terms of goals and topics by
text-mining article titles instead of considering in full the
paper content. They also list limitations that may appear
when mining software repositories but they do not provide
statistics about the number of papers reporting or affected by
those limitations and their frequency. Although they comment
on sampling techniques, data collection process and dataset
sizes, the discussion is shallow and they do not classify and
analyze the different methods used. For instance, regarding
the data collection process, they comment on megareposito-
ries (e.g., GitHub, GoogleCode, etc.) and manual processes,
but they do not provide statistics about the technologies used
(i.e., API, GHTorrent, etc.).

Kalliamvakou et al. [21] describe the main challenges to
be faced when mining software repositories and proposes
solutions to alleviate them. Instead they do not classify nor
organize existing papers in terms of such dimensions. Their
goal is more to help new researchers conduct well-designed
software mining studies than to provide a state-of-the-art of
the current research in the field.

Stol and Babar [105] systematically reviewed 63 empir-
ical studies and covered some of our dimensions as well.
Still, they are missing some relevant details on the type of

10For instance: https://github.com/ghtorrent/ghtorrent.org/issues/32

techniques or data collection processes applied and leave out
other aspects as the size of the or diversity of the projects.
Moreover, our study is larger and more up-to-date which is
highly relevant in this field given the huge growth in popular-
ity of social coding platforms like GitHub.

Crowston et al. [99] cover several of our research dimen-
sions but the analysis was done before the release of GitHub
(i.e., mostly on SourceForge and previous platforms). More-
over, most of the dimensions of our RQ2 are missing or lack
enough details (e.g., on the sampling techniques used).

The other works [106], [107] are much more limited in
terms of the scope of the analysis they perform and provide
limited quantitative data on those dimensions.

VIII. THREATS TO VALIDITY
The main threats to the validity of this study concern
the search process and the selection criteria. In particular,
we relied on a set of digital libraries and their query and
citation support. Some works might have been ignored due to
not being properly indexed in those libraries. To mitigate this
issue, we also performed a snowball analysis and an issue-
by-issue browsing of top-level conferences and journals in
the area to look for additional papers.

Wemay also have ignored or filter out some relevant works
that did not fit in our selection criteria. However, given the
large number of retained works after applying the selection
process, we believe that the points of discussions we report
in Sect. VI would still be valid.

Focusing the analysis on GitHub could also be regarded as
a limitation of this work, though we do not claim the results
generalize to other source forges. Still, given the absolute
dominance of GitHub as data source for software mining
research works (as can be seen by perusing the latest editions
of conferences like MSR - Int. Conf. on Mining Software
Repositories), we believe our results are representative of this
research field.

Another threat to validity we would like to highlight is
our subjectivity in screening, classifying and understanding
the original authors’ point of view of the studied papers.
A wrong perception or misunderstanding on our side of a
given paper may have resulted in a misclassification of the
paper. To minimize the chances of this to happen, we applied
a coding scheme as follows. Data acquisition and analysis &
results processes were performed by one coder, who was the
first author of this paper. To ensure the quality of both process,
a second coder, who was the second author of this paper, vali-
dated each phase by randomly selecting a sample of size 25%
of the input of the phase (e.g., a sample of 86 papers for the
classification phase in the selection process) and performing
the phase himself. The intercoder agreement reached for all
phases was higher than 93%. We also calculated the Cohen’s
Kappa value to calculate the intercode reliability. This index
is considered more robust than percent agreement because it
takes into account the agreement occurring by chance. The
kappa value for all the phases was higher than 0.8, which is
normally considered as near complete agreement.
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IX. CONCLUSIONS
In this paper, we have presented a systematic mapping study
of the results (and the empirical methods employed to infer
those results) reported by a selection of papers mining soft-
ware repositories in GitHub to study how software devel-
opment practices evolve and adapt to the massive use of
this social coding platform, specially (but not only) for open
source development. Throughout a combination of systematic
searches, pruning of non-relevant works and comprehensive
forward and backward snowballing processes, we have iden-
tified 80 relevant works that have been thoroughly studied to
shed some light on the development, project management and
community aspects of software development.

We believe this knowledge is useful to project owners,
committers and end-users to improve and optimize how they
collaborate online and help each other to advance software
projects faster and in a way that aligns better with their own
interests. These lessons could also be useful for proprietary
projects and/or projects happening outside GitHub.

Our analysis also raises some concerns about how reliable
are the reported facts given that, overall, papers use small
datasets, poor sampling techniques, employ a scarce variety
of methodologies and/or are hard to replicate. Although, we
also acknowledge a positive shift in the last years, we have
offered a few suggestions to mitigate these issues and hope
this paper serves also to trigger further discussions on these
topics in this (still relatively young) research community.

We would also like to see GitHub itself taking a step
forward and getting more involved with the research com-
munity, e.g., by offering better access to the platform data
for research purposes and even sponsoring research on these
topics (similar to what Google, Microsoft and IBM already
do under different initiatives) since this would benefit both
GitHub and the software community as a whole.

Finally, we hope that this paper is a useful starting point
to understand how GitHub is used in software projects and
creates the basis to perform similar analysis on other fields
(e.g., collaborative book writing and data sharing), which are
also moving to GitHub.
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