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Abstract An efficient approach for organizing large ad hoc networks is to divide the nodes
into multiple clusters and designate, for each cluster, a clusterhead which is responsible for
holding intercluster control information. The role of a clusterhead entails rights and duties.
On the one hand, it has a dominant position in front of the others because it manages the
connectivity and has access to other node’s sensitive information. But on the other hand, the
clusterhead role also has some associated costs. Hence, in order to prevent malicious nodes
from taking control of the group in a fraudulent way and avoid selfish attacks from suitable
nodes, the clusterhead needs to be elected in a secure way. In this paper we present a novel
solution that guarantees the clusterhead is elected in a cheat-proof manner.
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1 Introduction

The proliferation of wireless devices has motivated the deployment of big public ad hoc
networks. Traditional flat topologies encounter significant scalability issues to manage these
networks, so clustering protocols that organize mobile nodes into groups are preferred. In
cluster-based architectures, each group or cluster has a clusterhead which is responsible for
traffic management. The clusterhead possesses valuable information about nodes’ location
and their contacts. Thus, its election is critical. From the viewpoint of building a scalable
and efficient network, clusterheads shall be the nodes that can guarantee a backbone at a
minimum cost. From the point of view of establishing a reliable and robust network, they
should belong to honest users.
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While there is a great deal of research activity in the line of finding the optimal cluster-
ing algorithm for an efficient and long-lived network (an overview is presented in [1]), few
works have dealt with the security challenges of clusterhead election algorithms. This paper
discusses the problem of secure clusterhead election in wireless ad hoc networks. The con-
tribution is the identification and classification of security challenges of clusterhead election
algorithms and settling the bases for building a secure and fair protocol. The paper proposes
distributed algorithms for electing a leader in a cheat-proof manner.

The rest of the paper is organized as follows. In Sect. 2 we identify security challenges of
clusterhead election algorithms and define some general rules to prevent them. An overview
of the related work is given pointing out the open research issues. Section 3 describes the
proposed cluster formation process. In Sect. 4 we evaluate the robustness of the protocol from
the security point of view, and finally, in Sect. 5 the conclusions of the work are presented.

2 Overview

Cluster formation protocols determine how to group nodes and which ones are the best
to be set up as clusterheads. Each protocol uses a specific utility function based on some
metric (e.g. node degree, remaining battery life, node mobility). When a clustering pro-
cess is started, nodes have to declare and disseminate the value of the parameters involved
in the utility function. Then, the function is applied and the optimal clusterheads are
elected.

The election of the appropriate node to be a clusterhead is threaten by two main vulnera-
bilities: (1) Selfish attacks in which nodes cheat in order to not be elected clusterheads and
keep energy and bandwidth for themselves, and (2) Greedy attacks in which nodes cheat
to be elected clusterheads and have access to valuable information of the network topology
and control the traffic of the members of their cluster. To prevent them, the election of the
clusterhead must be fair (i.e. the elected node must be the one that maximizes the utility) and
the role must be rotative. Rotation avoids, on the one hand, that a node gets burdened with
more duties than others, and on the other hand that it can freely dominate the cluster.

To the best of our knowledge, there is not any proposal of cluster formation for mobile
ad hoc networks that protects the utility function values ensuring the correctness of the pro-
cess to choose the optimal node for being the clusterhead. Prior work in securing cluster
formation protocols for ad hoc networks is based on random algorithms [2–4] that assume an
homogeneous network in which any node is equally valid to be the clusterhead, or on voting
algorithms [5] that use and protect the utility-based election procedure, but not the data that
is used for weighing the nodes.

In the context of wireless sensor networks, Sun et al. describe a proposal [6] that deals with
the problem of performing an action based on some metric, which by default, is not verifiable.
However, they assume a static network in which each node knows its 1-hop neighbors. Other
solutions for sensor networks [7,8] involve the existence of a trusted base station that leads
the process. None of the approaches is suitable for generic, mobile, and infrastructureless ad
hoc networks.

3 Fair and Secure Cluster Formation

The proposed protocol provides fairness and security to the cluster formation process using
a distributed algorithm that monitors the system and checks if the data claimed by a node
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is coherent and reliable. We assume the majority of network users are honest. In order
to authenticate the information provided by each user and be able to track its behavior,
a mechanism based on symmetric ciphers, hash functions and digital signatures has been
developed.

The cluster formation process is composed of three subprotocols as follows:

1. The Cost Discovery Protocol provides reliable information about the measure used to
evaluate the suitability of a node to be a clusterhead. Our protocol uses a utility function
based on the degree, i.e., the number of one hop neighbors. In this phase, nodes pub-
lish the number of neighbors they have and exchange their particular perspective of the
network to create a consensual view.

2. The Clusterhead Designation Protocol selects the best suited node in a neighborhood
to be the clusterhead based on some verifiable data. The information provided by each
node in the Cost Discovery Protocol is correlated with data from other nodes.

3. The Cluster Management Protocol manages the cluster formation and actualization
once the clusterhead is set up. Cluster nodes endorse the role of the elected clusterhead
by signing a claim. Then, the clusterhead is set up as a trusted authority for that cluster.
The clusterhead controls the authorized nodes that can work in its neighborhood through
the issuance of public key certificates that attest it.

The proposed cluster formation process can be applied in flat networks that want to create
its first topology, or in clustered networks that have to update some clusterhead roles. It is
possible that clusterhead election leads to the abolition of a cluster, or on the contrary, results
in the division of a cluster and the creation of new groups.

Following, we first depict the cryptographic framework of the designed process and
describe the notation we use hereinafter (see Table 1). Then, we detail the steps of the
Fair and Secure Cluster Formation Process.

3.1 Cryptographic Tools

The security mechanisms developed in the cluster formation process take a public key infra-
structure approach to control the users’ access to the network. We propose the use of two
infrastructures, one external and another one local or internal of the cluster. The external one
is supported by a global Internet Certification Authority (CA) and it is used to control the
identity of the nodes and avoid spoofing attacks. The local authority issues certificates which
are bound to local short keys easier to manage and operate with. These certificates control the
access of the nodes to the resources of the network and are the means to expel misbehaving
nodes off the cluster.

The management of the local CA is hold by clusterheads, which issue certificates using
their local private key. The authorization certificate of the clusterhead is supported by the
identity key signature of a group of nodes big enough to represent the support of the network
with it. As clusterheads constitute the main elements of the network backbone, using identity
keys to generate their certificates provides a means to validate the correctness of the assertion
beyond the clusterhead coverage area.

The designed protocols use different cryptographic algorithms. Symmetric ciphers
are used to construct commitments. Digital signatures are the basic tool for providing
authenticity when two peers first interact. Finally, hash functions are employed to create
hash chains that efficiently produce one time authenticity tokens.

Hash Chains, first proposed by Lamport [9], are composed of a sequence of values that
can only be computed in one-way. A hash chain of length N is constructed by applying
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Table 1 Protocols notation

Notation Description

vi Node of a network. Nodes can be qualified as clusterheads h, clustergateways g.

N I D Network identifier. It remains unchanged during the whole life time of the ad hoc network.

U I Di User identifier belonging to node vi . The identifier is the hash of his identity certificate.

NodeI Di Node identifier in the network: MAC and IP addresses

C I D Cluster identifier. It equals the present clusterhead U I Dh .

CU N Cluster update number. It is a sequence number from 1 to 10.

ACerti Authorization certificate of node vi .

I dCerti Identity certificate of node vi .

L I Di Identifier of the local public key of node vi . It is the hash of the public key.

T Chaini Top value of a hash chain used to authenticate some messages of node vi .

Chainn
i nth value of a hash chain of node vi .

AC I Di Authorization certificate identification number of node vi . It is a unique identifier.

ki Temporal symmetric key of node vi .

H(.) Hash function

M ACki (.) MAC function using the key ki .

Eki (.)/Dki (.) Cipher/Decipher a message using the symmetric key ki .

Ssk (.)/Vpk (.) Digital sign/validate a signature using a secret/public key.

lski /lpki Local secret/public key of node vi .

idski /idpki Identity secret/public key of node vi .

degreei Number of neighbors, i.e. degree, of node vi .

a one-way hash function H(.) recursively to an initial seed value ChainN : ChainN−1 =
H(ChainN ), ChainN−2 = H(ChainN−1), . . . , Chain0 = H N (ChainN ). In general,
Chainn = H N−n(ChainN ). The top element of the chain Chain0 has to be bound to a
user. To do so, in our scheme we include this element in the authorization certificate. Then,
the rest of the chain elements are revealed in ascending order (Chain1, Chain2, .. ChainN )
when the user needs to claim his presence.

3.2 Cost Discovery Protocol

The Cost Discovery Protocol is the first phase of a clustering process. Its aim is that nodes
interchange information about their utility to be clusterheads. We present the protocol in
Protocol 1 assuming the prior existence of a cluster-based architecture in the network. The
update is of cluster cla which clusterhead is node ha .

We will now review the protocol focusing on challenges and implemented prevention
mechanisms to avoid attacks. The process is activated with a signed RecAd (Step 1) that
carries cluster unique identifiers that will be used in the whole process. The signature protects
such identifiers from replaying attacks.

Protocol 1

1. Init [ha → all]
ha ∈ cla triggers the Cost Discovery Process. ha does:
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(a) Compose a Reclustering Message RM : RM = {N I D, C I D, CU N }.
(b) Sign RM , get RecAd = {RM, Slska (RM)} and send it. Trigger timers T1 = (1/v) ·

dλ and T2 = 3 · T1, with v: bandwidth speed, d: cluster density, and λ > 1 which
depends of the exponential backoff.

2. Presence Announcement [v j ∈ cla → 1hop]
After receiving a RecAd message, a node v j ∈ cla verifies its signature (Vlpbka (RecAd))

and if correct announces its presence with a Hello message:
Hello j = {N I D, C I D, CU N , U I D j , AC I D j , ChainCU N

j }.
3. Degree Commitment [vi ∈ cla → cla]

Nodes vi ∈ cla gather the information in Hello messages to construct a List file with all
their neighbors identifiers, and a ListChain that demonstrates the veracity of the List .

(a) For each received Hello fromv j , check the Chain authenticity: HCU N (ChainCU N
j )

?= T Chain j (value of ACert j ), and the validity of the authorization certificate:
Vlpka (ACert j ).

(b) If checks are correct, accept node v j as a neighbor.
(c) After timeout T1, compose Listi with received U I Ds of nodes in cla and generate

a commitment
i. Compose a list ListChaini with the received Chain values, and compute

H(ListChaini ).
ii. Generate a random symmetric key ki and compute ci = Eki (H(ListChaini )).

(d) Compose Degreei = {N I D, C I D, CU N , Listi , ci }, sign it, and send Deg Adi =
{Degreei , Slski (Degreei )}.

4. Degree Recount [v j ∈ cla]
A node v j receives Deg Adi from nodes in cla , and from clusterheads vb of neighboring
nodes.

(a) v j conducts a signature validation of Deg Adi messages Vlpki (Deg Adi ).
(b) If Vlpki (Deg Adi ) = f alse:

i. Send an Error message in multicast for cla nodes. Request a resend.
ii. If resends cannot be validated, discard the message and put node vi in the

reputation list.

Nodes in cla wait T2 time to receive Deg Adi messages. After T2, incoming Deg Adi are
discarded.

5. Commitment Opening [vi ∈ cla → cla]
Node vi opens the commitment delivered in Deg Adi messages by sending K ey Adi =
{ki , ChainCU N

i }.
6. Commitment Validation [v j ∈ cla]

Nodes v j ∈ cla receive K ey Adi messages from cluster members vi and do:

(a) Decipher ci field of each Deg Adi message: H ′(ListChaini ) := Dki (ci ).
i. If vi has not delivered the right key, it is considered malicious and put in the

repudiation list.
(b) Check the correctness of H ′(ListChaini ) using the Chain values received

in K ey Ad messages and computing the hash of them: H ′(ListChaini )
?=

H(ListChaini ). If it does not validate:
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Fig. 1 Degree message composition

i. Check weather ∀Chain j ∈ ListChaini is correct: HCU N (ChainCU N
j )

?=
T Chain j .

ii. If Chain j is correct, then ci is incorrect and node vi is put in the repudiation
list.

iii. If Chain j is incorrect and v j cannot deliver the right value, v j is put in the
repudiation list.

Members of the cluster under clusterhead election send Hello messages (Step 2) to
announce their presence. Hello messages contain information to identify and address the
originating node U I Di , a proof of node’s membership in the cluster AC I Di , and a message
authenticity attribute ChainCU N

i which is used to demonstrate that the message has been
generated by the declared user vi in that precise reclustering update. On the other hand,
the AC I Di is a link to the authorization certificate ACerti that proves the bound between
node’s identifiers (U I Di ) and network/link layer addresses, and assures the honesty of the
individual. However, the cited three elements do not keep off resending attacks. These can be
detected monitoring low-level traffic, or in the final phase of the protocol, when the received
information is correlated.

After the node’s announcement phase, nodes calculate their degree and send a Deg Ad
message (Step 3) to state it. In order to proof its degree, a node must be able to demonstrate
it knows the ChainCU N of its neighbors. As ChainCU N are sensitive and their revela-
tion could led to construct fake Deg Ad messages (reusing chain elements), they must be
protected. Node vi includes ChainCU N

j of all received Hello j messages in a list named
ListChaini , which is hashed and ciphered using a symmetric key ki . The result is the degree
commitment ci , which is inserted in Deg Adi and constitutes a proof of a vi ’s knowledge of
its neighborhood in a particular moment. Figure 1 depicts the contents of Deg Ad and how
they are generated. Besides, Deg Ad contains N I D, C I D and CU N attributes to prevent
replay attacks. All Deg Ad contents are signed with the node’s local private key to provide
authenticity and integrity to the message.

Once Deg Ad messages have been delivered to all nodes in the cluster, at time T2,
commitments are opened with a K ey Ad . Owners of Deg Adi send K ey Adi messages
(Step 5) in which they reveal their ChainCU N

i and the symmetric key ki used in the
commitment computation. ki is used to decipher the commitment ci . The result has to
be a message with an H(ListChain) parameter. Since this message follows a partic-
ular template, when a node deciphers a commitment c (Step 6) it recognizes if the
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key it is using is correct or not. This prevents forwarding nodes changing the keys
of some K ey Ad messages in order to falsely accuse their owners of having gener-
ated Deg Ad’s with fake lists of neighbors (List and ListChain fields). Originators
of Deg Ad messages are only put in the black list when its commitment is success-
fully opened, but its contents do not match the reported list of neighbors stated in
Deg Ad .

3.3 Clusterhead Designation Protocol

The Clusterhead Designation Protocol is initiated once the metric evidence about the utility
of each node to be a clusterhead has been distributed. The protocol objective is to use the
evidence to select the most appropriate node as the clusterhead. In Protocol 2 we detail the
steps of the protocol.

Protocol 2

1. Clusterhead Selection [vi ∈ cla]
Each node vi does:

(a) Contrast the information received in the List attribute of Deg Ad messages, and
create a List ′.

i. Put users with more than a 20% of intra-cluster unidirectional evidence in
RepList.

ii. In each List j , with v j ∈ cla , remove all the evidence generated or reported
by malicious users.

iii. In each List j , with v j ∈ cla , discard intra-cluster degree evidence that is not
bidirectional.

(b) Select the clusterhead candidate as the node with the contrasted highest degree in
List ′.

i. Prioritize nodes that have not been clusterheads before; modify the degree
of old clusterheads with a factor of x

x+1 , with x the distance to the cluster
instance in which they were clusterheads.

ii. If the selected node is in the list of some neighboring clusterhead vb (i.e. is
a clustergateway), validate Deg Adb and ACertb. If vb evidence is verified,
select another candidate.

iii. If no node remains in the list of eligible clusterheads, the cluster is abolished.

2. Clusterhead Candidacy Announcement [hi → 1hop]
The candidate clusterhead hi does:

(a) Generate a random number seed∗
i and compute a chain of 10 hashes to find

T Chain∗
i .

(b) Compose a message with the mandatory fields of a clusterhead certificate, which
include the C I D∗ of the new cluster, the computed T Chain∗

i , the list Old H∗
with the U I Ds of the last three clusterheads, and the list List ′i of U I Ds of cluster-
head’s verified neighbors. The message is: ChCandi = {N I D, C I D∗, V alidi t y∗,
NodeI Di , L I Di , T Chain∗

i , Old H∗, List ′i }.
(c) Complete the ChCandi message with C I D and CU N of the present reclustering

update, and its degree (i.e. the order of List ′i ): ChCand Exti = {ChCandi , C I D,

CU N , | List ′i |}.
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(d) Sign ChCand Exti : I amChi ={ChCand Exti , Sipvki (ChCand Exti )}. Send
I amChi .

3. Clusterhead Candidacy Support [v j ∈ cla → hi ]
Nodes that receive the I amChi message and are in the List ′i field of it verify its contents
and signature.

(a) If they agree on the candidature, they countersign and send it: Sipvk j (ChCandi ).
(b) If they do not agree, they send a signed Error message declaring the problem.

4. Clusterhead Setting [hi → 1hop]
The clusterhead candidate vi receives signed certificate proposals and verifies the signa-
ture.
If 50% of nodes in List ′i sign ChCandi , node vi gets its role. This signed message
ChCand is the proof of its role in front of cluster internal members, and other cluster-
heads of the network.

The Clusterhead Designation Protocol is cheat-proof since the naming of the clusterhead
must be approved by the majority of neighbors on that cluster using verifiable evidence.
The evidence is protected against reply attacks with the inclusion of N I D, C I D, and CU N
attributes that specifically point to a reclustering process. Faking nodes are detected and
expelled.

Occasionally, a malicious node that wants to control a cluster can legitimately become
a clusterhead. Then, a new thread appears due to the authority and influence of this node
in the cluster: the perpetuation of itself or some colluding nodes in this dominant position.
To prevent that a clusterhead can create bogus nodes to falsify the topology of the network
and be reelected clusterhead, the protocol requires that 50% of the stated neighbors of the
clusterhead candidate participate in the issuance of its certificate using their identity private
key. The use of a key certified by an external CA assures nodes have a real identity and
avoids spoofing attacks. If the clusterhead candidate has a lot of neighbors that are not shared
by other members of the cluster and, moreover, they do not participate in the clusterhead
certificate issuance, the clusterhead is suspicious of manipulation. In these cases, plain clus-
ter nodes can request identity evidence of clusterhead’s neighboring nodes to authenticate
its existence. If neighbors cannot prove the possession of an identity certificate issued by
an external CA, the clusterhead candidate is put in the reputation list, its candidature is not
supported, and a new clusterhead is elected.

3.4 Cluster Management Protocol

The Cluster Management Protocol is started once the clusterhead is set up. This protocol
is used to manage the cluster formation and actualization. The clusterhead is responsible
for issuing authorization certificates for good-behaving neighbors whose identity can be
correctly verified. In Protocol 3 we summarize its phases.

Protocol 3

1. Authorization Certificate Request [v j ∈ cla → hi ]
Nodes request a certificate with a Cert Req = {U I D, AC I D, wish_NewK ey} (AC I D
is attached in case the user has a former authorization certificate).

2. Authentication Proof Request [hi → v j ∈ cla]
The clusterhead replays with an Auth Req message that contains an AuthMode param-
eter which indicates the type of authentication proof that is required (depending of the
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confidence that the clusterhead has with the requesting node, AuthMode would be one
or another).

3. Authentication Proof [v j ∈ cla → hi ]
The node sends an authentication proof, which is a digital signature or a Message Authen-
tication Code (MAC) depending on the authentication mode.

4. Authorization Certificate Issuance [hi → v j ∈ cla]
The clusterhead validates received authentication proofs. If correct, it issues the certifi-
cates.

Assuming the clusterhead is honest, the issuance of authorization certificates is robust
against malicious attacks. If the clusterhead is malicious, it could issue or deny authorization
certificates uniquely based on its own criteria to maximize its profit. However, the clusterhead
role only makes sense if there are a group of nodes that supports it and so, it is indirectly
forced to follow the rules.

4 Adversarial Models

The clusterhead election process provides a fair, non-manipulable leader election. The accom-
plishment of the process is granted if it can be assured that data used in the utility function
is certain and that any node cannot set up itself as a clusterhead nor avoid the role without
being punished. We analyze the process using two adversarial models: a node that wants to
get the leadership of the cluster and a selfish node that does not want to become the leader.

4.1 Greedy Adversarial Model

During the Cost Discovery Protocol, a malicious user vi can try to alter the process to falsely
report a greater number of neighbors than he really has, or on the contrary, fake the degree of
his neighbors so that it is smaller. In the first case, vi should include more user identifiers in
the neighbors Listi of his Deg Ad . However, this list has to be contrasted with other nodes’
lists, and if reported connections are unidirectional they are discarded. Thus, nodes not only
have to introduce more information to their own Deg Ad messages, but they also manipulate
the others. The ways to do it are:

– Creating Deg Ad messages of inexistent nodes and inserting them in the network: Deg Ad
messages are signed. So, the only way to perform this attack is becoming a clusterhead and
issue certificates for inexistent users. In any case, the identity of the nodes is frequently
rechecked by succeeding clusterheads and cluster members.

– Reusing Deg Ad messages of former neighbors: The insertion of old Deg Ad messages
in the network to falsely prove that some node has bidirectional connections with other
nodes is useless because Deg Ads are protected against reply attacks.

– Wormhole attack: A colluding group of nodes can act together to perform this attack: one
node pretends it has some one hop neighbors that it really does not have and there is a
friend node that resends the packets in both senses.
This attack can be detected by setting the network interface in promiscuous mode and
monitoring the node’s physical connections.

The second way to perform greedy attacks in the Cost Discovery Protocol is by decre-
menting the degree of cluster members except oneself:
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– Deleting users from others’ Deg Ad messages: It is not possible since Deg Ad messages
are signed. Modifications invalidate messages.

– Dropping nodes out of the network: The attacker can flood the network with fake Hello
messages in order to make nodes compose Deg Ads with erroneous unidirectional entries
and in the end, these nodes are considered malicious to others and isolated. However,
the authenticity of Hello can be checked afterwards in the protocol and links to invalid
entries are discarded without being penalized.

– Putting less nodes in one’s degree list Listi so that the neighboring information of these
nodes cannot be checked up: This method decreases both the degree of target nodes and
oneself by the same amount; thus, its purpose is not accomplished.

– Filtering Deg Ad messages: A greedy node can avoid resending Deg Ads to lower
their chances of becoming clusterheads. However, other good-behaving neighbors would
resend Deg Ads that finally arrive to everyone.

Another type of greedy attacks is faking the Clusterhead Designation Protocol:

– Sending fake IamCh messages with fictitious neighbors: In order to be successful, more
than 50% of stated clusterhead’s neighbors should be corrupted.

– Sending Error messages against other clusterhead candidates: It is not viable since error
messages have to include the evidence that demonstrates that the clusterhead candidate
does not accomplish the requirements.

4.2 Selfish Adversarial Model

The actions that selfish nodes could take to fake the Cost Discovery Protocol are:

– Incrementing the list of neighbors of other nodes in Deg Ad messages: It is not possible
since Deg Ad messages are signed and so, protected against modifications.

– Composing Deg Ad messages with less neighbors than one really has: When contrasting
information from Deg Ad messages, unidirectional links are discarded. However, if a
node has more than 20% of these kind of links, this node is expelled from the network
and cannot use its services any more. Thus, this option is unviable.

– Presenting itself as a clustergateway: A group of colluding nodes could create a fake sub-
network and a clustergateway, since clustergateways are not eligible to be clusterheads.
This attack is very expensive and it is not worthy for a selfish node.

Another way to perform selfish attacks is in the Clusterhead Designation:

– Not sending I amCh message: If a node is elected to be the clusterhead and it does not
send the I amCh message, it is expelled from the network.

– Sending an I amCh message with a list of neighbors bigger than it really is: The objec-
tive of this attack is to impede 50% of the clusterhead neighbors support its candidacy.
However, it is fruitless since all nodes know the degree of each of them.

5 Conclusions

Current cluster formation protocols have a vulnerability that has not been treated nor resolved:
the information used to design the best suited topology, i.e. the utility function, is unverifi-
able. If we create clusters based on false information, neither the architecture would provide
an optimal backbone nor the clusterhead be reliable to perform this role.
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We have developed a secure and fair process of clusterhead election and cluster formation
based on a specific utility function. We have divided the process in three phases and have fit
cryptographic operations to each part in order to create an efficient and practical scheme. The
security anchor is a public key infrastructure. However, most of the cryptographic operations
involved in a cluster formation process are very efficient, based on symmetric cryptography
and hash chains [10].

The proposed protocols assure that the selected clusterhead is the node with the highest
degree in a neighborhood. This role is temporal to prevent nodes gathering too much sensitive
information on the cluster members they control, and moreover, to avoid the exhaustion of
these selected nodes. The process is fair in the sense that the elected node is the best one to
be the clusterhead and no fakes can be made to become the clusterhead or avoid the role.
Nodes that become clusterheads are securely appointed so that they can be recognized by
any node of the network.
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