Proyecto de fin de carrera (Universitat Oberta de Catalunya)

"Sistema para la protección de la privacidad de los usuarios de los motores de búsqueda de Internet"

Autor: José Manuel Puga Moreira

Titulación: Ingeniería Informática

Årea: Seguridad

Consultor: Jordi Castellà-Roca

Fecha: 12/06/2011

Introducción

- Los WSE (World Search Engines) compiten por ofrecer los mejores resultados.
- Necesitan para ello "conocer" quién hace la consulta.
- Los WSE mantienen un perfil de cada usuario.

- De esta forma pueden distinguir consultas ambiguas
- Google
- Ej.: Júpiter (planeta) o Júpiter (Dios romano.)

E incluso ofrecer publicidad personalizada.

Introducción

- Violación de la privacidad de los usuarios.
- Servicio vs Privacidad
- Actualmente existen herramientas para proteger la privacidad.

- Inconvenientes de estas aplicaciones:
 - Usuario anónimo → WSE no puede ofrecer un servicio óptimo.
 - Elevado tiempo de respuesta.

Introducción: justificación

 Obtener un sistema que permita mantener la privacidad de un usuario sin que afecte demasiado a los resultados de las búsquedas.

 Conseguir un sistema que mejore los tiempos de búsqueda de las herramientas actuales que protegen la privacidad del usuario.

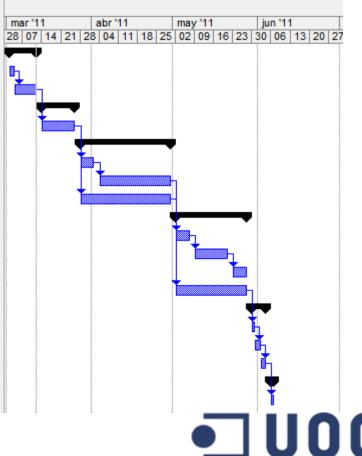
Introducción: objetivos

- El sistema implementado debe ser utilizable en la práctica.
- El WSE no será capaz de obtener un perfil exacto del usuario. Aún así, el perfil que obtenga debe ser útil para proveer un servicio adecuado.

 Deberá ser posible identificar a un usuario que envíe una consulta que vulnere la ley.

Introducción: planificación

- La aplicación desarrollada se desglosa en fases, en las que cada una utiliza como entrada los productos obtenidos en la fase anterior.
- La evolución de la memoria y de la aplicación sigue un camino paralelo.


Fase	Identificación	Descripción
1	Planificación	Se delimita y define el proyecto con respecto al ámbito, el alcance, los objetivos y la elaboración del plan de trabajo.
2	Descripción esquema	Se detalla el funcionamiento del protocolo.
3	Diseño e implementación	Decisiones de diseño: herramientas.Diseño de la arquitectura: componentes.Diagrama de clases.Desarrollo del código.
4	Pruebas	Diseño de los juegos de pruebas.Realización de las pruebas.Estudio de los resultados.
5	Adecuaciones finales	Revisión del códigoRedacción de las conclusionesRevisión de la memoria
6	Entrega del PFC	Se realiza la presentación del PFC.

Introducción: planificación

- Cada fase se divide en diferentes tareas.
- La duración de cada fase viene determinada por la fecha de entrega de cada PAC.

	0	Nombre de tarea	Duración	Comienzo	Fin	I
1		☐ Preparación proyecto	8 días	mié 02/03/11	vie 11/03/11	1
2	III	Elaboración del plan de trabajo	2 días	mié 02/03/11	jue 03/03/11	
3		Redacción de la introducción	6 días	vie 04/03/11	vie 11/03/11	
4		☐ Descripción esquema	10 días	lun 14/03/11	vie 25/03/11	
5		Redacción de la descripción del esquema	10 días	lun 14/03/11	vie 25/03/11	
6		□ Diseño e implementación del esquema	25 días	lun 28/03/11	vie 29/04/11	
7		Diseño	5 días	lun 28/03/11	vie 01/04/11	
8		Implementación	20 días	lun 04/04/11	vie 29/04/11	
9		Redacción del diseño y la implementación	25 días	lun 28/03/11	vie 29/04/11	
10		□ Pruebas	20 días	lun 02/05/11	vie 27/05/11	
11		Diseño del juego de pruebas	5 días	lun 02/05/11	vie 06/05/11	
12		Realización de las pruebas	10 días	lun 09/05/11	vie 20/05/11	
13		Estudio de los resultados	5 días	lun 23/05/11	vie 27/05/11	
14		Redacción de las pruebas y del estudio	20 días	lun 02/05/11	vie 27/05/11	
15		☐ Adecuaciones finales	5 días	lun 30/05/11	vie 03/06/11	
16		Preparación del código a entregar	1 día	lun 30/05/11	lun 30/05/11	
17		Redacción de las conclusiones	2 días	mar 31/05/11	mié 01/06/11	
18		Revisión final de la memoria	2 días	jue 02/06/11	vie 03/06/11	
19		☐ Entrega del PFC	1 día	lun 06/06/11	lun 06/06/11	
20		Presentación de la defensa del PFC	1 día	lun 06/06/11	lun 06/06/11	

www.uoc.edu

Descripción del esquema

- El esquema se basa en el uso de las redes sociales.
- Las redes sociales mantienen conectados usuarios con intereses comunes.
- Una consulta creada por un usuario puede ser enviada al WSE por el propio usuario o ser reenviada por la red social para que otro usuario la envíe al WSE.
- Este hecho no impide al WSE de crear un perfil del usuario. Pero el perfil que elabore será uno distorsionado.
- El perfil será utilizable (a un determinado nivel) para ofrecer un servicio adecuado al usuario, ya que los grupos de usuarios en una red social comparten intereses y aficiones.

Descripción del esquema

Tipos de usuarios:

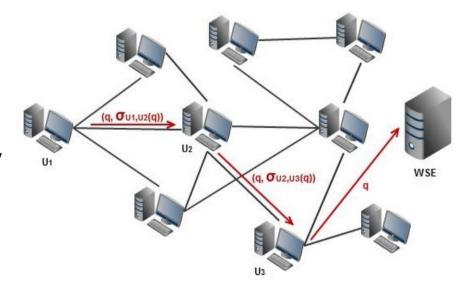
- Honesto. Sigue el protocolo propuesto.
- Egoísta. Aquel que debiendo enviar una consulta al WSE la reenvía a uno de sus vecinos, o que descarta todas las consultas recibidas de sus vecinos.

Protocolo:

- ¿Como decide un usuario que crea una consulta si reenviarla o enviarla al WSE? → Función de selección de usuario
- ¿Como decide un usuario que recibe la consulta si reenviarla o enviarla al WSE? → *Función de reenvío de consulta*
- ¿Como aislar los usuarios egoístas? → Función del nivel de egoísmo

Descripción del esquema: función del nivel de egoísmo

- Objetivo: penalizar a los usuarios egoístas.
- Cada usuario asigna una probabilidad de aceptar consultas a cada uno de sus vecinos.
- Probabilidad inicial = 1.
- Ejemplo de funcionamiento:
 - Un usuario U_1 envía una consulta a uno de sus vecinos U_2 .
 - Si U_2 acepta la consulta:
 - U_1 aumenta la probabilidad de aceptar consultas de U_2 .
 - U_2 disminuye su probabilidad de aceptar consultas de U_1 .
 - Si U₂ rechaza la consulta:
 - U_1 disminuye su probabilidad de aceptar consultas de U_2 .


Descripción del esquema: firma digital

- Una consulta de un usuario puede ser enviada por cualquier miembro del grupo de la red social.
- Este hecho puede provocar que un usuario envíe al WSE una consulta que vulnere la ley y que él no haya creado.
- Para solventar el problema el protocolo utiliza certificados para probar la transacción entre dos usuarios.
- En un entorno real sólo tendría validez legal la firma electrónica avanzada, en donde la clave pública de cada usuario estaría certificada por una CA (Autoridad Certificadora).
- Para los certificados de transacción se utiliza XML "Enveloped".

Descripción del esquema: firma digital

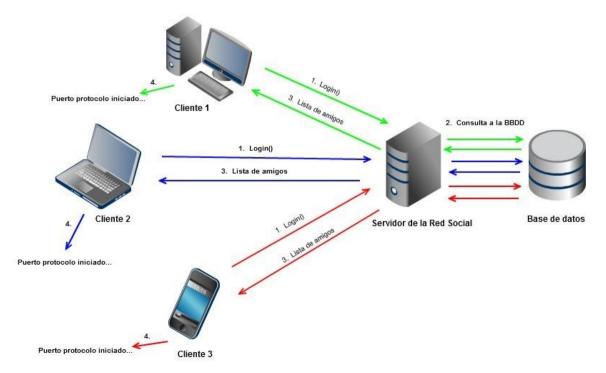
- U_1 crea una consulta que será enviada a U_2 .
- U_1 envía el par $(q, \sigma_{U1,U2}(q))$ donde $\sigma_{U1,U2}(q)$ es el certificado que prueba la transacción entre U_1 y U_2 .
- El certificado es firmado por U_1 utilizando su clave secreta.
- El usuario U₂ recibe la consulta y el certificado, verificando la firma con la clave pública deU₁.
- Si todo es correcto U₂ guarda en disco el certificado.

Descripción del esquema: protocolo

Usuario que crea consulta:

- Ejecuta función de selección de usuario.
- Si es él el responsable envía la consulta al WSE.
- En caso contrario firma la consulta con su clave privada y la envía al usuario que ha determinado la función.

Usuario que recibe una consulta:


- Acepta o rechaza la consulta según la probabilidad de aceptar consultas que tenga asignado al usuario que le envía la consulta.
- Verifica la firma de la consulta, y si es válida, guarda el certificado de la transacción en disco.
- Ejecuta función de reenvío de usuario.
- Si es él el responsable envía la consulta al WSE.
- Si no, firma la consulta con su clave privada y la envía al usuario que ha indicado la función de reenvío.

Diseño

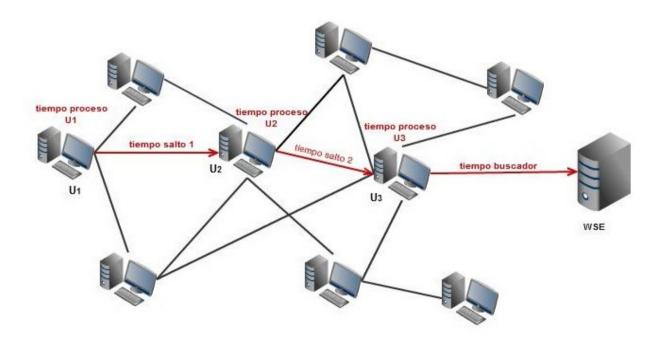
Componentes:

- Servidor. Simula el servicio de una red social.
- Base de Datos. Contiene información de los usuarios de la red social.
- Cliente. Usuario de la red social y a su vez usuario del protocolo.

Implementación

- Lenguaje de programación: JAVA.
- Base de datos: MySQL.
- Comunicaciones: Sockets.
- Clases implementadas:
 - Server. Simula el comportamiento de la red social.
 - ServerThread. Procesa una petición que llega al servidor.
 - Client. Simula un usuario de la red social y del protocolo.
 - Protocol. Implementa el funcionamiento del esquema diseñado.
 - Query. Describe una consulta procesada por el protocolo.
 - User. Representa e identifica un usuario para ejecutar el protocolo apropiadamente.
 - WSE. Implementa las funciones para enviar una consulta al WSE.
 - Response. Representa la respuesta del WSE.
 - XML. Funciones relacionadas con la creación y manipulación XML.
 - Crypto. Métodos relacionados con la firma digital de una consulta.

Pruebas


- Red social de 20 y 100 usuarios.
- Uso de la aplicación *ReadGraph* para importar los datos de un fichero que representa una red social a la base de datos.
- Pruebas realizadas en una sola máquina:
 - Procesador: Intel Core 2 Duo T7500 2'2 Ghz
 - Memoria RAM: 2Gb
 - Arquitectura: 64 bits
 - Sistema Operativo: Windows 7 Ultimate 64 bits
- No se realiza el envío real al WSE.
- Datos interesantes: número de saltos de cada consulta y tiempo de proceso de cada usuario.
- Clase Statistics. Utilizada para guardar información de un usuario del protocolo, útil para efectuar análisis.
- Clase *Test*. Script que permite configurar los parámetros de una prueba e iniciar el proceso.

www.uoc.edu

Pruebas

- Estimación del tiempo de una consulta en un entorno real:
 - Tiempo medio de comunicación entre dos usuarios en una red P2P: 530 ms.
 - Tiempo medio de una búsqueda directa al WSE: 400 ms.

$$t_{\textit{consulta}} = t_{\textit{procesoUsuario}} * (n^o \textit{medio saltos} + 1) + 2 * (t_{\textit{salto}}) * (n^o \textit{medio saltos}) + t_{\textit{respuestaWSE}}$$

Resultados

- Se distribuyen las consultas de forma equitativa por la red.
- Siguiendo un comportamiento normal todos los usuarios mantienen una alta predisposición a aceptar consultas de sus vecinos.
- El sistema aísla correctamente a los usuarios que se comportan de forma egoísta → El protocolo no protege su identidad frente al WSE.
- Usuarios con menos vecinos → más probabilidad de enviar consultas directamente al WSE.
- Red de 20 usuarios → 2,11 saltos de media por consulta.
- Red de 100 usuarios → 3,09 saltos de media por consulta.
- Estimación del tiempo medio de búsqueda en un entorno real:
 - Número medio de saltos por consulta: 2,11525
 - Tiempo medio de proceso de usuario: 0,105488 segundos
 - Total búsqueda = 2,9708 segundos

Conclusiones

- Se han logrado con éxito los objetivos del PFC siguiendo la planificación inicial.
- Se ha obtenido un mejor tiempo de búsqueda en comparación con otras implementaciones.
- Datos satisfactorios en cuanto al número promedio de saltos.
- El aumento en el número de usuarios de la red social implica un aumento en el número medio de saltos por consulta.
- Implementación totalmente operativa en un entorno real:
 - Es necesario configurar las tablas NAT de los routers.
 - Se debe disponer de una máquina que simula el servidor de una red social.
- La existencia de una CA complicaría la puesta en marcha en un escenario real.

www.uoc.edu

Fin de la presentación

