
Security analysis of JXME-Proxyless version
Marc Domingo-Prieto, Joan Arnedo-Moreno

Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya

Barcelona, Spain
{mdomingopr, jarnedo}@uoc.edu

Jordi Herrera-Joancomartı́
Escola d’Enginyeria

Universitat Autònoma de Barcelona
Campus de Bellaterra, Spain

jherrera@deic.uab.cat

Abstract—JXME is the JXTA specification for mobile devices
using J2ME. Two different flavors of JXME implementation
are available, each one specific for a particular set of devices,
according to their capabilities. The main value of JXME is its
simplicity to create peer-to-peer (P2P) applications in limited
devices. In addition to assessing JXME functionalities, it is also
important to realize the default security level provided. This
paper presents a brief analysis of the current state of security
in JXME, focusing on the JXME-Proxyless version, identifies
existing vulnerabilities and proposes further improvements in
this field.

I. INTRODUCTION

Peer-to-peer (P2P) networks allow peers to provide and
consume services in a collaborative way. Examples of these
services are content sharing, processing and messaging. In this
kind of network, it is assumed that all peers have equivalent
capabilities, as well as a high degree of decentralization and
autonomy.

P2P technology, that has been widely used in traditional
wired network environments, is now moving to the mobile
paradigm [1] since new wireless technologies are becoming
more available (WLAN, 3G, 3.5G,...) and more powerful hand-
held devices (like smart phones or mobile Internet devices,
MID) have been developed. However, the massive deployment
of P2P mobile applications may depend on the tools available
for developing such applications in a transparent way.

There are different platforms that allow programmers to
develop mobile P2P applications ([2], [3], [4]). One of these
platforms is JXME [4], a set of open protocols specifications
that enables the creation and deployment of P2P networks
over mobile devices. The advantage of JXME, in front of
other proposals, is that it is the mobile version of the well
known JXTA platform [5]. JXTA is a set of protocols which
allow peers to communicate, publish and find resources, and
consume remote resources, independently of the actual trans-
port layer and the implementation language. JXME allows
mobile devices to create a mobile JXTA network and also
to participate in a “wired” standard JXTA network. JXME
heavily takes into account the idiosyncrasies of mobile devices
such as power and storage limitations, and for that reason
research has focused on these features [6]. However, security
is a very important issue that has been often forgotten in JXME
research.

The main goal of this paper is to analyze the security
mechanisms that JXME provides. Such analysis should allow

to determine which will be the minimum security features
included in P2P mobile applications developed on top of
JXME. We based our study in JXME-Proxyless, one of the two
available JXME versions, since it is the most complex one and
the one where peers are actually self-organized. The security
analysis performed in this paper follows the idea of [7] where
a generic JXTA security survey has been presented. Applying
the same methodology, security is not analyzed by reviewing
basic peer operations in an isolated manner, but taking into
account the whole peer life cycle. With this approach, it is
possible to identify the available security mechanisms and how
they operate.

The paper is organized as follows. Section II provides
an overview of the JXME project. Section III presents the
security analysis of JXME-Proxyless. Section IV provides a
brief comparison between both versions of JXME. Finally,
Section V outlines the conclusions and further work.

II. OVERVIEW OF JXME

Currently, only Java implementations of JXME exist. They
are direct offshoots of the generic JXTA specification, thus
sharing many characteristics with the desktop version. A
detailed explanation of JXTA’s generic protocols and services
can be found in [8], however, we will briefly outline the most
important concepts.

In both cases, JXTA and JXME, the architecture is com-
pletely based on the concept of Peer Groups, sets of peers
with common interests which agree on shared services. Peer
Groups are managed by the Membership Service, one of
JXTA’s core services. Once a peer has joined a Peer Group,
any resource may be shared with other group members by
distributing its associated Advertisement, an XML metadata
document describing the resource properties and how it may
be accessed. Advertisements are located and distributed using
the Discovery Service. A network resource cannot be accessed
without previously recovering its associated Advertisement.
Every time an Advertisement is retrieved by a peer, it is stored
in the local cache and assigned an expiration date. At that
date, the Advertisement will be automatically flushed. Once a
resource has been located, messaging may begin using JXTA
pipes, abstract endpoints which provide an asynchronous uni-
directional communication channel.

Therefore, the Java implementation of JXME can be viewed
as a JXTA compatible platform for resource constrained de-

vices, based on the framework specifications for Java ME:
Connected Device Configuration (CDC) and Connected Lim-
ited Device Configuration (CLDC). The CDC specification
uses the C-Virtual Machine (CVM), an optimized version of
the Java Virtual Machine (JVM) [9], it contains some of the
standard Java packages, and it is addressed towards high end
mobile devices, such as powerful PDA’s and smart phones.
In contrast, the CLDC specification uses the Kilobyte Virtual
Machine (KVM) [10], which has few of the standard Java
packages, thus being suitable for lower end devices with very
slow processors and very reduced memory. CLDC is further
divided into two profiles which define its operation mode:
Mobile Information Device Profile (MIDP) and DOcomo JAva
(DOJA). The former is a specification for the usage of Java
on embedded devices and the latter is a Java environment
specification for DoCoMo’s i-mode mobile phone.

Using JXME, any CDC/CLDC device can participate in
the JXTA network and exchange messages with any other
peer. Unfortunately, because of the limited capabilities of
mobile devices, they cannot fulfill some of the JXTA peer
basic functions such as encoding JXTA messages in XML,
maintaining a local copy of the network state and listening to
incoming network information at socket or datagram level.
Two distinct versions of JXME currently exist, each one
suitable for a different set of mobile devices. On one hand,
the JXME-Proxied version is a very simple implementation
for limited devices, which delegates all the heavy work to
an external super-peer, the Relay Peer. On the other hand, the
JXME-Proxyless version is a more complex one, where mobile
peers may directly interact with the JXTA network.

In this paper we focus in the JXME-Proxyless version. We
consider it is the most interesting one, since it is the most
complex and the one where peers are actually self-organized.
However, we will provide insights on JXME-Proxied in Sec-
tion IV.

A. JXME-Proxyless version

The JXME-Proxyless version currently holds the newest
and most complete implementation of JXME, having been
expected by the community for years. This version is the
nearest one to the JXTA specification, allowing mobile devices
to directly participate into the JXTA network by themselves,
without the need of an external super-peer. Figure 1 shows
the JXME network architecture and how it interoperates with
a desktop JXTA network. However, the most advanced func-
tionalities of desktop JXTA, such as the Shared Resource
Distributed Index (SRDI) [11], have been implemented as
lighter versions, taking into account the limited capabilities
of mobile devices.

Any peer using JXME-Proxyless is named a Proxyless Peer
and is able to perform the following actions by itself:

• Discover other devices and services.
• Publish Advertisements about it’s own resources.
• Establish direct connections to any other peer.
• Create/join private virtual domains (Peer Groups).

Fig. 1. JXTA and JXME network architecture

• Directly exchange/access content with other Peer Group
members.

Proxyless Peers may use JXTA’s most important compo-
nents: Peer Groups, Advertisements and Pipes. Since Proxy-
less Peers may directly interact with other peer group members
under a secure context, Peer Groups are necessary to maintain
JXTA’s architecture. Advertisements are encoded using XML,
just like in the desktop version, in order to maintain language
independence. Finally, in spite of its complexity, Pipes are
available since direct TCP communications are supported.

However, Proxyless Peers have some limitations on regards
to the JXTA base architecture. First of all, even though most
JXTA services are implemented, some of they are not, and
even when a particular service exists, it must be taken into
account that it may not have full capabilities. An obvious
example is the Membership Service, which does not support
all implementations available in desktop JXTA. Furthermore,
another constraint is that a Proxyless Peer cannot act as a
super-peer in a JXTA network. As a result, since super-peers
help network management, such as caching Advertisements
to accelerate search queries, a JXTA network formed only by
Proxyless Peers may have scalability issues.

Finally, it is also important to point out that, since Proxyless
Peers directly participate in the JXTA network (forwarding
messages, finding routes, saving Advertisements, etc.), they
have to pay a cost in resource consumption, such as battery
power, even when the mobile device is in standby mode.

B. Related work

Some research exists on JXTA, enhancing its basic features
[11] and security [7], but not many efforts have been made
for JXME specifically.

In [12] an analysis about JXME functionality is found,
concluding that JXME-Proxied is not suitable for MANET en-
vironments because of its centralized architecture but JXME-
Proxyless can fit well in this type of environments. A frame-
work for mobile devices optimized to MANET networks
which is compatible with JXTA protocols is developed in
[13]. In [14] a framework to allow JXME devices to use
bluetooth is presented. This framework permit devices to
overcome Bluetooth limitations, such as the maximum number
of interconnectable devices and the maximum transmission
range.

JXME has also been analyzed and used to build a set of
applications. For instance, in [15] JXME-Proxyless is used to
implement a distributed collaborative platform which makes
people in distributed spaces ubiquitous collaborate with friends
and colleagues.

However, regarding security, to our best knowledge, there
is no attempts to identify nor improve the JXME-Proxyless
security properties.

III. JXME-PROXYLESS SECURITY ASSESSMENT

Guaranteeing a minimum security level should be one of
the main goals in most of the current P2P applications, even
though this level may differ depending on the particular needs
of each application. In this section, a security analysis of
JXME-Proxyless is made in order to evaluate the security level
currently provided by the platform. This analysis follows the
methodology used in [7], where the general peer life cycle is
examined rather than isolated peer actions.

The standard JXME-Proxyless general operation cycle can
be summarized in the following steps [7]: Platform startup,
Peer Group joining, Resource discovery and publication, Mes-
sage exchange and Disconnection. A brief description of each
step follows:

1) Platform startup: This is the first action performed by a
JXTA Peer and consists in loading the required libraries
and initializing the system prior to going online.

2) Peer Group joining: At this step, the peer joins a Peer
Group, so interaction with other Peer Group members
is possible. Peer Group joining is managed by the
Membership Service, one of JXTA’s core services, which
allows peers to claim unique identities within a Peer
Group.

3) Resource discovery and publication: Encompasses the
distribution and location of Advertisements and how to
access it. This action is performed via JXTA’s Discovery
Service.

4) Message exchange: This is the most frequent action
in Proxyless Peers, consisting of data exchange, usually
in order to access resources, such as available services.
This exchange can only exist between same group
members and is accomplished using JXTA pipes.

5) Disconnection: Peer cleanup before exiting the JXTA
network. This is the last action a peer performs before
going offline.

A. Attacks in P2P networks

In order to perform a security assessment, it is useful to
identify and categorize the most common attack types in P2P
networks. All attacks can be divided into two distinct groups,
according to the degree of involvement of the attacker [16]:
passive attacks, where the attacker just monitors peer activity
and network traffic, and active attacks, where the attacker
purposely interferes with network activity. Each group can be
further classified according to the particular action performed
by the attacker.
We are interested in the following attacks:

Passive attacks:
• Eavesdropping (Evs): Searching, in message exchanges,

for sensitive information such as passwords.
• Traffic analysis (TAn): Analyze traffic data, looking for

patterns and relevant peers.

Active attacks:
• Spoofing (Spf): Impersonating another peer.
• Man-in-the-middle (MitM): Intercepting the communica-

tions between two parties, transparently relaying forged
messages to each one.

• Playback (Pb) or Replay (Rp): Capturing messages so
they can be reused at a later time, simulating a real
message exchange initialization.

• Local data alteration (LDA): Modifying local data to
corrupt the system behavior.

• Software Security Flaws (SSF): Exploiting vulnerabilities
due to bugs in the source code trying unexpected actions
on the software.

B. JXME-Proxyless Security evaluation

From the peer operation cycle and the identification of
possible attacks, it is possible to provide a structured security
assessment. To identify which vulnerabilities exist, we have
designed and performed some attacks which try to subvert
JXME operations. Our analysis is focused in active attacks,
since they need technical knowledge about the JXME archi-
tecture, and rely on active operations to exploit vulnerabilities.
Passive attacks are more generic and can be performed using
common tools, such as sniffers [17].

1) Platform startup: The first action a Proxyless Peer
performs consists in loading the JXTA libraries and creating
the default network manager. This operation does not perform
any network activity, and thus is protected from external
interference at this level. The only vulnerabilities that exist are
those related to library authenticity. Since no mechanisms are
provided to differentiate a good JXME-Proxyless distribution
from a malicious one, it is possible to subvert the system via
local data alteration attacks.

To prove this flaw, we have designed an attack where
an original Proxyless Peer (P1) tries to send messages
to a hacked Proxyless Peer (P2), who uses a modified
JXME-Proxyless library. The attack consists on removing
the content of the publish and remotePublish methods inside
the net.jxta.impl.discovery.DiscoveryServiceImpl class. Both
methods are used to publish and propagate Advertisements
to other peers. Therefore P2 is not able to distribute his
Advertisements over the JXTA network. These changes make
P2 unreachable from P1 and from the JXTA network, since its
Peer Advertisement, needed by P1 or any other peer to route
messages to him, is never published.

2) Peer Group joining: The step of joining a Peer Group
is handled via the JXTA Membership Service. This is one
of JXTA’s core services, which manages the group members’
identities within the group context. Identities are assigned
by successfully completing an authentication process prior

to actually joining the group. The Membership Service is
defined as generic in the JXTA specification, leaving up to
developers to implement their own version, with the security
level required by their applications.

Even though JXTA provides some reference implementa-
tions for the Membership Service, JXME-Proxyless provides
none at all, allowing any Proxyless Peer to create and join
any Peer Groups. Since no Membership Service is imple-
mented, no security really exists for the join operation, and
no authentication process is enforced, allowing any peer to
claim any identity within the system. We test this security
flaw by running two Proxyless Peers that execute a demo chat
application provided within JXME-Proxyless library. Both
peers exchange messages inside a created new Peer Group.
However, we have created an additional peer, who can join this
new group, claiming the identity he wants and send messages
to those peers inside the group.

3) Resource discovery and publication: Inside JXTA and
JXME-Proxyless, resources are published across the JXTA
network by distributing an Advertisement. The JXTA speci-
fication defines Advertisement security at two distinct levels:
at Advertisement level and during its transport. In the former,
the secure layer data is directly included in the Advertisement
as additional content, whereas in the latter, the Advertisement
is processed as a simple message. Security at message layer
will be discussed in Section III-B4.

As far as Advertisement level security is concerned, JXME
does not provide any security mechanism. They are transmitted
without any kind of privacy over the network, thus becoming
vulnerable to eavesdropping attacks, as well as traffic analysis,
since an attacker can identify important Proxyless Peers (those
with many resources) by the amount of published Advertise-
ments.

Furthermore, we have designed and performed a Spoofing
attack on Advertisement exchanges, where there are two
Proxyless Peers (P1 and P2) exchanging messages, and a
malicious Proxyless Peer (P3) trying to impersonate P2. The
structure of this attack is shown in Figure 2 and follows the
steps:

1) P2 publishes his Peer Advertisement, containing his
route address.

2) Since no mechanism is provided to authenticate the
peers, P3 can publish a Peer Advertisement using P2’s
identifier but adding P3 address. Once this Peer Adver-
tisement is propagated across the network, it will replace
the original P2 Peer Advertisement.

3) Before P1 can send a message to P2, it has to ask for
P2 Peer Advertisement to the super-peer.

4) Super-peer sends P1 the last P2 Peer Advertisement.
5) P1 tries to send a message to P2, but he will actually

send it to P3 instead. This attack will be reverted when
P2 republishes his Peer Advertisement.

Moreover, still exists a vulnerability inherited of JXTA.
In JXTA, super-peers are responsible for the propagation of
Advertisements over the JXTA network. However there are
not any mechanisms to identify malicious ones. Therefore, a

Fig. 2. Spoofing attack

malicious super-peer can perform a Man-in-the-middle attack
between Proxyless Peers inside different networks, and modify
any information in the Advertisements prior to propagating
them over the network.

As far as local data alteration is concerned, since Proxyless
Peers’ local cache is stored in RAM, and no persistent copy
ever exists, they are protected on the long term.

4) Message exchange: This is the most common operation
in Proxyless Peers, and therefore, where more efforts have
been made by developers to implement security mechanisms.
Proxyless Peers exchange messages using pipes, unidirectional
and virtual connections between abstract endpoints. JXME-
Proxyless supports two different pipe types: Unicast and
Propagate. Both are considered unreliable, however, the former
is used for point-to-point communications whereas the latter
is for one-to-many message broadcasts.

Unfortunately, both pipe types have some security issues:
• All data is sent in clear, and thus vulnerable to eaves-

dropping.
• Any data sent through a pipe may actually hop across

other peers before reaching the intended destination,
which makes the transmission prone to man-in-the-middle
attacks.

• There is no assurance that a pipe is connected to the
specified peer (Spoofing).

Fortunately, developers are currently working in the imple-
mentation of a wire transport level security layer that may
be applied to pipes. This security layer is based in JXTA’s
own definition of Transport Layer Security (TLS) [18]. This
definition is based on two distinct protocols:

• Handshake Protocol: Initial TLS negotiation protocol,
responsible of the authentication between both peers.

• Record Protocol: Provides a private and reliable com-
munication channel by encrypting data using symmetric
cryptography and using integrity check.

This implementation basically allows private, mutually au-
thenticated and reliable communication, protected against both
passive and active attacks. Pipes based on TLS are named
UnicastSecure, greatly improving JXME-Proxyless security.

However, after performing several test, we have realized
that UnicastSecure pipes, although they provide a secure
communication channel, they remain being unreliable. You
can receive an acknowledge from your messenger but your
message had not be sent. This is because they have been
built using the NonBlockingOutputPipe java class. Moreover,
to perform secure communications using UnicastSecure pipes,
an external certificate authority (CA) responsible to manage
certificates is required.

Furthermore, unfortunately, UnicastSecure pipes are re-
stricted to point-to-point communications, and therefore can-
not be used for message broadcast, which is quite common
in a Peer Group context. In addition, no traffic masquerad-
ing mechanism is implemented, so it is still open to traffic
analysis. Finally, the classes needed to implement the TLS
are not inside the common libraries provided by Java ME. It
requires the Foundation Profile, an optional package which
is a standard Java specification and it is defined by the Java
Community Process (JCP) in JSR 219 [19].

5) Disconnection: Since this operation does not require any
communication using the network, no security vulnerabilities
exist. This step in JXME-Proxyless is included just for the
sake of completeness.

C. Evaluation summary

Even though no software is fully free from bugs, it can
be considered that JXME-Proxyless has a big advantage be-
cause of its Open Source Software (OSS) nature [20]. Being
supported by a community of enthusiastic developers, it can
be considered relatively safe from Software security flaws on
regards to security.

The analysis of possible attacks and the existing security
mechanisms of JXME-Proxyless, classified by peer operations,
provides a vulnerability map summarized in Table I. Attacks
are those described in Section III-A, indexed by abbreviation.

From our experiments, it can be concluded that JXME-
Proxyless is vulnerable to the following kinds of attacks:

• V(1): Malicious executable code can easily be built and
cannot be automatically discovered when installed.

• V(2): No encryption mechanism exists. Advertisements
are transmitted in plain text.

• V(3): No data flow masquerading mechanism exits. It is
easy to identify important peers by its traffic.

• V(4): No repudiation method exists. Any peer can publish
Advertisements in name of any peer.

• V(5): No repudiation or encryption method exists. Any
peer can modify Advertisements.

The available security mechanisms are:
• P(TLS): Transport Layer Security

IV. BRIEF COMPARISON BETWEEN JXME-PROXYLESS
AND JXME-PROIED

Even though we have focused on the JXME-Proxyless ver-
sion, in this section we highlight the main differences with the
JXME-Proxied security model. Such differences are mainly

based on the fact that JXME-Proxied’s main design goal is
to minimize the consumption of device resources. Any peer
using JXME-Proxied is named a Proxied Peer and since they
are assumed to have very limited resources, cannot directly
communicate with other peers within the JXTA network. All
messages are exchanged through a Relay Peer, a special kind
of super-peer which implements the Relay and Proxy JXTA
services.

The communication between Proxied and Relay Peers is
performed with a simplified protocol based on HTTP. This
protocol is performed exchanging text plain messages which
contain the operation to execute. The available operations are
predefined: Join a group, Search or Create resources (such as
Peer Groups or pipes), Listen to a pipe to receive data, Send
data to a specific pipe, Close a pipe and Poll the Relay Peer
for incoming messages from the JXTA network. Basically,
it means that Proxied Peers delegate JXTA communications
to the Relay Peer and only execute the previous mentioned
operations.

The most important difference between both JXME versions
is that a Proxied Peer needs a Relay Peer to participate in
the JXTA network. Therefore, during the platform startup
operation, a Proxied Peer, in addition to loading the required
libraries, needs to connect to any available Relay Peer. In
this initial communication, the Relay Peer creates the PeerId
for the Proxied Peer and sends it in plan text. Since Relays
Peers are only able to identify Proxied Peers by their PeerIds,
interception becomes a security vulnerability.

In JXME-Proxied, unlike Proxyless, Proxied Peers can only
join to Peer Groups which implement the None Membership
Service, the default Membership Service in JXTA. It is de-
signed for applications with no security concerns, being used
in groups without authentication, where any peer can claim any
identity. There is an initial implementation of a Membership
Service based on passwords, the Passwd Membership Service.
However, as mentioned in the JXTA documentation, it was
designed only for testing, since passwords are still transmitted
in clear text across the network. Therefore, we can consider
that no effective security is implemented in JXME-Proxied at
the join operation.

As far as Advertisement publication is concerned, in con-
trast to JXME-Proxyless, where they are encoded in XML,
JXME-Proxied exchange plain text messages, because in lim-
ited devices a XML parser is not feasible. But in terms of
security, no security layer over Advertisements is provided
either. Therefore, both versions share the same vulnerabilities.

Another important difference in JXME-Proxied exists in the
message exchange step. In JXME-Proxied it is only possible to
perform outbound HTTP connections, in contrast with JXME-
Proxyless where direct input and output TCP connections
are allowed. That’s one of main the reasons why Relay
Peers are required. This approach tries to mitigate resource
consumption, since Proxied Peers not being directly connected
to the JXTA network, they do not have to forward messages,
find routes or save Advertisements. However, in terms of
security, while Proxyless Peers can directly send the data in

Operation/Threat Evs TAn Spf MitM Rp LDA SFF
Startup N/A N/A N/A N/A N/A V(1) P(OSS)
Join* N/A N/A N/A N/A N/A N/A P(OSS)
Publish/Discover V(2) V(3) V(4) V(5) N/A N/A P(OSS)
Messaging P(TLS**) V(3) P(TLS**) P(TLS**) P(TLS**) N/A P(OSS)
Disconnect N/A N/A N/A N/A N/A N/A P(OSS)

TABLE I
JXME-PROXYLESS PEER OPERATION CYCLE SECURITY SUMMARY

(N/A: NON-APPLICABLE. V(TYPE): VULNERABILITY EXISTS. P(MECHANISM): SECURITY MECHANISM USED)
(*STEP NOT ACTUALLY IMPLEMENTED IN JXME-PROXYLESS)

(**NOT USABLE FOR MESSAGE PROPAGATION)

a secure way, Proxied Peers send it in simple text, becoming
totally vulnerable to passive and active attacks.

Finally, the Disconnection operation is different in JXME-
Proxied, since it is not explicit. A Relay Peer decides when
to unsubscribe any Peer or a Peer Group. Proxied Peers can
only perform an operation to close a pipe by knowing its
id. However, it means that a Proxied Peer is vulnerable to
spoofing, even when it is disconnected, until the Relay Peer
decides to actually unsubscribe it.

V. CONCLUSIONS AND FURTHER WORK

Even though JXME-Proxyless is supposed to be a version
conceptually very similar to desktop JXTA, with lightweight
versions of the original core services, its security capabilities
are still at its infancy. Only secure pipes have actually been
paid attention by the developers. This is one of the evidences
that being an OSS project is both boon and bane. On one
hand, anyone may audit the code, looking for flaws, and
contribute to the project. But on the other hand, implementing
actual improvements whole depend on contributors’ goodwill
or interest.

From the security analysis of the JXME-Proxyless, it can
be concluded that, in the current version, developers have
started to take into account security, with the inclusion of TLS.
Unfortunately, it is important to highlight that only using TLS
is not enough to protect the system, since an attacker can
easily claim any identity and impersonate any Proxyless Peer
during Advertisements publication. Therefore, there’s still a
lot of work pending. Finally, we can also conclude that the
JXME-Proxied version, were priority is in performance and
not security, does not have an appropriate security baseline,
because messages are exchanged with the Relay Peer in clear
text, and no powerful authentication method is provided.

Further research includes providing JXME-Proxyless with
an actual Membership Service, to provide authentic peer iden-
tities within a Peer Group. Once this service is established, it
is possible to protect Advertisements. All these improvements
should heavily take into account the idiosyncrasies of mobile
devices, in contrast to a desktop environment.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry of
Science and Innovation, the FEDER funds under the grants

TSI2007-65406-C03-03 E-AEGIS, CONSOLIDER-INGENIO
CSD2007-00004 ARES.

REFERENCES

[1] Skype, “Skype on your mobile”, 2004,
http://www.skype.com/mobile.

[2] G. Kortuem, “Proem: a middleware platform for mobile peer-to-peer
computing”, SIGMOBILE Mob. Comput. Commun. Rev., vol. 6, no. 4,
pp. 62–64, 2002.

[3] B.G. Christensen, “Experiences developing mobile p2p applications with
lightpeers”, Peer-to-Peer Computing, IEEE International Conference on,
vol. 0, pp. 229–230, 2006.

[4] Sun Microsystems, “Project JXME”, 2003,
https://jxta-jxme.dev.java.net.

[5] Sun Microsystems, “Project JXTA”, 2001, http://www.jxta.org.
[6] T. Piedrahita and E. Montoya, “Performance analysis of JXTA/JXME

applications in hybrid fixed/mobile environments”, Revista Colombiana
De Computación, vol. 7, no. 1, 2006.

[7] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “A survey on security in
JXTA applications”, Journal of Systems and Software, vol. 82, no. 9,
pp. 1513 – 1525, 2009.

[8] Sun Microsystems Inc., “JXTA v2.0 pro-
tocols specification”, 2007, https://
jxta-spec.dev.java.net/nonav/JXTAProtocols.html.

[9] T. Lindholm and F. Yellin, The Java virtual machine specification
Second Edition, Sun Microsystems, 1999.

[10] Sun Microsystems Inc., “J2ME building blocks for mobile devices.
white paper on KVM and the connected, limited device configuration
(CLDC)”, 2000, http://java.sun.com/products/cldc/wp/.

[11] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.C.
Hugly, E. Pouyoul, and B.Yeager, “Project jxta 2.0 super-peer virtual
network”, Tech. Rep., SunMicrosystems,Inc, May 2003.

[12] G. Paroux, I. Demeure, and D. Baruch, “A survey of middleware for
mobile ad hoc networks”, in Technical Report 2007/D004. 2007, Ecole
Nationale Supérieure des Télécommunications.

[13] M. Bisignano, G. Di Modica, and O. Tomarchio, “Jmobipeer: a
middleware for mobile peer-to-peer computing in manets”, in Dis-
tributed Computing Systems Workshops, 2005. 25th IEEE International
Conference on, June 2005, pp. 785–791.

[14] C. Blundo and E. De Cristofaro, “A bluetooth-based JXME infrastruc-
ture”, in Lecture Notes in Computer Science, 2009, vol. 4803/2009, pp.
667–682.

[15] X. Wang, “Collaboration instance manager of ubicollab 2008”, 2008,
Master Thesis in Norwegian University of Science and Technology.

[16] D. Brookshier, D. Govoni, N. Krishnan, and J.C. Soto, JXTA: Java
P2P Programming - Chapter 8: JXTA and Security, 2002, http://
java.sun.com/developer/Books/networking/jxta.

[17] G. Combs, “Wireshark”, 2006, http://www.wireshark.org/.
[18] The Internet Society, “The Transport Layer Security (TLS) Protocol

Version 1.1”, 2006, http://www.ietf.org/rfc/rfc4346.txt.
[19] Java Community Process, “Java specification requests (JSR) 219: Foun-

dation profile 1.1”, 2003, http://jcp.org/en/jsr/detail?id=219.
[20] J.H. Hoepman and B. Jacobs, “Increased security through open source”,

Commun. ACM, vol. 50, no. 1, pp. 79–83, 2007.

