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  Abstract (in English, 250 words or less): 

The Yeast Metabolic Cycle (YMC) has become a model to study how changes in the 

metabolic landscape can affect the chromatin status to regulate gene expression. Previous 

studies have shown how the YMC is divided in three main phases and have described the 

effect of certain histone modifications in gene regulation. This project constitutes a novel 

application of different statistical methodologies for the integration of chromatin status 

data (ChIP-Seq) and gene expression data (RNA-Seq) to better understand the YMC. 

The usage of regression models (N-PLS and MORE methodologies) for the omics 

integration allowed us for assessing the relevance of histone modifications and 

transcription factors on the regulation of gene expression changes in the YMC. H3K18ac 

and H3K9ac turned out to be the most important of the studied histone modifications, 

whereas YLR403W, YPL254W, YOR363C, YGL209W and YDR451C emerged as the 

most relevant transcription factors. A significant association of co-regulation of gene 

expression was found between H3K18ac and the transcription factors YPL254W 

(involved in the formation of the SAGA complex) and YLR403W (involved in the 

process of histones exchange), which evinced the crucial role of the acetylation levels to 

regulate gene expression in the YMC through a coordinated action of transcription factors 

and histone modification levels. 

Thus, in this study, new connections were established between metabolome, chromatin 

status and gene expression, as well as the basis to identify potential regulators of hidden 

regulatory mechanisms that connect histone modifications and gene expression changes. 
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  Resum: 

El Cicle Metabòlic del Llevat (YMC) s'ha convertit en un model d’estudi per analitzar la 

influència dels canvis metabòlics sobre l’estat de la cromatina per a la regulació de 

l’expressió gènica. Estudis previs han demostrat que el YMC es divideix en tres fases 

principals i han descrit l'efecte de certes modificacions d'histones en la regulació gènica. 

Aquest projecte constitueix una aplicació innovadora de diferents metodologies 

estadístiques per a la integració de dades d'estat de la cromatina (ChIP-Seq) i d'expressió 

gènica (RNA-Seq). 

L'ús de models de regressió (metodologies N-PLS i MORE) per a la integració d’òmiques 

ens ha permés avaluar la rellevància de les modificacions d'histones i els factors de 

transcripció en la regulació dels canvis d'expressió gènica en el YMC. H3K18ac i 

H3K9ac van resultar ser les més importants de les modificacions estudiades, mentre que 

YLR403W, YPL254W, YOR363C, YGL209W i YDR451C van ser els factors de 

transcripció més rellevants. Es va trobar una associació significativa de co-regulació de 

l'expressió gènica entre H3K18ac i els factors de transcripció YPL254W (implicat en la 

formació del complex SAGA) i YLR403W (involucrat en el procés d'intercanvi 

d'histones), que evidenciava el paper crucial dels nivells d'acetilació a l’hora de regular 

l'expressió gènica al YMC mitjançant l’acció coordinada dels factors de transcripció i els 

nivells de les modificacions d’histones. 

D’aquesta manera, en aquest estudi s’estableixen noves connexions entre el metaboloma, 

l'estat de la cromatina i l'expressió gènica, així com la base per identificar els possibles 

reguladors dels mecanismes de regulació que connecten les modificacions d'histones amb 

els canvis d'expressió gènica. 
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1. Introduction 
 

 

1.1 Context and justification of the project 
 

Recent advances in omics technologies offer new frameworks to approach 

biological questions. Today each type of biomolecular entity can be studied by a different 

omic method, such as genomics, epigenomics, transcriptomics or metabolomics. 

Although the individual study of each omics type provides interesting insights, it is 

limited to address the regulation of the whole system where multiple layers constantly 

interact. The joint analysis of different –omics has gained ground in recent years, but the 

integration of different omics into a single statistical model is still a relevant challenge in 

the field of bioinformatics.  

 

This master thesis constitutes a novel application of different statistical 

methodologies for the integration of chromatin status data (ChIP-Seq) and gene 

expression (RNA-Seq) focused on the study of the Yeast Metabolic Cycle (YMC). YMC 

is given under continuous glucose-limited conditions, and it is defined by a robust 

periodic change of gene expression, which drives the cell towards a cyclic response to 

respiratory oscillations. The YMC has been linked to cell cycle or circadian rhythms, and 

recently, chromatin modifications have been suggested to regulate the genes whose 

expression defines YMC (Kuang, et al., 2014). Although some studies have shown a 

correlation between chromatin modifications and gene expression within the YMC, the 

exact regulatory and functional mechanisms are still not well understood. The study of 

such mechanisms can shed some light to the underlying processes that allow organisms 

to respond to different metabolic conditions. The aim of this project is to understand how 

the chromatin modifications control gene expression, and to reproduce the regulatory 

networks that contribute to the cyclic cell response during the YMC. 

 

The data used in this master thesis were published in (Kuang, et al., 2014). In that 

project, the putative effect of different histone modifications over the major oscillations 

of gene expression found in the YMC was analysed. This master thesis was developed in 

the Genomics of Gene Expression group at Centro de Investigación Príncipe Felipe 

(València). Since the group was interested in getting more insights about the YMC, we 

took the data in this paper as a starting point and tried to improve and complete the study 

that had already been done, which had not used integrative strategies to combine gene 

expression and chromatin status information. 

 

According to (Kuang, et al., 2014) the YMC can be divided into three phases on 

the basis of the gene expression profiles: oxidative (OX), reductive building (RB) and 

reductive charging (RC). Growth genes, such as ribosomal and amino acid–biosynthesis 

genes are activated in OX phase; mitochondria and cell-cycle genes are expressed in RB; 

and genes responding to starvation, stress and survival are elevated in RC (Kuang, et al., 

2014). Along this project, the conjecture regarding the existence of these 3 phases will be 

assumed.  

 

 

  



2 

1.2 Objectives 
 

The main objective of the project is the development of an appropriate omics 

integration analysis pipeline to elucidate the role of chromatin status on the regulation of 

gene expression in the Yeast Metabolic Cycle.   

 

In order to achieve this objective, the following secondary objectives will also 

have to be accomplished: 

 

- Application of an appropiate pre-processing and preparation strategy to the 

omics data (RNA-seq and histone modification ChIP-seq), which is key for 

obtaining meaningful results from the integrative analysis 

 

- Selection of the differentially expressed genes by using an appropiate tool that 

deals with time-series data, and clustering the genes according to their temporal 

profiles. 

 

- Usage of suitable regression methods to model the relationship between gene 

expression and histone modifications to gain insights in global and specific gene 

expression regulation across the Yeast Metabolic Cycle. 

 

- Construction of a network to depict and summarize the relevance of the 

regulators found in the previous step. 

 

- Biological interpretation of the results to compare with previously reported 

knowledge and highlight new findings.  

 

  



3 

 

1.3 Approach and methodology 
 

As indicated in Section 1.1, this project aims to study the role of the chromatin 

status (ChIP-Seq data) over the regulation of the gene expression (RNA-Seq data) in the 

YMC. 

 

This analysis can be performed in two different ways. On the one hand, all the 

analyses of RNA-Seq and ChIP-Seq data can be carried on independently or in parallel, 

and afterwards combine the results from both omics and interpret them. This type of 

analysis is known as conceptual or sequential integration (Cavill, et al., 2016). On the 

other hand, a simultaneous analysis of both omics could be applied, through the usage of 

statistical methodologies which can integrate in the same model the different omics data. 

The benefits of this statistical integration approach above the conceptual integration is 

that new relationships among the studied omics can be detected, that cannot be found in 

another way. Hence, taking into account the complexity of the living organisms, which 

can be seen as a complex network of biological modules or layers which interact in a 

coordinated way, the independent analysis of each omics data is not the best choice. 

  

 The simultaneous modelling of different omics to reveal the relationships among 

them is still a field under development, due to the difficulties raised when dealing with 

variables measured with different technologies, measurement errors, variances… Hence 

this thesis has been a challenging project which expects to contribute to the improvement 

of this field. 

 

The statistical models used for the integration of the data were N-PLS and MORE. 

A detailed description of the methodology applied in this project is given in Section 2 

(Materials and methods), and an overview of the followed pipeline is depicted in Figure 

7. 

 

1.4 Work plan 
 

In this section, a time planning of the tasks is given, regarding the different PECs: 

PEC0, PEC1, PEC2, PEC3, PEC4 y PEC5. 

 

PEC0 (from 21/02/18 to 05/03/18) 

 

Approximately 2 weeks. 

 
Table 1. Gantt chart of the tasks performed during the PEC0. The green cells represent in which week the 

task described at the left side of the row was carried out.  

 Week 1 

 

Week 2 

Discussion of the 

topic of the 

project 

  

Data obtaining 

from a public 

database  
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PEC1 (from 06/03/18 to 19/03/18) 

Approximately 3 weeks. 

 
Table 2. Gantt chart of the tasks performed during the PEC1. The green cells represent in which week the 

task described at the left side of the row was carried out.  

 Week 1 Week 2 Week 3 

ChIP-Seq raw data pre-processing: 

quality control, trimming, mapping, 

reads genome coverage, 

normalization… 

   

Chip-Seq pre-processed data 

exploration 

   

RNA-Seq data exploration    

Multiway techniques study 

(reading bibliography) 

   

N-PLS (reading bibliography)    

Regression modelling techniques 

study (reading bibliography) 

   

Workplan document  

elaboration 

   

Workplan document 

 delivery 

   

 

 

PEC2 (from 20/03/18 to 23/04/18) 

 

Approximately 4 weeks. 

 

In the PEC1 submitted document, it was explained that the MORE tool was going 

to be used to model gene expression for each differentially expressed gene, considering 

the histone modifications as predictors, to find out which histone modifications were 

more relevant for the regulation of each specific gene, but also globally when analysing 

simultaneously all the collected data with the N-PLS model. The relevant addition to 

notice is that along this PEC2 it was decided to analyse, not only the influence of histone 

modifications on gene expression, but also the regulation of transcription factors, in order 

to study their role in the YMC, and their effect in combination with the chromatin status 

data. The application of MORE with transcription factors data was done in the PEC3. 

 
Table 3. Gantt chart of the tasks performed during the PEC2. The green cells represent in which week the 

task described at the left side of the row was carried out. 

 Week 1 Week 2 Week 3 Week 4 

RNA-Seq modelling: 

differential expression and 

clustering analysis 

    

Batch effect study and correction     

Omics integration     

N-PLS application     

MORE application with Histone      
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Modifications data 

Master thesis manuscript 

writing 

    

 

PEC3 (from 24/04/18 to 21/05/18) 

 

Approximately 4 weeks. 

 

After the application of MORE with transcription factors, it was also decided to 

create a regulatory network to represent graphically the interaction of the most relevant 

transcription factors and the different studied histone modifications, to better understand 

the regulation of gene expression during the YMC. Thus, the creation of the regulatory 

network constituted an extra-step not considered at the beginning of the project. 

 

It was also analysed the significance of the joint action between each transcription 

factor and each histone modification. The idea was to study whether a specific 

transcription factor was significantly regulating the same group of genes that was being 

regulated by a specific histone modification. This step was another task not considered 

initially, since the study of transcription factors was not planned at the beginning of the 

project.   

  

 
Table 4. Gantt chart of the tasks performed during the PEC3. The green cells represent in which week the 

task described at the left side of the row was carried out.  

 Week 1 Week 2 Week 3 Week 4 

MORE application with Transcription 

Factors data 

    

Selection of the most relevant  

Transcription Factors 

    

Significant joint action analysis:  

TF-histone modification 

    

Gene set enrichments analysis based  

On the MORE results 

    

Regulatory network : TF-Hist Mod     

Biological results profound analysis and  

interpretation 

    

Master thesis manuscript 

writing 

    

 

 

PEC4 (from 22/05/18 to 05/06/18) 

 

Two weeks. 

 
Table 5. Gantt chart of the tasks performed during the PEC4. The green cells represent in which week the 

task described at the left side of the row was carried out.  

 Week 1 Week 2 

Master thesis manuscript writing   

Improving figures quality   

Reviewing citation and manuscript format   
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Master thesis manuscript delivery   

 

PEC5 (from 06/06/18 to 25/06/18) 

 

Approximately 3 weeks. 

 
Table 6. Gantt chart of the tasks performed during the PEC5. The green cells represent in which week the 

task described at the left side of the row was carried out.  

 Week 1 Week 2 Week 3 

Preparation of the slides for  

the thesis public defense 

   

Preparation of the speech for  

the thesis public defense 

   

Public defense of the thesis when 

indicated by the UOC 

   

 

 

1.5 Brief summary of the products obtained 
 

The different documents produced and submitted for the evaluation of this master 

thesis are: 

 

- The PEC1, PEC2 and PEC3 delivered files, where the work plan of the time 

period comprehended between 05/03/2018 and 21/05/2018 is shown. That 

information is also described in Section 1.4 of this document. 

 

- The master thesis manuscript, which corresponds to this document. It contains 

a detailed description of all the methodology applied in the project and the 

results obtained.  

 

- A slides presentation will be prepared for the public defense of the project the 

week after submitting the master thesis manuscript. 

 

In addition: 

 

- In parallel to this master thesis, a scientific publication based on this work has 

been also prepared that will be submitted to Frontiers in Genetics journal.  

 

- All the scripts produced will be uploaded to a public BitBucket folder, for the 

benefit of the researchers interested in developing similar analyses.   

 

1.6 Brief summary of the chapters covered in the thesis 
 

The format and order of the coming chapters in this manuscript evolve in 

concordance with the expected structure for a scientific project description. 

 

 Chapter 1: Introduction. The topic and the context of the study, which is an 

omic integration approach to study the relevance of histone modifications on the 

regulation of the gene expression in the YMC, are presented. 
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 Chapter 2: Materials and methods. The data (RNA-Seq and ChIP-Seq), the 

experimental design, and all the methodology applied in order to achieve the main 

objective of the project are described. The description of the statistical methods for the 

omics integration (MORE and N-PLS) can be found. 

 

 Chapter 3: Results. The results obtained with the help of the methodology 

explained in Chapter 2 are given. We can find here: the clustering and differential 

expression analysis of the genes from RNA-Seq data, the number of genes significantly 

regulated by each histone modification and transcription factor, the selection of the most 

relevant transcription factors involved in the regulation of the YMC, and a regulatory 

network created to depict graphically the relevance of the different regulators studied, 

among other results.  

 

A detailed interpretation and discussion of the results obtained in Chapter 3 is 

given in Chapter 4: Discussion. Evidences in the literature that support and strengthen 

the results are also given. 

 

Last, Chapter 5: Conclusion, which summarizes the most relevant aspects of the 

discussion, the major difficulties faced along the project and future tasks that should be 

done. 
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2. Materials and methods 
 

2.1 Omics data analysed  
 

The omics data types used in this project were gene expression, measured with 

RNA-Seq technology, and histone modifications, measured by ChIP-Seq. All data sets 

were published in (Kuang, et al., 2014) and retrieved from GEO repository (Edgar, et al., 

2002), data’s accession number: GSE52339. The only exception was the data of the 

histone modification H3K18ac which was provided by Dr. Jane Mellor lab, more details 

in Section 2.1.2.  

 

Metabolic-cycle experiments were performed as previously described in (Tu, et 

al., 2005) except for the timing of sampling for RNA-Seq and ChIP-Seq; samples were 

intentionally taken unevenly to more deeply sample the very rapidly changing OX phase 

and were taken less densely outside the OX phase (Kuang, et al., 2014). Since 16 is the 

total amount of sampling time points (obtained along one cycle of the YMC) the 

observations will be named regarding its sampling obtaining order, hence, the first one is 

1 or t1 and the last one is 16 or t16.  

2.1.1 RNA-Seq 
 

For RNA-Seq, the locations of the 16 sampling time points along the YMC are 

shown in the Figure 1 from (Kuang, et al., 2014).  

 

 
Figure 1. Fluctuation of the oxygen levels (dO2) along the YMC. The 16 time points of the RNA-Seq data 

obtaining are labelled in one cycle of the YMC. The three metabolic phases of the YMC are colour coded: 

magenta for OX, green for RB and blue for RC. Figure from (Kuang, et al., 2014). 

 

 

 RNA-Seq data was sequenced with Illumina HiSeq 2000, the reads were single 

end and their length was 50 base pairs (bp). 
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2.1.2 ChIP-Seq 

For  ChIP-Seq, the locations of the 16 sampling time points along the yeast 

metabolic cycle are shown in the Figure 2 from (Kuang, et al., 2014). 

 
Figure 2. Fluctuation of the oxygen levels (dO2) along the YMC. The 16 time points of the ChIP-Seq data 

obtaining are labelled in one cycle of the YMC. The three metabolic phases of the YMC are colour coded: 

magenta for OX, green for RB and blue for RC. Figure from (Kuang, et al., 2014). 

 

ChIP-Seq data was pre-processed from fastq files containing raw sequencing 

reads.  

 

The Chip-Seq data used in this study corresponded to 8 histone modifications 

(H4K16ac, H3K36me3, H3K4me3, H4K5ac, H3K9ac, H3K56ac, H3K14ac and 

H3K18ac), and H3 was used as control. The data had been generated with the usage of 

three different sequencing technologies, and the average read lengths were different 

attending to the sequencing technology used (Table 7).  The omics data were generated 

in two different batches, H3K9ac was measured twice, each one in a different batch, in 

order to use it afterwards to detect and correct the batch effect (this will be discussed in 

more detail in Section 2.4.3). In the section 1.1 it was indicated that the data used in this 

project was coming from (Kuang, et al., 2014), however, it must be specified that 

H3K18ac was not considered and used in their project. Despite that they obtained the 

aliquots for it in each of the corresponding time points, as for the rest of histone 

modifications, they did not sequence it. A collaborator of the Genomics of Gene 

Expression group, Dr. Jane Mellor, had obtained and sequenced the aliquots of H3K18ac. 

Dr. Jane Mellor gave us the data, so, new information was also added in this study with 

respect to (Kuang, et al., 2014). 
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Table 7. Technical details regarding the sequencing technology, average read length (in base pairs) and 

type of read for each of the histone modifications studied. 

Histone 

modification 

Sequencing Technology Average Read 

Length (bp) 

Type of 

read 

H3K9ac Illumina HiSeq 2000 ChIP 50-51 Single end 

H3K36me3 Illumina HiSeq 2000 ChIP 50-51 Single end 

H3K4me3 Illumina HiSeq 2000 ChIP 50-51 Single end 

H4K5ac Illumina HiSeq 2000 ChIP 50-51 Single end 

H4K16ac Illumina HiSeq 2000 ChIP 50-51 Single end 

H3 Illumina Genome 

Analyzer ChIP 

36 Single end 

H3K56ac Illumina Genome 

Analyzer ChIP 

36 Single end 

H3K9ac Illumina Genome 

Analyzer ChIP 

36 Single end 

H3K14ac AB SOLiD System 35 Single end 

H3K18ac Illumina HiSeq 2000 ChIP 50-51 Single end 

  

 

2.2 ChIP-Seq data processing 

2.2.1 Reads quality study  
A study of the sequencing reads quality was performed with FastQC software 

(Andrews S, 2010). FastQC is designed to perform different quality control checks on 

raw sequence data coming from high throughput sequencing pipelines through a modular 

set of analyses.  

 

In total, 160 ChIP files were analysed (10 histone marks, Table 7, multiplied per 

16 time points). 

 

The reads quality was codified based on phred +33 quality scores. 

 

2.2.2 Reads trimming and filtering 
Sequencing reads may require a quality filtering to discard those with very low 

quality before the alignment step and, sometimes, they have also to be trimmed because 

they may contain adaptor sequences. In order to perform this filtering and trimming, the 

software Trimmomatic (Bolger, et al., 2014), version 0.32 was used.  

 

For the read files that were not presenting quality problems the parameters used 

were: 

-LEADING:30 TRAILING:30 SLIDINGWINDOW:5:30 MINLEN:28 

 

For the read files that were presenting sequence quality problems, a slightly less 

restrictive filtering and trimming was applied to avoid discarding the majority of the 

reads. The parameters used were: 

-LEADING:25 TRAILING:25 SLIDINGWINDOW:5:25 MINLEN:25 
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2.2.3 Mapping, sorting and removing duplicated reads 
  

 The reference genome was obtained from Ensembl (Zerbino, et al., 2018) 

(Saccharomyces cerevisiae genome from release 91). To perform the alignment of the 

filtered and trimmed reads to the reference genome, bowtie1 software was chosen 

(Langmead, et al., 2009).  

 

Bowtie1 was applied specifying the parameter -m1, in order to discard 

multimapped reads.  

 

Attending to the nature of the ChIP-Seq data, bowtie1 had to be applied in a 

different way for two different groups: one group formed by all the samples coming from 

Illumina technology and another group formed by the samples coming from the Solid 

technology.  

 

Since the reads from AB solid are codified with the so called “color space” 

codification, the reference genome should be converted also to color space coding before 

performing the alignment of those reads, this process was performed also by bowtie 

thanks to the bowtie-build function, which indexes the genomes, with the parameter -C.  

 

After the mapping, the resulting bam files were sorted and the duplicated reads 

were removed with the samtools software (Li, et al., 2009). 

 

2.2.4 Averaged number of reads per region  

In order to obtain ChIP-seq quantification values, it was first calculated the 

coverage per nucleotide for all the genome with the program genomecov, from bedtools 

(Quinlan & Hall, 2010), specifying the parameter –d (this opion returns the coverage per 

nucleotide).  

Next, we defined 20 consecutive non-overlapping regions from the transcription 

start site (TSS) of each gene. Half of these 20 regions had a length of 100 base pairs (bp) 

and were upstream the TSS. To define the remaining 10, we divided the gene (from the 

TSS to the transcription termination site, TTS) into 10 regions with the same length 

(which also resulted in around 100 bp in median). For each genomic region, we computed 

the average of the coverage across the region. This was done with a set of python in-house 

scripts, and with the information of the yeast genome annotation file (gtf). The gtf was 

obtained from Ensembl (Zerbino, et al., 2018), Saccharomyces cerevisiae gtf from the 

release 91. 

Finally, it was analized the average distribution of reads per region for all the 

genes in 3 of the 160 ChIP-Seq data sets in order to select the regions showing a higher 

enrichment with respect to the control (H3), the need of using the control is detailed in 

Section 2.2.5. The selected regions were then used in all the subsequent analyses. 

Since two regions were selected, two matrices were created for each histone 

modification, each of them containing the information of one of the two regions. Each 
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matrix row contained the information of a gene, and each column the information of a 

different time point.  

2.2.5 Normalization 

It is certainly relevant taking into account the control ChIP-Seq samples, because 

the regions presenting high read counts do not necessarily contain enrichment sites. Many 

studies have described that the distribution of the reads is far from uniform, and is affected 

by many factors, including GC content, mappability, chromatin structure and copy 

number variation, among others (Liang & Keleş, 2012). 

In order to normalize the histone modifications data with respect to the control, 

H3, different steps were applied. Firstly, the obtained means for the different studied 

regions were divided by the total number of reads of the correspondent ChIP-seq sample 

(sequencing depth correction). Secondly, a millionth unit was added to all the resulting 

means. Lastly, a log ratio transformation of the means with respect to its corresponding 

control time point was applied. For instance, the data coming from H3K9ac time point 3 

was logically normalized with respect to the H3 time point 3.  

 

2.3 RNA-Seq processing 
 

The RNA-Seq data, obtained from GEO repository, had already been pre-

processed by (Kuang, et al., 2014), so this task was not executed in this project. Briefly, 

the reads were aligned with bowtie1 to the reference genome. Afterwards the data was 

normalized by the total number of aligned reads per sample, a unit added to the 

normalized number of reads and a logarithmic transformation applied. Lastly, the 

different values for each gene were centered. 

 

2.4 Statistical methods 

2.4.1 Exploratory analysis 
 

 Principal Component Analysis (PCA) 

PCA is a mathematical algorithm which enables the reduction of the number of 

variables (the dimension) in a study, through the creation of new latent variables, also 

known as components, which retain most of the variability present in the original data 

matrix (Ringnér, 2008). Each principal component (PC) is a linear combination of the 

original variables and explains a percentage of the data’s variance, in such a way that the 

first principal component (PC1) explains a larger variance than the second (PC2) and so 

on, and with a reduced number of those components is enough to explain most of the 

original variance. The loadings are the weights of the original variables in each of the 

PCs. Likewise, the weights of the observations over the components are also calculated, 

and they are named as scores. The projections of the observations and the variables in the 

new components can be represented graphically, and this kind of graphs contribute to a 

better comprehension of their relationships and serve as a quality control to check that the 

observations corresponding to the same experimental groups are clustered together, or if 

the way in which those groups are separated is consistent with what is expected.  
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When applying multivariate methods, such as PCA, to obtain a non-biased data 

representation, it is sometimes necessary centering and or scaling the variables in order 

for them to present equal average and or similar variance. Generally, it is quite common 

to center the data, while scaling is usually applied in the case that the variables are 

measured in different units.  

PCA was applied to explore the different omic data sets, and pca function from 

MixOmics R package (Rohart, et al., 2017) was used. The variables were always 

centered but not scaled in the PCAs shown along this project.  

2.4.2 Differential expression analysis and clustering  

2.4.2.1 MaSigPro 

 MaSigPro is a regression based approach designed to analyse time-series 

microarray or RNA-seq data (Conesa, et al., 2006; Nueda, et al., 2014). The goal is 

finding genes whose expression changes with time, and also those with significantly 

different expression profiles between experimental groups, so a regression model is fitted 

per gene. 

 

 In this work, maSigPro R package was applied to RNA-seq data to obtain the 

differentially expressed genes (DEGs) across time and their clustering. For the 

consideration of the DEGs: the significance level was set to 0.05, the p-values were 

adjusted with the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995), and a 

minimum R squared value of 0.6 was required (more details regarding the biological 

criteria followed to fix the R squared threshold are given along the Section 3.4).  

  

 When applying maSigPro, the user must choose the degree of the polynomial 

relating time and gene expression. Different degrees were tested and, in order to establish 

the optimal one, two criteria were applied on the resulting DEGs selected by maSigPro:  

 

 -  The amount of variance explained by the two components of a PCA on the 

DEGs data that better ordered the time points, and the graphical quality of this ordering. 

 

 -The adjusted R squared values of the different regression models for each gene, 

which were not returned by maSigPro but computed using Equation 1. 

 

Using the R2 value to compare regression models with a different number of 

predictors is not a good procedure, because adding a variable to a model always increases 

the R2. Thus, the regression models fitted with higher polynomial degrees will always 

present larger R2 values. 

 

To correct the inability to compare models with a different number of predictors 

using the R2 value, the adjusted R2 value was defined. The adjusted R2 (R2adjusted) will 

only increase if the added predictor is useful for the explanation of the residual variance 

present in the model, and it is calculated as indicated in Equation 1: 

 

𝑅2𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 − (
𝑛 − 1

𝑛 − 𝑝
) (1 −  𝑅2)                                     (Equation 1) 
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 where n is the number of observations, and p the number of regression parameters 

(the β coefficients). 

  

2.4.2.2 Genes clustering evaluation 

 As previously indicated, maSigPro was used to cluster the DEGs, k-means method 

was chosen.  

 
In order to assess the quality of these clusters, a silhouette distance study was 

performed (Rousseeuw, 1987). This methodology aims to show the tightness or 

separation of the different clusters, through a distance measure called silhouette which 

takes into account the average distance of a particular variable with the rest of variables 

of the cluster where it has been assigned, and the average distance of this variable with 

all the other variables from a neighbor and different cluster.  

 

As it is described in (Rousseeuw, 1987) the silhouettes indicate which variables 

lie well within their clusters and which ones are merely somewhere in between them. The 

whole clustering is displayed through the combination of all the silhouettes into a single 

plot, permitting an appreciation of the relative quality of the clusters and an overview of 

the data configuration. The average silhouette width provides an evaluation of clustering 

validity. A silhouette value for a variable close to one indicates that it has been well 

clustered, while close to zero or negative values indicate the opposite.  

 

2.4.3 Batch effect correction 

One of the most complex issues surrounding high-scale omics data analysis is the 

technical noise (Nikolsky, et al., 2009). It is advisable to remove this technical noise or 

unknown variance which is associated to the measurement tools or experimental design, 

because it masks the biological effects which really want to be studied. In order to remove 

this noise different methods have been developed, being ARSyN (Nueda, et al., 2012) 

one of them. Through the combination of the analysis of variance (ANOVA), and the 

subsequent application of multivariate analysis (Simultaneous Component Analysis 

SCA) over the effects decomposition of the ANOVA, the ARSyN method is able to detect 

the noise present in the data and correcting it.  

RNA-Seq and ChIP-Seq of histone modifications were generated in two different 

batches, named here as A and B (Table 8). In order to be able to determine the magnitude 

of the batch effect, the histone modification H3k9ac was independently measured in both 

batches (Table 8). Thus, regarding H3K9ac different approaches were tested to correct 

the batch effect. One of them consisted on the usage of the ARSyNseq function from the 

R package NOISeq (Tarazona, et al., 2015), the other one, simpler, was based on 

centering independently each H3K9ac data matrix and analyzing afterwards the 

implications on the batch effect. The reason for the centering approach appears because 

the RNA-Seq had already been pre-processed, including a centering step which could not 

be undone, as a consequence it was also planned to center all the histone modifications 

data before starting with the omics integration.  
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Table 8.  Batch specification for each omic data set. 

Omic Data Set Batch 

H3K4me3 A 

H3 B 

H4K5ac B 

H3K56ac B 

H3K14ac A 

H3K9ac A, B 

H3K36me3 A 

H4K16ac A 

H3K18ac B 

RNA-Seq A 

2.4.4 Omics Integration 

2.4.4.1 Time point alignment 

 

Analysing Figure 1 and Figure 2 , it can be seen that the exact number of time 

points per metabolic phase and their relative position regarding the levels of oxygen 

consumption are not the same for RNA-Seq and ChIP-Seq data. In the RB phase for the 

RNA-Seq data there are 7 sampling points, and 6 for the ChIP-Seq data. In the RC phase, 

when it comes after the RB phase (right side of the image), there are 5 time points for the 

ChIP-Seq data and 4 for the RNA-Seq data. 

 

Since the omics integrative analysis requires having matchable observations from 

the different omics, this disagreement between time points must be fixed. Taking the 

oxygen consumption levels as an indicator of the metabolic state of the cell, and using 

them as a reference, it was decided to average the data from time point 10 and 11 of RNA-

Seq, and to average the data from the time points 13 and 14 of the ChIP-Seq. As a 

consequence, after these adjustments 15 time points were left, instead of the initial 16.  

2.4.4.2 N-PLS 

In Principal Component Analysis (PCA), as pointed in Section 2.4.1, the aim is 

the reduction of the number of variables which describe the data variance through the 

creation of latent variables, to facilitate the comprehension and analysis of the changes in 

the observations. In general, in the genomics field, only one type of omic data is 

represented in a PCA, for instance RNA-Seq data. When dealing with different kinds of 

omics data simultaneously (in our case, RNA-Seq and ChIP-Seq data), the common 

objective in the multivariate modelling is going to be also the reduction of the 

dimensionality in each kind of data, while maximizing the relationship between the two 

types of omic, the covariance. In order to accomplish that, a widely used multivariate 

methodology is the Partial Least Squares Regression (PLS) (Wold, et al., 2001), where 

one of the data matrices is considered the response variable Y (e.g. RNA-seq) and the 

other is the prediction matrix X (e.g. ChIP-seq). 

 



16 

However, in our case, we do not have a single ChIP-seq prediction matrix but 

many of them, since we have performed ChIP-seq experiments for several histone 

modifications and, in addition, we have quantified them for two different genomic 

regions. Therefore, the X prediction matrix with genes in rows (first mode) and 

observations (time points) in columns (second mode) becomes a three-dimensional 

structure where the third mode (slices in Figure 3) represents the different histone 

modifications per genomic region. To analyse such three-way structured data, several 

possibilities exist, one of them consisting of unfolding the cube and convert it into a 

matrix by concatenating the different slices. However, specific methods have been 

developed to deal with the three-way problem, as for instance the N-PLS model (Bro, 

1996), that was used in this project to integrate RNA-Seq with all the ChIP-Seq data sets.  

 

To facilitate the comprehension of what N-PLS methodology implies, first of all, 

let us review the PLS model (Wold, et al., 2001), since N-PLS is the natural extension of 

PLS to N-way structures (Conesa, et al., 2010). PLS can be considered as a prediction 

model, and it requires two data matrices as explained above: the matrix of the predictors 

and the matrix of the responses. The aim of the model is being able to predict, in the best 

possible way, the response matrix from the predictor matrix, based on the common 

behaviour or structure of the variables of both matrices. In order to do that, when 

obtaining the latent variables or components, the model aims to maximize the explained 

variance for each of the components attending to the location in the space of the 

observations from both matrices, maximizing thus the covariance. 

 

The N-PLS method, though, is considered as a multiway data analysis strategy. 

Multiway data analysis includes a number of methods developed to analyse large data 

sets through the representation of the data as multidimensional arrays (more than two 

dimensions) (Coppi, et al., 1989). Multiway techniques could be considered as extensions 

of traditional bilinear dimension reduction techniques to multidimensional data structures 

(Smilde, et al., 2004). For instance, the multiway Tucker3 (Smilde, et al., 2004) method 

can be considered as the extension of PCA to multidimensional structures. When dealing 

with multiway matrices each dimension is referred to as modes. Thus, in a 3 dimensional 

matrix, such as the ChIP-seq data matrix of this project, there are 3 modes.  

 

To interpret the results rendered by the N-PLS or Tucker3 techniques, the G 

matrix must be analysed, also called the core matrix. The analysis of the core matrix 

provides the information of which combination of components, one per mode, are the 

most relevant because they describe most of the variance present in the N-dimensional 

data.  

 

In short, the N-PLS method constitutes a dimensional reduction multivariate 

technique which takes profit of the multiway methodology to decompose the variance of 

matrices with more than 2 dimensions, together with the usage and extension of the PLS 

modelling, which maximizes the covariance of the created latent variables when 

decomposing the variance of two matrices.  

 

In this project, RNA-Seq data was taken as the 2-way response matrix in the N-

PLS model, while the ChIP-Seq data was considered the 3-way predictor matrix, since 

the objective was modelling gene expression changes based on the chromatin status data.  
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Regarding the modes, and the structure of the matrices, as commented before, the 

genes were located in the first mode, the time points in the second mode, and the third 

mode was for the different histone modifications per genomic region (Figure 3). 

 

 

 
Figure 3. Data structure for the N-PLS model.  

 

To perform the N-PLS an in-house R package was used. The matrices were 

centered along the mode 2, per time point. 

2.4.4.3 MORE strategy 

 

MORE (Multi-Omics Regulation) R methodology (Genomics of Gene Expression 

group, s.f.) is being developed by the Genomics of Gene Expression group. MORE is 

mainly based on regression models that aim to explain gene expression (or similar 

variables) as a function of regulatory elements. 

 

 The objective of MORE is the identification of relevant regulators from a large 

subset of putative regulators, finding those which are significantly modulating the levels 

of a response variable, which could be: gene expression, protein or transcript levels, 

among others. MORE is based on the usage of generalized linear models (GLM), 

developed by (Nelder & Wedderburn, 1972). GLMs extend the linear models, which 

assume a gaussian distribution for the response variable, to allow for a broader set of 

statistical distributions belonging to the exponential family: Normal, Binomial, Poisson 

and Gamma, among others. In GLMs, the regression coefficients are no longer estimated 

by means of the least squares approach as in linear models, but by the maximum 

likelihood method. Hence, MORE is able to model the behavior of many different data 

types, due to the flexibility given by the GLM: normally distributed response variables 

(e.g. microarray expression data), as in classical linear regression or count data (e.g. 

RNA-Seq expression data) that can be modeled with the Poisson or the Negative 

Binomial distribution, the latter being preferred to account for overdispersion.  

 

As pointed before, MORE is designed to evaluate the significance of the effect of 

a subset of putative regulators on the levels of a response variable. In this project, the 

response variable was gene expression. For each of the studied genes (the DEGs in our 

case), a model is created. The predictor variables are the potential regulators, in our case, 
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either histone modifications or transcription factors. Both, the response and the regulators, 

must have been measured on the same subjects (time points in our case). Besides the 

potential regulators, the experimental descriptors (treatment, types of tumor, etc.) can be 

optionally added as covariates. In this project, there were no experimental covariates. 

 

But, together with the GLMs, many more functionalities are available in MORE 

(Figure 4) in order to facilitate the integration task to the users. Some of them are 

described next. 

 

Each gene has a different number of potential regulators, so MORE will 

automatically generate the initial model equation. For instance, a TF can regulate, 

generally, the expression of a set of target genes, but it can not act over all the genes being 

expressed. MORE just requires that the user specifies the association between the 

regulators and their targets, so an association matrix must be provided. 

 

 It is quite common to have more predictors in the initial model equation than 

observations in the data. To tackle this problem, MORE offers several options that can be 

applied independently for each omic data type, as for example a low variability filtering, 

a multicollinearity filter, and two variable selection strategies, which are penalized and 

stepwise regression. 

 

As described in (Faraway, 2005) multicollinearity arises when some predictors 

are close to be linear combinations of others. It leads to imprecise estimates of the beta 

coefficients of the regression model, and the signs of the coefficients can be the opposite 

of what instinct about the effect of the predictor might suggest. The standard errors are 

inflated and as a consequence the tests may fail to reveal significant factors. As a result, 

the fitted model is very sensitive to measurement errors, where small changes in the 

response variable can originate large changes in the estimated beta values. Thus, 

multicollinearity is a serious problem that must be faced. The multicollinearity filter 

strategy applied by MORE consists in computing the correlation between the different 

predictors, and aggregating highly correlated predictors by either averaging their values 

or randomly choosing a representative regulator among them to be included in the model. 

Therefore, this implies that the significance of all the predictors, in a group of highly 

correlated variables, will be assessed by just one beta coefficient.  

 

 Regarding the variable selection approaches, the penalized regression 

implemented in MORE is the Elastic Net shrinkage approach (Zou & Hastie, 2005), 

which combines Ridge (Hoerl & Kennard, 1970) and Lasso (Tibshirani, 1996) strategies. 

For the stepwise variable selection (Draper & Smith, 1998), several procedures were 

adapted in MORE: forward, backward, two ways forward and two ways backward. 

 

Additional functionalities in MORE are a summary of the resuls at global level 

and at gene-specific level, and plots displaying the relationship between a given gene and 

its significant regulators according to the GLM results. 

 

As commented before, MORE was applied in this project to evaluate the relevance 

of different histone modifications and transcription factors in the regulation of the 

differentially expressed genes.  
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In order to determine which genes were transcription factors, and which their 

target genes were, Yeastract (Teixeira, et al., 2018) data base was used.   

 

 
Figure 4. MORE method overview. The diagram represents the different steps of the analysis and some 

ideas for the downstream analysis that can be done from MORE results.  

 

2.4.5 Functional enrichment analysis 
 

 Functional enrichment (FE) studies are procedures inspired in the systems biology 

criteria. The aim of these approaches is the direct examination of functionally related 

groups of variables, like genes or proteins, instead of studying them individually (Dopazo, 

2006). In addition, it must be taken into account that the extraction of the biological 

information is not an easy task, to face this issue a specific vocabulary to annotate the 

function of the different biologic variables (proteins, genes...) has been developed in a 

systematic way (Zhou & Su, 2007) which allows to access them in a fast and standarized 

way, the Gene Ontology (GO) notation system is a perfect example.  The GO notation 

establishes an organized system, surrounding a hierarchical structure, which defines a 

series of descriptive terms for the different biological entities in 3 different aspects: 

biological processes, molecular function and cellular components (Zhou & Su, 2007). 

Thus, for instance, it can be retrieved the GO terms associated to a given protein identifier, 

and then know in which biological processes it is involved, its biological functions or 

whether it is a part of a cellular component. In this way, thanks to these standarized GO 

terms it is possible to find, for example, two different proteins with the same functions. 

Taking profit of this, functional enrichment analysis can be applied, in order to detect 

whether there are significant differences in terms of the relative abundance of a specific 

function between 2 groups of variables.  

 

 Thus, functional enrichment analysis is performed on different established groups, 

and it is equivalent to a test for independence of two variables: belonging or not to the 

test set of variables (e.g. differentially expressed genes) and being or not annotated to a 

given functional term. Specifically, Fisher’s exact Test was applied here to find 

statistically significant differences in terms of function abundance between groups. The 
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significance level for these analyses was set to 0.05. The p-values were adjusted with the  

(Benjamini & Hochberg, 1995) procedure. To perform the functional enrichment analysis 

an R in-house script was used. 

 

In this work, Gene Ontology (GO) (Gene Ontology Consortium, et al., 2004) and 

KEGG (Kanehisa & Goto, 2000) data bases were used to retrieve the functionality 

associated to the different studied genes. 

2.4.6 Selection of the most relevant transcription factors 
 

Once MORE was applied to find the transcription factors significantly regulating 

gene expression, the analysis described below was carried on to select the most relevant 

transcription factors (TFs) governing the YMC.  

  

For each of the studied TFs, the total number of associations with the DE target 

genes was calculated from Yeastract database. Many of this associations, despite they had 

been described in the literature, were not truly happening in the context of the YMC, and 

that is why the MORE turned out to be a useful tool to filter such associations, by 

maintaining those which were significantly more likely to be happening. Therefore, the 

total number of TF-target gene associations according to MORE results was also 

calculated. 

 

A TF X was considered to be relevant when the proportion of significant 

regulations (according to MORE) among all the regulations in which X was involved 

significantly increased in comparison with the rest of regulations (see Figure 5). Thus, in 

order to test the relevance of TF X, a Fisher’s Exact test can be applied. 

 

 

TF X Nr. of genes 

Regulated by the TF 

X 

Total nr. of regulations,  

given all the studied TFs, 

excluding the ones given by the 

TF X 

Significant in MORE a b 

Not significant in 

MORE 

c d 

Figure 5. Representation of the contingency table used for the Fisher’s Exact test of a given transcription 

factor (TF X). a is the number of target genes for TF X described in the literature which are being 

significantly regulated by this TF attending to MORE. c is the number of target genes for TF X which are 

not being significantly regulated by this TF.  b is the total number of significant regulations excluding those 

involving TF X. d is the total number of non significant regulations excluding those involving TF X. 

 

 Thus, the relevant TFs were those with a significant adjusted p-value for the 

Fisher’s Exact Test (significance level 0.05), and with an odds ratio higher than 1. 

Benjamini and Hochberg procedure (Benjamini & Hochberg, 1995) was applied for 

multiple testing correction. 
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2.4.7 Significant associations analysis 
    

 Another step of the analysis consisted on evaluating if any of the most relevant 

transcription factors were significantly regulating the same group of DEGs that any of the 

histone modifications. To do that, a Fisher’s Exact test was again applied as indicated in 

Figure 6.  

 

 Nr. Genes Significant 

for TF X 

Nr. Genes non- 

significant for TF X 

Nr. Genes significant for 

Hist mod Y 

a b 

Nr. Genes non-significant 

for Hist mod Y 

c d 

Figure 6. Contingency table used for the Fisher’s Exact test applied to evaluate if any histone modification 

(Hist mod Y) was significantly regulating the same group of genes that any TF (TF  X). a is the number of 

genes significantly regulated by the studied TF and hist mod. b is the number of genes which are 

significantly regulated by the studied histone modification but are not by the studied TF. c is the number of 

genes which are significantly regulated by the studied TF but are not by the studied histone modification. 

d is the number of genes not regulated by neither the studied TF nor histone modification. 

 

The significant associations were those with a FDR adjusted p-value (Benjamini 

& Hochberg, 1995) below the significance level of 0.05, and with and odds ratio higher 

than 1.  

 

2.5 Computer support, software and programming 

languages 
 

The programming languages used along this master thesis project were: R (R 

Development Core Team, 2011) version 3.4.3, Python (Python Software Foundation, s.f.) 

version 3, and bash scripting.  

 

R was the most used programming language, through the usage of the graphical 

interface R studio.  

 

Python language was used mainly along the ChIP-Seq data processing to generate 

the genome coverage matrices. It was also utilized to parse and analyze the reads quality, 

trimming and mapping results. 

 

Bash scripting was used to pre-process the ChIP-Seq raw data.  

 

With the exception of the pre-processing of the ChIP-Seq raw data, all the analysis 

were run in a computer with GNU/Linux Ubuntu 16.04 software, with 4 cores and 4 Gb 

of RAM. ChIP-Seq raw data sets were analysed and pre-processed in the cluster from 

Centro de Investigación Príncipe Felipe.  
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2.6 Pipeline overview 

 
 
Figure 7. Project pipeline. TF (transcription factor), HM (histone modification). 
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3. Results 
 

3.1 ChIP-Seq data processing results 

3.1.1 Quality study, trimming, mapping and duplicated reads 

removal 

After performing the quality study of the reads with the FastQC software, 28 

ChIP-seq samples out of 160 presented a low sequence quality: the 16 time points from 

H3K14ac histone modification (the only histone modification sequenced with AB SOLid 

System) and 12 time points from H3K36me3. Figure 8 shows an example of good and 

bad quality samples.                                                                                                                                                

 

Based on the read quality differences among the ChIP-seq samples, two different 

filtering protocols were applied (Section 2.2.2). The least restrictive filtering was applied 

on H3K14ac and H3K36me3 data, to avoid discarding the majority of the reads. A more 

restrictive read filtering was applied on the rest of samples. 

The FastQC study also indicated a possible presence of adapters in 32 samples 

that corresponded to all the time points of H4K16ac and H3K4me3. As a consequence, a 

study of the adapters sequences was performed for the different time points in these 

histone modifications, and 11 of the most overrepresented sequences were selected (not 

all of them due to the high similarities between the sequences). These sequences (see 

Figure 9) were used in the trimming step as putative adapter sequences.  

After the reads trimming, the FastQC software was used again to evaluate if the 

previous problems had been solved. We observed that all the ChIPs presented a good 

sequence quality and did not present adapters. In the Figure 10, an example of the quality 

correction is shown for a particular ChIP-Seq sample.  

H3K36me3 and H4K16ac were the most affected ChIP-Seq samples by the 

trimming step. H3K36me3 was one of the samples also presenting sequencing quality 

problems, and H4K16ac had adapters in the sequences. Along the different time points of 

these ChIP-Seq experiments, the number of final reads left after the filtering and trimming 

steps was below one million, being the H4K16ac time point 1 the most extreme case, 

where just around twenty thousand reads were left. The removal of a notorious amount 

of reads for the time point 1 in H4K16ac was not surprising, since the FastQC study 

showed that there was a sequence (adapter) of approximately 42 base pairs (bp) present 

in more than 75% of reads, and the length of these reads was 50 bp. Probably, something 

failed in this ChIP-Seq preparation and only the adapter was sequenced. After evaluating 

the trimming results, it was decided to discard the histone modifications H3K36me3 and 

H4K16ac from the analysis. 

Once the trimming was completed, the remaining reads were mapped to the yeast 

reference genome with Bowtie 1, and multimapped and duplicated reads were removed. 

The resulting bam files were used to compute the coverage per nucleotide, i.e. the number 

of sequencing reads at each nucleotide. 
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Figure 8. Quality scores across all bases. Example of some of the ChIP-Seq samples presenting a good 

sequencing quality (bottom) and a bad sequencing quality (top).  
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Figure 9. Considered adapter sequences used in the reads trimming. 

 
Figure 10. Quality scores across all bases. Example of the reads quality for a particular ChIP-Seq sample 

before (top) and after (bottom) the trimming. 
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3.1.2 Determining the genomic regions to be used for the study 

of histone modifications 
 

Although the coverage per nucleotide along the whole genome can be computed, 

the most interesting regions to study the chromatin status are those which are close to the 

genes. However, there is no consensus in the literature on how to define the location or 

width of such regions, so we performed a study to identify the most informative ones. 

 

Thus, 20 genomic regions were defined for each gene, as described in Section 

2.2.4, and the coverage per nucleotide within the region was averaged. This was done for 

all the genes in 3 of the 160 ChIP-Seq data sets. Figure 11 shows the distribution of the 

region averages for the 20 regions before and after H3 control normalization (see Section 

2.2.5). Since the effect of the histone modifications under study was mainly associated to 

promoter regions, it was expected to have larger averages close to them. Hence, the 

distribution of the averages after normalizing with the H3 control was more meaningful 

and pointed to this expected behavior. 

 

 
 
Figure 11. Distribution of the average number of reads along the 20 studied regions for 3 different ChIP-

Seq samples. Each column of the figure corresponds to a particular sample. In the first row, averages were 

not normalized with H3. The averages in the second row were normalized with H3. Red coloured boxplots 

correspond to regions upstream the TSS, while blue coloured bars correspond to regions in the gene body.  

 



27 

As an additional checking and for the same ChIP-Seq samples, the ten genes 

presenting the highest variation in their associated histone modification signals were 

selected, and their behaviour across the 20 regions was studied (Figure 12).  

 

Figure 12. Average distribution of reads for the 20 studied regions in the 10 genes presenting a higher 

variation for 3 different ChIP-seq samples. Each column of the figure corresponds to a particular sample. 

The averages of the first row were not normalized with H3. The averages in the second row were normalized 

with H3.  

 

Before H3 normalization, no relevant patterns could be appreciated in Figure 12, 

whereas after normalization the expected tendency of having larger means close to the 

promoter is accomplished. A notorious decrease of the signal is globally observed after 

the TSS. Again, since the effect of the studied histone modifications is mainly associated 

to promoter regions the obtained results indicate that the pre-processing was done 

correctly. 

 

After analysing these results, two regions of 300 bp each were defined, one of 

them starting 300 bp upstream the TSS and finishing at the TSS, and the other from the 

TSS to 300 bp downstream the TSS. Therefore, for each histone modification, we will 

have two different quantification matrices, each one of them containing the values of the 

average coverage for each of these two regions per gene and time point.  
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3.2 Batch effect removal 
 

As detailed in Section 2, the different omic data types were generated in two 

different batches. In order to evaluate the batch effect, the histone modification H3K9ac 

was measured in both batches. However, it should be noticed that the sequencing platform 

was different for each batch (Table 7). Although the differences between the sequencing 

platforms could be really small, the batch effect is confounded with the sequencing 

platform effect so it cannot be accurately estimated. 

 

Let us recall that the two regions defined to study the histone modification effects 

were located from 300 bp upstream the TSS until the TSS, and from TSS to 300 bp 

downstream the TSS, respectively. We analysed the batch effect only for the first region 

considered.  

 

A PCA analysis was performed on the data from both H3K9ac experiments to 

assess the relevance of the batch effect. The score plot is represented in Figure 13. It can 

be appreciated how all the observations are clustered according to the batch they belong 

to, and not according to the time point as expected, so the batch effect can be perceived. 

Despite the batch effect was quite obvious from the PCA, we also confirmed it with an 

analysis of variance (ANOVA) model. The aim of the ANOVA was testing, per gene, the 

significance of the “batch” factor. The results of the ANOVA, after Benjamini and 

Hochberg p-value correction, indicated that for 2467 genes out of the 2552 DEGs (97% 

of the DEGs), the batch effect was significant. Thus, the batch was significantly affecting 

the histone modification levels. 

 

 
Figure 13. Score plot for the PCA obtained from the data of both H3K9ac experiments. The numbers 

represent the time points when the samples were taken in the YMC. In red, samples from batch A, and in 

blue, samples from batch B. 
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With the objective of correcting the observed batch effect two strategies were 

followed: The ARSyN method and a centering approach. Since the RNA-Seq data used 

in this project had already been pre-processed, including a centering step which could not 

be undone, the same centering approach was followed for the histone modification data 

for H3K9ac. 

 

 Figure 14 (left) shows the PCA score plot for the ARSyN corrected histone 

modification values. It can be noticed how after the ARSyN correction the observations 

are no longer separated by the batch and equal time points are clustered together, despite 

some time points are closer than others. The score plot for the PCA on the centered 

H3K9ac data is shown also in Figure 14 (right).   

 

Comparing the results of both strategies (Figure 14), and according to the 

graphical separation of the observations, it is perceivable that centering the matrices is 

equivalent to applying the ARSyN method, since the score plots are identical. Thus, the 

effect of the batch in this study was associated with an average increase of the histone 

modification levels per observation and gene, and can be removed by centering the data 

per gene.   

 

 

 

 

 

 
Figure 14. Batch effect removal. Score plot of the PCA obtained after the correction of the data batch effect 

with ARSyN (left). Score plot of the PCA obtained after centering the data matrices of H3K9ac before 

merging them into a single matrix (right). In red, samples from batch A, and in blue, samples from batch 

B. 

An ANOVA model on the corrected data confirmed that the batch effect was not 

significant anymore for any of the 2552 genes. Consequently, this batch effect correction 

based on centering the data was applied to the data sets of all the histone modifications. 

 

As detailed in Section 2.1.2, H3K18ac was independently sequenced by Jane 

Mellor, a collaborator who provided us this histone modification data. Despite the 

sequencing of the samples for this histone modification was performed independently of 

the rest of the histone modifications considered in the study, the biological preparation 

for the samples of this histone modification was exactly the same as for samples in batch 
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B (Table 8), although the sequencing was performed later on. Hence, H3K18ac could 

present a batch effect, not associated to the sample preparation, but associated to the 

sequencing time. An exploration with PCA (figure not shown) and the N-PLS results that 

will be exposed in next sections showed no batch effect, since all the H3K18ac time points 

were clustered with the corresponding time points in the rest of histone modifications. In 

case a batch effect had been noticed, it would not have been possible to correct it since 

there were no replicates of this histone modification in the other batches and we would 

have had to get rid of this histone modification, but fortunately it could be used in our 

study. Hence, the batch effect correction applied with H3K18ac was the same applied to 

the rest of ChIP-Seq samples, the centering approach. 

 

3.3 H3K9ac selection 
Since there are two samples of H3K9ac, which will be referred to as H3K9ac1 and 

H3K9ac2, it must be decided whether averaging them or discarding one of them before 

the omics integration analysis. 

 

Different aspects were evaluated to take this decision. On the one hand, the 

amount of remaining reads available for each histone modification per time point was 

considered, to see which dataset could be more reliable. As it can be appreciated in Figure 

15, H3K9ac1 has twice the amount of available reads per time point than H3K9ac2, 8 

million per time point (acceptable sequencing depth) in front of around 3 million per time 

point for H3K9ac2, which is a poor sequencing depth. 

 

 
Figure 15. Number of reads left after the ChIP-Seq pre-processing for H3K9ac1 (light blue) and for 

H3K9ac2 (dark blue). The horizontal black lines represent the height corresponding to one million of reads 

(bottom) and five million of reads (top). 

 

On the other hand, an independent PCA for each H3K9ac data set show a better 

performance for H3K9ac1 (Figure 16), since H3K9ac1 provides a better separation of the 

time points, in a nicer cyclic behaviour, in comparison with H3K9ac2. Moreover, the 

explained variance with the two first principal components was also higher for H3K9ac1. 
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Figure 16. Score plots for the PCAs of each H3K9ac data. H3K9ac1, left, H3K9ac2, right. In green, the 

time points associated to the RB phase, in blue, the time points associated to the RC phase, and in red, the 

time points associated to the OX phase. 

 

According to these results, the histone modification named in this section as 

H3K9ac1 was the one selected for further analyses. 

 

3.4 RNA-Seq data analysis 

3.4.1 Initial exploration 
 

The original RNA-Seq data set contained 6035 genes. Out of them, 43 presented 

all their values equal to 0 and were consequently excluded from the study. A PCA with 

the resulting 5992 genes was done.  Figure 17 shows the scores for the different time 

points for the PC1 and PC3, the components best separating the time points according to 

the different metabolic phases of the YMC. It can be appreciated how the time points are 

distributed in a nice cyclic manner, representing the expected relationship between time 

points (Figure 1). The time points are clearly clustered attending to the metabolic phase 

they belong to.  
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Figure 17. Score plot for the principal components 1 and 3, obtained with the RNA-Seq data of 5992 genes. 

In green, the time points associated to the RB phase, in blue, the time points associated to the RC phase, 

and in red, the time points associated to the OX phase.   

 

3.4.2 Differential expression analysis 
 

As detailed in Section 2.4.2, maSigPro software was used to perform a differential 

expression analysis and clustering of the genes, based on the RNA-Seq data. Thus, a 

model per gene was generated where the response variable was the gene expression and 

time was the predictor.  

 

In order to decide the best polynomial degree to model the RNA-Seq data, 7 

different degrees were tested and a different number of differentially expressed genes 

(DEGs) was obtained in each case. In addition, PCA was applied on the data 

corresponding to each of the 7 groups of DEGs. Table 9 shows the number of DEGs and 

the percentage of variance explained by the two principal components of the PCA for 

each of the 7 models. The models with degree 2 and 3 showed the highest percentages of 

explained variance and observing the PCA score plots, the best separation of the time 

points was achieved also for these models. 
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Table 9.  Number (Nr) of differentially expressed genes (DEGs) for each of the polynomial degrees, and 

percentage of explained variances with the first principal components associated to the PCA with the DEGs. 

Degree Nr of DEGs Explained variance with 

PC1 and PC2 

2 2021 78.48% 

3 3397 77.86% 

4 4774 69.0% 

5 4730 68.13% 

6 4315 69.02% 

7 5053 68.34% 

8 4650 69.10% 

 

Thus, this first exploration seemed to point to degree 2 or 3. To confirm this 

choice, we also analysed the adjusted coefficients of determination (R2) values of the 

models. First, the R2 value of the regression model for each of the DEGs was retrieved 

for the 7 tested degrees. Next, the R2 values were adjusted so the regression models with 

different polynomial degrees could be compared (Figure 18). The largest increase of the 

adjusted R2 is observed from degree 2 to 3, and a smaller improvement can be noticed at 

degree 4. For higher degrees, the differences are insignificant. 

 

 
Figure 18. Adjusted R2 values boxplot for the differentially expressed gene models, regarding the 7 

different degrees tested.  

 

Taking into account the principle that: (i) a simpler model is generally better when 

comparing models with similar performance (because a more complex one can tend to 

model noisy or stranger patterns or to overfit the data); (ii) the subset of DEGs obtained 

with degrees 2 or 3 were the ones showing a better separation of the observations in the 

PCA analysis; and (iii) beyond a polynomial degree of 3 or 4 there is not a notorious 

increase of the adjusted R2 values of the regression models obtained for the DEGs; a 

degree of 3 was chosen to model the behaviour of the RNA-Seq data.  

 

Lastly, for the DEGs obtained with a polynomial degree of 3 (3397), only those 

whose associated R2 value was higher than 0.6 were selected to continue with the analysis. 
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Based on this criteria, 2552 genes were kept. The reason behind this R2 filter was keeping 

only those genes for which most of its variance, at least 60 per cent, could be explained 

by the model. These genes were supposed to be associated to the Yeast Metabolic Cycle, 

so their expression levels should change in a way that time could explain most of their 

variation.  

 

Figure 19 shows the scores from the final PCA applied on the 2552 genes selected 

and on the 3929 DEGs considered in (Kuang, et al., 2014). A better representation of the 

distribution of the time points along the YMC can be observed with the 2552 selected 

genes in this study against the 3929 previously considered. These PCA results support the 

differential expression strategy followed.   

  

 

 
Figure 19. Score plot for the PCA obtained with the 3929 DEGs in Kuang et. al (left) and with the 2552 

DEGs selected in this project (right). In green, time points associated to the RB phase, in blue, time points 

associated to the RC phase, and in red, time points associated to the OX phase. 

 

The PCA on our 2552 selected DEGs (Figure 19, right) shows how the time points 

are separated regarding the metabolic phase in which they were obtained. Moreover, they 

are ordered from 1 to 16 representing nicely the distribution of the time points along the 

YMC. It can be observed, for instance, how the time points 1 and 16 are really close, as 

expected, since they represent the beginning and the end of the cycle (Figure 1). Another 

example of the meaningfulness of this representation is that time point 12 is more similar 

to time point 13from RC phase than to time point 11 from its same phase (RB). Based on 

the levels of oxygen consumption (Figure 1), this makes sense, since the levels of oxygen 

are more similar between time points 12 and 13 than between time points 11 and 12. 

 

3.4.3 RNA-Seq genes clustering 
Next step was clustering the 2552 DEGs according to their temporal profiles. This 

analysis was carried out with maSigPro software, that applies k-means algorithm. We set 

the number of clusters k to 3, which corresponds with the 3 main metabolic phases in the 

YMC: OX, RB and RC (Kuang, et al., 2014).  
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Figure 20. RNA-Seq clustering of the 2552 selected genes using K-means specifying 3 clusters. The mean 

expression level, for each time point and for all the genes in each cluster is represented. Horizontal axis 

corresponds to the time points, from 1 to 16, and the vertical axis corresponds to the expression levels. 

 

The number of genes assigned to each of the three clusters was 1428, 698 and 426 

(Figure 20). Focusing the attention on the mean profile for the different clusters: the 

cluster 3 was associated with the metabolic phase RB since the higer expression values 

of the genes present on it were given approximately between the time points 6 and 12, the 

ones located in the RB phase. Based on this reasoning, cluster 2 was associated with the 

RC metabolic phase and the cluster 1 with the OX phase. Thus, from the 2552 genes, 

1428 were associated to the OX metabolic phase, 698 to the RC metabolic phase and 426 

to the RB metabolic phase. 

 

(Kuang, et al., 2014) also clustered their 3929 DEGs into 3 clusters with 946 in 

the RB phase, 1441 in the RC phase, and 1542 in the OX phase. We compared the quality 

of the clustering of this study to the quality of our clustering.  
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Venn diagrams in Figure 21 and Table 10 compare the number of genes per cluster 

in both studies. More than 80% of the genes of each cluster in this project were also 

included in the same cluster in (Kuang, et al., 2014). Thus, in general terms, the clusters 

from this project, despite being smaller, were quite similar to the ones from Kuang et al. 

However, there were some differences. In order to assess the clustering quality of each 

study, one silhouette plot per clustering was done (Figure 22 and Figure 23). 

 

 

 
Figure 21. Comparison of the clustered genes in this project (Gaya), and in (Kuang, et al., 2014). From left 

to right, OX, RB and RC phase Venn diagrams. In green, genes clustered only in (Kuang, et al., 2014). In 

red, genes only clustered in this project. In brown, genes in common for both studies.  

 
 

Table 10. Comparison of clustering results in this project and in (Kuang et al., 2014). First column: Number 

of clustered genes in this project, also included in the same cluster in (Kuang, et al., 2014). Second column: 

Number of clustered genes in this project not included in Kuang’s clusters. Third column: Percentage of 

genes clustered in this project that are also included in Kuang’s clusters.   

Cluster In Kuang cluster Not in Kuang cluster % included in Kuang cluster 

RB 369 57 86.6 

RC 608 90 87.1 

OX 1170 258 81.9 
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Figure 22. Silhouette plot of the gene clustering in this project. 

 

 

 
Figure 23. Silhouette plot of the gene clustering in (Kuang, et al., 2014). 
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For Kuang’s clustering (Figure 23), not all of the 3929 DEGs considered in their 

study were evaluated, having instead just 3914, since we observed in their results that 

some genes were simultaneously assigned to more than one cluster, which did not make 

sense because they performed a K-means clustering. Moreover, some other genes had 

been considered as differentially expressed and therefore clustered, despite their RNA-

Seq levels for all the time points were 0. These discrepancies were probably due to the 

fact that, in Kuang’s paper, RNA-Seq data results were compared with the ones from a 

similar project performed with microarrays (Tu, et al., 2005), and possibly both data sets 

were somehow merged. Thus, we excluded these problematic ones for the Silhouette 

analysis. 

 

The average silhouette width for all the clusters in this project is about 0.5, while 

the one from (Kuang, et al., 2014) is about 0.3. In the clustering of this project, just one 

gene can be considered as wrongly clustered (the one at the bottom of the plot, presenting 

a negative value), while in Kuang’s clustering many observations seem to be wrongly 

classified, based on the negative silhouette distances. 

 

These results justify why we decided to repeat part of the analysis that was done 

in  (Kuang, et al., 2014), to be sure that we had a robust selection of DEGs and a more 

trustable clustering, since these two results will be key to proceed with the omics 

integration analysis. 

 

3.5 Omics integration 

3.5.1 N-PLS 
 

N-PLS method was used as a first exploratory approach to integrate the gene 

expression and chromatin status data and analyse the relevance of the different histone 

modifications in the global regulation of gene expression in the YMC.   

 

Regarding the assignment of the different variables to the different modes, genes 

were placed in the first mode, time points in the second mode and the different histone 

modifications in the third mode (Figure 3). 

 

The analysis of the core matrix showed that the most important core entry was 

(2,2,2), which was explaining 60.7% of the variance in the data, and the second most 

important was (2,2,1), which explained 23.9% (Table 11). Thus, more than 80% of the 

variance was explained with the usage of these two entries. As an example of the 

interpretation of the core entries, the entry (2,2,1) means that 23.9% of all the variance in 

the data being analysed (RNA-Seq and ChIP-Seq) is explained with the second 

component of mode 1 (genes), the second component of mode 2 (time points) and the 

first component of mode 3 (histone modifications). Figure 24, Figure 25 and Figure 26 

show the loading plots for all the modes, attending to the RNA-Seq and ChIP-Seq data. 
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Table 11. Elements of the core sorted by the percentage of explained variation. 

 Core element Explained variation of the core 

1 (2,2,2) 60.69% 

2 (2,2,1) 23.92% 

3 (1,1,2) 5.04% 

4 (1,1,1) 4.64% 

5 (1,2,1) 2.69% 

6 (1,2,2) 2.47% 

7 (2,1,2) 0. 34% 

8 (2,1,1) 0.21% 

 

 
Figure 24. N-PLS loading plot for RNA-Seq data. Components 1 and 2 are displayed for modes 1 (genes, 

left), and 2 (time points, right). In green, either genes or time points associated to the RB phase. In blue, 

either genes or time points associated to the RC phase. In red, either genes or time points associated to the 

OX phase. 

 

Figure 25. N-PLS loading plot for ChIP-Seq data. Components 1 and 2 are displayed for modes 1 (genes, 

left), and 2 (time points, right). In green, either genes or time points associated to the RB phase. In blue, 
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either genes or time points associated to the RC phase. In red, either genes or time points associated to the 

OX phase. 

 

 

 

 
Figure 26. N-PLS loading plot for ChIP-Seq data. Components 1 and 2 are displayed for mode 3 (histone 

modifications and genomic regions). For each histone modification there are two regions: circle 

shape is for -300 bp to TSS regions, triangle shape is for TSS to +300 bp regions. 

 

Based on the two most relevant entries of the core matrix ((2,2,2) and (2,2,1)), and 

first analysing the third mode (histone modifications), both components 1 and 2 can be 

considered as notoriously relevant for the explanation of the data variance. In absolute 

value, H3K9ac and H3K18ac are the histone modifications presenting the highest 

loadings, H3K4me3 the histone modification presenting the smallest loadings and 

H3K14c, H3K56ac and H4K5ac present intermediate loadings in comparison with 

H3K4me3 and the histones modifications with the highest loadings (H3K9ac and 

H3K18ac) (Figure 26). The two different regions considered (-300bp to TSS and TSS to 

+300 bp) for each histone modification are close to each other. The second component of 

the second mode (Figure 24 and Figure 25, right plot) is separating mainly those time 

points associated with the metabolic state of the cells when more oxygen is consumed 

along the YMC (time points 6, 7, 8, 9, 10), against the rest of time points. Finally, the 

second component of the first mode (Figure 24 left) shows how the genes associated to 

the RB (green) phase are separated from the genes associated to the OX (red) and RC 

(blue) phases. Figure 25 shows the same trend, that is, the second component aims to 
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separate the RB genes from the RC and OX genes. However, this separation is not as 

clear as in RNA-Seq data. 

3.5.2 MORE  

3.5.2.1 MORE with histone modifications as predictors 

 

The aim of this approach was to find which histone modifications significantly 

regulate the expression levels of each gene individually, so a MORE regression model 

was obtained for each gene to relate the gene expression values (response) to the 

chromatin status given by the different histone modification quantification values for that 

gene (predictors) and significant histone modifications were selected for each gene at a 

significance level of 5%.  

 

As indicated in (Berger, 2007), all the histone modifications to be studied in this 

project after the pre-processing steps (H3K14ac, H3K4me3, H3K56ac, H4K5ac, H3K9ac 

and H3K18ac) have a role on transcriptional activation. As a consequence, negative 

correlations between gene expression and histone modification are difficult to interpret 

and likely to be spurious, so it was decided to filter out of MORE results those significant 

histone modifications with negative regression coefficients in the final regression model 

for each gene. Figure 27 and Figure 28 show the number of genes significantly regulated 

by each histone modification, globally and per cluster, respectively. 

 

 
Figure 27. MORE results. Number of significantly associated genes to each histone modification (p-

value < 0.05). 
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Figure 28. MORE results per gene cluster. Number of genes significantly associated to each histone 

modification per cluster. Bottom right table provides the same information as the plots, the number of genes 

significantly associated by MORE to each histone modification, per cluster. 

  

These results indicate that H3K9ac and H3K18ac, either globally or per cluster, 

are the histone modifications which regulate a higher amount of genes, confirming the N-

PLS results. Regarding the RC phase, apparently the role of H3K18ac is higher in 

comparison to H3K9ac in the regulation of the gene expression, since it is regulating a 

considerably higher number of genes (260 vs 125). H3K56ac regulates a notorious bigger 

proportion of genes in the RB phase compared with the OX and RC phase. 

3.5.2.2 MORE with transcription factors as predictors 

  

The study of transcription factors was included in the project as an additional layer 

for the comprehension of the regulation of the YMC. According to Yeastract (Teixeira, 

et al., 2018), 109 transcription factors (TFs) were included among our DEGs. The 

different target genes for each TF were also retrieved from Yeastract.  

 

Similarly to the previous section, MORE was again applied to model gene 

expression as a function of transcription factor expression, in this case. The results 

indicated that 105 TFs were significantly regulating 2480 genes. To facilitate the 

interpretations of these results, we selected the significant TFs that were regulating a 
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significantly higher proportion of genes after MORE than before MORE (Yeastract 

database) and named them as relevant TFs (see Section 2.4.6). We found 13 relevant TFs 

(see gene names, adjusted p-values and odds ratio in Table 12). 

 
Table 12. Selection of relevant TFs from MORE results. Gene name, adjusted p-value and odds ratio for 

the significant TFs in the Fisher’s Exact test. 

 Adjusted p-value Odds ratio 

YOR028C 2.60e-04 1.38 

YLR403W 1.23e-16 1.60 

YHR084W 1.33e-03 1.26 

YPL254W 1.06e-13 2.01 

YPL177C 4.50e-03 1.40 

YOR363C 1.05e-09 1.79 

YIL101C 8.76e-05 1.76 

YGL209W 1.09e-12 3.64 

YDR451C 4.86e-10 1.83 

YLR278C 4.23e-03 1.67 

YIL130W 1.82e-04 2.39 

YLR014C 3.86e-04 2.65 

YML113W 7.04e-03 2.05 

 

Due to time constraints, not all the relevant TFs in Table 12 were studied, but only 

those with an adjusted p-value < 1e-08. Hence, YLR403W, YPL254W, YOR363C, 

YGL209W and YDR451C were selected to continue the study with them. 

 

3.6 Functional Enrichment Analysis 
 

3.6.1 Histone modifications 
 

Concerning the genes significantly associated by MORE method to each histone 

modification per cluster (Figure 28), different functional enrichment analyses were done. 

The most relevant results on shared and unique traits of each phase are detailed below.  

 

OX phase 

OX phase shows a common trend of regulating translation, ribosomal machinery 

and nucleotides metabolism. Except H4K5ac, every other histone modification was 

involved in aminoacid metabolism; being H3K18ac, H3K14ac and H3K4me3 specifically 

linked with one-carbon metabolism and methylation. H3K56ac and H4K5ac showed 

overrepresentation of helicase activity within the enriched functionalities, being this latter 

histone modification the only one presenting enhanced cell cycle regulation 

functionalities. 

 

 

RB phase 

RB phase is characterized by a regulation of sugar metabolism by all the histone 

modifications, coupled with a regulation of mitochondrial activity, from which H3k4me3 

is excluded. Genes regulating lipid metabolism are coordinated by H3K9ac, H3K18ac, 

H3K14ac and H3K56ac, whereas aminoacid metabolism is enriched in genes regulated 
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by H3K14ac, H3K56ac, H4K5ac and H3K4me3. H3K9ac and H3K56ac are linked to 

ribosomal activity. Cell cycle appears to be regulated by H3K18ac, H3K14ac and 

H3K4me3; H3K9ac, H3K14ac, H3K56ac and H4K5ac are coordinating secondary 

metabolism, some of these being involved in antibiotic biosynthesis. H3K4me3 appears 

to be the only modification to be significantly regulating ethanol biosynthesis. 

 

RC phase 

This phase is arguably the most diversified among the histone modification 

regulatory functions. Carbon metabolism and Oxidation-reduction processes are 

regulated by all modifications except H3K9ac, which appears to coordinate ethanol 

metabolism with H3K14ac and H3K4me3; and fatty acid metabolism together with 

H3K18ac, H3K56ac and H3K4me3. H3K18ac and H3K56ac combine to target genes 

with amino-acid metabolism and cell division functionalities. Oxidative phosphorylation 

appeared to be marked by all modifications but H3K56ac, which seemed to be the only 

one related to genes involved in histone acetylation. 

3.6.2 Transcription factors 
 

YLR403W appeared involved in the transcription of ribosomal proteins, nutrient 

response, G2/M transitions, DNA damage, and histone exchange. YPL254 presented a 

role in translation, aminoacid and nucleotides biosynthesis and nucleotide cleavage. 

YOR363C was associated to B-oxidation, peroxisome organization, oleate-driven 

transport, glucose starvation response and the ribosome and glyoxylate cycle. YGL209W 

was contributing to glucose-induced gene expression and mitochondrial fusion, besides 

being involved in endonuclease cleavage, ribosome, transferase, kinase activity and 

carbon transport. Last, for YDR451C, the functions related to ribosomes, methylation, 

negative response of invasive growth and cell cycle regulatory control were enriched. 

 

3.7 Significant association results 
 

Significant association analysis (Section 2.4.7) was applied to study if a given pair 

TF-histone modification was significantly co-regulating a set of genes. Two of all the 

tested pairs resulted significant, which corresponded to the histone modification 

H3K18ac with the TFs YPL254W and YOR363C, with adjusted p-values 0.0076 and 

0.017, respectively.  

 

3.8 Regulatory network 
 

A regulatory network was created in order to depict the relevance of the different 

histone modifications and transcription factors on driving gene expression changes in the 

context of the YMC. The regulatory network was created with Cytoscape (Shannon, et 

al., 2003) and the result is shown in Figure 29. This figure shows that H3K9ac and 

H3K18ac are the histone modifications regulating a higher number of genes (bigger 

nodes), while H4K5ac is regulating the smallest amount of genes. It can be seen also that 

YLR403W and YGL209W are the TFs regulating the highest and lowest number of 

genes, respectively. Regarding the proportion of regulated genes per metabolic phase (pie 

charts) in the context of the histone modifications, the proportion of regulated genes per 

metabolic phase is approximately the same for all the histone modifications, whereas in 

the context of the TFs, some differences are noticeable. For instance, YLR403W regulates 
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a higher proportion of genes in the OX phase than in the RB and RC phases; and 

YDR451C regulates a higher proportion of genes in the RB phase than in the OX and RC 

phases. 

 

 
Figure 29. YMC Regulatory network. The shape of the node depends on the type of regulator: transcription 

factors are represented with a circle and histone modifications with a square. The size of the node is 

determined by the number of genes significantly regulated by the regulator. The thickness of the edges 

determines the number of genes simultaneously regulated by the connected nodes (regulators). An asterisk 

on an edge indicates a significant association between the nodes connected by that edge. The construction 

of the pie chart was done as follows: 1- From the subset of genes regulated by the regulator of interest, the 

number of genes associated to each cluster was calculated. 2- the proportion of those number of genes over 

their respective clusters was obtained. 3- with that proportions the pie chart was elaborated. For instance, 

if the 3 slices present the same size it means that the studied regulator controls the expression of the same 

proportion of genes in the 3 clusters. The colours of the clusters are: OX (red) RB (green) and RC (blue). 
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4. Discussion 
 

This project studies the regulatory relationship that histone modifications may 

have over gene expression in the YMC. The differential gene expression analysis was 

performed to focus the regulatory study (histone modifications and transcription factors) 

on the genes changing in the YMC, because the rest of genes were not relevant for this 

study. This set of DEGs provided a more solid landscape to draw relevant conclusions 

from the omics integration analysis.  

 

The DEG clusters proposed here were very similar to the ones in (Kuang, et al., 

2014), with more than 80% of overlap. However, the differences in the total number of 

DEGs considered, 2552 in this project and 3929 in (Kuang, et al., 2014), and in the quality 

of the clustering revealed that many genes were wrongly classified in Kuang’s study and 

that the new clusters of this master thesis were more reliable and could lead to more 

biologically meaningful results. The reason of the differences between both strategies 

may be that in (Kuang, et al., 2014) the differential expression analysis was not done 

considering the time variable to model gene expression as it was done here with 

maSigPro. Moreover, the additional R2 filter we applied could have helped to select genes 

with a well-defined temporal profile and discard the noisy ones. 

 

Pre-processing again the ChIP-seq samples in order to properly quantify the 

chromatin status also allowed us to have more trustable data to perform the integration 

analysis, since the complexity of the integration strategies require even more clear signals 

than omic-independent analysis. 

  

 The multi-omics exploratory analysis of this work consisted in applying a 

multiway dimension reduction method, N-PLS, which is an extension of the multivariate 

PLS methodology for data structures with more than two dimensions. In this case, the 

response variable was gene expression data and it was bidimensional but the predictor 

matrix collecting all the histone modification experiments was three-way. The N-PLS 

technique allowed us to explore the data from a global perspective, to confirm that the 

spatial conformation of genes and time points was in concordance with the YMC, and to 

get a first impression of the histone modifications that were more prone to be regulating 

gene expression as well as the relationship among them.  

 

In the first place, the N-PLS results showed that the genes clustering for histone 

modifications was not as clear as the separation based on gene expression data. A possible 

reason for this could be that many of the differentially expressed genes are not strongly 

regulated by histone modifications. As a consequence, their associated histone 

modification levels would not be relevant enough to be clustered according to the 

metabolic phase. Another reason is that the ChIP-Seq measurements are noisier than 

RNA-Seq data, so it is logical to get lower resolution.  

 

However, the N-PLS analysis grouped the two regions defined for each histone 

modifications (-300bp to TSS and TSS to +300 bp), which indicated that the effect of the 

studied histone modifications was similar upstream and downstream the TSS. This 

suggests that in future works, a unique region extending from -300 bp to +300 bp with 

respect to the TSS should be defined for these histone modifications. Another conclusion 

from these plots was that histone modification H3K18ac, that was the only one provided 
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by our collaborator instead of downloaded from GEO repository, had similar behaviour 

to the rest of histone modifications (it was not an outlier), which is a good result because 

otherwise it could not have been included in the study since it was not possible to correct 

the effect of this batch.  

 

The N-PLS method also confirmed that time points associated to maximum 

oxygen consumption or low oxygen consumption clustered together, as well as the 

different phases, and revealed that H3K18ac and H3K9ac were the most relevant histone 

modifications involved in the regulation of the gene expression changes in the YMC, 

which coincided with the MORE results that will be discussed next. In brief, N-PLS 

served to check the quality of the analysed data and to highlight that histone modifications 

play a relevant role in the switch of the metabolism from low to high oxygen consumption 

state. In addition, the model indicated that the most important differences regarding the 

histone modification levels of the differentially expressed genes in the YMC were 

associated to such states of oxygen consumption. 

 

 The second integrative approach used in this project was MORE method that 

models gene expression as a function of different potential regulators such as histone 

modifications or transcriptions factors by applying Generalized Linear Models together 

with different variable selection strategies. Thus, MORE models allowed for finding 

those histone modifications or transcription factors significantly regulating each specific 

gene during YMC. 

 

 MORE results for histone modifications as predictors confirmed the N-PLS 

results that H3K18ac and H3K9ac had a higher effect on gene expression regulation than 

the rest of studied histone modifications. This was concluded from the fact that H3K18ac 

and H3K9ac were significantly regulating a larger amount of genes, both globally and per 

gene cluster. While apparently having the same relevance in OX and RB phases, 

H3K18ac seems to be more important along the RC phase, since it was regulating more 

than twice the amount of genes regulated by H3K9ac. 

 

 The functional enrichment (FE) analyses of genes significantly regulated by 

H3K9ac and H3K18ac revealed that these genes were significantly involved in processes 

related to each of the three metabolic phases, which was expected since they regulate a 

large amount of genes in each cluster. Thus, H3K9ac and H3K18ac were found to be 

responsible of the regulation of the main functionalities associated to each metabolic 

phase, which are, principally, the synthesis of ribosomes and amino acids in OX; the 

regulation of mitochondrial genes and the activation of metabolic pathways for carbon 

degradation in RB; and the degradation of fatty acids in RC; these observations were in 

line with the results described in (Kuang, et al., 2014). However, no relevant functional 

terms were enriched for H4K5ac, probably due to the small number of genes it regulates 

which makes it to be considered as the least important of the different studied histone 

modifications in the regulation of the YMC. H3K4me3 is significantly involved in the 

synthesis of amino acids along all the phases, specifically related with the cycle of the 

one-carbon metabolism. This is interesting since it has been described in (Mentch, et al., 

2015) how the histone methylation dynamics (H3K4me3 levels in particular) and the 

regulation of the gene expression occur through the one-carbon-metabolism. Hence this 

project gives more support to their results relating the metabolome with the chromatin 

status and the implications over gene expression. Different studies (Cai, et al., 2011), 

(Wellen, et al., 2009) have also described how the levels of different metabolites, acetyl-
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CoA and ATP-citrate, have an impact over the histone acetylation levels of the DNA. 

Acetyl-CoA is derived from glucose, and the role of ATP-citrate in acetylation, as detailed 

in (Wellen, et al., 2009), is due to the conversion of glucose-derived citrate into acetyl-

CoA. Thus, the processing of the glucose has a direct impact on the acetylation levels of 

the chromatin. In (Zhao, et al., 2010) more information is given combining metabolism 

and chromatin status, and shows how the concentration of metabolic fuels, such as 

glucose, amino acids, and fatty acids influence the acetylation status of different 

metabolic enzymes. The proteins lysine acetylation is described as a key posttranslational 

modification in cellular regulation, in particular through the modification of histones and 

nuclear transcription regulators. Taking into account that the YMC is given under glucose 

limited conditions, which is directly going to cause that the available levels of glucose 

shift along time, and based on the exposed references, it is expected to have oscillations 

in the concentration of this compound which will derive on the dynamic acetylation of 

the DNA. Therefore, having H3K9ac and H3K18ac as the most relevant histone 

modifications regulating the gene expression of the YMC was expected, and reinforces 

what had been previously reported.  

 

 Since both N-PLS and MORE results showed that many genes were not being 

regulated by histone modifications across YMC, it was decided to analyse the role of 

differentially expressed transcription factors (TFs) on gene expression regulation, with 

the goal of adding new information which could help to better understand the regulatory 

mechanisms behind the YMC. To do that, we again applied MORE but taking TFs as 

predictors. An enrichment analysis on these results revealed the most relevant TFs in 

terms of proportion of significant regulations. 

 

 The results for the FE analysis on the target genes of relevant TFs were compared 

with previously published results. YLR403W, also named as Sfp1, was found to be 

regulating the transcription of ribosomal proteins, nutrient response, G2/M transitions and 

DNA damage in concordance with (Marion, et al., 2004), (Xu & Norris, 1998). In 

(Marion, et al., 2004), Sfp1 is defined as a stress and nutrient-sensitive regulator. In 

addition, a clear role of Sfp1 in histone exchange is found among the results of this 

project. Attending to YOR363C, also named as PIP2, there was also evidence in the 

literature regarding its role in B-oxidation, peroxisome organization and oleate-driven 

transport (Baumgartner, et al., 1999) (Rottensteiner, et al., 1996), as we also found in our 

results. In addition, we also found a role in the ribosome and glyoxylate cycle and a 

response effect to glucose starvation. With respect to YGL209W, whose standard name 

is MIG2, the literature shows that the levels of glucose regulate the distribution of MIG2  

(Fernández-Cid, et al., 2012) and that the filamentous growth of MAPK pathway 

responds to glucose starvation through MIG2 and MIG1 (Karunanithi & Cullen, 2012). 

Our results confirmed its role in glucose-induced gene expression and, additionally, new 

roles in endonuclease cleavage and kinase activity among others were found. Analysing 

the results of YDR451C, YHP1 as standard name, the literature mentions its role in the 

regulation of the cell cycle (Kunoh, et al., 2000), (Pramila, et al., 2002). In this project, 

this TF was found to be involved in functions related to ribosomes, methylation and 

negative response of invasive growth. Lastly, YPL254W was considered in the literature 

as a relevant protein adaptor for the structural integrity of the SAGA complex, which is a 

histone acetyltransferase-coactivator complex involved in the global regulation of gene 

expression through acetylation and transcription functions.  
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Thus, our TF functional results are confirmed by the bibliography and, moreover, 

the literature shows a glucose-driven effect for some of the most relevant transcription 

factors (YLR403W and YGL209W). These two facts reinforce the reliability of our newly 

found functionalities. Considering that YMC includes glucose limited conditions, this 

behaviour perfectly fits with the kind of responses that would be expected by the 

significant variables regulating the YMC (they should be sensitive to nutrient changes in 

the environment). Among our results, the effect of Y0R363C is also linked to glucose 

starvation, which could be further analysed in future research. Furthermore, two of the 

most relevant transcription factors are also involved in the direct regulation of the 

chromatin status, as previously indicated, YPL254W (relevant for the SAGA complex) 

and YLR403W (involved in histone exchanges), which emphasizes the relevance of the 

study of both TFs and histone modifications for a better understanding of the YMC.  

 

When studying the significant co-regulations of histone modifications and TFs, 

H3K18ac, one of the most relevant histone modifications regulating the gene expression 

in the YMC, was found to be significantly associated to YPL254W, a TF which is 

involved, as previously indicated, in the global regulation of the gene expression through 

the acetylation functionalities given by the SAGA complex. Thus, this does not seem to 

be an arbitrary relationship, but show the crucial role of the acetylation levels to regulate 

gene expression in the YMC through a coordinated action of transcription factors and 

histone modification levels.  

 

Shortly, when comparing our results with the ones from (Kuang, et al., 2014), the 

project from which the data was obtained, we think that our integration strategy has 

helped us to improve or tune the results they got. However, it is true that not all the results 

are comparable, either because the goals of both studies were somehow different or 

because the data and experiments performed were not exactly the same. They were not 

able to assess clearly the relevance for the different studied histone modifications in the 

gene expression regulation of the YMC as done in this project, but we also must take into 

account that they did not included in their study one of the most important histone 

modifications, H3K18ac. Furthermore, in Kuang it is hypothesized that H3K14ac and 

H4K5ac have a role in pre-setting the promoters, perhaps by chromatin remodelling, 

despite there is a number of genes that do not show evidence of this preactivation phase 

from the prespective of chromatin states. Regarding our results H4K5ac does not present 

a notoriously relevant role in the regulation of the YMC, and it would not support the 

recently exposed hypothesis of Kuang. In addition, we presented an in-depth functional 

characterization of the functionalities regulated by each histone modification, which was 

lacking in previous studies.  Moreover, the study of the transcription factors presented 

here is completely new. This offers a new perspective of the YMC, since nothing similar 

was done in the previous studies, and points towards regulators that can be further 

analysed in future studies. Hence, the methodology applied in this project has been able 

to improve and add new information to the results given in (Kuang, et al., 2014). 

 

 All in all, our results show the relevance of both transcription factors and histone 

modifications in the regulation of YMC gene expression. The literature not only supports 

our findings but also highlights the influence of different metabolic compounds on the 

cell chromatin status, which connects the metabolome with the levels of different histone 

modifications and with gene expression changes. Thus, the future generation of 

metabolomics data for this study should be considered, since it would contribute to gain 

more insights on the YMC regulation. Moreover, since the relevant studied TFs have been 
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found to be important  in the regulation of the YMC, the 7 remaining relevant TFs not 

analysed, due to time constraints, should be further analysed. Furthermore, studies of 

chromatin occupancy would help to clarify the role of these regulatory proteins in gene 

expression cooperating with histone modifications. 

  



51 

5. Conclusion 
 

 The contributions of this work are framed in two different areas, the biological 

and the methodological fields.  

 

 Regarding the methodological aspects, a novel application of different statistical 

methodologies for the integration of chromatin status data (ChIP-Seq) and gene 

expression (RNA-Seq) has been described, based on the usage of N-PLS and MORE 

techniques. The strategy followed here has demonstrated its utility since we have been 

able to assess the effect of different studied regulators (transcription factors and histone 

modifications) on gene expression changes across the YMC, and evidences have been 

found in the literature that support the results obtained. Hence, an effective and profitable 

bioinformatics strategy for the omics integration has been detailed in the field of the large 

scale omics data, which could be included in big data analysis category, due to the large 

amount of studied variables.  

 

 The work plan established at the beginning of the project was fulfilled 

satisfactorily. The modifications introduced along the thesis were done as a consequence 

of the natural evolution of the analysis, where new ideas can appear which lead to the 

addition of new steps that contribute to the improvement of the results. In our case, the 

main additions included the analysis of transcription factors and the creation of a 

regulatory network. However, a great effort, more than expected, was devoted to pre-

process all the ChIP-Seq raw data, since the available data had been generated through 

different technologies and with different qualities, so many issues came up during the 

pre-processing step. The type of problems raised during data preparation are commonly 

overlooked, because they indeed consume a large amount of time, but can notoriously 

influence the results of the study. Given that these steps are so remarkably important, 

preventive measures should be taken, not only while preparing the data, but also during 

the design of the experiment, since in many occasions it is not possible to solve the data 

problems associated to a wrong experimental design, in which different effects are 

confounded. 

 

Focusing on the biological results of the project, it has been found how DNA 

histones acetylation changes, and different transcription factors, present a significant role 

in the regulation of the YMC gene expression changes. H3K18ac and H3K9ac result as 

the most relevant of the studied histone modifications. YLR403W, YPL254W, 

YOR363C, YGL209W and YDR451C appear as the most relevant transcription factors. 

Moreover, along the discussion, a clear interaction between the metabolome, the 

chromatin status and the gene expression changes has been described, which has indicated 

how helpful it would be, in future steps, the addition of metabolomics data to improve the 

comprehension of the regulation in the YMC. In conclusion, it has been proven how the 

careful data pre-processing and the novel integrative approaches presented in this project 

have improved, or at least corroborated, previously reported results that were generated 

by independently analysing each omic data type.  



52 

6. Glossary  
 

ANOVA Analysis of variance 

 

bp   Base pairs 

 

DE  Differentially expressed 

 

DEGs  Differentially Expressed Genes 

 

FE  Functional Enrichment 

 

GLM  Generalized Linear Model 

 

GO  Gene Ontology 

 

Nr.  Number 

 

OX  Oxidative 

 

PC  Principal Component 

 

PCA  Principal Component Analysis  

 

RB  Reductive Building 

 

RC  Reductive Charging 

 

SCA   Simultaneous Component Analysis 

 

TF  Transcription Factor 

 

TSS   Transcription Start Site 

 

TTS   Transcription Termination Site 
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