
An anonymous reputation mechanism for
cloud computing networks using volunteer resources

Miriam Aguilar Morillo
Universitat Oberta de Catalunya

Av. Tibidabo 39-43, 08035 Barcelona, España
maguilmo@uoc.edu

Abstract

One of the major problems when using non-dedicated volunteer resources in a
distributed network is the high volatility of these hosts since they can go offline
or become unavailable at any time without control. Furthermore, the use of
volunteer resources implies some security issues due to the fact that they are
generally anonymous entities which we know nothing about. So, how to trust
in someone we do not know?.

Over the last years an important number of reputation-based trust solutions
have been designed to evaluate the participants' behavior in a system.
However, most of these solutions are addressed to P2P and ad-hoc mobile
networks that may not fit well with other kinds of distributed systems that
could take advantage of volunteer resources as recent cloud computing
infrastructures.

In this paper we propose a first approach to design an anonymous reputation
mechanism for CoDeS [1], a middleware for building fogs where deploying
services using volunteer resources. The participants are reputation clients
(RC), a reputation authority (RA) and a certification authority (CA). Users need
a valid public key certificate from the CA to register to the RA and obtain the
data needed to participate into the system, as now an opaque identifier that
we call here pseudonym and an initial reputation value that users provide to
other users when interacting together. The mechanism prevents not only the
manipulation of the provided reputation values but also any disclosure of the
users' identities to any other users or authorities so the anonymity is
guaranteed.

Keywords: anonymity, reputation, cloud computing, blind signature

1. Introduction

Reputation mechanisms are foreseen to provide trust to those participants in a

mailto:maguilmo@uoc.edu

system willing to interact with others who are strangers in order to minimize
their sense of uncertainty about the results or the risks of such an interaction.
In this way, they can be seen as a kind of making-decision helpers about to
trust or not in a participant of a network before interacting with him.

A reputation system is implemented using one or more mechanisms that allow
a participant from that system to know if another participant can or cannot be
trusted. This become specially important in networks where users are
anonymous. How to trust in someone we do not know? A reputation system
tries to help us to take this decision by making available mechanisms allowing
the generation, storage and distribution of ratings about users' behavior. These
ratings evaluate their trustworthiness, distinguishing those that behave in a
dishonest (voluntary) or nonperformance (involuntary) way.

Dishonest users are often motivated by selfish or malicious intend. A selfish
participant manipulates reputation data in its own benefit, for example,
increasing its reputation values or the values of his malicious colleges in a
coalition, while a malicious user attempts to degrade the reputation values of
others to corrupt the entire system. They can work alone or in coalitions of
coordinated attackers. Different attacks can be the injection of false
information into the system, the manipulation of the reputation system data,
refusing to forward data or attempting to make unavailable the system through
causing denial of service. Some of these attacks are discussed in [2],
identifying which parts of a reputation system are exploited with each attack
and exposing some defense techniques to address them.

In general, a reputation system must deal with two main issues: the trust
model in charge of transforming the system's available data into inputs to the
reputation formulation in order to obtain a global trust value, and the protocol
for storing, distributing and accessing these reputation values.

In this work we present a reputation mechanism for distributing and accessing
reputation in an anonymous way. As far as we know, this is the first approach
to build an anonymous reputation system for cloud computing networks using
volunteer resources. Although we initially proposed the reputation system for
CoDeS, the mechanism can be used in other applications or kind of networks
where participants need to be reliable while preserving their anonymity.

The remaining parts of this paper are organized as follow: In Section II we
discuss related work. Section III we introduce the reputation mechanism
design. In Section IV we proceed with the validation. We do a security analysis
in Section V and conclude the whole paper in Section VI.

2. Related work

A number of reputation protocols have been proposed over the last years,
mainly designed for P2P and ad-hoc mobile networks. In this section we take a
look at few of them by reviewing a set of features that any reputation protocol
should consider and describing how the existent protocols implement them.
Next, we quickly discuss which of these properties meet our reputation

mechanism and how they are implemented.

a. Anonymity: A participant is anonymous in a system when no
personally identifying information is known by other users. Anonymity is an
essential capability in a reputation protocol to give participants more reliability
when rating other participant's behavior, because no user should be afraid of
being attacked by the users he voted. The anonymity is hard to implement, as
long as it can be lost in several ways as described in [2]. Most of reputation
mechanisms use opaque identifiers as pseudonyms to preserve anonymity as
in P2PRep [3], TrustMe [4] and SuperTrust [5].

b. Privacy and integrity: A reputation protocol should provide
mechanisms to guarantee the integrity of the reputation data at distributed
and storage levels to avoid votes from being undisclosed or user's reputation
data modified. Some attacks as the Man-in-the-Middle can let a user to
intercept the communication between two entities, for example, between a
participant asking for other participant's reputation and the entity providing the
reputation data for that user. To avoid this kind of attack, TrustMe [4] uses
encryption mechanisms to protect integrity data at communication level. Other
systems as SuperTrust [5] uses encryption at communication as well as at
storage level, in a way that reputation messages are never disclosed.

c. Efficiency: A reputation protocol should limit the consumption of
users resources as network bandwidth and storage or computational capacity.
Techniques using message broadcasting, flooding, gossiping and other
epidemic based communication to exchange reputation data between users as
in P2PRep [3], CONFIDANT [6], CORE [7], [8] and [9] can slow down the
entire system if participants do not have enough connection capacity. More
efficient reputation data communication and storage mechanisms are based in
the use of some kind of distribution hierarchies as SuperTrust [5] or DHTs as
in TrustMe [4], EigenTrust [10], PeerTrust [11], [12], PowerTrust [13], and
[14].

d. Persistence: The persistence refers to the availability of the
reputation data in the system along the time. The storage of reputation data
can be transient or persistent. Transient storage is defined to be non-durable,
as for example in a decentralized architecture, participants going out of the
system take with them the data they store becoming unavailable for the rest of
the system. This is the case for P2PRep [2]. With a persistence storage,
otherwise, the reputation data is maintained accessible in the system along the
time, preserving historical data for each participant, as for example in TrustMe
[4], SuperTrust [5] and PowerTrust [13]. These reputation systems
implement mechanisms to make possible the transfer of trust values when a
participant leaves the network.

e. Scalability: A reputation protocol must be able to continue working
even when the system grows up in terms of number of participants. The
capacity of a system to scale well strongly depends on the architecture for data

dissemination which can be a centralized, decentralized or semi-centralized.
The first one involves one central entity regarding for the storage and
dissemination of data as in Sarmenta proposal [15]. In a decentralized
approach each participant in the system is responsible for some portion of the
reputation data. P2PRep [3], TrustMe [4] and CONFIDANT [6] are examples
of decentralized reputation systems. In the semi-centralized or hybrid systems
the responsibility for the storage and distribution of reputation data is shared
between a group of entities as in SuperTrust [5].

f. Legitimacy: Only users who have interacted with other users should
be able to vote them. Furthermore, the reputation protocol should assure that
only one vote per interaction is done. In SuperTrust [17] users who have
interacted together in the network exchange a proof of interaction in form of a
private key signed message including peers identifiers and the time at which
the interaction took place.

g. Redundancy: The reputation protocol must be robust in front of users
giving false low ratings to other users to intentionally degrade their reputation.
One of the typical ways for building robustness in a reputation system is the
use of techniques based in data duplication as majority voting in [15].

h. Easy contribution: The way in which a participant must rate another
should not be tedious nor time consuming to let the user easily contribute to
the reputation system. In TrustMe [4] and SuperTrust [5], a user only needs
to send one message to vote the behavior of a participant.

In its first stage, the reputation mechanism here presented satisfies most of
the properties described above:

(a) We use temporal pseudonyms to identify participants in the system that
need to be renewed by the participants themselves before a given expiration
time. This makes hard to trace users by their pseudonyms as they are required
to change them frequently so the mechanism guarantees their anonymity. (b)
Our mechanism makes use of public/key encryption schemes to protect
communication between the different system entities. (c) Each participant only
stores his own reputation data which is directly transmitted to the participant
he want to interact with. Thus, we make an efficient usage of users' resources
since it is not storage nor network bandwidth consuming. (d) The reputation
mechanism is persistent. All votes received from participants about other
participant's behavior are taken into account to compute his next reputation
value. (f) Users who have interacted together exchange a proof that is
unequivocally associated to their pseudonyms so when submitting a vote the
system can check if there really was an interaction with the user being voted.
(h) Only one message is necessary to be able to vote a participant and
contribute to the reputation system.

3. Mechanism description

The anonymous reputation mechanism presented is based in the existence of
the following participants:

1. A Certification Authority (CA) in charge of providing valid public key
certificates to all other participants in the system.

2. A Reputation Authority (RA). This is the key agent in our protocol. It
acts as a centralized entity that is trusted by clients. The Reputation
Authority is responsible of the following actions:

a. Register new participants into the reputation system, providing
them with the reputation data needed to interact with the others.

b. Receives and store reputation votes sent by participants about
others participants behavior.

c. Renew participants pseudonyms when requested.

3. The reputation client (RC). They are all the other participants in the
system who can register into the RA after obtaining a valid public key
certificate from the CA. The client interacts into the system with the
reputation data they have obtained from the RA after the registration
process or after a renewal pseudonym action.

In this paper we assume that both the RA and reputation clients have a
public/private key pair and that they have already obtained a valid public key
certificate from the CA.

The mechanism is composed of three different protocols:

1. Registration protocol

2. Pseudonym renewal protocol

3. Voting protocol

In this section we first describe the cryptographic techniques used in this work
and next we present the different protocols that make up our anonymous
reputation mechanism.

3.1 Cryptographic techniques used

The protocol takes advantage of the following cryptographic functionalities:

Signatures on messages

By signing a message, a sender gives the receiver reason to believe that the
message was created by himself and that it was not altered in transit. It is
based in the use of asymmetric cryptographic keys as those obtained with the
RSA algorithm. In our design messages sent out are signed by the sender's
private key and authenticated by the receiver using the sender's public key.

Encryption of messages

All messages are encrypted with the recipient's public key before being sent to
the network. The encryption assures the privacy and confidentially of the data
since nobody excepts the recipient itself can disclose the message by
decrypting it with his private key.

Digest of messages

The protocol uses a cryptographic one-way hash function to generate a digest
of the data exchanged between the RA and the reputation clients. Digests of
messages are used together with signatures to verify the authenticity and the
integrity of such a messages, detecting any corruption or manipulation of the
data transmitted.

Blind RSA signatures

Blind signatures as proposed by Chaum [16] are the base of the anonymity
achieved with our reputation protocol. As we will explain later, each user in the
system has a pseudonym that need to be signed by the RA before it can be
used to interact in the system with other participants. In order for a user to
remain entirely anonymous, even the RA must know anything about it. To
make that possible, the user blinds the pseudonym with a random sequence of
bits that he only knows before transmitting it to the RA. Thus, what the user
obtains from the RA is a blind signature of his pseudonym that he can unblind
using the same random factor previously applied to finally get the RA's true
signature of his pseudonym.

Actually, the user not only get the blind signature of this pseudonym but also
of his reputation value that RA adds to the message being signed. We will refer
to this kind of signature as an hybrid blind signature because it contains data
providing from two different entities, the RA and the user.

3.2 Registration Protocol

Before a user can interact with other participants in the system, he previously
needs to register into the RA to obtain the reputation data.

The steps to register in the RA are described hereafter.

1. The reputation client starts the protocol by sending his public key
certificate to the RA.

2. After verifying the validity of the certificate, the RA sends to the client his
public key certificate and a challenge to be signed by the client in order
to prove the ownership of the certificate he has previously sent.

3. The client verifies the RA certificate received, signs the challenge and
sends a registration message containing this signature and the digest of
a programatically obtained pseudonym encrypted with the public key of
RA and blinded with a random value r.

4. The RA validates the challenge signature and if valid, sends to the client
a confirmation message. This confirmation message is composed of a
reputation initial value of 0, an expiration time for the client's
pseudonym and an hybrid blind signature containing the pseudonym
digest previously received together with the digest of the reputation and
pseudonym expiration time assigned to the client.

 5. The reputation client unblinds the message and obtain what we call here
the authentication data, that is, the RA's signature of a digest formed by
the client pseudonym, his reputation and his pseudonym expiration time.

Figure 1 shows the sequence of steps and participants involved at each step in
the registration protocol.

3.1.1. Registration protocol messages

A. Certificate message

The certification message (msCERT) is used to exchange public key certificates
between the Reputation Authority and the Reputation Clients at the beginning
of the communication between them.

The message simply contains the public key certificate issued by the
Certification Authority of the entity sending the message.

B. Challenge message

The challenge message (msCHALLENGE) is sent by the Reputation Authority to the
client. It contains a msCERT with the Reputation Authority public key certificate
and a challenge to be signed by the Reputation Client with his private key in
order to prove the ownership of the certificate he previously sent in a msCERT.

Figure 1: Sequence of messages in the Registration protocol

The message is composed as follows:

msCHALLENGE = msCERT, ch

where:

msCERT: A certification message containing the public key certificate of the RA.

ch: A challenge to be signed by the RC.

C. Pseudonym message

The pseudonym message (msPSEUDO) is part of the registration request
message and of the pseudonym renew request message that are sent by the
reputation client to the RA in order to register or renew a pseudonym
respectively.

This message is composed as follows:

msPSEUDO = hash(ps) · reRA mod NRA

where:

ps: client pseudonym.

r: random number less than N

eRA: RA public key exponent.

N: RA public key modulus.

The pseudonym digest is blinded by the random number r in such a way that
RA cannot obtain any useful information about ps.

D. Registration Request message

The registration request message (msREGIS) is sent by the client to the RA in
order to be registered in the system with a programatically obtained
pseudonym.

This message is built in the following way:

msREGIS = signA (ch), msPSEUDO

where:

signA (ch): the signature of the challenge sent by the RA to the client in the
challenge message.

msPSEUDO: client pseudonym message.

E. Authentication Data message

The authentication data message (msAUTH) is integrated in the confirmation
message (see below) sent by the RA to the client.

The client will use this message as part of his authentication to later interact in
the system with other clients.

This message is composed as follows:

msAUTH = (hash(ps)· reRA · hash(rep,exp)) dRA mod NRA

where:

ps: client pseudonym.

r: random number chosen by the client and less than N.

rep: initial client reputation

exp: expiration time of client pseudonym.

eRA: RA public key exponent

dRA: RA private key exponent

N: RA private key modulus

The authentication message is an hybrid blind signature: it contains
information about the RA and the reputation client.

F. Registration Confirmation message

The registration confirmation message (msCONFIRM) is sent by the RA to the
client to confirm its registration in the reputation system and to provide him
its initial reputation, the expiration time of its pseudonym, as well as the
authentication message that client will use to interact in the system.

This message is formatted as follows:

msCONFIRM=rep, exp, msAUTH

where:

rep: reputation assigned to client

exp: client pseudonym expiration time

msAUTH: client authentication data message

The initial assigned reputation will be 0.

3.3 Pseudonym Renewal Protocol

Every reputation client will have to renew the pseudonym before the
pseudonym validity time expires.

Every time a client renews his pseudonym, the RA computes his new
reputation taking into account all the votes received for that client about his
behavior.

If the client does not renew this pseudonym before the assigned expiration
time, the client will need to register again. In this case, the reputation clients
will be initialize to zero.

Note: It is out of this work the computing algorithm used to calculate the new
reputation value based in all reputation votes received.

The steps to renew a pseudonym are described hereafter:

1. The reputation client creates a new pseudonym and generates a
pseudonym message as in step 3 for registration protocol.

2. The reputation client sends a pseudonym renew request message
containing current authentication data and encrypted information about
the new pseudonym.

3. The reputation authority verifies that client authentication data has not
yet expired and recalculates the new reputation for this client based in
the reputation information received from the rest of entities in the
system since client registration or client last pseudonym renewal.

4. The reputation authority sends a pseudonym renew confirmation
message to the client, providing him with the new reputation value and
the expiration time for the new pseudonym. This message format is the
same as the registration confirmation message.

5. The client decrypts the message and updates his authentication data
with the new received one that it will use from now to interact in the
reputation system.

Figure 2 shows the sequence of steps and participants involved at each step in
the pseudonym renewal protocol.

Figure 2: Sequence of messages in the Pseudonym Renewal protocol

3.3.1. Pseudonym Renewal protocol messages

A. Pseudonym Renewal Request message

The pseudonym renew request message (msRENEW) is sent by the client to the

RA in order to register a new pseudonym before his current pseudonym
expires.

This message is formatted as follows:

msRENEW=ps, rep, exp, msAUTH, msPSEUDO

where:

ps: current client pseudonym

rep: current client reputation

exp: current client pseudonym expiration time

msAUTH: current client authentication data message

msPSEUDO: new client pseudonym message

B. Pseudonym Renewal Confirmation message

The pseudonym renewal confirmation message is sent by the RA to the client
in order to confirm him that the pseudonym renewal has been successfully
done and to provide the new reputation, pseudonym expiration time and
authentication data message to the client.

This message is equivalent to the registration confirmation message
(msCONFIRM).

3.4 Voting Protocol

The reputation clients are known in the system by their pseudonyms. Each
time a client A interacts with a client B, both clients have the possibility to vote
about the others behavior.

The votes are sent to the RA, who, after validating that the client who votes is
a registered client and verifying that his pseudonym is still valid (not used and
not expired) , stores the vote received in a table with pairs {ps, vote}.

3.4.1. Voting protocol messages

The Voting message (msVOTING) is sent by the client to the RA in order to give a
reputation vote about another client's behavior after interacting with him.
Before being able to submit a vote, both clients have to exchange a proof of
interaction. As a first approach, we have considered the seed with which the
participant's pseudonym was created. Since there is no way to get the seed of
a pseudonym from the pseudonym itself, we can be sure that an interaction
took place between two users if both have the other pseudonym's seed.

The message is composed as follows:

msVOTING = authA , (hash(psA).hash(repA,, expA,), voteB, psB, seedB)eRA mod NRA

where:

authA : client A authentication data

psA: client A pseudonym

repA: client A reputation

expA: expiration time for psA

voteB: vote given by A to client B

psB : client B pseudonym

seedB: client B pseudonym's seed

eRA : RA public key exponent

NRA: RA public key modulus

4. Validation

We have built a prototype in order to validate the proposed reputation protocol
design. The prototype has been developed in Java language.

The ReputationAuthority has been implemented as a highly scalable,
asynchronous event-driven network server using the Reactor pattern [17].
The RA server listens for incoming requests from reputation clients, accepts
connections, reads and process requests and creates and sends the response
with the reputation data for the client. It has a thread pool that can be
configured to optimize the CPU utilization.

During the simulation we have used 2048-bit RSA keys as recommended by
RSA Laboratories in [18]. Due to the high number of asymmetric
encryption/decryption operations that are done in the Register and Pseudonym
Renewal protocols and since they are high CPU consuming, we have deployed
the RA in a powerful server with two dual-core AMD Opteron processors at
2,6Ghz.

For the client side, we have implemented a multithreaded environment in a
second server to launch reputation client instances in scheduling independent
processes at a configurable rate.

We model response time as the elapsed time from a reputation client

connection to the RA to initiate a registration or pseudonym renewal till the
time the client receives the reputation data to interact in the system. Since
both servers used for our simulations are located in the same internal network
and the RTT between them is not significant – about 0.210 ms – we obtain the
protocol's response times without the impact of the network latency. The
validation of the reputation mechanism in a more realistic environment is left
as a future work.

We have measured the average response time in relation to the total number
of requests. Our measurements were done for various number of requests
sent at different requests/second rates. Figures 3a and 3b depict our findings.

Every data point in these figures has been averaged over 5 runs, in order to
ensure consistent measurements.

Figure 3: (a) Average response time in the Registration protocol. (b) Average
response time in the Pseudonym Renewal protocol.

The graphs reveals an average response time around 140ms in both protocols
which we consider acceptable. We also observe a slightly higher response time
for the Pseudonym Renewal protocol. We believe that this may probably be due
to the time used in the check done in the Pseudonym Renewal protocol to
verify that the pseudonym to be renewed has not yet expired.

The results show that our reputation mechanism is able to continue working
efficiently even when the number of requests and/or participants increase.

5. Security analysis

We have already discussed the security properties achieved by our reputation
mechanism in section II. In this section we will limit to describe the various
possible vulnerabilities that should be addressed in a second stage of design.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

Registration Protocol Response Time

f=1
f=5
f=10

Number of requests

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

Pseudonym Renewal Response Time

f=1
f=5
f=10

Number of requests

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

One of the main shortcoming of using our reputation protocol is that it is not a
pure decentralized system. The RA acts like a trust server that stores the
reputation votes and provides new reputation data where users renew
pseudonyms, thus it suffers from the typical shortcomings characteristic of any
centralized system, including presenting a single-point of failure that make the
system stops working in case of denial of service.

Other important shortcoming is that malicious users can manipulate the
reputation of other users by reporting false votes to lower their reputations.
Our protocol is extremely vulnerable to this aspect since it does not
authenticate the origin of the received votes nor use any redundancy technique
as majority voting to validate them. In the same way, the reputation of a user
can be positively exaggerated by one or more users with similar interests
working together in a coalition in order, for example, of carrying out fraudulent
actions once their reputations become high enough to be trusted by others.

Another question not related to security issue but that potentially represents a
problem is the cold start. A user who has just joined the system has a
reputation value of zero so existing users in the system may tend to isolate the
new user since they lack trust information about the new participant. One
solution here should be to introduce in the system an initial list of trusted
peers with whom they can interact.

6. Conclusions and Future work

In this work we have introduced a reputation protocol for CoDeS, a middleware
for building fogs where deploying services using available resources. As far as
we know, this is the first approach to build a reputation based-trust system for
cloud computing networks exploiting voluntary resources. Although the
protocol has been designed with the previous mentioned goal in mind, it can
be used in other applications or kind of networks where participants need to be
reliable while preserving their anonymity.

In its first stage of design, the mechanism satisfies most of features that were
identified in section II as necessary in a reputation system – anonymity,
privacy and integrity, efficiency, persistence, legitimacy and easy contribution.
We have shown in section IV that our reputation mechanism has acceptable
average response times even when the number of participants in the system
increase. However we think that simulations should be repeated in a more
realistic environment to study the impact of the network latency in the
system's response time.

We have also identified a significant number of shortcomings in section V that
should be addressed in the reputation mechanism future work.

References

[1] Daniel Lázaro, Joan Manuel Marquès and Xavier Vilajosana. Fog computing:
creating a cloud out of enterprise resources. IEICE TRANSACTIONS on Information
and Systems Vol.EXX-D No.X pp.aaaa-eeee ISSN:0916-8532. - 2010 (IF=0,44)
(Under review)

[2] Kevin Hoffman, David Zage, Cristina Nita-Rotaru. A Survey of Attack and Defense
Techniques for Reputation Systems. ACM Computing Surveys (CSUR) , Volume 42
Issue 1. December 2009.

[3] F. Cornelli, E. Damiani, S.D.C di Vimercati, S. Parasboschi and P. Samarati.
Choosing Reputable Servents in a P2P Network. Proc. 11th Int'l World Wide Web
Conference, Hawaii, USA. May 2002.

[4] Aameek Singh, Ling Liu. TrustMe: Anonymous Management of Trust Relationships
in Decentralized P2P Systems. Proc. 3rd Int'l IEEE Conference on Peer-to-Peer
Computing. September 2003.

[5] Tassos Dimitriou, Ghassan Karame and Ioannis Christou. SuperTrust – A Secure
and Efficient Framework for Handling Trust in Super Peer Networks. Proc. of ACM
PODC 2007, 2007.

[6] Sonja Buchegger, Jean-Yves Le Boudec. Performance Analysis of the CONFIDANT
Protocol (Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Networks). Proc. 3rd
ACM Int'l symposium on Mobile ad hoc networking & computing, Lausanne,
Switzerland. June 2002.

[7] Pietro Michiardi, Refik Molva. CORE: A Collaborative Reputation Mechanism to
enforce node cooperation in Mobile Ad hoc Networks. Proc. IFIP TC6/TC11 6th Joint
Working Conference on Communications and Multimedia Security. 2002

[8] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati, Fabio Violante. A reputation-based approach for choosing reliable resources
in peer-to-peer networks. Proceedings of the 9th ACM conference on Computer and
communications security, Washington, DC, USA. 2002

[9] Ali Aydn Selçuk, Ersin Uzun and Mark Resat Pariente. A Reputation-Based Trust
Management System for P2P Networks. Proc. 4th Int'l Workshop on Global and Peer-
to-Peer Computing, Chicago, USA. April 2004.

[10] Sepandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina. The EigenTrust
Algorithm for Reputation Management in P2P Networks. Proc. 12th International World
Wide Web Conference. 2003.

[11] Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-to-
Peer Electronic Communities. IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 7, pp. 843–857. July 2004.

[12] So Young Lee, O-Hoon Kwon, Jong Kim and Sung Je Hong. A Reputation
Management System in Structured Peer-to-Peer Networks. Proc. 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise, Washington, DC, USA. 2005.

[13] Runfang Zhou, Kai Hwang. PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing. Parallel and Distributed Systems, IEEE
Transactions on, vol. 18, no. 4. 2007.

[14] Natalya Fedotova, Luca Veltri. Reputation Management for DHT-based
Collaborative Environments. Computer Communications, Volume 32, Issue 12. 2009

[15] Luis F.G Sarmenta. Sabotage-Tolerance Mechanisms for Volunteer Computing
Systems. Proc. 1st International Symposium on Cluster Computing and the Grid. 2001

[16] D. Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology
– CRYPTO ’82, pages 199–203. Springer-Verlag, Berlin, 1983.

[17] Schmidt D.C. Experience using design patterns to develop reusable object-
oriented communication software. CACM 38(10), pp 65-74 , 1995

[18] http://www.rsa.com/rsalabs/node.asp?id=2264

http://www.rsa.com/rsalabs/node.asp?id=2264

