
 

 

 
Citation for published version 
 
Cánovas Izquierdo, J.L. & Cabot, J. (2016). JSONDiscoverer: Visualizing 
the schema lurking behind JSON documents. Knowledge-Based Systems, 
103(), 52-55. 
 
DOI 
https://doi.org/10.1016/j.knosys.2016.03.020 
 
Document Version 

 
This is the Submitted Manuscript version. 
The version in the Universitat Oberta de Catalunya institutional repository, 
O2 may differ from the final published version. 
 
 
Copyright and Reuse 
 
This manuscript version is made available under the terms 
of the Creative Commons Attribution Non Commercial  No Derivatives 
licence (CC-BY-NC-ND) 
http://creativecommons.org/licenses/by-nc-nd/3.0/es/​, which permits 
others to download it and share it with others as long as they credit you, 
but they can’t change it in any way or use them commercially. 
 
 
Enquiries 
 
If you believe this document infringes copyright, please contact the 
Research Team at: repositori@uoc.edu 
 

                           
 

 

Universitat Oberta de Catalunya  Research archive 
 

 
 

https://doi.org/10.1016/j.knosys.2016.03.020
http://creativecommons.org/licenses/by-nc-nd/3.0/es/


JSONDiscoverer:

Visualizing the schema lurking behind JSON documents

Javier Luis Cánovas Izquierdoa, Jordi Cabotb

ajcanovasi@uoc.edu. UOC. Barcelona, Spain
bjordi.cabot@icrea.cat. ICREA - UOC. Barcelona, Spain

Abstract

The so-called API economy is pushing more and more companies to provide
open Web APIs to access their data, typically using the JavaScript Object
Notation (JSON) as interchange data format. While JSON has been designed
to be easy to read and parse, their structure is implicit. This poses a serious
problem when consuming and integrating Web APIs from different sources
since it forces us to manually analyze each individual API in detail. This
paper presents JSONDiscoverer, a tool that alleviates this problem by
discovering (and visualizing) the implicit schema of JSON documents as well
as possible composition links among JSON-based Web APIs.
Tool website: http://som-research.uoc.edu/tools/jsonDiscoverer

Keywords: JSON, schema discovery, concept matching, Web API

1. Introduction1

The number of Web APIs is growing every day1 opening the door to an2

unlimited number of new services built on top of such APIs. Most of those3

Web APIs use JavaScript Object Notation (JSON) as a data interchange4

format. JSON mimics the JavaScript syntax, thus becoming human readable5

and easily parseable. However, it is schemaless, i.e., JSON documents do not6

include an explicit definition of the structure of the JSON objects contained7

in them.8

1The website Programmable web (http://www.programmableweb.com) alone indexes
over 13,000 APIs.

Preprint submitted to Knowledge-Based Systems March 29, 2016



This has several advantages but it is a serious problem when developing9

Web services that need to consume and exchange information among a set of10

APIs since developers need to figure out the structure of the JSON data pro-11

vided by each one and the possible relationships between them. JSONDis-12

coverer pretends to liberate developers from performing these tasks by13

inferring and visualizing the implicit schema of JSON data as well as the14

possible composition links among JSON-based Web APIs. The tool has been15

made available as a web application. Since its release, JSONDiscoverer16

has been used to parse on average 375 JSON documents each month.17

2. Problem and Background18

The first thing needed to reuse/combine Web APIs is a good understand-19

ing of the data model behind them: what the data is about, what attributes20

each data object has, how they are related and so on.21

JSON being schemaless combined with the fact that the few languages22

to specify Web APIs are still under development (e.g., RAML2 or Swagger3,23

which allow specifying API services and their parameters but not the full24

API schema) or are not widely used (e.g., JSON Schema [1]) implies that25

developers must manually test Web APIs and try to deduce the data model26

lurking behind their services. Earlier research efforts (e.g., [2] and [3]) could27

be applied to analyze JSON documents, however, they are specially tailored28

to NoSQL databases and do not provide assistance to integrate Web APIs.29

Figure 1 (grey boxes) illustrates the typical scenario when trying to in-30

tegrate several JSON-based Web APIs. First, developers test each service31

provided and reverse engineer the implicit structure of the JSON data re-32

turned when calling them. Then, these individual service schemas need to33

be combined to build the full Web API schema (i.e., the global data model34

the API is giving access to). If two or more Web APIs need to be integrated,35

a last step is required aimed at identifying possible connections by search-36

ing for similar JSON elements that could be representing the same concept.37

Besides, the signature of each individual Web API service must be also con-38

sidered to guarantee the accessibility of the target resources. Needless to say39

this is a time-consuming and error-prone task.40

2http://raml.org
3http://swagger.wordnik.com

2



A
PI

1

JSON DataS1.1

JSON DataS1.2

SchemaAPI1

SchemaS1.1

SchemaS1.2

A
PI

2

JSON DataS2.1

JSON DataS2.2

SchemaAPI2

SchemaS2.1

SchemaS2.2

Composition
Graph

Sequence
Diagram

Simple
Discovery

Advanced
Discovery

Compostion
Discovery

Composition
Assistant

Figure 1: Discovery of the implicit structure from a set of JSON-based Web APIs. The
main functionalities of our tool are represented with black-filled rounded boxes while
input/output data is depicted as white-filled boxes.

3. Software Functionalities41

JSONDiscoverer alleviates this situation by executing an automatic42

discovery process on the JSON data that uncovers the schema behind JSON-43

based Web APIs and suggests possible composition paths.44

The tool provides three main functionalities, which can be used separately45

or chained (see black-filled boxes in Figure 1):46

1. Simple discovery. It discovers the schema of a given set of JSON47

documents returned by a single service. The more the better, since48

some properties of the (implicit) model can only be deduced when49

having several examples.50

2. Advanced discovery. It takes the output of the simple discoverer for51

each service of a given Web API to infer its global schema.52

3. Composer. It takes a set of inferred Web API schemas and looks for53

composition links (i.e., common concepts or attributes). As a result,54

it generates a composition graph. The Composition Assistant will use55

this graph to help you find composition paths among the Web APIs.56

JSONDiscoverer draws schema information as UML class diagrams,57

including concepts (i.e., classes) and their properties (i.e., attributes and58

associations linking the different concepts). Potential Web API compositions59

are represented by means of UML sequence diagrams showing the possible60

sequence of Web API calls.61

3



More information about the discovery rules applied in the simple and62

advanced discoverers can be found in [4], while a description about the com-63

position rules and sequence diagram generation is done in [5].64

4. Implementation65

JSONDiscoverer has been developed as a servlet-based web applica-66

tion including: (1) a backend developed in Java and providing the functional-67

ities listed above; and (2) a front-end website implemented as an AngularJS68

web application. The website includes overlays to help newcomers to use the69

tool and a section explaining the inner workings for advanced users. Beyond70

this web frontend, JSONDiscoverer can also be executed from regular Java71

programs (see details on the tool website).72

The parsing and management of JSON documents is performed by us-73

ing the GSON library4. Model management relies on the Eclipse Modeling74

Framework (EMF)5 while we use EMF2GV6 for their rendering.75

5. Example76

Figure 2 shows the Simple Discoverer page with an example. Once the77

user provides the JSON document to analyze in the textbox (or uses the78

default example for testing purposes) the button Discover Schema launches79

the discovery process, which sends the JSON document to the backend. As a80

result, the backend returns the domain model (i.e., schema) and JSON data81

(as an instance of the generated model), both as EMF models and pictures.82

The EMF models can be downloaded by the user and directly imported into83

other modeling tools for further analysis and manipulation.84

6. Conclusion85

In this paper we have presented JSONDiscoverer, a tool aimed at86

promoting the integration and composition of JSON-based Web APIs. As87

further work we plan to enhance the concept-matching heuristics in the (ad-88

vanced) discovery and composition process, and to provide code-generation89

facilities to realize the selected API’s integrations.90

4https://github.com/google/gson
5https://eclipse.org/modeling/emf
6https://marketplace.eclipse.org/content/emf-graphviz-emf2gv

4



Predefined
JSON example

Access to
tool functionalities

Help
overlay

Schema
discovery

Download
results

Discovered
schema & data

Tool feature
description

Figure 2: Webpage for the simple discovery.

References91

[1] IETF, JSON Schema Specification. http://json-schema.org/.92

[2] M. Klettke, U. Störl, S. Scherzinger, Schema Extraction and Structural93

Outlier Detection for JSON-based NoSQL Data Stores, in: BTW conf.,94

2015, pp. 425–444.95

[3] D. Sevilla, S. Feliciano, J. G. Molina, Inferring Versioned Schemas from96

NoSQL Databases and Its Applications, in: ER conf., 2015, pp. 467–480.97

[4] J. L. Cánovas Izquierdo, J. Cabot, Discovering Implicit Schemas in JSON98

Data, in: ICWE conf., Vol. 7977, LNCS, 2013, pp. 68–83.99

[5] J. L. Cánovas Izquierdo, J. Cabot, Composing JSON-based Web APIs,100

in: ICWE conf., Vol. 8541, LNCS, 2014, pp. 390–399.101

5



Required Metadata102

Current executable software version103

Note that the tool has been developed as a servlet-based web application104

and it is provided as a WAR to be deployed in a servlet container.105

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version v2.1.2
S2 Permanent link to executables of

this version
https://github.com/

SOM-Research/jsonDiscoverer/

tree/v2.1.2

S3 Legal Software License EPL
S4 Computing platform/Operating

System
Java-compatible platform.

S5 Installation requirements & depen-
dencies

Java Servlet container

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

http://som-research.uoc.edu/

tools/jsonDiscoverer/#/doc

S7 Support email for questions jcanovasi@uoc.edu

Table 1: Software metadata (optional)

6



Current code version106

Nr. Code metadata description Please fill in this column
C1 Current code version v2.1.2
C2 Permanent link to

code/repository used of this
code version

https://github.com/SOM-Research/

jsonDiscoverer/tree/v2.1.2

C3 Legal Code License EPL
C4 Code versioning system used Git
C5 Software code languages, tools,

and services used
Java, JavaScript, HTML, CSS, Eclipse,
Tomcat

C6 Compilation requirements, oper-
ating environments

Client-side: HTML, CSS, JavaScript
Server-side: Java, Servlets, Tomcat

C7 If available Link to developer doc-
umentation/manual

http://som-research.uoc.edu/

tools/jsonDiscoverer/#/doc

C8 Support email for questions jcanovasi@uoc.edu

Table 2: Code metadata (mandatory)

7


	Caratula_Article_Preprint_CC_BY-NC-ND_en(46)
	KNOSYS-3459(1)
	Caratula_Article_Preprint_CC_BY-NC-ND_en(17)
	KNOSYS-3459




