Continuidad y derivabilidad

Límites y continuidad

Mei Calm
Ramon Masià
Joan Carles Naranjo
Núria Parés
Francesc Pozo
Jordi Ripoll
Teresa Sancho

PID_00212679
Módulo 1.1
Ninguna parte de esta publicación, incluyendo el diseño general y de la cubierta, puede ser copiada, almacenada o enviada de ninguna manera ni por ningún medio, tanto si es eléctrico como químico, mecánico, óptico, de grabación, de fotocopia, o por otros métodos, sin la autorización previa por escrito de los titulares del copyright.
Índice

1. **Sucesiones** ... 7
 1.1. Límites de sucesiones .. 7
 1.2. Indeterminaciones ... 10
 1.2.1. Indeterminaciones del tipo $\infty - \infty$ 10
 1.2.2. Indeterminaciones del tipo $0 \cdot \infty$, 0 y ∞ 11
 1.2.3. Indeterminaciones del tipo 1^{∞} 12

2. **Funciones** ... 14
 2.1. Límites de funciones. Límites laterales 14
 2.2. Indeterminaciones de límites de funciones. Reglas y criterios 16
 2.2.1. Regla del Hôpital ... 17
 2.2.2. Indeterminación 1^{∞} 18
 2.2.3. Criterio “función acotada por función que tiende
 a cero” ... 19
 2.3. Funciones continuas ... 20
 2.3.1. Tipos de discontinuidad 21
 2.3.2. Asintotas .. 22

Soluciones a los ejercicios .. 25

Bibliografía ... 26
Introducción

En este módulo, trabajaremos los conceptos de límite y continuidad de funciones. El primero corresponde al de aproximación sucesiva: dada una colección de números, la idea de límite refleja la noción de que estos números se acercan cada vez más a un número dado. El concepto de continuidad es muy intuitivo una vez entendido que las funciones se pueden representar mediante una gráfica. Cuando esta gráfica se puede dibujar sin alzar el lápiz del papel, decimos que la función es continua. Una formulación más precisa (y la de otros conceptos como asintota o derivada) necesita la noción de límite, que se convierte, así, en el mecanismo básico sobre el que se construye la teoría de las funciones. Por lo tanto, será necesario asentar bien esta idea antes de nada y, por supuesto, aprender a calcularlos en las situaciones más habituales.
1. Sucesiones

1.1. Límites de sucesiones

Una sucesión es una colección infinita numerada de números reales.

En una sucesión, que haya un orden es fundamental: hay un primer número (que denotamos \(A_1\)), un segundo \(A_2\), un tercero \(A_3\), etc. Por ejemplo 1, 2, 3, . . . es una sucesión que no para de crecer. Diremos que es la sucesión \(A_n = n\) (el término decimoquinto \(A_{15}\) es 15, el término ducentésimo \(A_{200}\) es 200, etc.). La mayoría de las sucesiones que veremos están determinadas por una fórmula en función de la variable \(n\), como por ejemplo \(A_n = \frac{1}{n}\) o \(A_n = (-1)^n\) o \(A_n = 3\). El último ejemplo recibe el nombre de sucesión constante porque todos sus términos son iguales. A pesar de esto, no siempre se podrá dar una expresión así: los decimales del número \(\pi\) son infinitos 3,14159... sin ninguna “regularidad”. Es decir, la sucesión \(A_1 = 1, A_2 = 4, A_3 = 1, A_4 = 5, A_5 = 9, \ldots\) no es fácilmente expresable como una fórmula.

Dibujamos en el plano los ejes coordenados y marcamos los puntos \((n, A_n)\). ¿Qué significa que los puntos tiendan a un valor determinado \(A\)? Querrá decir que si fijamos una banda horizontal tan delgada como se quiera centrada en \(y = A\), todos los puntos (para una \(n\) lo bastante grande) quedan dentro de la banda. En la figura 1 tenemos una sucesión con límite \(A = 3\).

![Figura 1. Una sucesión con límite 3](image-url)
Las siguientes son tres sucesiones distintas con este límite:

1) $B_n = 3$ (sucesión constante)

2) $C_n = 3 + \frac{1}{n}$

3) $D_1 = 3,1, D_2 = 3,01, D_3 = 3,001, D_4 = 3,0001, \ldots$

En los tres casos, diremos que el límite es 3 y escribiremos:

$$\lim_{n\to+\infty} B_n = 3, \quad \lim_{n\to+\infty} C_n = 3 \quad \text{y} \quad \lim_{n\to+\infty} D_n = 3.$$

Más en general, cuando la sucesión A_n tiende a un número A, decimos que “A_n tiende a A cuando n tiende a ∞” y utilizamos la notación:

$$\lim_{n\to+\infty} A_n = A.$$

¿Qué valores posibles tenemos para A? Puede ser 0, cualquier otro número real o también más o menos infinito (utilizamos los símbolos ∞ o $+\infty$ y $-\infty$). Un ejemplo de sucesión con límite 0 es $A_n = \frac{1}{n}$ porque al crecer la n, el valor de $\frac{1}{n}$ es tan cercano a 0 como queramos. Que el límite sea infinito quiere decir que por muy grande que tomemos un número M siempre encontramos un término de la sucesión tal que este y todos los que le sigan son mayores que M.

De manera análoga, definimos el caso de menos infinito: por muy negativo que sea un número $-M$ la sucesión es inferior a $-M$ a partir de algún término de la sucesión. Por ejemplo, la sucesión $A_n = n, B_n = n^2, C_n = \sqrt{n}$ tiene límite ∞ y, en cambio, $A_n = -n, B_n = -n^2, C_n = -\sqrt{n}$ tiene límite $-\infty$.

Ejercicio 1 Calculad los límites

$$\lim_{n\to+\infty} \frac{1}{n^2}, \quad \lim_{n\to+\infty} (n^2 + 1), \quad \lim_{n\to+\infty} (n - n^2).$$

También hay sucesiones que no tienden hacia ninguno de estos valores, y decimos que no tienen límite. Observemos que $A_n = (-1)^n$ (es decir, la sucesión $-1,1,-1,1,\ldots$) no tiene límite, ya que si hacemos una banda delgada alrededor del número 1 tenemos infinitos elementos fuera de la banda y lo mismo sucede si hacemos la banda alrededor del número -1.

Para hacer cálculos, resulta de mucha utilidad tener presentes algunas propiedades de los límites en relación con las operaciones más habituales (suma,
resta, producto y potencia). Supongamos dadas dos sucesiones A_n y B_n con límites A y B de manera respectiva, es decir:

$$
\lim_{n \to +\infty} A\!_n = A \quad \text{y} \quad \lim_{n \to +\infty} B\!_n = B.
$$

Entonces:

1) El límite de la sucesión suma $A_n + B_n$ es $A + B$ y el de la diferencia $A_n - B_n$ es $A - B$, es decir:

$$
\lim_{n \to +\infty} (A\!_n + B\!_n) = A + B \quad \text{y} \quad \lim_{n \to +\infty} (A\!_n - B\!_n) = A - B.
$$

2) El límite de la sucesión producto $A_n \cdot B_n$ es $A \cdot B$:

$$
\lim_{n \to +\infty} A\!_n \cdot B\!_n = A \cdot B.
$$

3) Supongamos que todos los términos B_n son diferentes de cero, y entonces el límite de la sucesión cociente $\frac{A\!_n}{B\!_n}$ es $\frac{A}{B}$:

$$
\lim_{n \to +\infty} \frac{A\!_n}{B\!_n} = \frac{A}{B}.
$$

4) Supongamos que todos los términos A_n son positivos y que $A > 0$, entonces el límite de la sucesión $A\!_n^{B\!_n}$ es A^B:

$$
\lim_{n \to +\infty} (A\!_n)^{B\!_n} = A^B.
$$

Ejercicio 2 Dadas las sucesiones $A_n = 5 + \frac{1}{n}$ y $B_n = \frac{3}{n}$, calculad

$$
\lim_{n \to +\infty} (A\!_n + B\!_n), \quad \lim_{n \to +\infty} (A\!_n - B\!_n), \quad \lim_{n \to +\infty} (A\!_n \cdot B\!_n), \quad \lim_{n \to +\infty} (A\!_n)^{B\!_n}.
$$

Observaciones:

1) La expresión $A + B$ se debe interpretar correctamente cuando A o B (o los dos!) son $\pm \infty$. Por ejemplo, $\infty + \infty = \infty$ o $-\infty + B = -\infty$ cuando B es un número real. En cambio, no podemos aplicar la fórmula cuando $A = \infty$ y $B = -\infty$ (o al revés). El resultado puede ser cualquier cosa, depende de qué sucesiones sean, y hay que analizar cada caso en particular. Cuando esto sucede, decimos que es una indeterminación. Esto no significa que el límite no se pueda calcular sino que utilizando las operaciones habituales encontramos una expresión que no nos permite, de momento, decidir su valor. En estos casos, necesitaremos métodos de cálculo alternativos.
2) Podemos hacer el mismo comentario para el caso del producto, si $B \neq 0$ es un número real positivo, entonces $\pm \infty \cdot B = \pm \infty$. También tenemos $\pm \infty \cdot \infty = \pm \infty$ y $-\infty \cdot (-\infty) = \infty$. En cambio, el caso $0 \cdot (\pm \infty)$ es, como antes, una indeterminación y, por lo tanto, también aquí tendremos que buscar otros métodos para este cálculo.

3) En el caso del cociente, cuando B es $\pm \infty$ y A es un número real, entonces el límite es 0. Cuando $B = 0$ y A es un número real también tenemos otra indeterminación: por ejemplo, si siempre tenemos $B_n > 0$ el límite será ∞, pero si siempre $B_n < 0$, entonces $-\infty$, incluso puede no haber límite si los términos de la sucesión B_n van alternando su signo. Otras indeterminaciones aparecen cuando A y B son de manera simultánea 0 o $\pm \infty$, y entonces decimos que son del tipo $0/0$ o ∞/∞.

4) Cuando el exponente tiende a infinito (es decir, $B = \infty$) entonces el resultado del límite depende de la base: si $0 < A < 1$, el límite es 0 y si $A > 1$ el límite es ∞. El caso 1^∞ es nuevamente una indeterminación.

En el próximo subapartado, hablaremos de cómo tratar las indeterminaciones más frecuentes.

Ejercicio 3
Calculad

\[
\lim_{n \to +\infty} \frac{1}{n} \cdot \frac{1}{n+1}, \quad \lim_{n \to +\infty} \frac{2 + \frac{1}{n}}{3}, \quad \lim_{n \to +\infty} \left(2 + \frac{1}{n}\right)^n, \quad \lim_{n \to +\infty} \left(\frac{1}{2} + \frac{1}{n}\right)^n.
\]

1.2. Indeterminaciones

En este subapartado, tratamos algunas de las indeterminaciones que nos hemos encontrado anteriormente, concretamente las del tipo $\infty - \infty$, $0 \cdot \infty$, $\frac{0}{0}$, ∞/∞ y 1^∞. Las discutimos caso por caso.

1.2.1. Indeterminaciones del tipo $\infty - \infty$

Consideremos dos sucesiones A_n y B_n, las dos con límite ∞. Para calcular el límite de la sucesión A_n-B_n, con frecuencia resulta útil multiplicar y dividir por la suma A_n+B_n. Veámoslo en un caso concreto: las sucesiones $\sqrt{n^2 + 1}$ y $\sqrt{n^2 - 1}$ tienen límite infinito. Calculamos el límite de la diferencia multiplicando y dividiendo por $\sqrt{n^2 + 1} + \sqrt{n^2 - 1}$:

\[
\lim_{n \to +\infty} \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1}\right) = \lim_{n \to +\infty} \frac{(\sqrt{n^2 + 1} - \sqrt{n^2 - 1})(\sqrt{n^2 + 1} + \sqrt{n^2 - 1})}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = \lim_{n \to +\infty} \frac{n^2 + 1 - (n^2 - 1)}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = \lim_{n \to +\infty} \frac{2}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = 0
\]
Ejercicio 4 Calculad \(\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n-1}) \).

1.2.2. Indeterminaciones del tipo \(0 \cdot \infty, \frac{0}{0} \) y \(\infty \infty \)

Estas tres indeterminaciones las hemos agrupado porque en el fondo son la misma. Si por ejemplo \(A_n \) tiene el límite 0 y \(B_n \) tiene el límite infinito, entonces poniendo

\[
A_n \cdot B_n = A_n \cdot \frac{1}{1/B_n}
\]

transformamos una indeterminación del tipo \(0 \cdot \infty \) en otra del tipo \(\frac{0}{0} \). Del mismo modo, si \(A_n \) y \(B_n \) tienen límite infinito, poniendo

\[
\frac{A_n}{B_n} = \frac{1/A_n}{1/B_n}
\]

transformamos una indeterminación del tipo \(\infty \infty \) en otra \(\frac{0}{0} \). Un poco más adelante, en este mismo módulo, daremos un método bastante potente para tratar estos casos con la ayuda del estudio de las funciones (cambiamos la \(n \) por una \(x \) y vemos \(A_n \) como una función). De todos modos, podemos dar ahora la solución para un caso muy frecuente de este tipo de indeterminaciones: los cocientes de polinomios. Supongamos que nos encontramos un límite como el siguiente:

\[
\lim_{n \to \infty} \frac{n^2 + 1}{n^3 + 2}
\]

De manera intuitiva, podemos pensar que el límite es cero, ya que el denominador tiene un grado más alto y por lo tanto crecerá más de prisa. Sin embargo, ¿cómo podemos hacer el cálculo para estar seguros? La idea es muy sencilla: dividimos numerador y denominador por \(n^3 \) (se toma el mayor grado de los dos).

\[
\lim_{n \to \infty} \frac{(n^2 + 1)/n^3}{(n^3 + 2)/n^3} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{1 + \frac{2}{n^3}} = \frac{0}{1} = 0.
\]

Observad que con el mismo truco, si el grado del polinomio del denominador es más alto, el límite es infinito. Finalmente, veamos con un ejemplo qué sucede en el caso del mismo grado:

\[
\lim_{n \to \infty} \frac{2n^3 + n^2 + 1}{5n^3 + 2n + 1} = \lim_{n \to \infty} \frac{(2n^3 + n^2 + 1)/n^3}{(5n^3 + 2n + 1)/n^3} = \lim_{n \to \infty} \frac{2 + \frac{1}{n} + \frac{1}{n^2}}{5 + \frac{2}{n} + \frac{1}{n^2}} = \frac{2}{5}.
\]

Podemos resumir lo que hemos obtenido en la siguiente:
Cálculo de límites para cocientes de polinomios. Resumen:

El límite del cociente de dos polinomios es

\[\lim_{n \to +\infty} \frac{a_n n^n + \cdots + a_1 n + a_0}{b_s s^s + \cdots + b_1 s + b_0} = \begin{cases}
0 & \text{si } s > r \\
\infty & \text{si } s < r \quad \text{y} \quad \frac{a_r}{b_s} > 0 \\
-\infty & \text{si } s < r \quad \text{y} \quad \frac{a_r}{b_s} < 0 \\
\frac{a_r}{b_s} & \text{si } r = s.
\end{cases} \]

Ejercicio 5 Calcule \(\lim_{n \to +\infty} \frac{n^2+1}{n^2-1} \), \(\lim_{n \to +\infty} \frac{n}{n+1} \), \(\lim_{n \to +\infty} \frac{n^3-1}{n^3+1} \), \(\lim_{n \to +\infty} \frac{n^2+1}{n^2-1} \).

1.2.3. **Indeterminaciones del tipo** \(1^{\infty}\)

Para resolver este caso, necesitaremos una de las sucesiones más conocidas: \(A_n = (1 + \frac{1}{n})^n \), que resulta tener el límite. Por definición, el resultado de este límite es el número \(e = 2.7182... \) (con infinitos decimales y no periódico). De manera general, para cualquier sucesión \(C_n \) con límite infinito tenemos que

\[\lim_{n \to +\infty} \left(1 + \frac{1}{C_n} \right)^{C_n} = e. \]

Lo que hacemos para resolver las indeterminaciones del tipo \(1^{\infty}\) es relacionar la sucesión \(A_n^{B_n} \) con otra que tenga el aspecto de las que tienen límite \(e \). Concretamente:

\[A_n^{B_n} = (1 + A_n - 1)^{B_n} = \left(1 + \frac{1}{A_n-1} \right)^{B_n} = \left(1 + \frac{1}{A_n-1} \right)^{\frac{1}{A_n-1} \cdot (A_n-1) \cdot B_n} \]

Puesto que \(A_n \) tiende a 1, tenemos que \(\frac{1}{A_n-1} \) tiende a infinito, y por lo tanto podemos aplicar el resultado de antes con \(C_n = \frac{1}{A_n-1} \) y obtenemos una expresión para resolver estas indeterminaciones:

Cálculo de las indeterminaciones del tipo \(1^{\infty}\):

Tenemos que

\[\lim_{n \to +\infty} A_n^{B_n} = e^{\lim_{n \to +\infty} (A_n-1) \cdot B_n}. \]

Por ejemplo, queremos calcular el límite de

\[\lim_{n \to +\infty} \left(\frac{n^2+1}{n^2-1} \right)^{n^2}. \]
Observemos que, si aplicamos la receta del límite de cocientes de polinomios, tenemos que es una indeterminación de nuestro tipo. Según lo que acabamos de decir, el límite es

$$\lim_{n \to +\infty} \left(\frac{n^2 + 1}{n^2 - 1} \right) n^2.$$

Calculamos de manera separada el límite del exponente:

$$\lim_{n \to +\infty} \left(\frac{n^2 + 1}{n^2 - 1} - 1 \right) \cdot n^2 = \lim_{n \to +\infty} \left(\frac{n^2 + 1 - n^2 + 1}{n^2 - 1} \right) \cdot n^2 = \lim_{n \to +\infty} \frac{2n^2}{n^2 - 1} = 2.$$

Por lo tanto, el resultado final es e^2.

Ejercicio 6 *Calculad* $\lim_{n \to +\infty} \left(\frac{n^2}{n + 1} \right)^n$.
2. Funciones

2.1. Límites de funciones. Límites laterales

Ahora, en lugar de sucesiones de números trabajaremos con funciones y nos preguntaremos cuál es el límite de una función \(f \) que en lo que respecta a la variable \(x \) tiende a un valor determinado \(a \). Ahora no es necesario que este valor sea infinito; puede ser cualquier número real o incluso menos infinito.

Diremos que el límite es \(A \) cuando los valores cercanos a \(a \) tienen su imagen para \(f \) muy próxima a \(A \). Es decir, que cuando \(x \) se acerca a \(a \), entonces \(f(x) \) se acerca a \(A \). Pongamos:

\[
\lim_{x \to a} f(x) = A.
\]

Una manera un poco más precisa de decirlo está representada en la figura 2: tomamos una banda horizontal alrededor del punto \((0, A)\) tan delgada como queramos. Entonces tiene que haber un intervalo centrado en \(a \) (en la figura \(a \) es 5), de manera que el trozo de gráfica sobre este intervalo (es el trozo de gráfica que se encuentra entre las dos líneas intermitentes verticales) cae dentro de la banda horizontal.

En la figura, hemos supuesto que \(A \) es un número real. En el caso \(A = \infty \) dibujaríamos una línea horizontal \(y = M \) y debería suceder que, por muy grande que fuera \(M \) en un intervalo conveniente centrado en \(a \), la gráfica estuviese
por encima de esta recta. Si es \(A = -\infty \) pediremos que para un \(-M \) muy negativo siempre haya un intervalo de manera que en él la gráfica esté por debajo de la recta horizontal \(y = -M \).

El punto \(a \) puede ser, en principio, un número real o \(\pm \infty \). Sin embargo, cuando analizamos funciones concretas nos damos cuenta de que no puede ser cualquiera. Por ejemplo, no tiene ningún sentido hacer el límite de la función logaritmo neperiano \(f(x) = \ln(x) \) cuando \(x \) se acerca a \(-1\) porque el dominio del logaritmo es \((0, \infty)\) y no podemos calcular la función en valores cercanos a \(-1\). ¿Quiere esto decir que \(a \) debe ser del dominio? No necesariamente, pero tiene que ser un punto "alcanzable" desde el dominio.

El 0 no es del dominio del logaritmo pero podemos hacer que \(x \) se aproxime a cero tanto como queramos tomando \(x > 0 \). Puesto que no podemos tomar un intervalo centrado en \(x \) (no nos podemos aproximar a él por la izquierda), no podemos aplicar nuestra definición representada en la figura 2 y por lo tanto no habría límite. En cambio, para la función \(f(x) = \frac{1}{x} \) no tenemos este problema. Pese a que el 0 no es del dominio \(\mathbb{R} \setminus \{0\} \) nos podemos acercar a este por los dos lados. Por lo tanto, aquí sí podemos considerar el límite cuando \(x \) tiende a cero. Cuando nos aproximamos con valores positivos, el cociente se hace muy grande y parecería que el límite es infinito, pero cuando nos acercamos por la izquierda los valores se van hacia menos infinito. Por lo tanto el límite no existe.

![Figura 3](https://via.placeholder.com/150)

Gráfica de la función \(f(x) = \frac{1}{x} \).

Estos dos ejemplos nos llevan a considerar los denominados **límites laterales**, que consisten en acercarnos a \(a \) solo por uno de los dos lados. Si lo hacemos por la derecha, ponemos

\[
\lim_{x \to a^+} f(x)
\]

y si lo hacemos por la izquierda, ponemos

\[
\lim_{x \to a^-} f(x).
\]
En las dos funciones consideradas de manera previa, tendremos que en el logaritmo solo se puede hacer el límite lateral por la derecha, y como el logaritmo de los números cercanos a cero es cada vez más negativo, tendremos:

\[
\lim_{x \to 0^+} \ln(x) = -\infty.
\]

En el caso de la función \(\frac{1}{x} \), los dos límites laterales existen pero son distintos:

\[
\lim_{x \to 0^+} \frac{1}{x} = \infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty.
\]

El límite existe (para un número real) cuando los dos límites laterales existen y coinciden. Por ejemplo:

\[
\lim_{x \to 0^+} \frac{1}{x^2} = \lim_{x \to 0^-} \frac{1}{x^2} = \lim_{x \to 0} \frac{1}{x^2} = \infty.
\]

Obviamente, no tiene sentido hacer los límites laterales cuando \(a = \pm \infty \).

2.2. Indeterminaciones de límites de funciones. Reglas y criterios

Como en el caso de las sucesiones, disponemos de una buena relación entre los límites y las operaciones básicas de suma, resta, producto, división y potencia. Prácticamente, podemos repetir la lista de las propiedades que teníamos para los límites de sucesiones cambiando \(n \) por \(x \), \(A_n \) por \(f(x) \), etc. Supongamos, entonces, que dos funciones \(f, g \) tienen límites \(A, B \) respectivamente cuando \(x \) tiende a \(a \) y tendremos que todos los límites se consideran cuando \(x \) tiende a \(a \), es decir:

\[
\lim_{x \to a} f(x) = A \quad y \quad \lim_{x \to a} g(x) = B.
\]

Entonces:

1) El límite de la función \(f(x) + g(x) \) es \(A + B \), y el de la diferencia \(f(x) - g(x) \) es \(A - B \):

\[
\lim_{x \to a} (f(x) + g(x)) = A + B \quad y \quad \lim_{x \to a} (f(x) - g(x)) = A - B.
\]

2) El límite de la función producto \(f(x) \cdot g(x) \) es \(A \cdot B \):

\[
\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B.
\]

3) Supongamos que \(g(x) \) no es cero en los valores cercanos a \(a \) (pero no se excluye que \(g(x) \) valga 0 en algún punto), y entonces el límite de la función o cociente \(\frac{f(x)}{g(x)} \) es \(\frac{A}{B} \):

Observación

En general, y salvo excepciones, si \(\lim_{x \to a} f(x) = A \) y \(\lim_{x \to a} g(x) = B \):

- \(\lim_{x \to a} (f(x) + g(x)) = A + B \)
- \(\lim_{x \to a} (f(x) - g(x)) = A - B \)
- \(\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B \)
- \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} \)
- \(\lim_{x \to a} f(x)^{g(x)} = A^B \)
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}.
\]

4) Supongamos que \(f(x) > 0\) alrededor de \(a\) y que \(A > 0\), entonces el límite de la función \(f(x)g(x)\) es \(A^B\):

\[
\lim_{x \to a} f(x)g(x) = A^B.
\]

Nuevamente, las afirmaciones anteriores tienen excepciones según los valores de los límites \(A\) y \(B\). Por ejemplo, en la propiedad 1 podemos tener \(A = \infty\) y \(B = -\infty\), con lo que el límite de \(f(x)g(x)\) es una indeterminación del tipo \(\infty-\infty\). Estas indeterminaciones, como ya hemos explicado, se tienen que considerar caso a caso y el resultado dependerá de las funciones concretas \(f\) y \(g\) que tengamos; es decir, “indeterminado” no significa que no se pueda calcular sino que aplicando las reglas anteriores, no encontramos un valor. En muchos casos del tipo \(\infty-\infty\), el método de “multiplicar por la suma” nos da la solución.

Ejercicio 7 Calcule \(\lim_{x \to +\infty} \left(\sqrt{x^2+1} - \sqrt{x^2-1}\right)\).

Recordad que en el subapartado 1.2.2 se explica cómo se transforma una indeterminación del tipo \(0 \cdot \infty\) o \(0^0\) en una de la forma \(\frac{0}{\infty}\). Por lo tanto, solo nos ocuparemos de resolver de este último tipo. Si las dos funciones son polinómicas y \(a = \infty\), la misma receta que hemos explicado para las sucesiones sirve para las funciones cambiando \(n\) por \(x\). Si \(a = -\infty\), todo es igual salvo si \(r > s\) y \(r - s\) es impar, y entonces se debe cambiar el signo del resultado. Finalmente, si \(a\) es un número real solo tenemos indeterminación (del tipo \(0^0\)) cuando \(a\) es al mismo tiempo raíz de \(f\) y de \(g\). En esta situación, podemos eliminar la indeterminación factorizando los polinomios y simplificando el cociente.

Ejercicio 8 Calcule \(\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}\).

2.2.1. Regla del Hôpital

Para el caso de las indeterminaciones del tipo \(\infty/\infty\) de funciones \(f\) y \(g\) (incluidas las polinómicas) cualesquiera, disponemos de una herramienta de cálculo muy potente, denominada la regla del Hôpital. Supongamos que queremos calcular el límite de un cociente de funciones \(f\) y \(g\) cuando \(x\) tiende a 0 sabiendo que las dos tienden a esto:

\[
\lim_{x \to 0} f(x) = 0 = \lim_{x \to 0} g(x), \quad \lim_{x \to 0} \frac{f(x)}{g(x)}?
\]

Observemos los gráficos de las dos funciones (suponemos que las dos son funciones que tienden a 0 sin ser tangentes al eje de las \(y\)) y comparemos...
cómo se aproximan las dos funciones al cero. Para hacerlo, observamos con qué inclinación (pendiente de la recta tangente a la función en 0) lo hacen. Supongamos que la pendiente de la recta tangente a f en 0 sea s y la de g sea t. Entonces:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\Delta f}{\Delta g} = \lim_{x \to 0} \frac{\Delta f/\Delta x}{\Delta g/\Delta x} = \frac{s}{t}.$$

Figura 4. Dos funciones y sus tangentes en el origen

Esta es la conocida regla del Hôpital, que nos permitirá resolver muchas indeterminaciones cuando sepamos cómo hacer el cálculo de la pendiente de la tangente en una función en un punto. En un tema posterior, veremos que la pendiente de la recta tangente a f en un punto a es la derivada $f'(a)$ de la función en el punto a.

En términos de las funciones derivadas, tenemos que si el límite cuando x tiende a a de $\frac{f'(x)}{g'(x)}$ existe, entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Esta igualdad vale para las indeterminaciones del tipo $\frac{0}{0}$ y del tipo $\frac{\infty}{\infty}$, tanto si a es un número real como si $a = \pm \infty$.

Por ejemplo, sabiendo que la derivada del seno es el coseno y que la derivada de x es la constante 1, tenemos que:

$$\lim_{x \to 0} \frac{\text{sen}(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = \frac{\cos(0)}{1} = \frac{1}{1} = 1.$$
No siempre podremos utilizar esta regla, ya que algunas funciones se aproximan a cero acercándose al eje de las y; un ejemplo de ello es la función $f(x) = \sqrt{x}$. Esta función tiene pendiente infinita en $x = 0$.

Ejercicio 9
¿Calcule $\lim_{x \to 0} \frac{x}{\sqrt{1-x}}$?

2.2.2. Indeterminación 1^∞

El último tipo de indeterminación que nos falta por considerar es el que hemos denominado 1^∞, es decir, queremos hacer el límite de una función que tiende a 1 elevada a un exponente que tiende a infinito. El método utilizado para las sucesiones es perfectamente válido para el caso de funciones. Con un pequeño cambio en las notaciones, tendremos que si $f(x)$ y $g(x)$ son dos funciones con

$$
\lim_{x \to a} f(x) = 1 \quad \text{y} \quad \lim_{x \to a} g(x) = \infty,
$$

entonces

$$
\lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x)-1) \cdot g(x)}.
$$

Utilizando esta fórmula, podemos calcular el límite siguiente:

$$
\lim_{x \to 1} \left(\frac{x + 1}{x^2 + 1} \right)^{\frac{1}{x-1}} = e^{\lim_{x \to 1} \left(\frac{x+1}{x^2+1} - 1 \right) \cdot \frac{1}{x-1}}.
$$

Operamos ahora en el exponente (no perdamos de vista que estamos haciendo límite cuando x tiende a 1) y obtenemos:

$$
\lim_{x \to 1} \left(\frac{x + 1}{x^2 + 1} - 1 \right) \cdot \frac{1}{x-1} = \lim_{x \to 1} \frac{x + 1 - x^2 - 1}{(x^2 + 1)(x-1)} =
$$

$$
\lim_{x \to 1} \frac{x(1-x)}{(x^2 + 1)(x-1)} = \lim_{x \to 1} \frac{-x}{x^2 + 1} = -\frac{1}{2}.
$$

Por lo tanto, el límite es $e^{1/2} = \frac{1}{\sqrt{e}}$.

2.2.3. Criterio “función acotada por función que tiende a cero”

Un resultado que es de utilidad en el cálculo de límites es el siguiente.
Si tenemos dos funciones f y g de manera que f tiende a 0 en un punto a y g es una función acotada (es decir, hay un número M de manera que $-M \leq g(x) \leq M$ en los puntos de un intervalo que contenga el punto a), entonces

$$\lim_{x \to a} f(x) \cdot g(x) = 0.$$

Esto se debe al hecho de que la función $f \cdot g$ queda “encajada” entre las funciones $-M \cdot f$ y $M \cdot f$, que tienden a cero.

Este resultado es especialmente útil cuando intervienen las funciones $\sin(x)$ y $\cos(x)$. Las dos son funciones acotadas:

$$-1 \leq \sin(x) \leq 1 \quad -1 \leq \cos(x) \leq 1.$$

Por lo tanto, si aplicamos el criterio, tendremos que

$$\lim_{x \to 0} x \cdot \sin \left(\frac{1}{x} \right) = 0,$$

o también que

$$\lim_{x \to 1} (e^x - e) \cdot \cos \left(\frac{1}{x - 1} \right) = 0.$$

2.3. Funciones continuas

La noción de límite permite dar una definición precisa de la idea de continuidad. De manera intuitiva, la función es continua en a cuando se puede dibujar la gráfica de la función sin levantar el lápiz del papel al acercarnos a $x = a$. Esto quiere decir que $f(x)$ se aproxima a $f(a)$ cuando x tiende a a.

Es decir, f es continua en a si

$$\lim_{x \to a} f(x) = f(a).$$

Cuando simplemente decimos que una función es continua (omitiendo el punto a), queremos decir que la función es continua en todos los puntos de su dominio.
Las funciones siguientes son continuas:

- Todas las funciones polinómicas,
- las funciones trigonométricas \(\sin(x)\) y \(\cos(x)\),
- las funciones exponenciales \(a^x\) y logarítmicas \(\log_a(x)\) (con \(a > 0\)); en particular las más habituales \(e^x\) y \(\ln(x)\).

Combinaremos estas funciones con las propiedades siguientes:

- La suma de dos funciones continuas es una función continua.
- El producto de dos funciones continuas es una función continua.
- La composición de dos funciones continuas es una función continua.

Recuerdemos que componer funciones quiere decir “hacer una después de otra”. Por ejemplo, \(e^{\sin(x)}\) es la composición de la función seno (la que aplicamos primero a la \(x\)) con la función exponencial. Como resultado de lo anterior, esta función es continua. También lo serán \(\ln(x) + \sin(x)\) (suma de dos funciones continuas), \((x^2+1)\cdot\cos(x)\) (producto de dos funciones continuas), \(\sin(x^3+2x−1)\) (composición de una función polinómica con la función seno), etc.

No hemos mencionado el caso del cociente de funciones porque, en los puntos en que se anule la función del denominador, la función no será continua. De hecho, serán puntos que dejarán de estar en el dominio. Este es el caso de la función tangente \(\tan(x) = \frac{\sin(x)}{\cos(x)}\), en la que los valores \(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots\) anulan el coseno y no están en el dominio. Lo que sí sabemos es lo siguiente:

- El cociente de dos funciones continuas es continuo en todos los puntos en los que no se anula el denominador.

Ejercicio 10 Decid dónde son continuas la función tangente y la función \(\frac{1}{x^2-1}\).

2.3.1. Tipos de discontinuidad

Cuando una función no es continua en un punto “alcanzable”, decimos que tiene una **discontinuidad**. Sin embargo, no todas las discontinuidades son iguales. Según el comportamiento de la gráfica, distinguimos tres casos:

1) **Discontinuidad evitable**: es el caso en el que el límite de la función \(f\) en el punto \(a\) existe pero o bien \(a\) no es del dominio o bien el límite no coincide con \(f(a)\). Se dice evitable porque añadiendo el punto al dominio o modificando la función la podemos convertir en una función continua.

2) **Discontinuidad de salto**: corresponde a la situación en la que los límites laterales de \(f\) en \(a\) existen y son finitos, pero son distintos.

3) **Discontinuidad asintótica**: la denominaremos así cuando al menos uno de los límites laterales sea infinito.
Veamos a continuación algunos ejemplos. La función definida a trozos:

\[
f(x) = \begin{cases}
1 & \text{si } x \neq 1 \\
2 & \text{si } x = 1
\end{cases}
\]

tiene una discontinuidad evitable en el punto \(a = 1 \), ya que el límite de \(f \) cuando \(x \) tiende a 1 existe y es 1 y, en cambio, \(f(1) = 2 \). También la función \(f(x) = \frac{x^2-1}{x+1} = \frac{(x-1)(x+1)}{x+1} \) tiene una discontinuidad evitable en \(a = -1 \). En este caso, el punto no es del dominio. Esta función coincide con la función \(x - 1 \) en \(\mathbb{R}\setminus\{-1\} \), y por lo tanto podemos “simplificar \(x+1 \)” y cambiar la función \(f \) por la función \(x - 1 \). De este modo, la función se extiende continuamente al punto \(-1\).

Consideremos la función “parte entera”, es decir, la función que asocia a cada número real el entero inferior más cercano. La denotamos por \(E(x) \). Por ejemplo, \(E(1.5) = 1 \), \(E(18,345) = 18 \), \(E(e) = 2 \), \(E(\pi) = 3 \), etc. Es decir, para los números positivos simplemente truncamos eliminando la parte decimal, pero cuidado con los negativos: \(E(-0.23) = -1 \) y \(E(-23,345...) = -24 \), ya que estamos tomando el entero inferior más cercano. Con esta definición, resulta claro que el límite lateral por la derecha en el 0 es 0, mientras que el límite lateral por la izquierda es -1. Sucedo lo mismo en todos los números enteros. Son discontinuidades de salto.

Ejercicio 11 \(\text{Decid qué tipos de discontinuidad tiene la función } \frac{1}{x} \text{ en el punto } 0. \)

2.3.2. Asintotas

Sin duda, las funciones más sencillas de entender son las rectas, es decir, las funciones de la forma \(f(x) = ax+b \), en particular, si \(a = 0 \) tenemos las funciones
constantes representadas por rectas horizontales. Observemos que las rectas verticales $x = a$ no las podemos ver como una función.

 Cuando estudiamos una función, nos puede ayudar a entender cómo es su gráfica saber si hay alguna recta que se le acercar tanto como queramos, bien sea cuando x se acerca a un punto que no es del dominio o bien cuando x va hacia $\pm \infty$.

Una **asintota vertical** de f es una recta vertical $x = a$, en la que a no es del dominio de f y tal que al menos uno de los límites laterales de f en a sea $\pm \infty$. Por ejemplo, $x = 0$ es una asintota vertical para las funciones $\frac{1}{x}$, $\frac{1}{x^2}$, $\ln(x)$,…

Una **asintota horizontal** es una recta de la forma $y = b$ que se acerca a f cuando x tiende a infinito o menos infinito. Dicho de otro modo, cuando

$$\lim_{x \to \pm \infty} f(x) = b.$$

Para ser más precisos, en este caso diríamos que es una asíntota horizontal “por la derecha”. Si el límite cuando x tiende a $-\infty$ es constante c decimos que $y = c$ es una asíntota horizontal “por la izquierda”. Puede suceder que las hay en el derecho y no por la izquierda, o al revés, y por lo tanto los cálculos deben hacerse de manera independiente. Por ejemplo, $x = 0$ es una asíntota horizontal por la izquierda de $f(x) = e^x$, y f no la tiene por la derecha. La situación es la contraria para e^{-x}. Si una función no tiene asíntota horizontal (si la tiene no hay que hacer nada de lo que diremos a continuación), podemos comprobar si se acerca a una recta de la forma $y = ax + b$ con $a \neq 0$. Si este es el caso, decimos que esta recta es una **asíntota oblicua** de la función. Como antes, esto se puede hacer por la derecha o por la izquierda aunque ahora, para fijar ideas, solo lo haremos por la derecha. El método de cálculo es el siguiente: primero encontramos la pendiente a de la asíntota haciendo:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a.$$

Y después calculamos el término independiente b calculando el límite siguiente:

$$\lim_{x \to +\infty} (f(x) - ax) = b.$$

Si uno de los dos límites no existe, querrá decir que no hay asíntota oblicua. Por ejemplo, la función $f(x) = \sqrt{x^2 + 1}$ no tiene asíntota horizontal por la derecha (ni por la izquierda), pero en cambio
\[
\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to +\infty} \sqrt{\frac{x^2 + 1}{x^2}} = 1
\]

Por lo tanto, \(y = x \) es la asíntota oblicua para la derecha de la función \(f \).

Ejercicio 12 Comprueba que la función \(\frac{\sqrt{x^2 + 1}}{x} \) tiene asíntotas oblicuas por la derecha y por la izquierda y calcula las.
Soluciones a los ejercicios

1) \(0, \infty, -\infty\).

2) \(\lim_{n \to +\infty} (A_n + B_n) = 5, \quad \lim_{n \to +\infty} (A_n - B_n) = 5, \quad \lim_{n \to +\infty} (A_n \cdot B_n) = 0, \quad \lim_{n \to +\infty} (A_n)^2 = 1\).

3) \(0, \frac{2}{3}, \infty, 0\).

4) 0.

5) \(\frac{1}{3}, 0, \infty, -\infty\).

6) \(e^3\).

7) 0.

8) \(\frac{1}{2}\).

9) 1.

10) \(\mathbb{R} \setminus \{-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots\}, \quad \mathbb{R} \setminus \{-1, 1\}\).

11) Asintótica.

12) Tanto la asíntota por la izquierda como por la derecha es \(y = x + 1\).
Bibliografía

