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  Abstract (in English, 250 words or less): 

In recent years, the number of systems which leverage Internet of Things 
technologies has experienced an enormous growth. From industrial machine-to-
machine applications to personal data metrics, the connectivity of all kinds of 
devices has become an incredibly interesting tool for improving the performance 
of existing systems, and, in many occasions, it has led to the creating of whole 
new business areas. 

In this context, open source and open hardware frameworks and devices have 
become a key driving force of innovation. Thanks to their use, it has been 
possible to accelerate the research and development of new technologies and 
protocols, rapidly closing the existing gap between the academia and commercial 
applications. 

The purpose of this project is to develop an Internet of Things (IoT) demonstrator 
which makes use of currently relevant open source and hardware technologies 
in the field, from the physical layer to the application layer, as a way of 
demonstrating such potential. A sensor network, including data collection, 
transmission and centralization will be studied. In addition, two current trends in 
the IoT research area will be analyzed and compared, namely the different 
approaches of edge computing and cloud computing. 

In this manner, a small scale but close to real-world scenario will be presented, 
acting as a valid example of the potential impact of IoT systems as an enabler 
for increasing the intelligence and efficiency of applications across different 
industries. 
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1 Introduction 

 
Nowadays, it is undeniable that the Internet of Things, abbreviated as IoT, has 
become one of the most exciting and prominent areas in the field Information 
Technology and its related industries. Far from being a mere buzzword, IoT-
enabled devices are already a key component of many real-world systems, both 
in industrial and home environments.  

One of the reasons why this has happened is that such devices and systems can 
be applied to a significant number of situations. From factories to hospitals, the 
power offered by IoT-enabled networks offers great opportunities for improving, 
optimizing and even redefining many different types of tasks. 

It is worth stopping for one second to present a brief definition of what Internet of 
Things is, since some confusion might appear. However, as with any industry 
trend, the term “IoT” is used broadly, and what is considered as IoT by some 
actors could not be deemed as such by others. For this purpose, [1] will be cited 
verbatim: 

IoT can be defined as the ever-growing network of Things (entities) that feature 
Internet connectivity and the communication that occurs between them and other 
Internet-enabled devices and systems 

IoT networks are often characterized by its closed range of action and almost 
complete lack of infrastructure. They are usually composed of small devices 
which communicate with each other sending small amounts of information, which 
is usually collected in a central node or gateway. Due to these features, such 
devices must usually be small, inexpensive and power-efficient, since this allows 
for its use in applications such as health monitoring, home automation and sensor 
networks. 

Under the umbrella of this definition, many things can be considered IoT devices. 
Typical examples include a fridge connected to the Internet. In this case, the 
fridge might be able to monitor what amount of a certain product is left. Moreover, 
if it detects that the quantity of such product, for example milk, falls below a certain 
level, it has the possibility of autonomously ordering more milk bottles from a 
chosen provider. In this example, the fact that the fridge has network connectivity 
has allowed for a concrete improvement of our everyday life, namely that we no 
longer need to worry about not having milk for our morning coffee. 

By means of this example, many of the elements most commonly found in IoT 
applications can be identified. It can be appreciated that a sensor has been used 
to capture a concrete piece of information (quantity of milk left), which has then 
been collected (in this case by the fridge itself, although other possibilities exist, 
such as a central home hub for collecting information from different appliances). 
Once the information has been gathered, it has been processed (compared to a 
predefined level) and the conclusions obtained has been communicated via the 
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Internet. Not all applications will present all these elements, but this can help to 
shed some light into what can be considered an IoT-enabled system. 

 

In summary, IoT transforms ordinary objects into smart and cognitive systems, 
capable of monitoring their environment and actively actuating to transform it. 
This can be applied to almost any device, and therefore it can be applied to almost 
any application. For that reason, IoT embraces many different vertical markets, 
including, but not limited to, transport, manufacturing industries, healthcare, 
agriculture, smart cities and smart homes. 

With so many options to choose, it is necessary to select the area of application 
for this project. Nonetheless, this dissertation will focus on only a small part of the 
IoT world, attempting to develop a smart home system. There are several 
reasons for this: 

• Smart homes, a rarity some years ago, are become increasingly common. 

The irruption of Wi-Fi controlled light bulbs, continuous remote 

surveillance and monitoring, and even assistants with artificial intelligence 

capabilities, are creating a thriving environment for innovation, pushing the 

evolution of mere homes to smart homes [2] 

• Smart homes is a trending research area, with many different disciplines 

studying how to maximize the comfort and minimize resource consumption 

[3] [4]. 

• A smart home application can be easily simulated with scarce resources. 

Unlike other fields such as healthcare, which deal with very complex 

signals and systems, a smart home application can monitor and control 

simple metrics such as room temperature.  

• The application of IoT to home environments goes beyond monitoring and 

controlling comfort metrics. Thanks to the fact that precise information can 

be collected in a periodic and consistent manner, advanced studies can 

be performed on the habits of citizens on their homes. This can lead to the 

creation of advanced models which can help to better understand how 

does society make use of their homes, allowing the optimize energy 

consumption and providing insights into how to better design houses. 

However, this is not only limited to homes, being also applicable in public 

building such as hospitals, schools, train stations, museums, government 

buildings, etc. In these areas, IoT can also be used to model and study the 

relationship between different indicators, such as occupancy, temperature 

and energy consumption, also leading to better designs in the future [5].  

Consequently, the elements that compose the project have been selected with 
the idea of being representative of the technological areas to which they belong, 
resulting in the following choices for the different parts of the system: 

• Hardware: 

o OpenMote: IoT-oriented open-hardware prototyping ecosystem 
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o Raspberry Pi: low-cost single-board computer suitable for cheap 

and open-source oriented projects 

• Software: 

o Contiki: IoT-oriented operating system for low-power 

microcontrollers 

o thethings.iO: cloud platform for storage, analytics and tools for 

managing IoT devices 

o OpenWSN: operating system which provides simulation 

capabilities through the OpenSim component. 

• Telecommunication standards: 

o 802.15.4e: communication standard especially suitable for close 

range communications (such as in sensor networks) using low-

powered devices 

o CoAP: web transfer protocol for constrained devices. 

The combination of the aforementioned elements results in a rich ecosystem of 
open source and open hardware which nonetheless provides a valid approach to 
IoT-related technologies. 

1.1 Objectives 
The main objective of this project can be described as:  

Develop an Internet of Things demonstrator which makes use of currently 

relevant technologies, resembling real-world applications as much as 

possible, to demonstrate the applicability and relevance of open-source 

and open-hardware platforms as key enablers of real-world IoT 

deployments. 

In addition, several other objectives and motivations have been defined: 

• Perform a comparison between different approaches to the analysis and 

computation of results obtained from IoT-generated data, namely the edge 

computing and cloud computing paradigms. 

• Investigate the status of open-hardware platforms in IoT, with on a focus 

on aspects such as availability, ease of use and viability as solutions for 

real-world applications.  

• Investigate the current ecosystem of open-source utilities, operating 

systems and web platforms in IoT. In particular, the Contiki operating 

system will be thoroughly used and therefore studied throughout the 

duration of the project. 

• Gain an insight into the IEEE 802.15.4e standard, analyzing its 

significance in IoT applications and the implementation of such standard 

provided by hardware platforms. 

• Make use of the OpenMote platform as a key component of a IoT 

demonstrator, including its configuration, programming and 

interconnection with other elements. 

• Adapt a Raspberry Pi SBC for its use as in IoT applications. 
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• Gain an insight into available commercial-off-the-shelf websites, such as 

thethings.iO which can act as IoT getaways and provide both data 

aggregation and data display capabilities, analyzing its impact into 

accelerating IoT developments. 

• Analyze the integration of different pieces of hardware, potentially 

provided by different vendors, to create a unique IoT-oriented product. 

• Enhance the authors ability to plan an undertake Information Technology 
projects. 

1.2 Planning 
In this section, a description of the work packages which the project will be 
composed of is presented, serving as companion explanation to the Gantt chart 
included in the following section. A hierarchy of tasks has been defined, divided 
in three level, namely work areas (e.g. Project Implementation), work packages 
(e.g. simulator set-up) and low-level activities. 

• Project Planning: 

o Initial Planning: develop understanding of project description and 

purpose and create a draft of project planning. 

• Project Implementation: 

o Research state-of-the-art: analyze current trends in IoT and 

possible implementations at hardware and software level. 

o Design of demonstrator: determine components of the 

demonstrator, interfaces between them, data to be collected, how 

data will be stored, how devices will communicate and how the user 

will access the stored information. 

o Create software repositories: work on the code will be performed 

on software repositories (Github, Bitbucket, etc.) so that they are 

under version control and are accessible from multiple places. 

o Simulator set-up: install and configure the emulator. 

o First tests with simulator: familiarization with the simulator by 

implementing different basic scenarios. 

o Implementation of demonstrator in simulator: implementation of the 

designed demonstrator in the simulation. 

o Acquisition of required physical material: purchase/obtain the 

required hardware for implementing the demonstrator. It is 

necessary to consider possible delays in the delivery of such 

hardware. 

o Hardware set-up: upon reception of the hardware, it will be 

necessary to configure it, including OS installation (e.g. installing an 

OS for Raspberry Pi on a SD card). 

o Implementation of demonstrator using real hardware: final 

implementation of the demonstrator using the received 

components. 

• Project Documentation: the documentation associated to each submission 

will be prepared in parallel to everyday work performed on the project. 

However, it has been considered necessary to allocate specific work 



 

5 

packages to reflect the fact that documenting and formatting all the 

generated information will require a non-negligible amount of time, being 

necessary to assign resources to it. 

• Submissions: milestones for documentation submission, as well as 

objectives for percentage of field work finalized (60% for PEC 2 and 100% 

for PEC3). 

1.3 Gantt Chart 
The project timeline has been represented by means of a Gantt chart, as shown 
in Figure 1. For this purpose, the Microsoft Project 2013 software was used. The 
Gantt chart includes the work packages introduced in the previous section, 
assigning them a duration and defining the interdependencies existing between 
them.  

Estimated duration is provided for work packages, which make up the estimated 
duration of work areas. 

It is considered that the definition of low-level activities can be performed as the 
project progresses, and a deeper understanding of the project is developed. 
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Figure 1: Project Gantt chart, describing the planned work packages
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1.4 Related work 
IoT demonstrators based on OpenWSN are commonly found in the literature. In 
particular, other students of the UOC has undertaken master’s dissertations 
under the same topic. 

• [6] presented an IoT demonstrator based on 802.15.4e, OpenMote, 

OpenWSN and Thethings.iO. 

• [7] also presented an IoT demonstrator based on 802.15.4e, OpenMote, 

OpenWSN and Thethings.iO. 

Both dissertations are in essence similar, although some implementation 
differences exist. For example, one of them sent alarms from Thethings.iO 
platform using SMS, while the other us emails for the same purpose. 
 
In contrast to those works, the current dissertation provides the following 
novelties. 

• More variety of statistics, going beyond the average/maximum/minimum 

value of the comfort indicators. 

• More detailed database design, which allows readers to build on top of the 

obtained results in an easier manner. 

• Use of PostgreSQL instead of alternatives such as MySQL. PostgreSQL 

is a highly influential database system, and therefore the study of its 

suitability in an IoT demonstrator can prove beneficial for research on the 

topic. 

• Power consumption has been considered for the comparison of cloud and 

edge models. 

• Analysis of the use of Contiki OS for the OpenMote devices. Although that 

it has not finally being possible to implement the design in real hardware, 

some progress has been made into analyzing the current relevant of 

Contiki OS in the context of IoT and WSNs. 

• Although a minor difference that might not be noteworthy, the fact that the 

master’s dissertation is written in English can help to increase its potential 

impact, and help to create a more connected and international research 

environment.  

Besides master’s dissertations at UOC, many investigators are applying open 
source technologies such as OpenWSN and OpenMote to different fields. Some 
examples include: 

• [8] uses OpenWSN to design a WSN system for monitoring patient health. 
• [9] used OpenMote and OpenWSN to perform energy measurements 

during operation of the 802.15.4e protocol in TSCH mode. 

• [10] analyzes the implementation of the TSCH  extension of the 802.15.4e 

protocol in different devices, including OpenWSN and Contiki OS, as well 

as  different hardware platforms, such as TelosB,  Zolertia Z1, and 

OpenMote. 
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2 IoT components, technologies and protocols 

The purpose of this section is presenting the main elements of which the system 
is composed. Therefore, a theoretical introduction to the relevant technologies 
and protocols will be provided. 

2.1 Open Hardware and Open Source solutions for the IoT 
The status of open source applications shows that they are not only a valid 
replacement for existing proprietary products, but also a crucial point of 
innovation. In fact, many of the most interesting and innovating technologies are 
being developed as open source projects. Some examples include the 
GNU/Linux operating system, which is quintessential to many different aspects 
of modern computing, including IoT, the open hardware Arduino prototyping 
board and RabbitMQ, and opensource message which is typically used in some 
IoT applications.  

On the other hand, the open hardware community is not as mainstream, most 
probably due to the increased difficulty of working with a fully proprietary 
ecosystem of existing electronic devices. However, great progress is being made, 
with systems such as Arduino and Raspberry Pi becoming referents in the 
hobbyist and educational areas, but also in professional applications [11]. 

In the context of wireless sensors, the trend seems to go open hardware and 
open source [12], with valid solutions existing for prototyping and implementation 
of recent wireless protocols, including those which are still in draft version. This 
allows for a faster adoption and in-depth research of new technologies, since 
open hardware and source allows to share acquired knowledge easily, usually 
creating a thriving community of academics and enthusiasts that can provide 
accurate feedback to the industry. 

 

2.2 Operating systems for embedded devices and wireless 
sensors 

The purpose of this section is to present the most relevant open source operating 
systems which are currently available, highlighting the main differences between 
them. As it was introduced in the previous section, the use of open source and 
open hardware platforms is a strong trend among wireless sensor networks 
researches. Therefore, despite their differences, all the following operating 
systems share some common traits, which form a common theme in this research 
area: 

• Low memory requirements. 

• Low energy consumption. 

• Off-the-shelf support for popular network stacks and standards. 

• Flexibility, understood as the possibility of easily installing, updating or 

modifying embedded applications in the sensors. 

• Ease of use. 

• Public and accessible documentation. 
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2.2.1 TinyOS 

TinyOS is a hardware-agnostic operating system aimed at microcontroller-based 
sensor devices with networking capabilities, developed under the BSD open 
source license [13].  

More specifically, it is a programming framework rather than a fully-pledged 
operating system. This approach provides developers with a set of components 
that make it possible to create a specific OS suited for each hardware platform 
and application. The OS required only 400 B of storage, while applications built 
on top of it require around 15 KiB [14]. 

TinyOS supports many network protocols: FTSP (time synchronization) [15] , 
CTP (data collection) [16], Trickle (data dissemination) [17], RPL (packet routing) 
[18] and IPv6 support for 802.15.4. These features support low-power operation, 
making it possible to use TinyOS in battery-constrained applications. 

The programming model of TinyOS is Event. It is based on non-blocking function 
calls, i.e. execution of applications does not stop when calling a function. Instead, 
the normal flow of operation continues after the system call, but the function is 
not actually executed until sometime after, being notified by means of events. 
This model is useful due to the resource constraint of the devices to which it is 
intended. The programming model is implemented using the NesC language, 
developed by the TinyOS working groups, which is an extension of C.  

This has the disadvantage of not being suitable for CPU intensive applications, 
since they lock the execution of the program for too long, preveting other events 
from being processed. To tackle this problem TinyOS implements a threads 
library. 

TinyOS supports many hardware platforms: telos family, micaZ, IRIS, mica2, the 
shimmer family, epic, mulle, tinynode, span, and iMote2. 

2.2.2 RIOT OS 

RIOT OS main goal is to create a modern operating system which respects the 
constrains present in IoT applications while presenting a developer friendly 
environment, as well as providing access to features of general purpose 
operating systems such as native multithreading [19]. 

Design aspects: 

• The kernel can be built so that is monolithic, layered or even take the form 

of a microkernel. 

• The scheduling strategy can be varied to support real-time applications 

and different degrees of user interaction. 

• Tasks can be executed either in the same context or in their own memory 

stack. 
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Architecture: 

• It natively supports multithreading. 

• It implements a full TCP/IP stack. 

• The modular approach to the kernel allows to isolate components of the 

system so that a failure in one part of it does not translate to the whole 

system. 

Technical Details: 

• RIOT enforces constant periods for kernel tasks to fulfill strong real-time 

requirements. 

• Static memory allocation is used for the kernel, but applications can make 

use of dynamic memory allocation. 

• RIOT implements a scheduler that works without any periodic events, so 

that it can switch to the idle state whenever there are no more pending 

tasks, and stays in that state as long as possible. 

2.2.3 Contiki OS 

As any other operating systems aimed at WSNs, Contiki [20] is designed for 
memory constrained systems, with a focus on low energy consumption. 
Additionally, one of Contiki’s main design drivers is to make it easy to replace or 
update running programs directly on the network, i.e. dynamically download code 
without requiring a full reload of Contiki’s core and the application. As a result, it 
is considerably easier to manage existing deployments, since it is no longer 
necessary to remove each sensor, re-program it and install it again on its previous 
location. 

Moreover, due to the smaller amount of memory required for applications, energy 
consumption during transmission is reduced, as well as transmission time, which 
optimizes energy use in battery-powered devices. 

Contiki’s architecture is event-driven, with optional preemptive multi-threading 
capabilities, implemented as a library which is linked to application programs. 
Therefore, multithreading is not part of the kernel, reducing its complexity and 
avoiding the overhead of managing multiple stacks. 

Contiki is not intended for a specific hardware platform. Instead, it is designed for 
portability. Consequently, Contiki’s approach is based on only abstracting key 
components, namely CPU multiplexing and support for loadable programs and 
services. Therefore, a reduced number of system components need to be ported: 
boot up code, device drivers, architecture specific parts of the program loader, 
and the stack switching code of the multi-threading library. 

The following components can be found in Contiki: kernel, libraries, program 
loader and processes (either application programs or services). Services are 
special processes that provide common functionality to be used by several 
application programs. An example of how memory is partitioned during an 
application execution is shown in Figure 2.  
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A process is composed of an event handler function and an optional poll handler 
function. Processes can keep a state. Inter-process communication is done by 
posting events. 

 

Figure 2: Partition into ROM and RAM memory in Contiki OS. Adapted from [20]. 

 

2.2.4 Comparison of WSN operating systems 

A comparison between TinyOS and Contiki with other operating systems is 
presented in [21], which has been adapted and summarized in Table 1. The row 
detailing RIOT OS characteristics is entirely new. 

 

OS/Feature Architecture Programming model Scheduling Memory Management 
and Protection 

Resource 
Sharing 

TinyOS Monolithic Primarily event Driven, 
support for, TOS 
threads has been 
added 

FIFO Static Memory 
Management with 
memory protection 

Virtualization 
and 
Completion 
Events 

Contiki Modular Protothreads and 
events 

Events are 
fired as they 
occur. 
Interrupts 
execute w.r.t. 
priority 

Dynamic memory 
management and linking. 
No process address 
space protection. 

Serialized 
Access 

RIOT Either monolithic 
or layered 

Real-time. Support for 
multithreading 

Minimized 
scheduler for 
interrupt 
service 
routines 

Dynamic memory 
management 

Either all task 
in the same 
context or one 
context for 
each task 

Table 1: Comparison of most popular WSN operating systems 

One of the main advantages of Contiki OS over other options is that it has been 
designed to be updatable via low-rate connections. This makes it attractive for 
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IoT applications, since it removes the necessity of retrieving the devices, flashing 
them and putting them back in place. 

Another advantage of Contiki over RIOT OS is that Contiki fully supports board 
simulation by means of Cooja. The possibility of simulating sensor running the 
operating system which will be finally used greatly facilitates the initial phases of 
the design, due to the fact that it can be validated even before real hardware is 
used. 

Finally, Contiki has been in development since 2002, and has a solid codebase, 
with hundreds of contributors, guaranteeing the health of the project. 

Therefore, it can be concluded that Contiki as valid choice and a worthy operating 
system to be studied. 

2.3 IoT Protocols 
In spite of the fact that IoT shares many protocols and technologies, such as the 
802.11 suite of protocols (Wi-Fi) with other areas of computer sciences, its 
particularities have created the necessity of designing specific protocols that are 
more suitable for energy and resource constrained devices that operate in the 
context of IoT. 

For that reason, this section presents some of those protocols, which will also be 
used as part of the proposed design and implemented solution.  

2.3.1 Brief overview of the OSI model 

Although knowledge of the OSI model should be considered basic for any form 
of study of IT systems, it has been deemed useful to include at least a brief 
description of the OSI layers in this dissertation. 

The OSI (Open System Interconnection) model is a theoretical representation of 
how communication functions performed by network-aware devices can be 
divided. Table 2 describes the seven layers which are defined by the model, and 
describes its function [22]. 
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 Name Description 

1 Physical Defines the physical and electrical characteristics of the network. 

2 Data Link In the context of 802 standards, this layer is divided in two sub-layers: 
Medium access control (MAC) layer, which controls how and when do 
devices gain access to the medium, and the Logical link control (LLC) 
layer, which controls error checking, frame synchronization and data 
encapsulation of upper layers. 

3 Network Provides the required functionality for establishing, maintaining and 
terminating connections in the context of networks of devices. 

4 Transport Provides functions regarding how data reliability and integrity are to be 
ensured.  

5 Session Defines how continuous exchange of information is performed, 
understood as a sequence of multiple transmissions between the same 
hosts. 

6 Presentation 

 

It provides the means for translating the information received so that it can 
be understood by the application. This includes aspects such as data 
compression and encryption. 

7 Application 

 

End-user protocols such as ftp or mail. 

Table 2: overview of the layers which are defined by the OSI model 

 

2.3.2 Infrastructure protocols 

Infrastructure protocols are a key component of all IoT-based systems. The 
reason for this is that they provide the low-level transport capabilities for the upper 
layers. Hence, they also play a crucial role in fulfilling the requirements of 
resource constrained systems, as they directly influence in how much energy is 
spent transmitting and receiving information from the medium. 

Therefore, a common design driver in these protocols is the focus on low power 
consumption. 
 

2.3.2.1 RPL 

The Routing Protocol for Low Power and Lossy Networks is a link-independent 
routing protocol based on IPv6 for resource-constrained nodes called, designed 
for building a robust topology over lossy links. 

The core of RPL is the Destination Oriented Directed Acyclic Graph (DODAG), 
which describes how information is routed between nodes. The DODAG has a 
single root, and each node in it are aware of its parents, but not of its childer. 

To maintain the routing topology, four types of control messages are used:  

• DODAG Information Object (DIO) is used to keep the current rank (level) 

of the node and choose the preferred parent path.  

• Destination Advertisement Object (DAO): provides upward traffic as well 

as downward traffic support. 
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• DODAG Information Solicitation (DIS): used by a node to acquire DIO 

messages from a reachable adjacent node. 

• DAO Acknowledgment (DAO-ACK): response to a DAO message. 

 

2.3.2.2 IEEE Std 802.15.4: Low-Rate Wireless Personal Area Networks 

The goal of the 802.15.4 standard, developed by the IEEE, is to define the 
physical (PHY) layer and Medium Access Control (MAC) sublayer layer of the 
OSI model so that it allows for low-cost, low-power communications for Wireless 
personal area networks (WPANs) [23]. 

As it can be concluded, its focus on low-power consumption, low data rate, low 
cost and high message throughput make it a suitable protocol for the IoT. 

Another key feature which makes it interesting is that it supports a significant 
number of nodes, in the order of tens of thousands. Therefore, it can be 
particularly interesting for extended IoT deployments, where thousands of 
devices and sensors collect and send information through the network. An 
example of this can be monitoring networks in agricultural areas. 

802.15.4 also provides security capabilities, allowing for the encryption of the sent 
data as well as providing authentication mechanisms to control access to the 
network. However, 802.15.4 lacks any kind of processes to provide an agreed 
level of QoS. 

2.3.2.2.1 Network nodes 

802.15.4 can support two different kinds of nodes, namely Full and Reduced 
Function Devices (FFD and RFD, respectively). 

• FFD: full-pledged nodes which ca act as coordinators of the network. 

o PAN Coordinator: node responsible for the creation, control and 

maintenance of the network. An IEEE 802.15.4 network has 

exactly one PAN coordinator. 

o Coordinator: a device in an LR WPAN that provides 

synchronization services to other devices in the LR WPAN. 

o Normal node: node which can have bidirectional communication 

with other nodes but which cannot act as a coordinator. 

• RFD: they are restricted to communication with coordinator nodes, and 

they can only be part of star topologies. 

2.3.2.2.2 Topologies 

Two different topologies are supported: 
• Star topology: the communication is established between devices and  a  

single  central  controller, the  PAN coordinator. Each which is usually 

either the initiation point or the termination point for network 

communications, except for the PAN coordinator, which is focused on 

enabling routing of information on the network. 
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• Peer-to-peer topology: although a PAN coordinator exists, any device is 

able to communicate with any other device as long as they are in range of 

one another. A mesh networking topology can be mounted on top of the 

Peer-to-peer topology.  

2.3.2.2.3 Physical layer (PHY) 

Functions of the Physical Layer can be divided in two groups: 

• The PHY data service enables the transmission and reception of PHY 

protocol data units (PPDUs) across the physical radio channel. 

• The PHY management service provides activation and deactivation of the 

radio transceiver, ED, LQI, channel selection, clear channel assessment 

(CCA), and transmitting as well as receiving packets across the physical 

medium. 

2.3.2.2.4 MAC sublayer 

Functions of the MAC sublayer can be divided in two groups: 
 
The MAC  sublayer  provides  two  services:  the  MAC  data  service  and  the  
MAC  management  service interfacing  to  the  MAC  sublayer  management  
entity  (MLME)  service  access  point  (SAP)  (known  as MLME-SAP).  
 

• The MAC data service enables the transmission and reception of MAC 

protocol data units (MPDUs) across the PHY data service. 

• The MAC management service provides beacon management, channel 

access, GTS management, frame validation, acknowledged frame 

delivery, association, and disassociation. In addition, the MAC sublayer 

provides hooks for implementing application-appropriate security 

mechanisms. 

 
2.3.3 Application Protocols 

Protocols in the application layer aim to provide services which are requested by 
users. Therefore, the possible forms in which application protocols manifest are 
very divers, and can depend on the vertical market. However, many IoT protocols 
are designed to be suitable for many different environments. 

This section briefly presents some of such protocols. 

2.3.3.1 MQTT 

The Message Queue Telemetry Transport (MQTT)  [24] is an application protocol 
in which information is formatted in for of messages. Although it was created in 
1999 by independent researchers, it was standardized in 2013. 

MQTT can be used to connect embedded devices with each other, as well as 
with applications from upper layers. It supports different routing mechanisms, 
including one-to-one, one-to-many and many-to-many. 
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The message exchange is based on a publish/subscribe, i.e. nodes in the 
network subscribe to a “topic” to listen to all information sent (published) to that 
particular topic. For example, one device can subscribe to the “temperature” 
channel, and therefore will receive all “temperature” readings from other devices. 

Since MQTT is built on top of the TCP protocol and it does not make heavy use 
of resources, MQTT is suitable for resource constrained devices that use 
unreliable or low bandwidth links. 

 

2.3.3.2 CoaP protocol 

The CoaP (Constrained Application Protocol) [25] is a web transfer protocol 
aimed at offering an optimum solution for enabling communication in constrained 
devices. It is designed under the REST model, and therefore it works in a very 
similar way to HTTP. Consequently, starting to use CoAP is straightforward for 
people familiarized with existing web technologies. The main features of CoAP 
are described below: 

• Suitable for machine-to-machine (M2M) communication. 

• Transport over UDP, extended by means of Datagram Transport Layer 

Security (DTLS) to optionally support unicast and multicast requests. 

• Asynchronous message exchanges. 

• Simple and light header to reduce complexity and power consumption. 

• In a similar manner to HTTP, a CoAP client requests an action (using a 

Method Code) on a resource (identified by a URI) on a server, to which 

the server response with the corresponding Response code, indicating 

the status of the request. 

• Support of Content-type. 

• Simple proxy and caching capabilities. 

CoAP requests can make use of different methods, depending on the type of 
action that is to be applied on the destination resource. There are four CoAP 
methods available: 

• GET: retrieves a representation of the resource identified by the request 

URI. Possible response codes include 2.05 (Content) or 2.03 (Valid) upon 

success. 

• POST: requests that the resource transported in the request to be 

processed. Although the function performed by the POST method is 

defined on the server side, it usually corresponds with creating or updating 

a new resource. As a result, the 2.01 (Created), 2.04 (Changed) or 2.02 

(Deleted) response code should be sent as an answer upon success. 

• PUT: requests that the resource identified by the request URI be updated 

or created with the enclosed data.  If the resource is indeed updated, the 

2.04 (Changed) response code is to be returned.  On the other hand, if the 

resource does not exist, and the server decides to create it with that URI, 

a 2.01 (Created) response code is returned. 
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• DELETE: requests that the resource identified by the request URI be 

deleted.  If the request succeeds, A 2.02 (Deleted) response code 

SHOULD is returned. 

A thorough list of all available response codes is out of the scope of this 
document. However, it is worth mentioning that error codes common in HTTP do 
exist, e.g. 4.03 (Forbidden) or 4.04 (Not Found). 

In addition to the request methods described, CoAP messages can be classified 
according to their desired reliability. Messages which need to be confirmed are 
labeled as CON (Confirmable), while does who do not need to be confirmed are 
labeled as NON (Non-confirmable). CON messages are answered with an ACK 
(Acknowledgment) message, indicating that the server has received the request. 
An example of communication between client and server using CoAP is shown 
in Figure 3. 
 
 

 
Figure 3: two example message exchanges. In both cases, the message type, CON, indicates 

that a confirmation is required. In the first case, the request ends successfully, while in the 
second is does not. However, in both occasions, an ACK message is sent. Adapted from [25]. 

2.4 Strategies for data processing and storage 

In the context of IoT, the traditional approach has been collecting data on the 
edge of the network by means of sensors, and then centralizing such information 
transmitting it to a main server for later processing. In recent times, this has 
evolved to become what is known as Cloud Computing, in which applications can 
make use of a vast amount of cloud platforms for storage, analysis, processing 
and display of information. 

However, the increase in complexity and capacity of edge nodes has allowed for 
a new approach, edge computing. In the following sections, both Cloud and Edge 
computing models will be introduced, highlighting their differences, strengths and 
weaknesses.  
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2.4.1 Cloud computing 

 

 
Figure 4. Overview of Cloud Computing Architecture. Adapted from [26]. 

 

Cloud computing has been the most extended system for exploiting IoT-based 
applications until date. It can be defined as a computation model where a shared 
pool of network-accessible computing resources can be autonomously and 
effortlessly provisioned on-demand, thus allowing for desired characteristics such 
as ubiquity and full availability of computing capabilities. The main features that 
define a Cloud Computing services are listed below [27]: 

• On-demand self-service: cloud users can access to automatically 

assigned computing capabilities without required human interaction. 

• Broad network access: cloud services can be accessed from commonly 

available standard network protocols. 

• Resource pooling: resources are shared among users, but ensuring 

isolation between application and guaranteeing service levels by means 

of virtualization of such resources. 

• Rapid elasticity: computing capabilities must be capable of dynamically 

adapting to the evolving requirements of an application in real time.  

• Measured service: service elements such as storage and network 

capacity need to be monitorable and configurable. 

Although cloud services are usually associated with outsourcing, this does not 
need to be the case. Different deployment models can be followed, as described 
in []: 

• Private cloud: a single organization manages, owns and operates the 

cloud. 

• Community cloud: a group of organizations with shared concerns 

operates the cloud. 

• Public cloud: the cloud is available for open use by general public, being 

usually provided by public entities like governments of academic 

institutions. 
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• Hybrid cloud: a combination of the aforementioned types of clouds, with 

the capability of exchanging data and providing application interoperability. 

As it can be concluded from the previously described characteristics, the essence 
of cloud computing is that it allows a company to outsource its computing and 
storage necessities, which are provided by an external company. Many 
advantages can be obtained from this approach, mainly because the centralizing 
and sharing resources between a significant number of applications, belonging 
to different companies, helps to reduce costs. In addition, the complexity of 
managing the computation systems is delegated into an external company, 
allowing the cloud users to focus on their own products without having to worry 
about its deployment aspects. Other critical benefits obtained from cloud 
computing include [26]: 

• It reduces the necessity of planning ahead: cloud services elasticity 

means that users do not need to be concerned about over-provisioning or 

under-provisioning risks. The use of computing resources can grow or be 

reduced depending on the application needs, and, more importantly, it is 

not necessary to re-negotiate or re-define the resource usage, since this 

adaptation happens automatically and autonomously. 

• It follows a “pay-as-you-go” model: companies which make use of cloud 

services can decide when and how increase the contracted capacity. As a 

result, the application can be rapidly start working and generating benefits 

without having to worry about infrastructure deployment. 

• It is highly scalable: from a user perspective, infinite resources are 

available. If the application resource demands are increased, the cloud 

platform will provide them without issues. 

• Easy access: cloud services are designed to be easy to use, allowing 

users to access them using traditional methods such as web browsing 

from a variety of devices, including computers and laptops. 

Finally, even though cloud computing brings multiple benefits, it comes with its 
associated risks and challenges to be solved [28]: 

• Business continuity and service availability: users demand extremely 

high standards of availability, perceiving even small service disruptions as 

major threads. 

• Data Lock-in: reliable methods need to be provided to achieve platform 

interoperability and allow for data migrations between providers. 

• Data Confidentiality/Auditability: the privacy and security of data stored 

in external platforms needs to be guaranteed, and methods for auditing it 

must be available. 

• Data transfer bottlenecks: transferring huge amounts of information 

between locations (as required for redundancy, for example) involves a 

high cost.  

• Performance unpredictability: the fact that computing and network 

resources are shared creates some level of concern regarding fluctuations 

in performance if such resources become insufficient for serving all users 

simultaneously. Virtualization and containerization are key for addressing 

this issue. 
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• Scalable storage: the fact that “infinite storage capacity” needs to be 

provided results in severe storage demands. 

• Bugs in large-scale distributed systems: unlike traditional centralized 

infrastructures, identified and fixing bugs becomes extremely difficult due 

to the overwhelming number of actors and entities involved at the same 

time. 

• Scaling quickly: dynamically providing the appropriate amount of 

resources can prove difficult in some applications, such as algorithmically-

intense applications. 

• Software licensing: purchased software licenses (e.g. Oracle database 

licenses used by cloud providers) are limited to particular machines and 

periods of time. This does not fit well with the “pay-as-you-go” philosophy 

of cloud platforms, since it reduces its operation flexibility. New licensing 

models or open source alternatives need to be explored. 

2.4.2 Edge computing 

In simple terms, edge computing differs from the traditional cloud-based 
approach in which computing and storage is performed close to where data is 
generated [29]. Thus, under this paradigm, part of the intelligence of the network 
is moved closer to the edge nodes of the network. 

 

 
Figure 5: Edge computing. Edge computing is performed o between the source (devices) and 
the cloud platform. Some of the load, in both upstream and downstream directions, is handled 
by the network edge and not by the cloud platform, thus effectively reducing response time and 

making a more efficient use of network capacity. Adapted from [29]. 

The necessity of edge computing arises from some of today’s threats to the 
development of IoT applications, which are presented below: 

• Network capacity: although the processing capacity of cloud platforms 

has increased considerably over the years, this has not been 

accompanied by an equal amount of improvement in the network 

capacity. Due to the sheer amount of IoT devices that will be connected 
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to the internet, the network used to transmit data from data sources to 

processing centers will become a bottleneck, limiting the growth of the 

IoT ecosystem. 

• Privacy: as IoT spreads to more contexts, concerns is raised about how 

to handle sensitive information collected by sensors, which is to be 

transmitted to data centers. In fields such as healthcare, it would be 

desirable to protect the data collected before sending it, or even more, 

not even having to transmit such sensitive data over the network, 

avoiding potential threats. 

The processing centers can take many forms used in edge computing, and range 
from fully-pledged, although smaller, data centers (micro-datacenters), to devices 
very close to the end user, such as smartphones. Their common characteristic is 
that they need to be placed between data sources and cloud platforms. This is 
shown in Figure 5. As it can be observed, data, requests and services pass 
through the edge processing centers before continuing to the cloud. In this 
manner, part of the services required by the application can be provided by the 
edge devices without requiring the intervention of the cloud platform. 

Several advantages can be obtained from this model: 

• Reduced network load: since edge devices handle part of the application 

services, it is not necessary to transmit all the data to the cloud. 

Consequently, cloud platforms can provide service to a bigger number of 

applications, therefore guaranteeing the scalability of IoT applications. 

• Reduced latency: due to the fact that processing takes place closer to the 

end devices, the communication between them and processing centers is 

much faster. This is especially important in time-constrained applications 

which require a quick response time. 

• Power usage: some applications can benefit from reduced consumption, 

since processing data closer to the edge can prove to be more energy 

efficient that performing such task at the cloud and then transferring result 

to the end application. 

• Improved privacy: sensitive data can be better protected by processing 

it before sending it to the cloud. Additionally, in some cases, all the 

computation can take place at the edge, so that it is not necessary to 

transmit it, greatly reducing the threat of data theft in the network middle 

nodes. 

• Greater redundancy: the load distribution among cloud platforms and 

edge processing centers makes it possible to provide continuous service, 

because in case of failure in the cloud platform, part or all of the computing 

activities can take place at an alternative edge center. 

As it has been described, there are many benefits in edge computing. However, 
this means that edge computing systems need to be designed to fulfil the same 
requirements as traditional cloud-based applications, because of the necessity of 
availability and speed of response, which cannot be sacrificed. As a result, 
aspects such as differentiation, extensibility, isolation and reliability must be 
considered [29]. 
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In particular, some specific issues need to be solved before edge computing can 
become completely mainstream. Some of the most relevant ones are listed below 
[30]: 

• Disperse ecosystem of protocols and technologies: many solutions 

exist for performing communication, processing and storage tasks. While 

this is good for innovation, it also makes it more difficult to design for 

interoperability and simplicity. 

• Distributed management: losing cloud computing centralized 

architecture increases management complexity and costs. New 

approaches and technical solutions need to be develop efficiently 

communicate and handle an increasing number of distributed processing 

centers. 

• Weaker security: less centralization also means increasing the attack 

surface. Security in distributed systems is more difficult to guarantee, and 

therefore should be considered a priority in the design of edge 

applications. 

• Undeveloped ecosystem: for developers and companies to seriously 

consider edge computing, a rich ecosystem of edge computing providers 

and applications must be put in place. However, edge computing providers 

need real-word applications to justify edge computing deployments, so the 

situation is blocked. Research, in conjunction with public and private 

investment can help to clear the situation. 

Before concluding this section, it is worth mentioning that in spite of its nobility, 
real edge computing deployments are already in place. Some examples include 
the Radio Applications Cloud  Server (RACS) for 4G/LTE  networks and the Living  
Edge Lab [30]. 

From the perspective of IoT applications, Edge Computing is a specially 
interesting model, mainly because of its close to real-time nature, which allows 
for instantaneous response and subsequent decision making. This is particularly 
useful in industrial applications where collected information needs to be applied 
instantly, as the delay of sending the data back to the cloud, processing it and 
receiving the results might be unacceptable. 

In addition, its distributed layout makes it possible to use collected data, and 
associated computations, even if no network connectivity exists, which can be 
the case in remote deployments like agricultural settings. 

Another reason why Edge Computing is useful for IoT is because of its scalability. 
In order to leverage the power of IoT, it is often required to deploy hundreds, or 
even thousands or devices. This causes traffic to grow exponentially, therefore 
exhausting networking, storage and computing capabilities. Edge Computing 
reduces this threat by reducing the amount of data that needs to be transferred 
and stored in central nodes, allowing for the growth of the application without 
putting the infrastructure network to its limits. 
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2.4.3 Cloud computing vs edge computing 

Previous sections have described the characteristics of both Cloud and Edge 
computing paradigms. While both of them are valid approaches for implementing 
IoT solutions, the suitability of each model will depend on the application at hand. 
Table 3 presents a possible criterion for choosing between both approaches 
depending on which is the key design driver of the application. Different 
applications have different requirements, and knowing which of them are the most 
relevant makes it easier to select the model to choose. 

Design driver Choice Description 

Low latency Edge 
Computing 

The proximity between processing centers and data 
sources greatly reduces the time required to transfer 
data and thus improves the overall system response 
time. 

Low network 
traffic 

Edge 
Computing 

Only computed data is transferred to central nodes. 
Consequently, the amount of network traffic is 
significantly smaller. 

High 
scalability 

Edge 
Computing 

Networks can grow naturally by adding more edge 
nodes. In this manner, computation power grows as the 
same rate as the application. 

High 
redundancy 

Edge 
Computing 

Although a high level of redundancy can be achieved 
in Cloud Platforms (e.g. distributed datacenters), 
redundancy is more naturally achieved in Edge 
Computing deployments. 

Complex data 
processing 

Cloud 
Computing 

When complex data analysis is required, such as in big 
data applications, the reduced computation power of 
edge devices make them unsuitable for performing the 
required operations. 

Centralized 
management 

Cloud 
Computing 

Cloud Computing deployments are comparatively 
easier to manage and maintain, since all resources can 
be controlled from a reduced set of nodes. On the other 
hand, debugging applications implemented in a Edge 
Computing philosophy can prove to be difficult. 

Cost 
reduction 

Cloud 
Computing 

Since Cloud computing centers can be shared by 
multiple applications, even from different companies, it 
is possible to optimize resource consumption and 
therefore reduce costs. 

   

Table 3: comparison of cloud and Edge computing models based on different key design 
drivers. 

In summary, choosing Edge or Cloud computing depends on the requirements of 
the application. In broad terms, if such application requires computation in real-
time, or with very small delay, then the Edge computing model is more suitable. 
Another typical use of Edge Computing is when end devices already have a 
significant amount of computation power, such as in smartphones [31]. If instead 
the application is not time constrained, and other aspects such as cost or 
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management complexity are more important, the traditional cloud computing 
model can be more beneficial. 

However, it must be noticed that despite their differences, they are not mutually 
exclusive. Using mixed models can help to obtain all their respective benefits 
without sacrifices. 

2.5 Hardware platforms for IoT 
 
One of the key enablers of IoT has been the emergence of small, cheap and 
flexible computer hardware which facilitates the rapid design and deployment of 
IoT applications. A rich ecosystem of development platforms exists, from general 
purpose platforms, oriented for prototyping, to fully customized systems. 
 
In the context of this dissertation, only prototyping boards have been considered, 
since it makes it possible to work on an initial version of the project, validating its 
model and design, without having to worry about secondary aspects like 
manufacturing and testing the platform. Once the model is validated, application-
specific platforms can be designed, if the cost saving are deemed significant 
enough. 
 
Some of the most relevant prototyping platforms include [32]: 

• Arduino: open source, microcontroller-based computing platform. The 
board includes a microcontroller and all related components that are 
required to operate and interface with it, including memory, oscillators for 
generating the clock signal and input/output pins, which can be connected 
to sensors and actuators. In addition, a development environment is 
provided, which allows the user to program applications using a dialect of 
C++, instead of having to write assembly code. 

• BeagleBone Black: single-board computer  based  on low-power  Texas  
Instruments  processors,  using  the  ARM Cortex - A8  core.  It has a size 
(roughly the size of a credit card), and it is able to run full operating 
systems, including GNU/Linux and Android. It has a mugh higher 
processing power compared to Arduino, as it is more like a computer than 
a controller. 

• Phidgets: rather than a pre-built, Phidgets follows a modular philosophy. 
Systems are formed by combining building blocks (temperature sensors, 
RFID tags, switches, etc.), all of which communicate using a USB 
interfaces. The resulting system can be programmed using C++ by means 
a collection of library and a API. Due to these features, Phidgets enables 
programmers   to   rapidly   develop   physical   interfaces without  the  
need for  extent  knowledge  in  electronics design issues. 

• Udoo: open hardware minicomputer based on the ARM i.MX6    Freescale 
process, being compatible with Android and GNU/Linux. In addition, it has 
and embedded Arduino-compatible  board.  Therefore, it combines 
elements of computers and controllers in a single device. It provides 
connectivity using the usual interfaces, such as Ethernet, WiFi and USB, 
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while also providing connectivity with sensors and actuators by means of 
the Arduino-compatible board. 

Despite the suitability of these platforms for many applications, the selected 
platform for the purpose of this project has been Raspberry Pi. Its main 
characteristics, as well as its advantages over the options, are described in the 
following section. 
 

2.5.1 Raspberry Pi 3 B+ 

The Raspberry Pi [33] is a Single Board Computer (SBC) designed to be open 
and accessible, making it suitable for education purposes, as well as for DIY 
projects, research and prototyping. It enjoys an enormous popularity, mainly 
because of its high-quality documentation and convenient price (around 40€). 
Consequently, a significant number of examples, libraries and off-the-shelf 
software exists for this platform, greatly simplifying the learning curve and the 
bootstrap of new developments. 

The reasons for choosing the Raspberry Pi as the hardware for this project are 
summarized below: 

• It can run GNU/Linux, providing an environment with an enormous amount 

of existing software (e.g. Python, PostgreSQL, etc.), which in addition feels 

familiar for developers. 

• Large RAM memory, making it suitable for applications with non-negligible 

complexity, such as those present in Edge Computing systems. 

• It supports expandable memory, thus allowing storage of up to 128 GiB. 

This is more than enough memory for the purposes of this project. 

• It has 4 cores, and therefore supports multithreading, increasing 

performance. 

• Off-the-shelf WiFi, Bluetooth, Ethernet and USB connectivity. 

• Expandable by means of widely available shields, aimed at specific 

purposes like LTE connectivity, which can be very useful in IoT 

applications. 

• It can be battery-powered. 

• More importantly, it is a highly popular project with a thriving community of 

enthusiasts. Consequently, documentation is highly available and of great 

quality. This also includes tutorials for developing common applications. 

Hence, it becomes very easy to start using Raspberry Pi for prototyping 

purposes. These features, combined with a competitive price (see Table 

4), makes it a good choice. 
 

 

 

 

 

 

 



 

20 

 Size (mm) Weight (g) Cost ($) 

Raspberry Pi 85.6 x 53.98 x 17 45 25-35 

Arduino Uno 75 x 53 x 15 30 30 

BeagleBone 
Black 

86.3 x 53.3 39.68 45 

Phidgets 81.3 x 53.3 60 50-200 

Udoo 110 x 85 120-170 99-135 

Table 4: Comparison of different SBC in terms of size, weight and cost. 

The main specifications of the Raspberry Pi 3 Model B+ can be consulted in Table 
5 [34]. As it can be seen, the Raspberry Pi implements many of the key features 
that a regular personal computer has, such as 802.11 connectivity and HDMI 
connectivity, all compressed in a size of about 47.6 𝑐𝑚2. Moreover, it provides 
some characteristics that make it suitable for IoT projects, including 40 GPIO pins 
and support for communication protocols such as Bluetooth 4.2. 
With regard to the Operating System, Raspberry Pi can be operated with many 
different options, including officially supported: Raspbian; semi-officially 
supported: Ubuntu Core, Windows IoT Core, RISC OS, Ichigo Jam Pi, Ubuntu 
Mate; and compatible but not officially supported: Arch Linux, Chromium OS, Diet 
Pi and many more. 
As it has been mentioned, Raspbian is the official distribution of Raspberry Pi. It 
is based on Debian, the widely known GNU/Linux distribution for servers and 
personal computers. Due to its official status and its ease of use, it has been 
selected as the OS for this project. 
 

 Value 

Processor Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4 GHz 
 

Memory 1GB LPDDR2 SDRAM 
 

Connectivity • 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac wireless, LAN, 

Bluetooth 4.2, BLE 

• Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)  

• 4 × USB 2.0 ports 

Access Extended 40-pin GPIO header 
 

Video & 
Sound 

• 1 × full size HDMI 

• MIPI DSI display port 

• MIPI CSI camera port 

• 4 pole stereo output and composite video port 

Multimedia H.264, MPEG-4 decode (1080p30); H.264 encode 
(1080p30); OpenGL ES 1.1, 2.0 graphics 
 

Input power • 5 V/2.5 A DC via micro USB connector 

• 5 V DC via GPIO header 

• Power over Ethernet (PoE)–enabled (requires separate PoE HAT) 

SD card 
support 

Micro SD format for loading operating system and data storage 
 

Table 5: Raspberry Pi 3 Model B+ echnical specifications 
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2.6 IoT Cloud Platforms 
Several crucial aspects of IoT applications cannot be directly managed at the 
edge of the network, since they required a significant amount of storage and 
computation capacity which is out of the scope of sensor devices and gateways. 
Therefore, a centralized point of control is required, from which activities such as 
data monitoring, gathering and processing, as well as device management are to 
be performed.  

One way of addressing this issue is by using commercial IoT Cloud providers, 
which offer off-the-shelf tools for performing such tasks. A significant number of 
options exist in the market, but not all of them are aimed at the same markets or 
applications. Consequently, the suitability of each IoT Cloud platform needs to be 
investigated as part of the design of the application. 

The comparison to be drawn between different platforms can be performed by 
evaluating the features that each platform offers. Such features can be classified 
according to the following groups [35]: 

• Application Development 

• Device Management 

• System Management 

• Heterogenicity Management 

• Data Management 

• Analytics 

• Deployment Management 

• Monitoring Management 

• Visualization 

• Research 

 

2.6.1 thethings.iO 

The IoT Cloud platform selected for this dissertation has been thethings.iO [36]. 
This platform provides back end solution for IoT applications, allowing its users 
to connect its IoT devices to the cloud for monitorization, data analysis and device 
management.  

One of the main advantages of the platform is that it is device agnostic, i.e. any 
type of device can communicate with the platform, mainly thanks to the use of 
industry standard protocols, such as MQTT. Moreover, is it not limited to data 
representation, since it includes application development capabilities by means 
of an exposed API. Tools are provided for accessing such interfaces, including 
Python libraries. 

A brief description of the capabilities of the platform is presented below [37]: 

• Connectivity and Normalization: an API is provided which allows users to 

connect any type of device to the platform. This includes libraries for 

languages such as Python and Node.js, in addition to libraries for popular 

embedded platforms like Arduino and Raspberry Pi. Furthermore, various 

communication protocols can be used to perform the communication 

between devices and platform, including HTTP, Websockets, MQTT, 

CoAP and more. 
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• Device & Licenses Management: devices can be individually monitored, 

allowing for remote management. Moreover, thethings.iO does not limit 

the amount of storage that an application can make use for, therefore 

guaranteeing scalability. 

• Cloud Code Processing & Action Management: the platform can be 

programmed to trigger specific actions upon data reception. Actions can 

be complemented with notifications through SMS or even Twitter. 

• Data Monitoring and Visualization: customizable dashboards for 

displaying real-time information collected from the connected devices. 

• Analytics, AI, Predictive analysis: processing of stored data using AI and 

machine learning techniques. 

• Interoperability and integrations: possibility of interacting with third party 

services. 

 

2.6.2 thethings.iO overview 

As it has been mentioned in previous sections, communication between devices 
and the platform is performed by means of APIs provided by thethings.iO.  

Access to devices is divide in “Products” and “Things”. Products are groups of 
devices which serve a common purpose. In this case, the defined product has 
been “Comfort Metrics”, understood as the installation of a set of sensors in a 
building with the objective of collecting different metrics related to comfort 
conditions. On the other hand, “Things” are the end devices that collect the 
information, which corresponds to the OpenMote devices deployed on the 
building.  

The creation of a new product is shown in Figure 6. As it can be observed, the 
chosen serialization format has been JSON, although other options exists, 
including Sigfox, MessagePack and Protocol Buffer. However, given the 
enormous flexibility and popularity of JSON, it has been deemed as the most 
suitable solution for the purpose of this project. 
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Figure 6: configuration of an IoT product in thethings.iO. The chosen format  

Once the product has been created, “Things” can be added to it. Whenever a 
“Thing” is created and activated, a Thing Token is obtained, uniquely identifying 
it and allowing for the communication between the platform and the Raspberry 
Pi. An overview of the “Thing” definition is shown in Figure 7. 

 

Figure 7: Definition of a “thing”. The Thing Token identifies the device which is sending the 
information. 

While thethings.iO offers several methods for transferring information to and from 
it, the chosen communication methods have been the provided Python library 
[38], mainly because of the availability and ease of use of Python, and the rapid 
development speeds that can be achieved thanks to the functions contained in 
the library. Listing 1 describes the process of installing the thethings.iO Python 
library. 

$ git clone https://github.com/theThings/thethings.iO-python-library.git 
$ sudo python setup.py install  
Password: 
… 
>>> help("thethings") 
Help on package thethings: 
NAME 
    thethings 
FILE 
    /Library/Python/2.7/site-packages/thethings/__init__.py 
PACKAGE CONTENTS 
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    thethingsAPI 
Listing 1: installation of thethings.iO Python library in the Raspberry Pi 

After the Python library has been installed, it is possible to send and receive data 
from the platform using the write() and read() functions. Figure 8 shows how data 
is displayed when it is received. It is important to notice that one “Thing” can 
handle multiple “resources”, such as temperature and humidity, which are 
identified by the information sent in the JSON message.  
 

 
Figure 8: Example data received at thethings.iO. As it can be seen, the data is represented with 
its associated timestamp, so that the evolution of the measurement over time can be observed. 
In addition, several sources can be represented at the same time (temperature and humidity, in 

this case). Consequently, it becomes easy to observe correlations between them. 

 
A custom dashboard can be configured to represent the data captured from 
remote devices. The dashboard is composed of widgets which are available off-
the-shelf, with different types of widgets being suitable for different types of data. 
A new widget can be configured from the Dashboard menu using the “Add 
Widget” button. As it can be seen, it is simply a matter of selecting which resource 
is to be represented, and how is it going to be visualize (pie chart, historical 
evolution, etc.). A temporary dashboard example is displayed on Figure 9. 
 

 
Figure 9: thethings.iO Dashboard, showing temperature and OpenMote location 
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2.7  Data storage: the database 
The implementation of the edge computing approach requires storing the 
information collected from the sensors on a local database located in the 
Raspberry Pi. Consequently, it becomes necessary to select a database 
framework which fulfils all the requirements of the application. Since the 
operations performed by the database system for the purpose of this project are 
rather basic, the resulting requirements are very simple in nature. Accordingly, 
the following requirements have been defined. 

• It is an open source solution, being freely distributable and with publicly 

available documentation. 

• It can be controlled using the Python programming language. 

• It can be installed on the Raspbian operating system. 

• It is actively developed. 

The current ecosystem provides many possible alternatives, from traditional 
proprietary software (Oracle, Microsoft’s SQL Server) to fully open source 
solutions (MySQL, MariaDB, MongoDB). This allows users to select the tool that 
best suites them, with very fine-grained control of the features that are desired. 

Any of the open source solutions described above could fulfils the requirements 
of this project. Therefore, selecting one or the other boils down to personal 
preference. In this regard, the database of choice has been PostgreSQL [39], 
mainly because it is one of the most active databases in the open source scene, 
with a rich community of contributors and regular global events. In addition, 
updated and detailed documentation is readily available, making it very easy to 
develop new database applications from scratch. 

Some of PostgreSQL’s main features are [40]: 

• It is possible to create custom data types and query methods. 

• It provides functionality to run stored procedures in many popular 
programming languages, including Java, Perl, Python, C/C++, etc.  

• It implements the GiST (Generalized Search Tree) system, which allows 
the user to sort and search for data using different algorithms, i.e. B-tree, 
B+-tree, R-tree, partial sum trees, and ranked B+-trees. 

• Highly extensible. 

• Tools for data recovery: Write-ahead Logging (WAL), Tablespaces, 
Point-in-time-recovery (PITR), active standbys, etc. 

• Security features: Robust access-control System, Column and row-level 
security, etc. 
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The installation process of PostgreSQL on the Raspberry Pi is presented in 
section 10.4 for the interested reader. 

2.8 Ethics of the IoT 
Any technological development, whether small or big, must address its ethical 
implications and its effects on society. Otherwise, technology might stop being a 
tool of improvement, becoming something else, however dangerous or harmful it 
might be. 

In the case of the Internet of Things, endless possibilities are opened, with the 
potential of heavily determining the shape of the daily lives of the population. This, 
however, poses some crucial challenges that must be address. In the present 
section, the focus will be places on privacy and data protection. 

As it has been mentioned, IoT has the potential of influencing how we live. This 
is achieved thanks to the collection of an enormous amount of personal 
information, including what we eat, how much do we sleep, what we do at home, 
who we talk with, and the list goes on.  

In the industrial field, privacy is also relevant, although the implications are 
different. An IoT-enabled factory can store detailed information about all the 
processes taking place in it, such as number of workers, number and type of 
machines, temperature of operation, pieces being manufactured, etc. An external 
agent with access to such information has an undoubtable advantage over its 
competitors. 

Therefore, privacy of collected and transmitted data must always be ensured.  

Although manufacturers must guarantee such security by design, it is also useful 
to mention the existing regulation regarding data protection. The European Union 
Data Protection Directive [41] defines the rights that a subject (in this the user of 
a IoT-enabled application), has. Violation of such rights represents a law 
infringement action. 

It has been considered useful to include a summary of such rights, since it can 
be considered as a checklist to have in mind when designing IoT projects: 

• Breach Notification 

• Right to Access 

• Right to be Forgotten 

• Data Portability 

• Privacy by Design 
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3 Proposed design 

3.1 System overview 

The proposed system aims to provide an insightful example of a typical IoT 
applications, in which several elements, from the edge of the network to the cloud 
platform, collaborate using standard communication protocols in order to achieve 
a final goal. For this reason, a typical IoT home deployment is proposed, as 
shown in Figure 10. 

The purpose of this deployment will be twofold: monitoring and actuation. Typical 
comfort indicators, including temperature and humidity, will be frequently logged 
so that its status and evolution can be observed. Based on the registered 
temperature, the system will be actuated by means of disabling or enabling the 
air conditioning system. 

Furthermore, the presence in each of the rooms of the house will also be 
monitored. Although this is not directly related to comfort indicators, this 
information can be significantly beneficial for creating occupancy models which, 
with the appropriate analysis, can help to optimize several aspects such as 
energy consumption. This not only applies to the monitored home, since 
aggregated data from thousands of homes can provide a useful input for different 
disciplines which aim to improve the design of existing buildings to minimize 
energy consumption. 

In addition, another actuation method based on presence can alert the owners in 
intruders are detected at home. 

 

 

Figure 10: system overview. Sensor data is collected by OpenMote devices distributed along a 
property. Such data is sent to a central point, the Raspberry Pi, which acts as a gateway, 

processing the data and sending it to the thethings.iO platform.  

As it can be observed, the system is composed of the following elements: 

• OpenMote nodes: wireless sensor nodes which read sensors 

(temperature, humidity, etc.) and communicate with the Raspberry Pi 
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using the 802.15.4 and CoAP protocols. Motes are distributed around a 

house to provide a full picture of the living conditions inside it. 

• Raspberry Pi: playing the role of a network gateway, this node is in charge 

of collecting the data coming from OpenMote sensors. When validating the 

edge computing paradigm, heavy computation operations will be 

performed on the Raspberry Pi, with the results being transferred to the 

cloud. On the other hand, when validating the cloud computing paradigm, 

the processing operations performed by Raspberry Pi on the collected 

data will be minimum. Since this node is the one connecting to the Internet, 

it will contain the applications requiring for communicating with 

thethings.iO API. 

• thethings.iO: it acts as the cloud platform of the system, providing 

storage, analysis and visualization of generated and processed data. 

Additionally, data will be processed in this platform when validating the 

cloud computing paradigm. 

To maximize the project outcome, and to guarantee that key objectives are 
achieved, two distinct project phases are proposed: 

• Phase 1: simulation. Instead of using a real network of OpenMote nodes, 

sensor information is generated using OpenWSN’s simulator, OpenSim, 

on the Raspberry Pi. This allows for the validation of the computing model 

before the final deployment is performed, since the source of the data does 

not affect the performance indicators used for the comparison of 

paradigms (edge versus cloud computing). 

• Phase 2: physical deployment. in case that the simulation 

implementation is successful, and valid conclusions can be drawn from it, 

the paradigms can be further validated using real sensor data, collected 

by OpenMote devices. In addition, this provides a deeper insight into IoT 

technologies, since it is necessary to set up, program and configure the 

sensor data collection and the connectivity using the 802.15.4 protocol. 

The presented design allows to undertake the study of the two proposed 
computation models, edge and cloud, since the role of its different components, 
specially the Raspberry Pi, will depend on how applications are implemented in 
the system. This flexibility comes from the fact that the applications running on 
the mote and running on the Raspberry Pi are programmable using common 
languages, namely C and Python, so that the control over their behavior can be 
fine-grained. 

3.2 System processes 
The purpose of this section is presenting the functions and processes that have 
been described as part of the application. this section is presenting how the 
different process which compose the computation models under study have been 
designed. 
The design is presented in the form of flow diagrams, which describe the 
sequence of operations which are performed. It is important to note that their 



 

29 

purpose is not to present low-level details of how the application is designed. 
Such details can be consulted in the provided source code. 
 
3.2.1 Cloud computing model 

The design of the cloud computing component of the simulation has the objective 
of presenting the classical features associated to cloud computing Systems. 
Consequently, no data processing will be undertaken on the Raspberry Pi, which 
will simply act as a gateway, collecting data from different motes and sending it 
to the cloud platform, thethings.iO. 
 
The following processes have been identified. 
 

3.2.1.1 Retrieve and send to the cloud sensor data from motes 

The information collected by sensors is retrieved from the motes by the gateway 
Raspberry Pi using the CoAP protocol. The following types of data is considered: 
 

• Temperature: indicates room temperature in degrees Celsius humidity 

level in the air. 

• Humidity: indicates relativity humidity level in the air expressed as a 

percentage. 

• Presence: indicates whether a presence has been detected in the room 

(1) or not (0). 

Once the sensor readings are received, their format is adapted to make it 
compatible with thethings.iO. Once the format is adapted, each reading is added 
to a JSON object, where the key indicates the type of data and the mote to which 
it corresponds, and the value is the value read from the sensors. 
 
When all data has been collected, the JSON object is sent to the cloud platform. 

Figure 11 and Figure 12 depict the flow diagrams for this process. 
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Figure 11: flow diagram which describes how the process of retrieving data from sensors and 

sending it to the cloud is performed 

 
 

 
Figure 12: flow diagram which describes how the sub-process of reading a value from a mote is 

performed. 

3.2.1.2 Analyze stored information to compute relevant statistical metrics 

The data collected from the sensors, which has been stored in the cloud platform, 
is further analyzed using tools provided by thethings.iO. In this case, it is not 
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required to have continuous updates on the computed statistics. Instead, the 
analysis is performed with a period of 1 hour. In this manner, it becomes possible 
to create statistical profiles with a step size of one hour.  

For example, this could be useful to plot the average temperature in the house 
for a 24-hour period, showing the average temperature for each hour. 

The following statistics are calculated for the temperature and humidity sensor 
data types: 

• Average value 

• Maximum value 

• Minimum value 

3.2.1.3 Data representation 

One of the key features of most cloud platforms is the possibility of displaying 
stored data in different formats. For this reason, the readings obtained from the 
home deployment will be plotted using line diagrams, which show their evolution 
as a function of time. 

3.2.1.4 Intruder detection 

Another aspect of the cloud computing model which has been applied to the 
design is the possibility of actuating on the monitored system based on its status. 
In particular, a naïve intruder detection mechanism is proposed. If presence is 
detected in the entrance hall between 00:00 and 06:00, a log message is to be 
registered in thethings.iO, and an email message is sent informing the owner 
about the intruder detection. 

The flow diagram for this process is shown in Figure 13. 
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Figure 13: flow diagram showing the process of detecting an intruder 

3.2.2 Edge computing model 

The design of the cloud computing component of the simulation aims to highlight 
the main differences between classic cloud computing and edge computing 
model. For this reason, a significant amount of the computation tasks will be done 
directly on the Raspberry Pi. However, some information will still be sent to the 
cloud, which will act as a central point for monitoring the summarized information 
provided by the edge computations. 

To implement the edge computing model, the following processes have been 
identified. 

3.2.2.1 Retrieve and store sensor data from motes 

The information collected by sensors is retrieved from the motes by the gateway 
Raspberry Pi using the CoAP protocol. The same data sources as in the cloud 
computing model (see 3.2.1) are defined, with the addition of: 

• Air conditioning status: indicates whether the air condition system is 

activated (1) or not (0). 

Once sensor data has been fetched, its format is adjusted so that it can it is 
suitable for storage. After the adaptation has taken place, the read values are 
stored internally in the Raspberry Pi, using the PostgreSQL database created for 
such purpose. The following information regarding the read value is stored:  

• Date 
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• Type of reading (temperature, humidity or presence)  

• Mote from where the value was read. 

Consequently, a single table will contain all readings from different motes and 
resource types. Further analysis will read values from this table, potentially 
filtering by date, mote or resource type. 

This activity needs to be frequent enough to provide a realistic view of how the 
different environmental conditions in the house evolve with time. As a 
consequence, a polling period of 3 minutes has been defined. It is important to 
notice that the data collected at this rate will not be sent to the cloud. Instead, it 
will only be stored internally in the Raspberry Pi. 

The flow diagrams for this activity is presented in Figure 14 and Figure 15. 

 
Figure 14: flow diagram which describes how information is read from the motes in the Edge 

Computing model. 
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Figure 15: flow diagram which describes the sub-process of reading a resource value from a 

mote. 

3.2.2.2 Analyze stored information to compute relevant statistical metrics 

The data collected from the sensors is further analyzed by calculating different 
metrics for a defined period. As in the Cloud Computing model, it is not required 
to have continuous updates on the computed statistics.  

The following statistics are calculated for the temperature and humidity sensor 
data types: 

• Average value 

• Maximum value 

• Minimum value 

• Standard deviation 

With regard to the presence, a different approach has been undertaken. In this 
case, the statistical analysis attempts to provide information that allows to create 
occupancy models of the house. This information can prove useful to determine 
how citizens make use of their home, and how their behavior and behavior 
patterns can influence aspects such as the temperature of the room. In this 
regard, three indicators have been included: 

• Least active room: room where presence has been detected the lowest 

amount of times during the last hour. 

• Most active room: room where presence has been detected the highest 

amount of times during the last hour. 

• Number of people at home: maximum number of rooms where presence 

has been detected at the same time during the last hour. 

 As it can be appreciated, these indicators are simple to calculate. Although more 
complex computations might be developed, these three simple indicators have 
been deemed appropriate for the scope of this dissertation, as they represent an 
example of the type of information that can be extracted using sensors in a 
connected home. 



 

35 

Unlike the basic resource value reading, this activity does not need to be 
executed every minute, since that would not provide any significant information. 
Instead, a period of 1 hour has been defined for these calculations, since it 
presents a good balance between producing data frequently enough and 
covering a period that can be used to analyze the evolution of values during the 
day. 

Flow diagrams for this activity are presented in Figure 16 and Figure 17. 

 
Figure 16: flow diagram which describes how statistical analysis is performed on the stored 

data. 
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Figure 17: flow diagram which describes the sub-process of calculating different statistical 

metrics on the stored data. 

3.2.2.3 Actuate over the air conditioning system based on the temperature 

As an example of an actuation mechanism based on read data, the edge 
computing application is designed to actuate on the air conditioning system based 
on the temperature of the Living Room. 

The flow diagrams for this activity is presented in Figure 18.  

 
Figure 18: flow diagram which describes how the air conditioning system is actuated based on 

the temperature. 
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3.2.2.4 Data cleanup 

In order to avoid excessive data storage that could potentially exhaust the storage 
capacity of the Raspberry Pi, a database cleanup operation is scheduled every 
12 hours, cleaning entries in the table older than 12 hours, since they are 
considered unnecessary. 

3.2.3 Comparison of designed features 

In principle, both solutions should be equal, resulting in the same generated data, 
e.g. average, standard deviation, etc. However, two factors have influenced the 
features finally implemented in each model: 

1. Greater expertise in the development environment used for the edge 

model. In particular, previous experience with both Python and 

PostgreSQL allowed for a more ambitious scope regarding the calculated 

metrics. On the other hand, the development of the cloud model features 

occurs in thethings.iO platform, with Javascript being used as the main 

development language. Despite the high quality of the documentation, the 

learning curve for this platform has been steeper than in the case of the 

edge computing model. 

2. The steep learning curve in the case of the cloud computing model is 

combined with an nonoptimal planing, which has caused a lack of time for 

developing more features in the cloud computing model. 

3.3 Deployment 
Considering the processes described in previous sections, the deployment 
depicted in  Figure 19 is proposed. As it can be appreciated, the deployment is 
composed of 6 motes and 1 Raspberry Pi, which acts as the gateway of the 
system. Each of the motes have some sensors associated to them, which are 
listed in Table 6. 

With this deployment, it becomes possible to effectively monitor the comfort 
indicators of the house, since all motes are assumed to have access to 
temperature, humidity and presence sensors. Moreover, mote number 5 can also 
control the air conditioning status, which will be used for controlling the 
temperature based on the measured value in that room. 

With regard to the network topology, the mote with ID 1 is considered the DAG 
root of the network, i.e. the hierarchy will be formed dynamically taking such node 
as the root. In addition, it has been considered that all of the motes have direct 
connectivity with each other. This is a safe assumption, since the distance 
between the nodes is not too long, and there are not any significant obstacles 
between them, with the exception of walls. In summary, the nodes form a fully-
meshed topology, thus guaranteeing a high level of connectivity. 
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Figure 19: proposed home deployment for the application. 

 
 
 
 
 
 

Mote ID Location Sensors 

1 (DAG root) Living Room None 

2 Kitchen • Temperature 

• Humidity 

• Presence 

3 Entrance Hall • Temperature 

• Humidity 

• Presence 

4 Bathroom • Temperature 

• Humidity 

• Presence 

5 Bedroom • Temperature 

• Humidity 

• Presence 

• Air conditioning status 

6 Living Room • Temperature 

• Humidity 

• Presence 

Table 6: summary of deployed motes. All of the 7 motes form a fully-meshed topology. 

 
 



 

39 

 
3.3.1 Summary of collected and generated data 

As a summary of the information presented in section 0, Table 7 shows the 
different data sources that exist in the system, including the frequency at which 
they are collected. In the same manner, Table 8 presents the results obtained 
from the computations which take the collected data as input. 

Name Type Units Associated motes Frequency (minutes) 

Temperature Environmental 
condition 

º C 2, 3, 4, 5, 6 1 

Humidity Environmental 
condition 

% 2, 3, 4, 5, 6 1 

Presence Environmental 
condition 

Boolean (presence 
or not presence) 

2, 3, 4, 5, 6 1 

Air conditioning status Device status Boolean (active or 
not active) 

5 1 

Table 7: summary of data sources which are collected from the simulated nodes 

 
Name Description Associated data 

sources 
Frequency (minutes) 

Average values Average value of collected values 
during a period of 1 hour  

Temperature, 
humidity, presence 

60 

Maximum values Maximum value of collected values 
during a period of 1 hour 

Temperature, 
humidity, presence 

60 

Std. deviation of 
sample 

Standard deviation of the collected 
values during a period of 1 hour 

Temperature, 
humidity, presence 

60 

Least active room Room where presence has been 
detected the lowest amount of times 
during the last hour 

Presence 60 

Most active room Room where presence has been 
detected the highest amount of times 
during the last hour 

Presence 60 

Number of people at 
home 

Maximum number of rooms where 
presence has been detected at the 
same time during the last hour. 
 

Presence 60 

Table 8: summary of generated results 

3.4 Database model 
A key component of any application is how is information stored and accessed. 
For this reason, the database model which has been designed for this project is 
presented. Such model describes what tables exist, what is their function, what 
data do they store and how do they relate to each other. 

An important consideration is that, except for the data types, the database model 
is framework-agnostic, being it possible to implement it in any of the available 
database systems (PostgreSQL in this case). The only requirement would be to 
find the equivalent data type in the corresponding database system. For example, 
the cidr data type in PostgreSQL would become VARBINARY(16) in MariaDB.  
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The code for implementing the database model in PostgreSQL can be found in 
 
3.4.1 Tables 

3.4.1.1 MOTES 

Table to register the mote devices which exist on the network. 
 

Column name Description Type Can be 
Null? 

ID Unique numeric identifier of the mote, e.g. 1, 2. etc. INT NO 

NAME Arbitrary name to identify the mote. It usually corresponds to the 
location where the mote is placed, e.g. 'Kitchen'. 

varchar(80) NO 

ADDRESS IPv6 address of the mote 
 

cidr YES 

Table 9: Database table "MOTES" 

3.4.1.2 SOURCE_TYPES 

Table to identify which type of data sources exists in the system. It typically 
corresponds to the types of sensors associated to the motes. 
 

Column name Description Type Can be 
Null? 

NAME Unique identifier of the data source, e.g. 'temperature'. varchar(80) NO 

UNITS Units in which the data source is expressed varchar(80) YES 

Table 10: Database table "SOURCE_TYPES" 

3.4.1.3 READINGS 

Table to store read values from the different data sources of the deployment. 
 

Column name Description Type Can be 
Null? 

ID Identifier of the mote device which performs the reading. It must be 
one of the identifiers defined in the 'MOTE' table 

int NO 

DATE Date and time on which the reading was performed timestamp NO 

TYPE Type of data source (e.g. temperature). It must correspond to one 
the entries in the SOURCE_TYPES table 
 

varchar(80) NO 

VALUE Numeric value of the reading 
 

int NO 

Table 11: Database table "SOURCE_TYPES" 

3.4.1.4 TEMPERATURE 

Table to store statistics regarding temperature. 
 
 
 
 
 
 
 



 

41 

Column name Description Type Can be 
Null? 

ID Identifier of the mote device which performs the reading. It must 
be one of the identifiers defined in the 'MOTE' table 

int NO 

TIME_RANGE_START Initial date and time of the range where the statistic has been 
calculated 

timestamp NO 

TIME_RANGE_STOP Final date and time of the range where the statistic has been 
calculated 

timestamp NO 

AVERAGE Average value in the period under study real YES 

MIN Minimum value in the period under study real YES 

MAX Max value in the period under study real YES 

STDDEV Standard deviation of the sample in the period under study real YES 

Table 12: Database table "SOURCE_TYPES" 

 

3.4.1.5 HUMIDITY 

Table to store statistics regarding humidity. 
 

Column name Description Type Can be 
Null? 

ID Identifier of the mote device which performs the reading. It must 
be one of the identifiers defined in the 'MOTE' table 

int NO 

TIME_RANGE_START Initial date and time of the range where the statistic has been 
calculated 

timestamp NO 

TIME_RANGE_STOP Final date and time of the range where the statistic has been 
calculated 

timestamp NO 

AVERAGE Average value in the period under study real YES 

MIN Minimum value in the period under study real YES 

MAX Max value in the period under study real YES 

STDDEV Standard deviation of the sample in the period under study real YES 

Table 13: Database table "SOURCE_TYPES" 

3.4.1.6 PRESENCE 

Table to store statistics regarding home occupancy. 
 

Column name Description Type Can be 
Null? 

TIME_RANGE_START Initial date and time of the range where the statistic has been 
calculated 

timestamp NO 

TIME_RANGE_STOP Final date and time of the range where the statistic has been 
calculated 

timestamp NO 

LEAST_ACTIVE_ROOM Room where presence has been detected the smallest amount 
of times 

real YES 

MOST_ACTIVE_ROOM Room where presence has been detected the biggest amount 
of times 

real YES 

N_PEOPLE_HOME Estimated number of people at home, calculated as the 
number of rooms where presence has been detected at the 
same time 

real YES 

Table 14: Database table "SOURCE_TYPES" 
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3.4.2 Relationship between tables 

 
Figure 20: Relationship between tables in the database model 

The relationship between tables of the database model is presented in Figure 20. 
As it can be observed, the following foreign keys have been defined: 

 ID: whenever a reference to a mote is presented in a column, such column 

references the ID column of table “MOTES”. In this manner, data integrity 

in the database is ensured, since it becomes impossible to store readings 

or data that correspond to an undefined mote. The 1 to N relationship 

indicates that motes cannot share ID in the MOTES table, but multiplies 

entries referring to the same ID can be stored in other tables.  

 SOURCE_TYPE: when indicating the type of resource in the READINGS 

table, it must correspond to one of the types defined in the 

SOURCE_TYPE table. This ensures that all data stored in the READINGS 

table correspond to known types of resources. The 1 to N relationship 

indicates that two different types cannot have the same name in the 

SOURCE_TYPES table, but multiplies entries referring to the same source 

type can be stored in other tables. 

In addition, Figure 20 also contains information regarding data types in the 
database and a flag indicating whether the column can be null or not. 
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4 Implementation 

 
Figure 21: High level overview of the implementation 

 
In order to provide a high-level overview of the system, Figure 21 is presented. 
As it can be appreciated, three major levels can be identified: 

• OpenSim: emulate motes to generate data and inject to the event bus. 

• OpenVisualizer: provides a management and monitoring interface for 

the simulated motes. It provides several user interfaces, namely native 

GUI, CLI and a web interface. The later will be used for the purpose of 

this project. 

• thethings.iO: cloud platform which will store and display sensor data, as 

well as the resulting computations. 

In this section, the implementation of the design proposed in section 0 is 
presented. Firstly, the discussion will focus on aspects of the implementation 
which apply to both models. Secondly, the development specifics of each model 
will be described. 

4.1 Simulation of motes 
In the first stage of the process, the OpenMote devices are simulated, allowing to 
validate the design and study the models without requiring complex hardware 
setup. For this purpose, OpenSim, the simulation framework of OpenWSN, in 
combination with OpenVis, will be used. The undertaken approach has the 
additional advantage of being hardware-agnostic, being it possible to reuse the 
applications developed for the simulation, which shall behave in the same manner 
whether it is run as a simulation or flashed on a real device. 

It is assumed that OpenVis is already installed and configured (see section 10.3). 
The basic invocation of the OpenSim can be achieved with the following 
command. 

$ cd openwsn-sw/software/openvisualizer 
$ sudo scons runweb --sim                                
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Once the simulation is loaded, it can be accessed from a web browser through 
port 8080. This will show the result shown in Figure 22. The panel on the left 
allows the user to configure several aspects of the simulation. 

Figure 22: Mote overview 

To further configure how the simulation is run, the following options can be used: 

• simCount: number of simulated motes. 

• simTopology: topology which the simulated motes form. Possible values 

are: 

o linear: each mote connects to 2 other motes at most. 

o fully-meshed: each mote connects to all other motes. 

The selected configuration for the implementation of the design has been 
assigning a value of 6 to simCount and use simTopology fully-meshed. 

Therefore, the invocation script becomes: 

cd openwsn-sw/software/openvisualizer 

$ sudo scons runweb --simCount=6 --simTopology=fully-meshed                                 

The reason for selecting a fully-meshed topology is that it guarantees the 
connectivity of all devices. If any of them malfunctions, the RPL algorithm will be 
able to recalculate the root with the remaining nodes. 

4.1.1 Web interface 

This section provides a description of the web interface and the configuration 
options that it offers. 

4.1.1.1 Motes 

This page contains information regarding each of the motes which compose the 
simulation. Some of the most relevant pieces of information that can be consulted 
are: 

• Whether the mote is DAG root or not. 
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• IPv6 address of the mote. 

• Status indicators of the mote. 

From this page, it is also possible to turn a mote into the DAG (Directed Acyclic 
Graph) root of the network. In the context of the RPL protocol [18], the DAG root 
node is the only one that does not have outgoing edge. This means that it acts 
as the centralizing point of the network, as other motes form a connectivity 
hierarchy with the DAG root in the upper level. 

4.1.1.2 Event bus 

It contains events that have been produced by the devices which take part in the 
simulation. Thanks to the shared Event Bus, motes in the network can 
communicate by means of a publish-subscribe messaging mechanism. An 
advantage of this approach is that it is hardware-agnostic, being it possible to 
communicate real and simulated motes [42]. 

4.1.1.3 Topology 

The topology of the network can be configured in a visual manner, as displayed 
in Figure 23. A map is displayed, showing the existing motes and their location 
(by default the UC Berkeley building for Electrical Engineering), as well as the 
connections between them. 

Figure 23: Location and topology of motes 

The quality of the connection between motes can be configured by means of 
controlling its associated PDR, which indicates the reliability of a link, calculated 
as the ratio between the number of received packets and the number of sent 
packets. Consequently, a PDR of 1 indicates a perfect link [43].  

For the purpose of this project, a PDR of 1 will be assumed between al motes. 
 

4.1.1.4 Routing 

It contains a graph showing the DAG of the RPL protocol. After setting the root, 
RPL DAO messages are sent between the motes in order to form the DAG, 
indicating the hierarchy between nodes. These messages are sent periodically to 
keep the routing functional (e.g. if a node goes down).
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received RPL DAO from bbbb:0:0:0:1415:92cc:0:2                                    
- parents:                                                                        
   bbbb:0:0:0:1415:92cc:0:1                                                       
- children:                           

                                                                           

4.1.1.5 Connectivity 

Shows which motes are reachable and which are not. Additionally, the 
connectivity with the simulated OpenMote devices can be tested with the ping 
command, sending to the IPv6 associated to the mote. 

$ ping -s 10 bbbb:0:0:0:1415:92cc:0:2 
PING bbbb:0:0:0:1415:92cc:0:2(bbbb::1415:92cc:0:2) 10 data bytes                  
18 bytes from bbbb::1415:92cc:0:2: icmp_seq=1 ttl=64                              
18 bytes from bbbb::1415:92cc:0:2: icmp_seq=2 ttl=64                              
                                                                                  
$ ping -s 10 bbbb:0:0:0:1415:92cc:0:3 
PING bbbb:0:0:0:1415:92cc:0:3(bbbb::1415:92cc:0:3) 10 data bytes                  
18 bytes from bbbb::1415:92cc:0:3: icmp_seq=1 ttl=64                              
18 bytes from bbbb::1415:92cc:0:3: icmp_seq=4 ttl=64                             

                                                                                                                         

4.1.1.6 Documentation 

External link’s to OpenSim’s documentation. 
 

4.2 Developing OpenWSN applications 
 

 
Figure 24: Overview of OpenSim and its components. Adapted from OpenWSN documentation. 

As it can be appreciated in Figure 24, each simulated mote has access to different 
applications. In this case, such applications are to be used for simulating sensor 
data, i.e. temperature, humidity, presence and the status of the air conditioning 
system. Once implemented, each application is initialized and creates a new 
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resource that can be accessed by its URI using CoAP, thanks to the fact that a 
virtual interface is exposed to the Raspberry Pi, allowing communication with 
OpenSim. 
 
While some applications are already provided by the openwsn-fw repository, it is 
possible to develop new ones tailored for the specific purposes of the project. The 
implemented applications, written in C, will work as sensor simulators, providing 
random values for the different readings. Developed applications are listed below: 

• ctemperature: simulation of temperature. 
o A random number between +5 and -5 is added to the nominal 

temperature, which has a value of 23 degrees Celsius during the 
day (08:00 AM - 22:00 PM) and 18 degrees Celsius during the 
night. 

• chumidity: simulation of humidity. 
o A random number between +5 and -5 is added to the nominal 

humidity level, which has a value of 45 % during the day (08:00 AM 
- 22:00 PM) and 55 % during the night. 

• cpresence: simulation of presence. 
o The probability of detecting a presence (1) is 75 % during the day 

(08:00 AM - 22:00 PM) and 25 % during the night. 

• cairconditioning: status of the air conditioning system. 

o A value of 1 indicates that the air conditioning system is enabled, 
while a value of 0 indicates that it is disabled. It is possible to modify 
this value using CoAP. 

As in any other software development, it is highly recommended to use version 
control for keeping track of the evolution of the code. Since the openwsn-fw is 
hosted as a git project, this will be the used tool.                                                         

$ git checkout -b feature_to_be_developed     
Checkout out new branch ‘feature_to_be_developed’ 

                                                                  
The codification of the applications has been based on existing apps. In particular, 
the cinfo.c application, can be used as the base of the development, since they 

already contain all the required elements for sending a desired value upon a 
CoAP request. 

4.2.1 C Implementation 

Instead of adding the code, it has been considered more effective to include an 
explanation of how the implementation has been performed. In the case of the 
temperature, humidity and presence sensors, the implementation is rather 
similar, and the illustrated concepts will apply to all of them. In the case of the 
status of the air conditioning system, the code is also very similar, but since the 
application can be controlled via CoAP, the additional code for handling CoAP 
requests will be explained. 
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For the sake of brevity, only the most relevant aspects of the code will be 
explained. 

4.2.1.1  Initialization 

Function ctemperature_init() configures some important parameters of the 

sensor. They are stored in a struct which is used for the registration of the 
application (opencoap_register). The most important are: 

• path: URI path which identifies the “temperature” resource. CoAP GET 

methods will use such URI to select which value is to be read. 

• componentID: identifier of the component within the openwsn-fw 

environment. It is configured in inc/opendefs.h and it must be unique. 
• callbackRx: callback for handling CoAP requests. 

4.2.1.2  Reception callback 

It is in charge of handling CoAP requests. Different actions are performed 
depending on the CoAP code contained in the coap_header. The GET and PUT 

methods are the most commonly used: 

• GET: firstly, the message payload is reset to allow for the storage of the 

new value to be sent. Then, space is reserved for the CoAP header. 

Afterwards, the value to be sent is transform to a character array and 

inserted into the payload (payload[0], payload[1], etc.).  Finally, the 

CoAP code is set as “RESP_CONTENT” in the CoAP header. 

• PUT: the contents of the payload are inspected as char variables. 

Depending on the value received, the global internal variables used for 

storage are updated after converting them from their char representation. 

owerror_t cpresence_receive( OpenQueueEntry_t* msg, 
        coap_header_iht*  coap_header, 
        coap_option_iht*  coap_incomingOptions, 
        coap_option_iht*  coap_outgoingOptions, 
        uint8_t*          coap_outgoingOptionsLen) 
{ 
    owerror_t outcome; 
 
    switch (coap_header->Code) { 
        case COAP_CODE_REQ_GET: 
            // AMM: we are receiving a GET request 
            // Reset packet payload so that packetBuffer can be reused 
            msg->payload                     = &(msg->packet[127]); 
            msg->length                      = 0; 
 
            // AMM: Reserve space for the string which contains the presence. 
            packetfunctions_reserveHeaderSize(msg, PRESENCE_N_DIGITS); 
 
            presenceReading = read_presence(); 
            snprintf(presenceReadingStr, PRESENCE_STR_LEN, "%d", presenceReading); 
 
            msg->payload[0] = presenceReadingStr[0]; 
 
            coap_header->Code                = COAP_CODE_RESP_CONTENT; 
            outcome                          = E_SUCCESS; 
 
            break; 
        default: 
            // AMM: unkown CoAP code, return an error message 
            outcome = E_FAIL; 
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    } 
    return outcome; 
} 

 

4.2.2 Compilation 

After the source files have been created, it is necessary to modify the Python-
simulated firmware in OpenSim in order to make it aware of the new application. 
The process for doing so is described in [44], and it requires the modification of 
the following files:                                                                                                   

• inc/opendefs.h: add an identifier for the new component. This uniquely 
identifies the application in the firmware. 

• openapps/SConscript:  add the path to the new application with 
path.join so that source files can be found. 

• openapps/openapps.c: indicate that the new application needs to be 
initiated, e.g. calling ctemperature_init(); 

• projects/python/Sconscript.env: all the functions defined in the new 
application need to be added to the list of functionsToChange, in order for 
them to be objectified. Otherwise, compilation errors will appear.                                                                                                                                                                                                                                          

4.2.3 Implementation of computation models 

The implementation of the proposed computation models will take the form of 
Python scripts running on the Raspberry Pi. Their function will be communicating 
with the sensors simulated in OpenWSN, perform some operations on the read 
data, and then either store it locally in a database or send it to the cloud (or both 
in some cases). 
 
The communication with a running application is possible thanks to the CoAP 
client implementation provided by Berkeley, which can be imported into the 
Python scripts to communicate with the sensors in an easy manner. 
Documentation about such library can be found in [45]. As it can be appreciated 
in Figure 25, a CoAP request is sent to the mote device to obtain the temperature 
reading. 

Figure 25: CoAP GET request captured with Wireshark 
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4.2.4 Communication using CoAP 

To connect with a mote, the following steps are required. 
1. Import coap package: from coap import coap 
2. Initiate CoAP client with c = coap.coap() 

a. Use the GET method provided in the CoAP client object. Its only 

parameter is the URI path to the resource to be read: 

<IP_ADDRES_OF_MOTE> + name of the resource (e.g. 

“COAP_PATH_TEMPERATURE.format(MOTE_IP2)”). 

3. Adapt the format received from char variables to a single integer 

variable. This can be done using the int() operator in Python. 

To facilitate the task of interpreting received data, the functions defined in Table 
15 have been implemented, being shared by both edge and cloud applications. 
 
 
 
 
 
 
 
 
 

File Name Description 

readings_utils.py 

convert_temperature Convert a temperature to int from its ASCII 
representation 

convert_humidity 
 
 

Convert a relative humidity to int from its ASCII 
representation 

convert_presence Convert a presence value (1 or 0) to int from its 
ASCII representation 

convert_airconditioning Convert air conditioning status (1 or 0) to int from 
its ASCII 
    representation 

Table 15: readings_utils.py 

 
 
4.2.5 Interfacing with PostgreSQL from Python 

 
Figure 26: Interaction between Python scripts and the PostgreSQL database 
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Due to the fact that Python is the selected language for retrieving data from the 
simulators, it is required to use a library which allows communicating with 
PostgreSQL from Python. 

The most popular PostgreSQL Python library is psycopg2 [46]. It provides 
functions to easily connect and interact with PostgreSQL database. Once it has 
been installed, it is enough with importing the psycopg2 package in the Python 
script. 

1. Import psycopg2 package 

2. Create a database connection, indicating the database name and the user: 

psycopg2.connect("dbname=edge_computing user=pi") 

3. Prepare the query to be performed (e.g. SELECT, INSERT, etc.). The 

query can contain dynamic values which can be set using local variables 

at execution time. For example: db_cursor.execute(“SELECT ADDRESS 

FROM MOTES WHERE ID = '%s'”, [id]). In this case, the ID used for 

filtering will depend on the value of variable “id”. 

4. Fetch the result of the query using fetchone(). Since more than one 

column can be retrieved, a tuple is returned, which each value in the tuple 

corresponding to one column. If more than one row is selected, a list of 

tuples is returned. 

5. Extract the desired value from the tuple and apply any format 

transformations, if required. 

6. Commit changes to the database (only required if there has been 

insertions) with conn.commit(). 

7. Close the database connection with db_cursor.close(). 

 
To facilitate the task of interfacing with the database, the functions defined in 
Table 16 have been implemented, being shared by both edge and cloud 
applications. 
 
 

File Name Description 

database.py 

insert_reading Insert an entry into the READING table. The 
database connection must be already 
established. 

get_mote_ip Read the IPv6 address of a mote from the 
database. The database connection must be 
already established. 

Table 16: database.py 
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4.2.6 Interfacing with thethings.iO 

 
Figure 27: Interaction between Python scripts and the PostgreSQL database 

The data collected at the Raspberry Pi needs to be sent to thethings.iO. This can 
be achieved using thethings.iO API for Python. Once installed, the steps that 
need to be followed to send data to the platform are: 

1. Import the thethings library 

2. Create a ThethingsAPI object using the Thing Token which identifies our 
Raspberry Gateway: thethings = ThethingsAPI(<THING_TOKEN>"). 

In this manner, all information received at the platform will be associated 
to that particular Thing, becoming available for analysis and 
representation. 

3. Add key-value pairs to the JSON object which will be sent to thethings.iO. 
The key identifies the resource, while the value indicates the value of such 
resource at the time of the reading. For example: 
thethings.addVar('temperature_mote_2', r.convert_temperature(p)) 

4. Send the JSON object using thethings.write(). The API automatically 

handles all the process. 

4.2.7 Scheduling of periodic operations 

 
Figure 28: summarized syntax of crontabs 

As described in the design sections, the different tasks required for implementing 
each model are scheduled in a periodic manner. For example, the readings are 
performed every minute for both the cloud and edge models, while the analysis 
of statistics in the edge model is performed every hour. 
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In order to implement this behavior, cron has been used. This utility makes it 

possible to schedule the execution of tasks (jobs) in a computer (such as the 
Raspberry Pi) with the desired frequency and timing conditions. Such rules are 
expressed as crontabs (cron tables), which indicate at what times should a 

given action be executed. 

For example, in order to run a job every 5 minutes on all Mondays of every month, 
from 13:00 PM to 14:00 PM, the following crontab would be used: 

 
*/5 13 * * 1 test_command.sh 

 
Crontabs can be edited with crontab -e and listed with crontab -e. 

 

4.3 Cloud Computing implementation 

 
Figure 29: overview of the different parts which compose the cloud computing model. Triggers 

execute code upon data reception and perform some action as a response (in this case, 
sending an alert email). Jobs are executed periodically an interact with the internally stored 

resources to calculate KPIs (key performance indicators). 

 
 
The implementation of the Cloud computing processes described in 3.2.1 is 
manifested in Python script cloud_readings.py. Its main purpose is reading the 
sensor values for all motes and sending them to the cloud platform. It simply 
becomes a matter of using the tools presented in the preceding sections. 
 
The only additional requirements are defining correctly the path to the resources 
to be fetched and obtaining the IPv6 addresses of all motes. Both steps are listed 
below: 
 
# Read ip addresses from the database 
MOTE_IP2  = database.get_mote_ip(cur, 2) 
MOTE_IP3  = database.get_mote_ip(cur, 3) 
MOTE_IP4  = database.get_mote_ip(cur, 4) 
MOTE_IP5  = database.get_mote_ip(cur, 5) 
 
#Path to the temperature resource 
COAP_PATH_TEMPERATURE      = 'coap://[{0}]/temperature' 
COAP_PATH_HUMIDITY         = 'coap://[{0}]/humidity' 
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COAP_PATH_PRESENCE         = 'coap://[{0}]/presence' 
COAP_PATH_AIRCONDITIONING  = 'coap://[{0}]/airconditioning' 

 
 
With regard to the periodicity of this tab, it is executed every minute of every hour 
of every day. Therefore, the crontab used for scheduling this job is: 
 
*/1 * * * * /home/pi/openwsn/openwsn-fw/readings/cloud_readings.py 

 
4.3.1 Server-side computation 

In the cloud computing model, the intelligence of the network is placed in the 
platform. As it can be seen in Figure 29. There are two different ways in which 
Thethings.iO will be used to process data: 

• Jobs: snippets of code written in Javascript which are executed every 

hour or once a day. Execution time is limited to 10 minutes. 

• Triggers: snippets of code written in Javascript which are executed 

every hour or once a day. Execution time is limited to 2 seconds. 

The analysis of statistics has been implemented using jobs which run every hour. 
Three types of jobs have been created, depending on whether the average value, 
the minimum value or the maximum value is calculated. All of them are similar 
except for the operation applied on the data. 
 
function job(params, callback){ 
   analytics.events.getValuesByName('temperature_mote_2', function(error, 
data){ 
       var max = data.max(); 
       analytics.kpis.create('temperature_avg_mote_2-kpi', max); 
       callback(); 
   }); 
} 

Therefore, a total of 36 jobs will exit, calculating the average, maximum and 
minimum for the temperature and humidity of every of the 6 motes.  
 
Calculated metrics can be represented in the dashboard using the Custom Metric 
(Cloud Code) data source, which gives access to the KPIs defined in the jobs. An 
example of the maximum temperature is shown in Figure 30. 
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Figure 30: representation of the maximum temperature calculated using a job 

 
With regard to the detection system, it has been implemented as a Trigger. Upon 
reception of presence readings from mote 3 (entrance), the value is analyzed 
based on the time of day. If it night (between 00:00 and 06:00 AM) and a presence 
is detected, an email is sent. 
 
function trigger(params, callback) { 
 console.log('Starting trigger event...') 
 
 var values = params.values 
 var thingToken = params.thingToken 
 
 var date = new Date(); 
 var current_hour = date.getHours(); 
 
 if (current_hour >= 0 && current_hour <= 6) { 
  console.log('It is night. Checking if presence has been detected in the entrance 
hall.'); 
  for(var i=0; i<values.length; ++i) { 
 
   if(values[i].key === 'presence_mote_3' && values[i].value == 1) { 
    console.log('Presence detected in the entrance hall.'); 
    email( 
    { 
    service : 'SendGrid', 
    auth: { 
     api_user: 'artmedmer', 
     api_key: 'APIKEY' 
    } 
    }, 
    { 
    from: 'EMAIL_ADDRESS', 
    to: 'EMAIL_ADDRESS_2', 
    subject : 'Presence detected in the entrance hall.', 
    text : 'An unsual activity has been detected. (Mote: ' + 
thingToken + ')' 
    } 
   ) 
   } 
   else { 
    console.log('No presence detected'); 
   } 
  } 
 } 
 else { 
  console.log('It is day. No need to check for intruders.'); 
 } 
 //end the trigger 
 callback() 
} 
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Using the email feature requires registering in an external service, SendGrid. 
However, due to the simplicity of the process and its scarce relationship with the 
project, this process is not described. An example of a received email is 
presented in Figure 31. 
 

 
Figure 31: example of received email 

4.4 Edge Computing implementation 

 
Figure 32: overview of the different parts which compose the edge computing model. 

edge_readings.py fetches data from OpenSim and stores it internally into the Raspberry Pi. On 
the other hand, the analyze_readings.py scripts is executed every hour to extract relevant 

information for data collected during the previous hour. 

The implementation of the Edge computing processes described in 3.2.2 is 
manifested in Python script edge_readings.py. Its main purpose is reading the 
sensor values for all motes and storing them locally on the database. This script 
can be very easily implemented using the functions described in previous 
sections. 

With regard to the statistical analysis, it has been implemented in 
analyze_readings.py, it has been possible to use functions natively supported 
by PostgreSQL. Therefore, the query directly incorporates the type of statistic 
that is to be calculated. For example, to calculate the average value, AVG can be 
used. 
 
query = "SELECT AVG(VALUE) FROM READINGS WHERE ID = (%s) AND TYPE = (%s) AND 
(DATE >= (%s) and DATE <= (%s))" 

 
For the presence statistics, specific calculations have been required. For this 
purpose, the get_room_activity and get_n_people functions have been 

defined: 
 
def get_room_activity(db_cursor, start_date, end_date): 
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    """Find the most active and least active rooms, understood as the mote 
(room) 
    where presence has been detected the biggest (smallest) amount of 
times""" 
 
    query = "SELECT id, COUNT(*) from READINGS WHERE TYPE = 'presence' AND 
VALUE = '1' AND DATE >= (%s) AND DATE <= (%s) GROUP BY id" 
    db_cursor.execute(query, (start_date, end_date)) 
    count_tuples = db_cursor.fetchall() 
    # A list of tuples is returned: 
    # (id, number of occurrences of the ID in the table) 
    # Extract the second part, the number of occurrences, to see the max and 
the min 
    count = [x[1] for x in count_tuples] 
    min_val = min(count) 
    max_val = max(count) 
    min_val_index = count.index(min_val) 
    max_val_index = count.index(max_val) 
    # The index where the min/max of occurrences occured can be used to 
identify 
    # which mote (room) correspond to the least and most active rooms 
    least_active_room = count_tuples[min_val_index][0] 
    most_active_room = count_tuples[max_val_index][0] 
    return (least_active_room, most_active_room) 
 
def get_n_people_home(db_cursor, start_date, end_date): 
    """Estimate the number of people at home, understood as the highest 
number 
    of motes (rooms) where presence has been detected at the same time""" 
 
    # Fetch number of motes where presence has been 1 for each reading 
(identified 
    # by the date when the reading was performed) 
    query = "SELECT DATE, COUNT(*) from READINGS WHERE TYPE = 'presence' AND 
VALUE = '1' AND DATE >= (%s) AND DATE <= (%s) GROUP by DATE" 
    db_cursor.execute(query, (start_date, end_date)); 
    presence_tuples = db_cursor.fetchall() 
    # We are only interested in the count value, extract it from the tuple 
    presence = [x[1] for x in presence_tuples] 
    max_presence = max(presence) 
    return max_presence 

 
Additional utility functions for calculating statistics are presented in Table 17. 
 

File Name Description 

edge_statistics.py 

get_statistic Generic wrapper for calculating any type of 
statistic 

get_avg Obtain the average value in the last hour 

get_stddev Obtain the standard deviation of the sample in 
the last hour 

get_max Obtain the maximum value in the last hour 

get_min Obtain the minimum value in the last hour 

insert_statistics Insert avg, max and min statistics in the database 

get_room_activity Find the most active and least active rooms, 
understood as the mote (room) where presence 
has been detected the biggest (smallest) amount 
of times 
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get_n_people_home Estimate the number of people at home, 
understood as the highest number of motes 
(rooms) where presence has been detected at 
the same time 

insert_presence_statistics Insert presence statistics in the database 

Table 17: edge_statistics.py 

 
Thanks to functions in Table 17, it is possible to calculate statistics in a concise 
manner. 
 
 
 
 
 
 
 
 
 
# Calculate statistics of temperature and humidity readings for the last hour, 
# for all motes 
for source in ['temperature', 'humidity']: 
    for mote in [2, 3, 4, 5, 6]: 
        avg_val = stat.get_avg(cur, mote, source, start_date, now) 
        sd_val  = stat.get_stddev(cur, mote, source, start_date, now) 
        max_val = stat.get_max(cur, mote, source, start_date, now) 
        min_val = stat.get_min(cur, mote, source, start_date, now) 
 statistic_name = source + '_avg_' + 'mote_' + str(mote) 
 thethings.addVar(statistic_name, float(avg_val)) 
 statistic_name = source + '_max_' + 'mote_' + str(mote) 
 thethings.addVar(statistic_name, float(max_val)) 
 statistic_name = source + '_min_' + 'mote_' + str(mote) 
 thethings.addVar(statistic_name, float(min_val)) 
 
[least_active, most_active] = stat.get_room_activity(cur, start_date, now) 
n_people_home = stat.get_n_people_home(cur, start_date, now) 
stat.insert_presence_statistics(cur, start_date, now, least_active, most_active, n_people_home) 
thethings.addVar('least_active_room', least_active) 
thethings.addVar('most_active_room', most_active) 
thethings.addVar('n_people_home', least_active) 

 
Finally, another detail is that the calculation of statistics considers only the last 
hour of readings. Therefore, the datetime package from Python has been used 
to get the current hour and calculate the previous hour, using such range in the 
SQL queries. 
 
# Get current date and time. Although some seconds might pass between 
readings, 
# it is assumed that all are performed at the same time for simplicity 
now = datetime.datetime.now() 
# To avoid leaving entries without being considered, the microseconds will 
# be rounded to zero 
now = now.replace(microsecond=0) 
# We will read entries from the previous hour, so a time delta of one hour 
# is defined 
one_hour = one_hour = datetime.timedelta(hours=1) 
start_date = now - one_hour 

The data cleanup operation consists on a simple DELETE query applied to the 
last 12 hours of readings. 
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# Get current date and time 
now = datetime.datetime.now() 
# To avoid leaving entries without being considered, the microseconds will 
# be rounded to zero 
now = now.replace(microsecond=0) 
# Entries older that 16 hours will be removed 
twelve_hours = datetime.timedelta(hours=12) 
threshold_date = now - twelve_hours 
# Delete entries older that 16 hours 
query="DELETE FROM READINGS WHERE DATE <= (%s)" 
cur.execute(query, [threshold_date]) 

With regard to the periodicity of these tasks, the readings are executed every 
minute of every hour of every day. Furthermore, the statistics are calculated each 
hour, and the database cleanup is performed every 12 hours. Therefore, the 
crontab used for scheduling this job is: 
 
*/1  *   * * * /home/pi/openwsn/openwsn-fw/readings/edge_readings.py 
*    */1 * * * /home/pi/openwsn/openwsn-fw/readings/analyze_readings.py 
*/12 *   * * * /home/pi/openwsn/openwsn-fw/readings/database_cleanup.py 

Once information about the statistics has been uploaded to thethings.iO, it can 
be represented, as seen in Figure 39. An example could be a panel that displays 
the number of people at home in the last hour, as shown in Figure 34. 

 
Figure 33: creation of a dashboard for representing a resource calculated on the edge 
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Figure 34: panel displaying number of people at home 
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5 Comparison of models 

5.1.1 Latency 

5.1.1.1 Edge computing 

In the Edge computing model, latency has been calculated as the sum of 
consulting the resources using CoAP and writing them to the database.  

Due to the simplicity of the application, with only one client writing at any given 
time, the database is far from being a bottleneck. However, it is still interesting to 
measure its performance. PostgreSQL provides pgbench for such purpose. 

 
A simple read-write test suite was run for one minute, with a single concurrent 
client and a single thread. The obtained results were an average latency of 4.063 
milliseconds and an average of 199.80 transactions per second. Several 
iterations of the test returned similar results, with the latency never being bigger 
that 6 milliseconds and the transactions per seconds never smaller than 180. 

In addition, the time taken by CoAP to read or write a resource was measured 
using tcpdump. As it can be observed in Figure 35, each GET method takes 

around 1 second to complete. 
 

 
Figure 35: CoAP messaging for reading resource values. 

Consequently, the total time spent on reading a value and storing it in the 
database is 1 second, with the time taken by PostgreSQL to write on disc having 
been considered negligible in comparison with CoAP times. 
 

5.1.1.2 Cloud computing 

In order to study latency in the Cloud model, the average time required to send 
data to thethings.iO was considered. Figure 37 shows the encrypted conversation 
which occurs between the Raspberry Pi and thethings.iO when sending the 
values read through the provided Python API. As it can be seen, the transaction 
takes less than 0.5 seconds to complete. Additionally, it is important to notice that 
all sensor data is sent using a single call to thethings.iO API, so the time spent 
on each reading is considerably small.  

Nevertheless, a big disadvantage to be considered is the fact that thethings.iO 
sometimes experiments severe delays in its service.  Figure 36 shows a case 
where the total conversation time was of almost 10 seconds. Therefore, the 
suitability of cloud platforms for time-sensible applications is put at risk. 
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Figure 36: severe communication delay in the communication with thethings.iO 

However, it must be considered that this time depends on the level of network 
congestion, and therefore it can vary significantly. As an illustrator example, the 
traceroute command indicates that there are more than 70 hops between the 

Raspberry Pi and thethings.iO, so varying levels of latency and jitter are 
expected. 
 

 
Figure 37: encrypted conversation between Raspberry Pi and Thethings.iO 

 
5.1.2 Network traffic 

5.1.2.1 Cloud computing 

In the cloud computing model, all readings are sent to the cloud. Therefore, the 
following data is uploaded each minute: 

• Temperature of 5 motes. 

• Humidity of 5 motes. 

• Presence status of 5 motes. 

A total of 15 measurements are sent. By trace inspection using Wireshark, it has 
been possible to determine that the size of the Application Data packets sent by 
the thethings.iO for this quantity of measurements is around 2200 bytes (see 
Figure 36  for example).  

Since data is sent every minute, the following quantities are expected over the 
year. 
 

 Bytes sent API Calls 

Minute 2200 1 

Hour 132000 60 

Day 3168000 1440 

Year 1156320000 525600 

Table 18: network traffic in cloud model 

 



 

63 

5.1.2.2 Edge computing 

In the edge computing model, only statistical metrics are sent to the cloud. 
Therefore, the following data is uploaded each hour: 

• Average value, max value, min value and standard deviation of the 

temperature for 5 motes. 

• Average value, max value, min value and standard deviation of the 

humidity for 5 motes. 

• Least active room, most active room and number of people at home for 1 

mote. 

A total of 41 values are sent every hour. By trace inspection using Wireshark, it 
has been possible to determine that the size of the Application Data packets sent 
by the thethings.iO for this quantity of values is around 3300 bytes (see Figure 
38 for an example). 
 

 
Figure 38: bytes sent from Raspberry Pi to thethings.iO in the edge model 

Since data is sent every hour, the following quantities are expected over the year. 
 

 Bytes sent API Calls 

Hour 3300 1 

Day 79200 24 

Year 28908000 8760 

Table 19: network traffic in cloud model 

As it can be seen, the data sent in the cloud computing model is 40 times bigger 
than in the edge computing model.  
 
5.1.3 Power consumption 

5.1.3.1 Cloud computing 

Since thethings.iO is a cloud platform, infrastructure details such as used 
hardware are difficult, if not impossible, to know. As it could be expected 
thethings.iO does not discloses such information, and therefore it has not been 
possible to estimate the power consumption. Even though this information is not 
known, it seems reasonable to assume that Thethings.iO uses external data 
centers operated by third parties for its operation. Therefore, energy consumption 
is considerably diluted, as any processing node in the data center can potentially 
be shared by thousands of applications. 

5.1.3.2 Edge computing 

In the case of Raspberry Pi, a rough estimation of its power consumption is 
presented. 
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• Although the maximum current that the Raspberry Pi 3 Model B+ can draw 

from the power supply is 1A, power consumption under heavy load 

typically has values of around 700 𝑚𝐴 [47]. This only occurs on peak 

periods, but it has been taken as the worst case (a less conservative value 

would be 500 𝑚𝐴). 

• Since the supply operates at 5 𝑉, the power consumption has a value of 

55 ∙ 0.7 = 𝟑. 𝟓 𝑾. 

• At this consumption rate, it would take the Raspberry Pi around 286 hours 

to use 1 𝑘𝑊ℎ. 

• Assuming a leap year of 8790 hours (worst case), the Raspberry Pi would 

consume 
8790

286
= 30.73 𝑘𝑊ℎ. 

• Using a cost simulator [48] and not taking into account the cost of the 

subscription to the power line, a resulting cost of operating the Raspberry 

Pi for a period of 1 year is 4,73 €. 

While this is a very small value for a simple deployment, it can grow significantly 
as more devices are connected. For systems where thousands of devices are 
operated, energy consumption costs stop being negligible, and need to be 
considered. 
 
5.1.4 Cost 

5.1.4.1 Cloud computing 

The pricing model in thethings.iO is based on three different tiers, differentiated 
by the number of “things”, as well as the maximum number of API calls. Such 
model is summarized in Table 20. 

 

 

 Price/month (€) Things API calls/month Cloud code 
executions/month 

Prototyping 29 10 
 

50K 10K 

Advanced 169 1.000 
 

6M 50K 

Corporate 499 5.000 
 

60M 500K 

Table 20: thethings.iO pricing model 

For the purpose of this project, the appropriate category would be “Prototyping”. 
Nevertheless, more professional applications would very easily fall in the two 
subsequent categories, significantly increasing the price per month. 

5.1.4.2 Edge computing 

The Price in the Edge computing model is determined by the initial investment in 
hardware and the cost of operating the system. The cost of OpenMotes is not 
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taken into account since it is common for both the Cloud and the Edge computing 
model. 

The price of an individual Raspberry Pi 3 Model B+ can range from 35 to 45 € 
depending on the supplier. Such quantity, added to the cost of operating to the 
Raspberry Pi for one year, is significantly smaller than the lowest subscription to 
thethings.iO (348 €). 

5.1.5 Security 

5.1.5.1 Edge computing 

As it can be observed in Figure 39 (and previously in Figure 35), it is possible to 
inspect 802.15.4 frames and see its contents. Therefore, an eavesdropper would 
be able to consult the values returned by sensors. This is caused by the lack of 
implementation of 802.15.4 MAC security features in the communication stack 
provided by OpenWSN [49]. Therefore, the edge model does not provide strong 
protection mechanisms for sensible data. 
 
This is especially relevant since 802.15.4 is a wireless protocol which operates in 
the free frequency bands, and therefore it is much more prone to attacks. Threats 
are not limited to data theft, since it would also be possible to the attacker to 
intercept the communications and transmit falsified data to the gateway, 
representing a sever threat to the security of the system. 
 

5.1.5.2 Cloud computing 

As it could be observed in Figure 37, interaction with thethings.iO through its API 
is protected with SSL over TCP. Therefore, communication is secure and it 
cannot be tampered or spied. 

 
Figure 39: 802.15.4 frame containing presence reading 
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5.1.6 Summary of comparison 

 Cloud Edge 

Latency (ms) 1.05* 1 

Network Traffic (GiB/year) 1102.7527 27.5688 

Power consumption (kWh/year) ** 30.73 

Cost (€/year) 348 50*** 

Security High by default, but 
provides less control 
over how data is 
protected 

Low by default, but 
can be hardening 

according to needs 

Table 21: * Severe delays (up to 10 seconds) have been observed in some occasions. **It has 
not been possible to estimate the power consumption of thethings.iO. ***Including the cost of 

buying the Raspberry Pi (i.e. it would only affect the first year). 

Both models under study, the edge computing model and the cloud computing 
model, have proven to have both advantages and disadvantages. As a 
consequence, it is not possible to determine a winner, since this is entirely relative 
to the purpose of and scope of each individual application. However, some high-
level conclusions can be drawn. 

Commercial cloud platforms such as thethings.iO greatly simplify the design, 
prototyping and implementation of IoT projects. It provides a set of tools that allow 
its users to very easily setup data retrieval, monitoring and business intelligence, 
analyzing storing data and actuating as a response to registered changes. More 
importantly, many of these features are managed in a very convenient manner, 
being based mostly on drag-and-drop widgets and easy configuration forms. 

In the same manner, interoperability with other platforms is provided off-the-shelf 
by thethings.iO. One example is the integration with SendGrid, which has been 
used in this project for sending email alarms. 

On the other hand, the edge computing model allows to use any possible 
technology that is supported by the used platform (Raspberry Pi in this case), 
providing greater flexibility to the designers, in exchange of a steeper design 
curve, with increased complexity. 

For small deployments, the edge computing model can be more convenient due 
to its reduced cost and tighter control over the resources. However, for larger 
applications other factors will influence. In particular, deployments with number 
of devices in the order of hundreds can benefit from the shared costs of 
processing all data at the cloud. 

When generated network traffic is a design driver, it is clear that the edge 
computing model puts a greatly smaller burden on the network, with the number 
of gigabytes sent to the cloud being 40 times bigger in the case of cloud 
computing. Therefore, in cases where network resources are constrained, and 
edge computing model can be more appropriate. 
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In terms of security, thethings.iO provides security by default, encrypting the data 
that is sent to the cloud. Therefore, the weaker link in the chain is located at the 
edge, since readings performed using CoAP are performed unencrypted, being 
susceptible to both theft and falsifications. 

As shown in Table 1, latencies in both cases are considerably low, and have 
similar values. However, experiments have demonstrated that the cloud platform 
offers significant delays of up to 10 seconds in some occasions. Therefore, 
whenever the response time is critical, the edge computing model is the logic 
choice, as the proximity of end devices with the intelligence of the network results 
in close-to-zero latencies. In cases where the response time is not critical, the 
cloud computing model can greatly facilitate the operation of the application, while 
ensuring scalability and continuous availability of the collected data. The tradeoffs 
need to be studied in each case. 

6 Conclusions 

The present document has described the design and implementation of an IoT 
demonstrator, characterized by its used of currently relevant technologies in the 
area. In particular, the focus has been put into open source and open hardware 
solutions, which represent a crucial trend in IoT. 

From a technical perspective, this project has made it possible to gain an insight 
into IoT and its related technologies. While IoT is already an established term, it 
is often confused or used too broadly. For this reason, it becomes even more 
important to get hands on with the technology, learning about its inner workings.  

With the objective of enabling meaningful results, the proposed design has 
focused on the use of IoT at home, in what is known as the Smart Homes vertical 
market. This approach has been embodied in the design system for collecting 
and monitoring comfort metrics, like temperature and humidity, including 
actuation to control such comfort metrics. 

Moreover, two different approaches to data collection and analysis in the area of 
IoT, namely the Edge Computing model and the Cloud Computing model, have 
been presented and compared by applying them to the designed application. The 
results obtained have allowed to shed some light into what are their main 
strengths and weaknesses, and which application areas are more suitable for 
each of them. 

As it has been mentioned, the implementation has been performed using relevant 
open source technologies like OpenWSN, which implements stacks of crucially 
important protocols in the field of IoT, e.g. 802.15.4 and CoAP. Particularly 
significant has been the role of the simulator, OpenSim, and its associated 
application for visualization, OpenVis, which have been key enablers for 
analyzing the models under study without real hardware. 

In summary, this project has provided firsthand experience with a topic as tending 
and promising as IoT. Some broader conclusion that can be drawn from this 
experience are: 
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• IoT is a vibrant research trend, with a huge ecosystem of technologies and 

areas. 

• IoT is not only a research topic, it is also a crucial industry market, where 

companies are investing and also developing commercially-available 

products which are bound to affect how we life our lives in the years to 

come. 

• Open Source and Open Hardware initiatives, especially in the area of 

WSN, are key driving factors of innovation. They allow knowledge to be 

more easily transferred between laboratories and industry, as well as 

accelerating the adoption rate of new and convenient technologies by 

society as a whole. 

7 Future work 

The presented project is nothing but an insignificant portion of what is possible in 
the field of IoT. For this reason, many possible paths could be followed to 
continue the work initiated by this project: 

• Probably the most important line of future work would be validating the 

simulation results with real hardware.  Although this was planned in the 

initial scope, using Contiki OS over the OpenMote platform, it has not been 

possible to include it as part of the dissertation. 

• Many of the presented utilities, such as the actuation over the air 

conditioning, although suitable for serving as archetypical examples of IoT 

applications, are rather naïve in their implementation. Much more complex 

applications could be developed, for example based on historical data, 

seasonal information, occupancy patterns, etc. However, this could 

require a significant amount of time, as a complex application could 

constitute a final year project on its own. 

• For the Edge Computing model, very basic features have been developed, 

mainly concerned with data retrieval and storage. Nevertheless, much 

more intelligence can be translated to the edge of the network, due to the 

high capacity of SBC such as the one used.  

• The code used for applications does not reach industry quality standards. 

Code could be heavily improved by means of protecting it against 

contingencies (for example using the exception mechanism in Python) and 

its behavior could be further assured by means of unit testing. 

• Another possibility would be comparing the features and performance 

offered by different cloud platforms instead of thethings.iO. 
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8 Glossary  

 

• CoAP: Constrained Application Protocol 

• DAG: Directed Acyclic Graph 

• GPIO: General Purpose Input Output 

• GUI: Graphical User Interface 

• HTTP: Hypertext Transfer Protocol 

• IEEE: Institute of Electrical and Electronic Engineering 

• IETF: Internet Engineering Task Force 

• JSON: Javascript Object Notation 

• MAC: Medium Access Control 

• MQTT: Message Querying Telemetry Transport 

• OSI: Open System Interconnection 

• PAN: Personal Area Network 

• SBC: Single Board Computer 

• TCP: transmission Control Protocol 

• TSCH: Time Slotted Channel Hoping 

• UDP: User Datagram Protocol 

• URI: Unified Resource Identifier 

• WPAN: Wireless Personal Area Network 

• WSN: Wireless Sensor Networks 
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10 Appendix  

10.1  psycopg2 setup 
 
The installation of psycopg2 Its installation can be performed using pip. 

$ pip install psycopg2 
… 
Successfully installed psycopg2-2.7.4 

10.2  Raspberry Pi 3 Model B+ setup 
The first step is flashing a SD card with the Raspbian OS. The method chosen 
has been Etcher [50], which is a multiplatform application for flashing SD cards 
in an easy manner. Etcher is officially recommended by the Raspberry Pi 
Foundation and, therefore, the setting up Raspbian is straightforward.  

Once the image has been flashed, it is inserted in Raspberry Pi’s SD slot and the 
Raspberry Pi can be powered up.  

The GUI can be disabled to save resources using the raspi-config utility. As 

a consequence, the system resources will be more efficiently used for the 
computing tasks at hand. 

10.3  OpenSim setup 
The process for installing OpenSim in Linux (as it is the case in the Raspberry Pi) 
can be found in [51].                      

$ mkdir openwsn; cd openwsn                                          
$ git clone https://github.com/OpenWSN-berkeley/openwsn-fw                                    
$ git clone https://github.com/OpenWSN-berkeley/openwsn-sw 
$ git clone https://github.com/openwsn-berkeley/coap.git 
$ sudo apt-get install scons 
$ sudo /usr/bin/pip2.7 install -r requirements.txt                                                                                                                                                                       

The openwsn software can be built for the python board, i.e. instead of building it 
for a real device, such as the CC2538, a Python-based simulation will be run 
instead. 

$ cons board=python toolchain=gcc oos_openwsn 

10.4  PostgreSQL setup 
PostgreSQL is supported off-the-shelf on Rasbian. 
 
$ sudo apt install postgresql libpq-dev postgresql-client postgresql-client-common 

 
Once installed, a new database user must be created. For simplicity, the 
username will be the same as Raspbian’s default username, “pi”. 
 
$ sudo su postgres 
postgres@openwsn-gateway:/home/pi$ createuser pi -P —interactive 

 


