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ABSTRACT
Software development is becoming more and more collaborative, emphasizing the

role of end-users in the development process to make sure the final product will

satisfy customer needs. This is especially relevant when developing Domain-Specific

Modeling Languages (DSMLs), which are modeling languages specifically designed

to carry out the tasks of a particular domain. While end-users are actually the experts

of the domain for which a DSML is developed, their participation in the DSML

specification process is still rather limited nowadays. In this paper, we propose a

more community-aware language development process by enabling the active

participation of all community members (both developers and end-users) from the

very beginning. Our proposal, called Collaboro, is based on a DSML itself enabling

the representation of change proposals during the language design and the

discussion (and trace back) of possible solutions, comments and decisions arisen

during the collaboration. Collaboro also incorporates a metric-based recommender

system to help community members to define high-quality notations for the

DSMLs. We also show how Collaboro can be used at the model-level to facilitate the

collaborative specification of software models. Tool support is available both as an

Eclipse plug-in a web-based solution.

Subjects Programming Languages, Software Engineering

Keywords Collaborative development, Domain-specific languages, Model-driven development

INTRODUCTION
Collaboration is key in software development, it promotes a continual validation of the

software to be build (Hildenbrand et al., 2008), thus guaranteeing that the final software

will satisfy the users’ needs. Furthermore, the sooner the end-users participate in the

development life-cycle, the better, as several works claim (Hatton & van Genuchten, 2012;

Rooksby & Ikeya, 2012; Dullemond, van Gameren & van Solingen, 2014). When the

software artefacts being developed target a very specific and complex domain, this

collaboration makes even more sense. Only the end-users have the domain knowledge

required to drive the development. This is exactly the scenario we face when performing

(meta) modeling tasks.

On the one hand, end-users are key when defining a Domain-Specific Modeling

Language (DSML), a modeling language specifically designed to perform a task in a

certain domain (Sánchez Cuadrado & Garcı́a Molina, 2007). Clearly, to be useful, the

concepts and notation of a DSML should be as close as possible to the domain concepts

and representation used by the end-users in their daily practice (Grundy et al., 2013).

Therefore, the role of domain experts during the DSML specification is vital, as noted by
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several authors (Kelly & Pohjonen, 2009; Mernik, Heering & Sloane, 2005; Völter, 2011;

Bariši�c et al., 2012). Unfortunately, nowadays, participation of end-users is still mostly

restricted to the initial set of interviews to help designers analyze the domain and/or to

test the language at the end (also scarcely done as reported by Gabriel, Goulão &

Amaral (2010)), which requires the development of fully functional language toolsets

(including a model editor, a parser, etc.) (Mernik, Heering & Sloane, 2005; Cho, Gray &

Syriani, 2012). This long iteration cycle is a time-consuming and repetitive task that

hinders the process performance (Kelly & Pohjonen, 2009) since end-users must wait until

the end to see if designers correctly understood all the intricacies of the domain. On the

other hand, those same end-users will then employ that modeling language (or any

general-purpose (modeling) language like UML) to specify the systems to be built.

Collaboration here is also key in order to enable the participation of several problem

experts in the process. Recently, modeling tools have been increasingly enabling the

collaborative development of models defined with either General-Purpose Languages

(GPLs) or DSMLs. However, their support for asynchronous collaboration is still limited,

specially when it comes to the traceability and justification of modeling decisions.

Existing project management tools such as Trac (http://trac.edgewall.org/) or Jira

(http://www.atlassian.com/es/software/jira/overview) provide the environments required

to develop collaboratively software systems. These tools enable the end-user participation

during the process, thus allowing developers to receive feedback at any time (Cabot &

Wilson, 2009). However, their support is usually defined at file level, meaning that

discussions and change tracking are expressed in terms of lines of textual files. This is a

limitation when developing or using modeling languages, where a special support to

discuss at language element level (i.e., domain concepts and notation symbols) is required

to address the challenges previously described and therefore promote the participation

of end-users. As mentioned above, a second major problem shared by current solutions is

the lack of traceability of the design decisions. The rationale behind decisions made during

the language/model specification are implicit so it is not possible to understand or justify

why, for instance, a certain element of the language was created with that specific syntax or

given that particular type. This hampers the future evolution of the language/model.

In order to alleviate these shortcomings, we define a DSML called Collaboro, which

enables the involvement of the community (i.e., end-users and developers) in the

development of (meta) modeling tasks. It allows modeling the collaborations between

community members taking place during the definition of a new DSML. Collaboro

supports both the collaborative definition of the abstract (i.e., metamodel) and concrete

(i.e., notation) syntaxes for DSMLs by providing specific constructs to enable the

discussion. Also, it can be easily adapted to enable the collaborative definition of models.

Thus, each community member has the chance to request changes, propose solutions

and give an opinion (and vote) on those from others. We believe this discussion enriches

the language definition and usage significantly, and ensures that the end result satisfies

as much as possible the expectations of the end-users. Moreover, the explicit recording of

these interactions provides plenty of valuable information to explain the language

evolution and justify all design decisions behind it, as also proposed in requirements
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engineering (Jureta, Faulkner & Schobbens, 2008). Together with the Collaboro DSML, we

provide the tooling infrastructure and process guidance required to apply Collaboro in

practice. In this paper we will use the term Collaboro to refer to both the DSML and the

developed tooling.

The first version of Collaboro, which supported the collaborative development of

textual DSMLs in an Eclipse-based environment, was presented in a previous work by

(Cánovas Izquierdo & Cabot, 2013). Since then, the approach has evolved to include new

features such as: (1) better support for the collaborative development of graphical DSMLs;

(2) a new architecture which includes a web-based front-end, thus promoting usability

and participation for end-users; (3) a metric-based recommender system, which checks

the DSMLs under development to spot possible issues according to quality metrics for

both the domain and the notation (relying on Moody’s cognitive framework (Moody,

2009)); and (4) the development of several cases studies, which have allowed us to

improve the general expressiveness and usability of our approach. Additionally, in this

paper we describe how our tool could be easily adapted to support collaborative

modeling.

Paper structure. The first two sections describe the proposal and approach to develop

DSML collaborative. The following section shows then how our approach could be

easily adapted to use any modeling language to model collaboratively. Next, the

implemented tool and a case study are described. Finally, we review the related work and

draw some conclusions and future work.

COLLABORATIVE (META) MODELING
While collaboration is crucial in both defining modeling languages and then using them

to model concrete systems, the collaborative aspects of language development are more

challenging and less studied since collaboration must cover both the definition of a new

notation for the language and the specification of the language primitives themselves.

Therefore, we will present first Collaboro in the context of collaborative language

development and later its adaptation to cover the simpler modeling scenario. A running

example, also introduced in this section, will help to illustrate the main concepts of such

collaborations.

A DSML is defined through three main components (Kleppe, 2008): abstract syntax,

concrete syntax, and semantics. The abstract syntax defines both the language concepts

and their relationships, and also includes well-formedness rules constraining the models

that can be created. Metamodeling techniques are normally used to define the abstract

syntax. The concrete syntax defines a notation (textual, graphical or hybrid) for the

concepts in the abstract syntax, and a translational approach is normally used to provide

semantics, though most of the time it is not explicitly formalized.1

The development of a DSML usually consists in five different phases (Mernik, Heering

& Sloane, 2005): decision, analysis, design, implementation and deployment. The first

three phases are mainly focused on the DSML definition whereas the implementation

phase is aimed at developing the tooling support (i.e., modeling environment, parser, etc.)

for the DSML. Clearly, the community around the language is a key element in the

1 The collaborative definition of the

semantics of a new DSML is out of the

scope of this paper and considered as

part of future work.
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process. In this paper we use the term community to refer to what is known as

Communities of Practice, which is defined as groups of people informally bound together by

shared expertise and passion for a joint enterprise (Tamburri, Lago & Vliet, 2013). In this

case, the DSML community covers the group of people involved in its development, which

includes both technical level users (i.e., language developers) and domain expert users

(i.e., end-users of the language), where both categories can overlap.

As a running example, imagine the development of a DSML to facilitate the

planification of the baggage claim service in airports. Let’s assume that the airport baggage

service needs to specify every morning the full daily assignment of flights to baggage

claim conveyors so that operators can know well in advance how to configure the actual

baggage system. For that, developers and domain experts (i.e., baggage managers)

collaborate to define a DSML that serves this purpose.

Typically, domain experts are only involved at the very beginning and very end of the

DSML development process. Assuming this is also the case for our example, during

the analysis phase, developers would study the domain with the help of the baggage

managers and decide that the DSML should include concepts such as Flight, Bag and

Conveyors to organize the baggage delivery. Developers would design and later

implement the tooling of the language, thus coming up with a textual DSML like, for

instance, the one shown in Fig. 1 (both abstract and concrete syntax proposals are shown,

except for the elements included in grey-filled boxes that are added later as explained in

what follows). Note that the concrete syntax is illustrated by means of a sample model

conforming to the abstract syntax, other possible notations could be defined.

Once the language is developed, end-users can play with it and check whether it fits

their needs. Quite often, if the end-users only provided the initial input but did not

closely follow how that was interpreted during the language design, they might detect

problems in the DSML environment (e.g., missing concepts, wrong notation, etc.) that

will trigger a new (and costly) iteration to modify the language and recreate all the

associated tools. For instance, end-users could detect that the language lacks a construct to

represent the capacity of conveyors, that may help them to perform a better assignment.

Figure 1 Abstract syntax and an example of concrete syntax of the Baggage Claim DSML (grey-filled

boxes represent elements added after the collaboration).
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Developers can also overlook design constraints and recommendations that could

improve the DSML quality. For instance, constructs in the abstract syntax not having a

concrete syntax definition could become an issue (e.g., arrival attribute in Flight

concept).

The collaboration tasks can go beyond the definition of new DSML and can cover the

usage of well-known GPLs, like UML. Let’s imagine for instance the collaborative

definition of class diagrams in order to identify the domain of a new software artefact.

In fact, we could even reuse the running example to illustrate this scenario. Thus, the

definition of the abstract syntax of the previous DSML requires the collaborative creation

of a UML class diagram. In this sense, end-users (i.e., domain experts) use a common

language (i.e., UML) to create a new model required for a particular purpose (in this case,

the definition of a DSML). As before, end-users can propose changes to the model,

which can after be discussed and eventually accepted/rejected in the final version.

Our aim is to incorporate the community collaboration aspect into all DSML

definition phases, making the phases of the process more participative and promoting the

early detection of possible bugs or problems. As we will see, this support also enables de

collaborative creation of models conforming to modeling languages. Next section will

present our approach.

MAKING DSML DEVELOPMENT COLLABORATIVE
We propose a collaborative approach to develop DSMLs following the process

summarized in Fig. 2. Roughly speaking, the process is as follows. Once there is an

agreement to create the language, developers get the requirements from the end-users to

create a preliminary version of the language to kickstart the actual collaboration process

(step 1). This first version should include at least a partial abstract syntax but could also

include a first concrete syntax draft (see DSML Definition). An initial set of sample

models are also defined by the developers to facilitate an example-based discussion,

usually easier for non-technical users. Sample models are rendered according to the

current concrete syntax definition (see Rendered Examples). It is worth noting that the

rendering is done on-the-fly without the burden of generating the DSML tooling since we

are just showing the snapshots of the models to discuss the notation, not actually

providing at this point a full modeling environment.

Now the community starts working together in order to shape the language (step 2).

Community members can propose ideas or changes to the DSML, e.g., they can ask for

modifications on how some concepts should be represented (both at the abstract and

concrete syntax levels). These change proposals are shared in the community, who can

also suggest and discuss how to improve the change proposals themselves. All community

members can also suggest solutions for the requested changes and give their opinion

on the solutions presented by others. At any time, rendering the sample models with the

latest proposals helps members to have an idea of how a given proposal will evolve the

language (if accepted). During this step, a recommender system (see Recommender)

also checks the current DSML definition to spot possible issues according to quality

metrics for DSMLs. If the recommender system detects possible improvements, it will
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create new proposals to be also discussed by the community. All these proposals and

solutions (see Collaborations) are eventually accepted or rejected.

Acceptance/rejection depends on whether the community reaches an agreement

regarding the proposal/solution. For that, community members can vote (step 3).

A decision engine (see Decision Engine) then takes these votes into account to calculate

which collaborations are accepted/rejected by the community. The engine could follow

an automatic process but a specific role of community manager could also be assigned to

a member/s to consolidate the proposals and get a consensus on conflicting opinions

(e.g., when there is no agreement between technical and business considerations). Once

an agreement is reached, the contents of the solution are incorporated into the language,

thus creating a new version. The process keeps iterating until no more changes are

proposed. Note that these changes on the language may also have an impact on the

model examples which may need to be updated to comply with the new language

definition.

At the end of the collaboration, the final DSML definition is used as a starting point to

implement a full-fledge DSML tooling (see DSML Tooling) with the confidence that it

has been validated by the community (e.g., transforming/importing the DSML definition

into language workbenches like Xtext or Graphical Modeling Framework (GMF)). Note

that even when the language does not comply with commonly applied quality patterns,

developers can be sure that it at least fulfills the end-users’ needs. Moreover, all aspects of

the collaboration are recorded (see Collaboration History), thus keeping track of every

interaction and change performed in the language. Thus, at any moment, this traceability

information can be queried (e.g., using standard Object Constraint Language (OCL)

(Object Management Group, 2015a) expressions) to discover the rationale behind the

elements of the language (e.g., the argumentation provided for its acceptance).

To illustrate our approach, the development of the Baggage Claim DSML mentioned

above could have been the result of the imaginary collaboration scenario depicted in

Fig. 3. After developers completed a first version of the language, the collaboration

Figure 2 Collaborative development of DSMLs.
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begins with a community member detecting the need of expressing the capacity of the

conveyors. Since now we are still in the definition phase, the community has the chance to

discuss the best way to adapt the language to support this new information. The member

that identified the problem would create a change proposal with that aim, and if the

change is deemed as important by the community, other members could propose a

solution/s to adapt the language. As an example, Fig. 3 graphically depicts a possible

collaboration scenario assuming a small community of one end-user and two developers.

Each collaboration is represented as a bubble, and each step has been numbered. In the

Figure, End-User 1 proposes a language change (step 1), which is accepted by the

community (step 2), and then Developer 1 specifies a solution (step 3). The solution is

rejected by End-User 1, including also the explanation of the rejection (step 4). As the

rejection is accepted (step 5), the Developer 1 redefines the solution, which is eventually

accepted (step 6) and the changes are then incorporated into the language. The resulting

changes in the abstract and concrete syntaxes are shown in grey-filled boxes in Fig. 1.

Clearly, it is important to make this collaboration iterations as quick as possible and with

the participation of all the community members. Moreover, the discussion information

itself must be preserved to justify the rationale behind each language evolution, from

which design decisions can be derived.

The recommender system may also participate in the collaboration and eventually

improve the DSML. After checking the DSML definition, the recommender may detect

that not all the attributes in the abstract syntax have a direct representation in the concrete

syntax, as it happens with the arrival attribute of the Flight concept (as we will explain

later, this is the result of applying the metric called Symbol Deficit). Thus, the system may

create a new proposal informing about the situation and then the community could vote

and eventually decide whether the DSML has to be modified.

Our proposal for enabling the collaborative definition of DSMLs is built on top of the

Collaboro DSML, a DSML for modeling the collaborations that arise in a community

Figure 3 Example of collaboration in the Baggage Claim DSML.
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working towards the development of a DSML for that community. In the next sections, we

will describe how Collaboro makes the collaboration feasible by:

� Enabling the discussion about DSML elements,

� providing the metaclasses for representing collaborations and giving support to the

decision-making process,

� providing a metric-based recommender that can help to develop high-quality DSMLs.

Representing the elements of a DSML
To be able to discuss about changes on the DSML to-be, we must be able to represent

both its abstract syntax (i.e., the concepts of the DSML) and its concrete syntax (the

notation to represent those concepts) elements. Additionally, to improve the

understanding of how changes in its definition affect the DSML, we provide a mechanism

to automatically render DSML examples using the concrete syntax notation under

development.

Abstract syntax
The abstract syntax of a DSML is commonly defined by means of a metamodel written

using a metamodeling language (e.g., Meta-Object Facility (MOF) (Object Management

Group, 2015b) or Ecore (Steinberg et al., 2008)). Metamodeling languages normally offer a

limited set of concepts to be used when creating DSML metamodels (like types,

relationship or hierarchy). A DSML metamodel is then defined as an instantiation of this

metamodeling concepts. Figure 4A shows an excerpt of the well-known Ecore

metamodeling language, on which we rely to represent the abstract syntax of DSMLs.

Concrete syntax
Regarding the concrete syntax, since the notation of a DSML is also domain-specific, to

promote the discussion, we need to be able to explicitly represent the notational

elements proposed for the language. Thanks to this, community members will have

the freedom to create a notation specially adapted to their domain, thus avoiding coupling

with other existing notations (e.g., Java-based textual languages or UML-like diagrams).

The type of notational elements to represent largely depends on the kind of concrete

syntax envisioned (textual or graphical). Nowadays, there are some tool-specific

metamodels to represent either graphical or textual concrete syntaxes (like the ones

included in GMF (http://eclipse.org/gmf-tooling), Graphiti (https://eclipse.org/graphiti)

and Xtext (http://eclipse.org/Xtext)), or to interchange model-level diagrams

(Object Management Group, 2014b). However, a generic metamodel covering both

graphical and textual syntaxes (and combinations of both) is not typically available in

other tools. Therefore, we contribute in this paper our own metamodel for concrete

syntaxes. Figure 4B shows an excerpt of the core elements of this notation metamodel.

As can be seen, the metamodel is not exhaustive, but it is a lightweight solution that

suffices to discuss about the concrete syntax elements most commonly used in the

definition of graphical, textual or hybrid concrete syntaxes (offering a good trade-off
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between expressiveness and manageability of the description in order to render and

analyze/recommend changes). Note that, with this metamodel, it is possible to describe

how to represent each language concept, thus facilitating keeping track of language

notation changes.

Concrete syntax elements are classified following the NotationElement hierarchy,

which includes graphical elements (GraphicalElement metaclass), textual elements

(TextualElement metaclass), composite elements (Composite metaclass) and

references to the concrete syntax of other abstract elements (SyntaxOf metaclass) to be

used in composite patterns. The main graphical constructs are provided by the

GraphicalElement hierarchy, which allows referring to external pictures (External

metaclass), building figures (see Figure hierarchy), lines (Line metaclass) and labels for

the DSML elements. A label (Labelmetaclass) serves as a container for a textual element.

Textual elements can be defined with the TextualElement hierarchy, which includes

tokens, keywords and values directly taken from the abstract syntax elements expressed

in a textual form (Value metaclass). It is possible to obtain the textual representation

from either an attribute (AttValue metaclass) by specifying the attribute to be queried

(attribute reference), or a reference (RefValue metaclass) by specifying both the

reference (reference reference) and the attribute of the referred element to be used

(attribute reference). The attribute separator of the Value metaclass allows defining

the separator for multivalued elements. The Composite element can be used to define

complex concrete syntax structures, allowing both graphical and textual composites but

also hybrids. Finally, the SyntaxOf metaclass allows referencing to already specified

concrete syntax definitions of abstract syntax elements, thus allowing modularization and

(b)

(a)

EStructuralFeature

EAttribute EReference

ETypedElement EClassifier

EClass EDataType

EEnum EEnumLiteral

EPackage
0..1 0..*

0..*

+eType

EReference
<<from ECore package>>

NotationElement

SyntaxOfComposite GraphicalElement

x : int
y : int
height : int
width : int

LabelFigure Line

Token Keyword

0..1

1..*
subElems

reference

id : String

TextualElement

separator : String

Value

RefValueAttValue

1..1

EAttribute
<<from ECore package>>

attribute
1..1

EReference
<<from ECore package>>

reference
1..1

text
1..1

1..1
separator

0..*

0..1

0..*

0..*

0..*

External

path: String

NotationDefinition
0..*
elements

OvalRectangle Polygon

fill : Color
stroke : Color

1..*

Figure 4 Excerpts of the (A) Ecore and (B) notation metamodels used to represent, respectively, the

abstract and concrete syntaxes of DSMLs in Collaboro.
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composition. The reference reference of the SyntaxOfmetaclass specifies the reference

to be queried to obtain the set of elements whereas the separator reference indicates the

separator between elements.

Renderer
The current DSML notation specification plus the set of example models for the DSML

(expressed as instances of theDSML abstract syntax) can be used to generate concrete visual

examples that help community members get a better idea of the language being built. We

refer to this generator as renderer. The renderer takes, as inputs: (1) the abstract and (2)

concrete syntaxes of the DSML, and (3) the set of example models conforming to the

abstract syntax; and returns a set of images representing the example models expressed

according to the concrete syntax defined in the notationmodel (additional technical details

about the render process will be given in the Section describing the developed tooling).

We believe the advantages of this approach is twofold. On the one hand, it is a

lightweight mechanism to quickly validate the DSML without generating the DSML

tooling support. On the other hand, developers and end-users participating in the

collaboration can easily assess how the language looks like without the burden of dealing

with the abstract and concrete syntax of DSML, which are expressed as metamodels.

Example
Figure 1A shows an example of the abstract syntax for the Baggage Claim DSML

while Fig. 5 shows the notation model for the textual representation of the metaclass

Figure 5 (A) Textual representation example of the metaclass Conveyor of the Baggage ClaimDSML

and (B) the corresponding notation model.
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Conveyor of such DSML (Fig. 5A shows a textual example and Fig. 5B shows the

corresponding notation model). Note that AttValue and RefValue metaclass instances

are referring to elements from the abstract syntax metamodel. Fig. 1B shows a possible

renderization of a model for such language.

Representing the collaborations
The third metamodel required in our process focuses on representing the collaborations

that annotate/modify the DSML elements described before. This collaboration

metamodel, which is shown in Fig. 6, allows representing both static (e.g., change

proposals) and dynamic (e.g., voting) aspects of the collaboration. Being the core of our

collaborative approach, we refer to this metamodel as the Collaboro metamodel.

Static aspects
Similarly to how version control systems track source code, Collaboro also allows

representing different versions of a DSML. The VersionHistory metaclass represents

the set of versions (Versionmetaclass) through which the collaboration evolves. There is

always a main version history set as trunk (type attribute in VersionHistorymetaclass),

which keeps the baseline of the collaborations about the language under development.

Other version histories (similar to branches) can be forked when necessary to isolate the

collaboration about concrete parts of the language. Different version histories can be

merged into a new one (or the trunk).

Figure 6 Core elements of the Collaboro metamodel.
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Language evolution is the consequence of collaborations (Collaboration metaclass).

Collaboro supports three types of collaborations: change proposals (Proposal

metaclass), solutions proposals (Solution metaclass) and comments (Comment

metaclass). A collaboration is proposed by a user (proposedBy reference) and includes an

explanation (rationale attribute).

A change proposal describes which language feature should be modified and contains

some meta information (e.g., priority or tags). Change proposals are linked to the set

of solutions proposed by the community to be discussed for agreement. It is also possible

to specify possible conflicts between similar proposals (e.g., the acceptance of one

proposal can involve rejecting others) with the conflictWith reference.

Solution proposals are the answer to change proposals and describe how the language

should be modified to incorporate the new features. Each solution definition involves a

set of add/update/delete changes on the elements of the DSML (Change hierarchy).

Change links the collaboration metamodel with the DSML under discussion

(SyntaxElement metaclass), which can refer to the abstract syntax (AbstractSyn

taxElement metaclass) or the concrete syntax (ConcreteSyntaxElement metaclass).

The latter links (maps reference) to the abstract element to which the notation is defined.

Both AbstractSyntaxElement and ConcreteSyntaxElement metaclasses have a

reference linking to the element which is being changed (element reference). Changes

in the abstract syntax are expressed in terms of the metamodeling language (i.e.,

EModelElement elements, which is the interface implemented by every element in the

Ecore metamodel) while changes in the concrete syntax are expressed in terms of elements

conforming to the notation metamodel presented before.

The Change metaclass has a reference to the container element affected by the

change (referredElement reference) and the element to change (target reference).

Thereby, in the case of Add and Delete metaclasses, referredElement reference

refers to the element to which we want to add/delete a “child” element whereas target

refers to the actual element to be added/deleted. In the case of the Update metaclass,

referredElement reference refers to the element which contains the element to be

updated (e.g., a metaclass) whereas target reference refers to the new version of the

element being updated (e.g., a new version for an attribute). The additional source

attribute indicates the element to be updated (e.g., the attribute which is being

updated).

Dynamic aspects
During the process, community members vote collaboration elements, thus allowing

to reach agreements. Votes (Vote metaclass) indicate whether the user (votedBy

reference) agrees or not with a collaboration (agreement attribute). A vote against a

collaboration usually includes a comment explaining the reason of the disagreement

(comment reference of Vote metaclass). This comment can then be voted itself and if it

is accepted by the community, the proponent of the voted proposal/solution should

take such comment into account (the included attribute of Comment metaclass records

this fact).
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The acceptance of a proposal means that the community agrees that the requested

change is necessary (accepted attribute). For each proposal we can have several solutions

but in the end one of them will be selected (selected reference of the Proposal

metaclass) and its changes applied to the DSML definition. Part of this data (like the

accepted and selected properties) is automatically filled by the decision engine

analyzing and resolving the collaboration.

Making decisions
Community votes are used to decide which collaborations are accepted and must be

incorporated into the language. Collaboration models include all the necessary

information, thus allowing the automation of the decision process (i.e., approval of

change proposals and selection of solutions). A decision engine can therefore apply

resolution strategies (e.g., unanimous agreement, majority agreement, etc.) to deduce

(and apply) the collaborations accepted by the community. As commented before, most

times it is necessary to have the role of the community manager to trigger the decision

process and solve possible decision locks.

Example
As example of collaboration, we show in Fig. 7 the collaboration model which would

be obtained when using Collaboro to model the example discussed previously. The figure

is divided in several parts according to the collaboration steps enumerated previously.

For the sake of clarity, references to User metaclass instances have been represented as

Figure 7 The collaboration model representing the collaborations arisen in the Baggage Claim DSML.
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string-based attributes and the rationale attribute is not shown. The figure shows

the collaboration as an instance of the Collaboro metamodel. At the tool level, we offer a

user-friendly interface enabling all kinds of users to easily contribute and vote during the

discussion process while the tool updates the collaboration model behind the scenes in

response to the user events.

Part 1 of Fig. 7 shows the collaboration model just after End-User 1 makes the request.

It includes a new Proposal instance that is voted positively by the rest of the users

and therefore accepted (see part 2). Then, a new solution is proposed by Developer 1

(see part 3), which involves enriching the Conveyor metaclass with a float attribute in

addition to define the concrete syntax. However, this solution is not accepted by all

the community members: End-User 1 does not agree and explains his disagreement

(see part 4). Since the comment is accepted (see part 5), Developer 1 updates the solution

to incorporate the community recommendations (see part 6). Note that the elements

describing the model changes in parts 3 and 6 are mutually exclusive. Moreover, the

included attribute of the Comment element in part 4 will be activated as a consequence of

the solution update. Once everybody agrees on the improved solution, it is selected as

the final one for the proposal (see the selected reference).

Now the development team can modify the DSML tooling knowing that the

community needs such change and agrees on how it must be done. Moreover, the

rationale of the change will be tracked by the collaboration model (from which an

explanation in natural language could be generated, if needed), which will allow

community members to know why the Conveyor metaclass was changed.

Metric-based recommender
When developing DSMLs, several quality issues regarding the abstract and concrete

syntaxes can be overlooked during the collaboration. While developers are maybe the

main responsibles for checking that the language is being developed properly, it is

important to note that these issues may arise from both developers (e.g., they can forget

defining how some concepts are represented in the notation) and end-users (e.g., they

may miss that the notation is becoming too complicated for them to later being able

to manage complex models). We propose to help both developers and end-users to

develop better DSMLs by means of a recommender engine which checks the language

under development to spot possible issues and improvements.

The recommender applies a set of metrics on the DSML to check its quality, in

particular, to ensure that the resulting language is expressive, effective and accurate

enough to be well-understood by the end-users. Metrics can target both the abstract

and concrete syntaxes of a DSML. Concrete syntax metrics can in turn target

either textual or graphical syntaxes. While several metrics for abstract and textual

concrete syntaxes have been devised in previous works (Cho & Gray, 2011; Aguilera,

Gómez & Olivé, 2012; Power & Malloy, 2004; Črepinšek et al., 2010), the definition

and implementation of metrics for graphical concrete syntaxes is still an emerging

working area. Thus, in this work, we explore how metrics for abstract and concrete
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syntaxes can be implemented in our approach, but we mainly focus on those ones

regarding graphical concrete syntaxes.

Abstract syntax metrics
The abstract syntax of a DSML is defined by a metamodel, as commented before. While

the identification of proper DSML constructs (i.e., concepts and relationships) usually

relies on the domain experts, identifying and solving design issues (e.g., creating

hierarchies to promote extensibility or identifying patterns such as factoring attributes)

is normally performed by the developers. Thus, to provide consistent solutions for

recurring metamodel design issues, some metrics applied to abstract syntax metamodels

may offer key insights on its quality.

There are currently several works providing a set of metrics for metamodels as well as

for UML class diagrams that can be applied in this context (e.g., Cho & Gray, 2011;

Aguilera, Gómez & Olivé, 2012). As a proof of concept to evaluate the abstract

syntax of DSMLs in our approach, we implemented a couple of metrics that validate

hierarchical structures in metamodels (inspired by Aguilera, Gómez & Olivé (2012)). Thus,

we consider that such structures are invalid whether either there is only one derived

class or whether an inheritage is redundant (i.e., already covered by a chain of inheritage).

As our approach relies on Ecore, other metrics defined for this metamodeling language

could be easily plugged in by using the extension mechanism provided, as we will

show afterwards.

Concrete syntax metrics
The concrete syntax of a DSML can be textual or graphical (or hybrid). As textual DSMLs

are usually defined by means of a grammar-based approach, which is also the case for

GPLs, existing support for evaluating the quality of GPLs could be applied (e.g., Power &

Malloy (2004) and Črepinšek et al. (2010)). Apart from this GPL-related support, the

current support to assess the quality of the concrete syntaxes in the DSML field is pretty

limited. Thus, in this paper, we apply a unifying approach to check the quality of any

DSML concrete syntax (i.e., textual and/or graphical).

With this purpose, we employ the set of metrics based on the cognitive dimensions

framework (Green, 1989), later formalized by Moody (2009), where metrics are presented

according to nine principles, namely: cognitive integration, cognitive fit, manageable

complexity, perceptual discriminality, semiotic clarity, dual coding, graphic economy,

visual expressiveness and semantic transparency. Several works have applied them to

specific DSMLs (e.g., Genon, Heymans & Amyot (2011b) or Le Pallec & Dupuy-Chessa

(2013)). Nevertheless, none of them has tried to implement such metrics in a way that can

be applied generically to any DSML. As Collaboro provides the required infrastructure

to represent concrete syntax at a technology-agnostic level, we propose to define a set of

DSML metrics adapted from Moody’s principles for designing cognitively effective

notations. In the following, we present how we addressed five of the nine principles to be

applied to our metamodels, and we justify why the rest of the principles were discarded.
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Semiotic clarity. This principle refers to the need of having a one-to-one

correspondence between notation symbols and their corresponding concepts, thus

maximizing precision and promoting expressiveness. We can identify four metrics

according to the possible situations that could appear: (1) symbol deficit, when a concept is

not represented by a notation symbol (sometimes this situation could be evaluated

positively as to avoid having too many symbols and losing visual expressiveness);

(2) symbol excess, when a notation symbol does not represent any concept; (3) symbol

redundancy, when multiple notation symbols can be used to represent a single concept;

and (4) symbol overload, when multiple concepts are represented by the same notation

symbol.

In Collaboro, these metrics can be computed by analyzing the mapping between the

abstract syntax elements and the notation model elements of the DSML (i.e., analyzing

the maps reference in the ConcreteSyntaxElement element). On the one hand, the

analysis of the abstract syntax consists on a kind of flattening process where all the

concepts are enriched to include the attributes and references inherited from their

ancestors. The aim is to identify the DSMLs elements (i.e., concept, attribute or reference)

for which a concrete syntax element has to be defined. On the other hand, the analysis

of the concrete syntax focuses on the discovery of symbols. When a symbol uses multiples

graphical elements to be represented (e.g., using nested Composite elements or

SyntaxOf elements), they are aggregated. The result of this analysis is stored in a map that

links every abstract syntax element with the corresponding concrete syntax element,

thus facilitating the calculation of the previous metrics. This map will be also used in

the computation of the remainder metrics.

Visual Expressiveness. This principle refers to the number of visual variables used in the

notation of a DSML. Visual variables define the dimensions that can be used to create

notation symbols (e.g., shape, size, color, etc.). Thus, to promote its visual expressivenes,

a language should use the full range and capacities of visual variables.

To assess this principle, we define a metric which analyzes how visual variables are

used in a DSML. The metric leverages on the previous map data structure and enriches

it to include the main visual variables used in each symbol. According to the current

support for visual variables of the notation metamodel (recall GraphicalElement

metaclass attributes), these variables include: size (height and width attributes), color

(fill and stroke attributes) and shape (subclasses of GraphicalElement metaclass).

The metric checks the range of visual variables used in the symbols of the DSML and

notifies the community when the notation should use more visual variables and/or more

values of a specific visual variable to cover the full range.

Graphic Economy. This principle states that the number of notation symbols should

be cognitively manageable. Note that there is not an objective rule to measure the

complexity of notation elements (e.g., expert users may cognitively manage more symbols

than a novice). There is the six symbol rule (Miller, 1956) which states that there

should be no more than six notation symbols if only a single visual variable is used.

We therefore devised a metric based on this rule to assess the level of graphic economy

in a DSML.
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Perceptual Discriminality. This principle states that different symbols should be

clearly distinguishable from each other. Discriminality is primarily determined by the

visual distance between symbols, that is, the number of visual variables on which they

differ and the size of these differences. This principle also states that every symbol

should have at least one unique value for each visual variable used (e.g., unique colors

for each symbol). Thus, to assess the perceptual discriminality, we define a metric which

also relies on the previous map data structure, compares each pair of symbols and

calculates the visual distance between them according to the supported visual variables

(i.e., number of different visual variables per pair of symbols). By default, the metric

notifies the community when the average distance is lower than one, but it can be

parameterized.

Dual Coding. This principle suggests that using text and graphics together conveys the

information in a more effective way. Textual encoding should be then used in addition

of graphical encoding to improve understanding. However, textual encoding should

not be the only way to distinguish between symbols. We defined a metric that checks

whether each symbol uses text and graphics elements, thus promoting dual coding. To this

aim, we leverage on our notation metamodel, which allows to attach textual elements

to symbols by employing Label elements that contain TextualElement elements.

This metric notifies the community when more than a half of the symbols are not using

both text and graphics.

The remaining four Moody’s principles were not addressed due to the reasons

described below.

Semiotic Transparency. This principle states that a notation symbol should suggest its

meaning. This principle is difficult to evaluate as it relies onmany parameters such as context

and good practices in the specific domain. Furthermore, as themeaning of a representation is

subjective, an automatic verification of this principle would be difficult to reach.

Complexity Management. This principle refers to the ability of the notation to represent

information without overloading the human mind (e.g., providing hierarchical

notations). Although this could be addressed in the notation model by providing

mechanisms for modularization and hierarchical structuring, we believe that assessing

this principle strongly depends on the profile and background of the DSML end-users and

it is therefore hard to measure.

Cognitive Integration. This principle states that the visual notation should include

explicit mechanisms to support integration of information from different diagrams. In

this sense, this principle refers to the results of composing different DSMLs, which is not

an scenario targeted by our approach.

Cognitive Fit. This principle promotes the fact that different representations of

information are suitable for different tasks and audiences (e.g., providing different

concrete syntaxes for the same abstract syntax). Like in the complexity management

principle, assessing the cognitive fit of the notations of a DSML is directly related to the

expertise of the different communities using the language, which is hard to measure with

an automatic evaluation.
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Recommending changes
The results of the previously shown metrics provide the community developing a DSML

with an important feedback to address potential improvements. In Collaboro, the DSML

development process incorporates a recommender that plays the role of a user in the

collaborationprocess. This “recommender user” can check thedifferent versions of theDSML

under development according to the previously shown metrics and propose new changes

identifying the weak points to be discussed in the community. Metrics can be deactivated

if wished and can be given different relevance values that can also be used to sumup the results

to calculate a general value assessing the quality of the DSML under development.

Example
In this section, we will show an example of the metrics regarding visual expressiveness and

perceptual discriminatity for the Baggage Claim DSML. For the sake of illustration

purposes, we describe these metrics on an alternative graphical syntax to the DSML, where

the Flight concept is represented as a poligon with the shape of an airplane, the

Conveyor concept is represented as a black filled-rectangle and the claims reference is

represented as a line. The computation of these metrics are specially tailored to the

visual variables supported by our notation metamodel. Table 1 illustrates how these two

metrics are calculated. As can be seen, visual expressiveness results assess the number

of different values used for each visual variable. Thus, there are three out of five values

for the shape dimension, two different values for the size dimension and two different

values for the color dimension. On the other hand, the visual distance is calculated for

each pair of symbols and measures the number of different visual variables between

them. For instance, the black-filled rectangle differs in two visual variables (i.e., color and

shape) with the airplane polygon; and all the supported visual variables with regard to the

line. These results reveal a good visual expressiveness (good values for shape and size

visual variables while the color range is appropriate for the number of symbols) and

perceptual discriminality (visual distance is in average more than 2, where the highest

value is 3) therefore validating this graphical notation proposal.

Table 1 Example of Visual Expressiveness and Perceptual Discriminality for the Baggage Claim
DSML.

VE

Shape Polygon Rectangle Line 3/5

Size H:5 H:5 H:1 2

W:9 W:9 W:12

Color Fill:White Fill:Black Fill:White 2/49

Stroke:Black Stroke:Black Stroke:Black

PD Visual Distance Visual Distance Visual Distance

B:2 A:2 A:2

C:2 C:3 B:3

Note:
VE, Visual Expressiveness; PD, Perceptual Discriminability.
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COLLABORATIVE MODELING
In this section we will show how our approach could be easily adapted to support

collaborative modeling. This adaptation is depicted in Fig. 8. Unlike the Fig. 2, where we

illustrated the process for the collaborative development of DSMLs, in this case the

community evaluates and discuss changes about the model being developed and not the

metamodel. Thus, once there is a first version of the model and a set of examples (step 1),

the community discusses how to improve the models (step 2). The discussion arises

changes and improvements, that have to be voted and eventually incorporated in the

model (step 3). Discussion and decisions are recorded (see Collaboration History), thus

keeping track of the modifications performed in the model.

To support this development process, the modifications to perform in the original

Collaboro metamodel are very small. Figure 9 shows the new metamodel to track the

collaboration. As can be seen, the only changed element is the SyntaxElement, which now

has to refer to the main (i.e. root) metaclass of the modeling language being used to link

the model elements with their metamodel definition. For instance, by default, the

Figure includes the element NamedElement from UML, thus illustrating how Collaboro

could be used for the collaborative development of UML models. Other languages could

be supported following this same approach.

TOOL SUPPORT
Since the very first implementation of Collaboro was released, the tool support has

evolved to integrate the full set of features described in this paper2. The new architecture

of the developed tool is illustrated in Fig. 10. The main functionalities of our approach are

implemented by the backend (see Collaboro Backend), which includes specific

Collaborations

End-users

Developers
Collaboration

History

evaluates<< <<

ch
an

ge
s

<<

<<

isStored<< <<

Decision
Engine

2 3

Community
Manager

drives<< <<

updates<< <<

1

Model
Model

Instances instanceOf<< <<

Figure 8 Collaborative modeling.

2 The tool is available at http://som-

research.github.io/collaboro
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components for modeling both the DSML elements and the collaborations (see Modeling

Support), rendering the notation examples (see Notation Renderer) making decisions

(see Decision Engine), and recommending changes (see Recommender System). As

front-end for Collaboro, we have developed two alternatives: (1) a web-based front-end,

which gives access to the collaboration infrastructure from any web browser; and

(2) anEclipse-based front-end, which extends the platformwithviews and editors facilitating

the collaboration. Next, we describe in detail each component of this architecture.

Collaboro backend
This component provides the basic functionality to develop collaborative DSMLs as

explained in this paper. Collaboro relies on the EMF framework (Steinberg et al., 2008) (the

standard de factomodeling framework nowadays) tomanage themodels required during the

development process. In the following, we describe the main elements of this component.

Proposal

accepted : boolean
Solution Comment

included : boolean

sols
Version

id : String

proposals

Collaboration

id : String
rationale : String

User
id : String

proposedBy

MetaInfo

Priority

value : int
TagBased Tag

value : String

Change referredElement

target

Add Update Delete

Vote

agreement : boolean

votedBy

selected

comment

metaInfo

0..* 0..*
1..1

1..1

1..1

votes
0..*

comments 0..* 0..1

1..1
changes0..* 1..1

1..1

0..*

tags
source

1..1

0..*

1..1 1..1

1..1
1..1

1..1

1..1

1..1

1..1

0..1
0..*

0..*

1..1

collaborations

votes

1..1

VersionHistory
type : HistoryType

0..1

0..1versions

HistoryType

TRUNK
BRANCH

previous

1..0 1..0

NamedElement
<<from UML package>>

0..*
conflictWith

0..*

Figure 9 Core elements of the adapted Collaboro metamodel.

Figure 10 Architecture of Collaboro tool support.
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Modeling support
Collaboro provides support for managing models representing the abstract and concrete

syntaxes, and the collaboration models. We implemented the metamodels described in

previous sections as Ecore models (the metamodeling language used in EMF) and

provided the required API. To support concurrent collaboration the tool can be

configured to store the models in a CDO (http://www.eclipse.org/cdo) model repository.

Notation renderer
The tool incorporates a generator which automatically creates the graphical/textual

representation of the DSML example models. This component enables the lightweight

creation of SVG (SVG, 2011) images from notation models to help users “see” how the

notation they are discussing will look like when used to define models with that

DSML. The generator analyzes each example model element, locates its abstract/concrete

syntax elements and interprets the concrete syntax definition to render its textual/

graphical representation. GraphicalElement and TextualElement concrete syntax

elements indicate the graphical or textual representation to be applied (e.g., a figure or a

text field), while Composite and SyntaxOf concrete syntax elements are used for layout

and composite elements. Regarding the layout of the generated graphical/textual

representation, on the one hand, a block-based notation is automatically applied for

textual languages, where each new Composite concrete syntax element (and its contained

elements) is indented. On the other hand, graphical notations are rendered following a

horizontal layout, thus elements are arranged from left to right as the example model

is analyzed. Note that symbols acting as connectors between concepts are detected by

means of the maps reference in ConcreteSyntaxElement, thus allowing the renderer to

know what concepts (and their corresponding symbols) are used as source/target

elements.

Decision engine
This component is responsible for updating the dynamic part of the collaboration

models (recall the support for votes and decisions). The current support of the tool

implements a total agreement strategy to infer community agreements from the voting

information of the collaboration models.

Recommender system
This component provides the required infrastructure to calculate both abstract and

concrete syntaxes metrics in order to ensure their quality. The recommender is executed

on demand by the community manager. The current support of the tool implements

metrics to evaluate the quality of concrete graphical syntax issues.

New metrics can be plugged in by extending the Java elements presented in Fig. 11.

The entry point is the Metric Factory class, which is created for each DSML and is

responsible for providing the list of available metrics. Metrics have a name, a

description, a dimension (e.g., each Moody’s principle), an activation, a priority level

and an acceptance ratio. The acceptance ratio allows specifying the maximum

number of elements of syntaxes that can be wrong (e.g., not conforming to the
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metric). Every metric also includes an execute() method for the recommender to

compute them. This function returns a list of MetricResults describing the

assessment of the metric. Metric results includes a status (i.e., measured in three

levels), a reason describing the assessment in natural language and a ratio of

fulfillment for the metric. Metric results also include a list of ReferredElements

pointing to those abstract or concrete syntaxes elements not conforming with the

metrics being calculated, thus helping developers to spot the DSML elements not

satisfying each metric (if any).

Eclipse plugin
We have developed an Eclipse plugin implementing the Collaboro process and DSML.

The plugin provides a set of new Eclipse views and editors to facilitate the collaboration,

which can be considered a kind of concrete syntax of Collaboro itself for non-expert

users. Via these editors users can propose changes (to add both new abstract syntax

and concrete syntax definitions to existing abstract elements) on the Collaboro model

that, once accepted, will update the abstract and concrete syntax models and link them

together according to the selected solution. Figure 12A includes a snapshot of the

environment showing the last step of the collaboration described in previous sections.

In particular, the Version view lists the collaboration elements (i.e., proposals,

solutions and comments) of the current version of the collaboration model. The

Collaboration View shows the detailed information of the selected collaboration

element in the Version view and a tree-based editor to indicate the changes to discuss

for that element, as shown in Fig. 12A. Finally, the Notation view uses the notation

AbstractSyntaxMetric

ConcreteSyntaxMetric

ConcreteSyntaxGraphicalMetric ConcreteSyntaxTextualMetric

MetricResult

status : MetricResultStatus
reason : String
ratio :  Float

ReferredElement

name :  String
reason : ReferredElementReason
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AbstractSyntaxElement : EObject

ConcreteReferredElement

ConcreteSyntaxElement : NotationElement 

0..*

1..11..1
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0..*

1..1

Metric

name : String
dimension : String

execute() : List<MetricResult>

description : String
acceptanceRatio : Integer
isActive : Boolean
priority : MetricPriority

MetricFactory

abstractSyntax : EPackage
concreteSyntax : Definition

getAbstractSyntaxMetrics() 
getConcreteSyntaxMetrics() 

MetricPriority
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NORMAL
LOW

«Enumeration»

ReferredElementReason
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«Enumeration»

MetricResultStatus

GOOD
MIDDLE
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«Enumeration»

Figure 11 Core elements of the recommender engine.
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generator to render a full example model of the language. For instance, the Notation view

in Figs. 12B and 12C show the notation (i.e., in textual and graphical forms, respectively)

for an example model, which allowed detecting the missing attribute regarding the

conveyor capacity.

Web-based front-end
The developed web support includes two components: (1) the server-side part, which

offers a set of services to access to the main functionalities of Collaboro; and the

(a)

(b) (c)

Figure 12 (A) Snapshot of the Collaboro Eclipse plugin. Collaboro Eclipse plugin with the Notation view rendering the (B) textual and (C)

graphical concrete syntaxes for a model.
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client-side part, which allows both end-users and developers to take part of the DSML

development process from their browsers. The server-side component has been

developed as a Java web application which uses a set of Servlets providing the required

services. On the other hand, the client-side component has been developed as an

AngularJS-enabled website.

Figures 13 and 14 show two snapshots of the developed website. As can be seen in

Fig. 13, the website follows an arrangement similar to that one used in the Eclipse

plugin. Thus, on top, there are two sections showing the current status of (1) the

abstract syntax of the DSML on the left and (2) several model examples rendered with

the concrete syntax definition of the DSML on the right (both sections are zoom-

enabled). These sections include several pictures that can be navigated by the user (e.g.,

it is possible to evaluate the different example models rendered). At the bottom of the

website, there are two more sections aimed at managing the collaborations, in

particular, (1) a tree including all the collaboration elements on the left and (2) a details

view on the right which shows the information of a collaboration once it is selected

in the tree. Furthermore, the tree view also includes buttons to create, edit and delete

collaborations.

Figure 13 Snapshot of the Collaboro web client.
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The website also includes a left menu bar which allows the user to navigate through the

different versions of the DSML as well as indicate some information about the

recommender system status. Additionally, the user can quickly see the number of issues

detected by the recommender, configure the metrics (see Fig. 14) that have to be executed

and perform the metric execution to incorporate the change proposals into the

collaboration.

Figure 14 Snapshot of a subset of supported metrics.
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APPLICATION SCENARIOS
In this section, we report the use of Collaboro in two types of scenarios: (1) the creation of

new DSMLs, based on two different case studies; and (2) the extension of existing

DSMLs, where we describe our experience in one case study. We also mention some

lessons learned in the process.

Developing new DSMLs
We used Collaboro in the creation of two new DSMLs: (1) a textual DSML to define

workflows and (2) three metamodels to represent code hosting platforms in the context

of a modernization process. We explain each case in the following.

Creating a textual DSML

Collaboro was used in the development of a new DSML for MoDisco (http://eclipse.org/

modisco), an Eclipse project aimed at defining a group of tools for Model-Driven Reverse

Engineering (MDRE) processes. The goal of this new DSML is to facilitate the

development of MDRE workflows that chain several atomic reverse engineering tasks to

extract the model/s of a running system. At the moment, the only way to define a MDRE

workflow is by using an interactive wizard. MoDisco users have been asking for a specific

language to do the same in a more direct way, i.e., without having to go through the

wizard.

Some years ago an initial attempt to create such language was finally abandoned but, to

simplify the case study, we reused the metamodel that was proposed at the time to

kickstart the process. Five researchers of the team followed our collaborative process to

complete/improve the abstract syntax of the DSML and create from scratch a concrete

syntax for it. Two of the members were part of the MoDisco development team so they

took the role of developers in the process while the other three were only users of MoDisco

so they adopted the role of end-users in the process. One of the members was in a different

country during the collaboration so only asynchronous communication was possible.

The collaboration took two weeks and resulted in two new versions of the MDRE

workflow language released. The first version was mainly focused on the polishment of

the abstract syntax whereas the second one paid more attention to the concrete syntax

(this was not enforced by us but it came out naturally). The collaboration regarding

the abstract syntax involved changes in concepts and reference cardinalities, while

regarding the concrete syntax, the community chose to go for a textual-based notation

and mainly discussed around the best keywords or style to be used for that.

Defining metamodels
We have also applied Collaboro for defining a set of metamodels used in a model-driven

re-engineering process (i.e., only the abstract syntax of the DSML was part of the

experiment since the models were to be automatically created during the reverse

engineering process). In particular, the process was intended to provide support for

migrating Google Code to GitHub projects, thus requiring the corresponding Platform-

Specific Models (PSM) metamodels for both platforms, plus a Platform-Independent
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Models (PIM) metamodel to represent such projects at high level of abstraction (following

the typical terminology defined by the Model-Driven Architecture (MDA) approach from

the OMG (Object Management Group, 2014a)). As the developers were distributed across

different geographical locations, we decided to use Collaboro to create the PSM and PIM

metamodels required.

Six researchers geographically dispersed (i.e., the participants were part of three

research groups, making three groups composed of 3, 2 and 1 researchers) collaborated in

the definition of the metamodels. To kickstart the collaboration, one of the teams

created a first version of each metamodel. As the collaboration was focused on defining

only the abstract syntax of the language, there was no need for creating a notation model,

and therefore the set of examples were rendered following a class-like diagram style.

The collaboration took three weeks and resulted in two versions for each one of the

PSM metamodels and only one version for the PIM metamodel since there the agreement

was faster.

Extending an existing DSML
More recently, we were contacted by a community member of the Architecture Analysis &

Design Language (AADL) (http://www.aadl.info), and one of the lead developers in

charge of defining an extension to such language. AADL is an architecture description

language used in the embedded and real-time systems field. It is a textual DSMLwith large

abstract and concrete syntaxes. The abstract syntax contains more than 270 concepts and

the concrete syntax is composed of more that 153 elements (including keywords and

tokens). The language was being extended to incorporate support for behavior

specification. This extension, called AADL Behavior Annex (AADL-BA) (http://penelope.

enst.fr/aadl/wiki/Projects#AADL-BA-FrontEn), was being defined as a plugin enriching

both the abstract and concrete syntaxes.

At the time, the definition of the extension was taken care by a standarization

committee open to new contributions. Change proposals were informally managed by in-

person voting (i.e., raising hands in a meeting) or online ballots. Later, the documentation

of the change proposal was spread out in a document, presentation or online wiki

documentation. As explained to us by this lead developer, this process made tracking

modifications very hard in the language as well as the corresponding argumentations, and

he proposed to use Collaboro to manage the development of the extension for AADL. As a

first step, we created a fake AADL project so that this person could play around with

the tool and assess its usefulness for the AADL community. The feedback was that the tool

would be very useful for the project at hand if we were able to deal with some

technical challenges linked to the current setting used by the project so far. In particular, to

be able to use Collaboro for managing the ADDL-BA language definition process we

needed to import: (1) previous discussions stored in the wiki-based platform and (2) the

current concrete syntaxes of the AADL and AADL-BA language defined in Xtext and

ANTLR respectively (the abstract syntax was already defined as an EMF model so it could

be directly imported into Collaboro). It was also clear that to simplify the use of the

tool, we had to provide a web interface since it would be too complex for the members of
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the AADL community to install an Eclipse environment just for the purpose of discussing

around language issues.

In the end, time constraints prevented us to test the tool with AADL community at

large (the AADL-BA committee meets at fixed dates and we did create a web-based

interface but could not get a new version of the tool with all the scripts required to import

the legacy data on time), but the private iterations with the AADL-BA developer and his

validation and positive feedback helped us a lot to improve Collaboro and learn more

about the challenges of using Collaboro as a part of an ongoing language development

effort. We are still in contact with this community and we will see if we can complete the

test in the future or reach out other similar standardization committees.

Lessons learned
The development of the previous case studies provided us with some useful insights

on the Collaboro process that since then have been integrated in our approach. For

instance, in the first and second case studies, it turned out that conflicting proposals

were frequent and therefore we added a conflicting relationship information explicitly in

the collaboration metamodel so that once one of them was accepted we could

automatically shut down the related ones. We also noted an intensive use of comments

(easier to add) in comparison with proposals and solutions. This fact together with the

discussions on what should constitute a new version and when to end the discussions

(e.g., what if there was unanimity but not everybody had voted, should we wait for that

person? for how long?) helped us to realize the importance of an explicit community

manager role in charge of making sure the collaboration is always fluid and there are no

bottlenecks or deadlocks.

During the development of the three case studies, concurrent access to the models

turned out to be a must as well since most of the time collaborations overlapped at some

point. The experience gathered during the development of the first case study, where the

collaboration was performed only in the Eclipse-based plugin, and later the requirements

of the second and third case studies allowed us to provide a second front-end for the

approach based on a web-client. Thus, the web-enabled support was crucial to allow all

the developers to contribute and visualize how the metamodels evolved during the

collaboration.

In all the case studies the notation view allowed the participants to quickly validate the

concrete syntax. This is specially important since for non-technical users it is easier to

discuss at the concrete syntax level than at the abstract level.

The only common complaint we got was regarding the limited support for voting

(mainly raised in the first case study but also raised in the others), where participants

reported that they would have preferred more options instead of just a boolean yes/no

option. Note that this would have a non negligible impact on the decision algorithms that

would need to be adapted to consider the new voting options. We plan to incorporate

extra support to define how to make decisions, in a similar way as proposed in

Cánovas Izquierdo & Cabot (2015).
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RELATED WORK
End-user involvement is a core feature of several software development methods (such as

agile-based ones). The concept of community-driven development of a software product

was introduced by Hess, Offenberg & Pipek (2008) and other authors have studied this

collaboration as part of the requirement elicitation (Mylopoulos, Chung & Yu, 1999),

ontology development (Leenheer, 2009; Siorpaes, 2007) and modeling phases of the

software (Hildenbrand et al., 2008; Lanubile et al., 2010; Whitehead, 2007; Rittgen, 2008),

but neither of them focuses on the DSML language design process nor they present the

collaboration as a process of discussion, voting and argumentation from the beginning to

the end of the language development process. End-user participation is also the core of

user-centered design (Norman & Draper, 1986), initially focused on the design of user

interfaces but lately applied to other domains (e.g., agile methodologies (Hussain, Slany &

Holzinger, 2009) or web development (Troyer & Leune, 1998)). Again, none of these

approaches can be directly applied to the specification of a DSML. Nevertheless, ideas

from these papers have indeed influenced the Collaboro process.

Regarding specific approaches around collaboration in DSML development, some

works propose to derive a first DSML definition by means of user demonstrations

(Cho, Gray & Syriani, 2012; Kuhrmann, 2011; Sánchez Cuadrado, de Lara & Guerra, 2012;

López-Fernández et al., 2013) or grammar inference techniques (Javed et al., 2008;

Liu et al., 2012), where example models are analyzed to derive the metamodel of the

language. However, these approaches do not include any discussion phase nor validation

of the generated metamodel with the end-users. In this sense, our approaches could

complement each other, theirs could be used to create an initial metamodel fromwhich to

trigger the refinement process based on the discussions among the different users

(Cánovas Izquierdo et al., 2013).

Subsets of our proposal can also be linked to: i) specific tools for model versioning

(e.g., AMOR repository (http://www.modelversioning.org) and Altmanninger, Seidl &

Wimmer (2009)) that have already proposed a taxonomy of metamodel changes, ii)

online-collaboration (Brosch et al., 2009; Gallardo, Bravo & Redondo, 2012) promoting

synchronous collaboration among developers, iii) metamodel-centric language definition

approaches (Scheidgen, 2008; Prinz, Scheidgen & Tveit, 2007) where the concrete syntax is

considered at the same level as the abstract one and iv) collaboration protocols (Gallardo

et al., 2013). In all cases, Collaboro extends the contributions of those tools with explicit

collaboration and justification constructs, and provides as well the possibility of offline

collaborations and a more formal representation of the interactions (e.g., voting system,

explicit argumentation and rationale, traceability). The agreed DSML definition at the end

of the Collaboro process could be then the input of the complete DSML modeling

environment aimed by some of the tools mentioned above.

Regarding the recommender engine and the calculation of metrics for DSMLs, we

can identify works centered on assessing the quality of both the abstract and concrete

syntaxes, and the main features of the language (e.g., reusability, integrability or

compatibility). There are several works providing metrics to check the quality in
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metamodels (Cho & Gray, 2011; Aguilera, Gómez & Olivé, 2012) and in the notation used

for textual DSMLs (Power & Malloy, 2004; Črepinšek et al., 2010). With regard to

graphical DSMLs, Moody’s principles (Moody, 2009) have emerged as the predominant

theoretical paradigm. Originally based on the cognitive dimensions framework

(Blackwell et al., 2001; Green, 1989; Green & Petre, 1996), Moody’s principles address their

theoretical and practical limitations. While these principles provide a framework to

evaluate visual notations, other works have put them into practice by analyzing DSMLs

(Genon, Amyot & Heymans, 2011a; Genon, Heymans & Amyot, 2011b; Moody & van

Hillegersberg, 2009; Le Pallec & Dupuy-Chessa, 2013) or complement the use of Moody’s

principles with polls (Figl et al., 2010) also, thus allowing end-user feedback and

involvement during the design process of a visual notation. However, the previous

works are usually centered to specific DSMLs and do not provide mechanisms to be

calculated to any DSML as our approach addresses. Other works such as (Kahraman &

Bilgen, 2013) propose an evaluation framework focused on language features and

therefore not particularly analyzing the quality from an end-user perspective. To the

best of our knowledge, ours is the first proposal to generically assess the cognitive

quality of DSMLs under development.

Finally, the representation of the collaboration rationale is related to the area of

requirements negotiation, argumentation and justification approaches such as the work

presented by Jureta, Faulkner & Schobbens (2008). The decision algorithms proposed

in those works could be integrated in our decision engine. Other decision engines

such as CASLO (Padrón, Dodero & Lanchas, 2005) or HERMES (Karacapilidis &

Papadias, 2001) could also be used.

CONCLUSIONS
We have presented Collaboro, a DSML to enable the participation of all members

of a community in the specification of a new domain-specific language or in the

creation of new models. Collaboro allows representing (and tracking) language

change proposals, solutions and comments for both the abstract and concrete syntaxes

of the language. This information can then be used to justify the design decisions

taken during the definition or use of the modeling language. The approach provides

two front-ends (i.e., Eclipse-based and web-based ones) to facilitate its usage and also

incorporates a recommender system which checks the quality of the DSML under

development.

Once the community reaches an agreement on the language features, our Collaboro

model could be later used as input to language workbenches in order to automatically

create the DSL tooling (i.e., editors, parsers, palettes, repositories, etc.) needed to start

using the language in practice. For instance, it would be possible to automatically create

the configuration files required for XText (for textual languages) or GMF (for graphical

ones) from our notation and abstract syntax models.

As further work, we plan to extend our notation metamodel (and the renderer) to

support richer concrete syntax definitions (e.g., incorporating the concept of anchor to

specify how to represent the source/target connections for links in graphical languages).
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These extensions should be defined as pluggable extensions to allow designers import

them in the definition of languages where it is foreseen those additional concepts may be

needed. We also find interesting to use our recommender system on existing (popular)

languages as a way to assess the “quality” of such languages and, potentially, suggest

changes to improve them. Furthermore, we would like to explore how to support the

collaborative definition of the well-formed rules (e.g., OCL constraints) for the DSML

under development. As these rules are normally expressed by using a (semi)formal textual

language (like OCL), the challenge is how to discuss them in a way that non-technical

experts can understand and participate. Finally, we are also exploring how to better

encourage end-user participation (e.g., by applying gamification techniques) to make sure

the process is as plural as possible. This could be tried as part of a new experiment in an

educational setting at our institution (Universitat Oberta de Catalunya (UOC): www.uoc.

edu) with the (virtual) students in our software engineering master degree.
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