
Wireless Pers Commun
DOI 10.1007/s11277-011-0372-x

Review of Robust Cooperative Spectrum Sensing
Techniques for Cognitive Radio Networks

Helena Rifà-Pous · Mercedes Jiménez Blasco ·
Carles Garrigues

© Springer Science+Business Media, LLC. 2011

Abstract Cognitive radio networks sense spectrum occupancy and manage themselves
to operate in unused bands without disturbing licensed users. The detection capability of a
radio system can be enhanced if the sensing process is performed jointly by a group of nodes
so that the effects of wireless fading and shadowing can be minimized. However, taking a
collaborative approach poses new security threats to the system as nodes can report false
sensing data to reach a wrong decision. This paper makes a review of secure cooperative
spectrum sensing in cognitive radio networks. The main objective of these protocols is to
provide an accurate resolution about the availability of some spectrum channels, ensuring the
contribution from incapable users as well as malicious ones is discarded. Issues, advantages
and disadvantages of such protocols are investigated and summarized.
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1 Introduction

The growing number of wireless services available nowadays has significantly increased the
demand of radio spectrum resources. This has given rise to a worrying shortage of spectrum.
Moreover, the Federal Communications Commission (FCC) has reported that most of the
spectrum allocated to licensed users is largely under-utilized [5], and spectrum utilization is
discontinuous across time and space.

In order to increase the efficiency in spectrum utilization, a solution has been proposed
which is based on opportunistic spectrum sharing. In this approach, unlicensed users, which
are referred to as secondary users (SU), are allowed to opportunistically access spectrum
as long as they do not cause harmful interference with licensed users. Licensed users are
referred to as primary users (PU), and they always have usage priority.
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Cognitive Radio (CR) [1] is the technology that has been proposed to implement oppor-
tunistic sharing. A cognitive radio is a system capable of sensing several spectrum bands,
determine if there are unused portions, and adapt to operate in the vacant bands. The spectrum
sensing mechanisms implemented by CRs should reliably detect the presence and absence
of primary signals in real time. Once cognitive radios detect the presence of a primary user
in their operating band, they must vacate the band immediately. Hence, accurate spectrum
sensing is an essential feature of CR systems.

However, the effect of fading and shadowing on the spectrum sensing process can be very
negative. These two problems can result in a secondary user failing to detect a primary signal,
which is known as the hidden node problem. In order to avoid this problem, cognitive radio
systems must be significantly more sensitive in detecting the primary transmissions than the
primary receivers.

In order to reduce the individual sensitivity requirements of CRs, the technique that has
been most frequently used is Cooperative Spectrum Sensing [15]. Cooperative Spectrum
Sensing is based on combining the sensing results of multiple cognitive radio nodes to reach
the final decision. By merging the local observations of different secondary users, we are
exploiting the spatial diversity of independently fading signals, and thus we are enhancing
our probability of successful detection.

The IEEE 802.22 is an example of network architecture based on cognitive radios [4]. The
IEEE 802.22 is a standard developed for Wireless Regional Area Networks (WRANs) and
utilizes UHF/VHF TV bands. The main application of 802.22 is wireless broadband access
in rural and remote areas. The base-station of the system manages its own cell and several
secondary users allocated into the cell, which are known as consumer premise equipments
(CPEs).

In this paper, we will present a review of the cooperative spectrum sensing methods that
have been proposed so far. In order to do so, Sect. 2 describes the main features of the local
spectrum sensing performed by individual radios; Sect. 3 provides a description of the basic
types of data fusion techniques that are used to reach a sensing decision collaboratively; and
Sect. 4 discusses the security issues associated with the cooperative sensing process. Then,
the paper describes the methods that are devised to allow cognitive radios to perform coop-
erative sensing securely. These methods are divided into two categories: First, those based
on reputations, which are presented in Sect. 5, and those based on cross-correlation, which
are described in Sect. 6. Section 7 provides an analysis of the reviewed secure cooperative
sensing methods. Finally, Sect. 8 presents the conclusions of the paper and points out future
directions.

2 Local Spectrum Sensing

In this section, we will present the methods used by cognitive radios to perform local spec-
trum sensing. The methods proposed in the literature are based on three different techniques:
energy detection, cyclostationary feature detection or matched filter [2].

The first technique, energy detection, is based on measuring the energy received over an
observation interval. The received signal on the secondary terminal passes through a bandpass
filter and it is integrated over the time of observation. The output signal is the test statistic and
is compared with a threshold. This method cannot discriminate between the primary signal
and noise, and hence makes it difficult to set the threshold used for primary user detection,
specially at low SNR. However, energy detectors are widely used because of their simplicity.
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The second technique, cyclostationary feature detection, takes advantage of the fact that
most of the primary user signals have built-in periodicities. Thus, this embedded redundancy
can be used for detection of cyclostationary signals in a background of noise using a spectral
correlation function. This method is free of noise interference. However this method requires
long observation times.

The third method is based on using a matched filter, and it provides an optimal detection
technique when the cognitive radio has a priori knowledge of the primary user signal. The
match filter detection is based on correlating the known primary signal with the observed
signal. The problem of this method is that it is difficult to have an a priori knowledge of the
primary signal. The matched filter detection requires short time for sensing, even though its
complexity is high when operating with different types of primary user systems.

From these three techniques, the one most frequently adopted is energy detection. The
test statistic of the energy detection is equivalent to an estimation of the average received
signal strength (RSS). Energy detection is the test of two hypotheses: H0, which is the null
hypothesis and represents the absence of a primary user, and H1 which is the alternative
hypothesis and represents that there exist some primary user signal. Under H0, the received
data at the secondary user is noise alone. Under H1, the data is the signal transmitted by
primary user plus noise.

3 Cooperative Sensing Techniques

In this section, we will explore the different methods proposed in the literature to date to
implement cooperative sensing.

First of all, we can find methods based on a distributed or a centralized approach [6]. In a
distributed approach, all secondary nodes exchange their sensing results and then each node
combines the results of its neighbors to make the final decision individually [26]. On the
other hand, centralized methods use a base station or fusion center that collects the results of
all secondary users and executes the data fusion to reach the final decision. The recent work
on cooperative sensing has generally adopted the centralized approach, due to its greater
simplicity. In particular, the secure cooperative sensing proposals that we analyze in this
paper have a centralized architecture, with a fusion center that performs the data fusion.

As shown in Fig. 1, a cognitive radio network is composed of a group of secondary users
which may suffer from shadowing and multipath fading. Each secondary user performs spec-
trum sensing and reports its results to the fusion center. Upon receiving the sensing results
from all secondary users, the fusion center integrates the results (and optionally its own
measurements) to reach the final decision.

Cooperative sensing techniques can also be grouped according to which kind of informa-
tion is forwarded to the fusion center. In soft-decision schemes, cognitive radios exchange
their test statistics calculated from their local observations. On the other hand, hard-deci-
sion schemes only exchange their individual 1-bit decisions. Before exploring these two
approaches in detail, we will describe two parameters that are associated with the perfor-
mance of the data fusion process.

The first parameter is the probability of detection, which is the probability of successful
detection of the primary user signal. This probability indicates how well interfering with
primary users is avoided. The second parameter is the probability of false alarm, which rep-
resents the probability of the sensor detecting a primary signal when in fact it is absent. A
high level of protection of the primary signal is reached when the probability of detection is
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Fig. 1 Modeling cooperative spectrum sensing network

high. On the other hand, the lower the probability of false alarm is, the better the channel is
used when it is available.

In the following sections, we will see the relation of these parameters with the soft-decision
and the hard-decision schemes.

3.1 Soft-decision Combining Data Fusion Schemes

In soft-combining algorithms, nodes deliver their measured energies to the fusion center,
providing high level of information, but increasing the volume of communication data.

To combine the observed energy, algorithms such as Maximal Ratio Combining (MRC)
or Equal Gain Combining (EGC) can be adopted [12]. In both cases, the observed energies
from N cooperative users are scaled by weight factor and added up. The decision statistic is
the result of the weighted sum and is given by

Y =
N∑

i=1

wi Yi

where Y j is the observed energy of the i th user and wi denotes the weight factor corresponding
to the i th user.

The resulting decision statistic is compared to a decision threshold T to decide between
H1 (the channel is occupied) and H0 (the channel is idle){

Y > T ⇒ accept H1

Y < T ⇒ accept H0

The threshold is defined so as to achieve the desired probability of false alarm or miss
detection.

The difference between MRC and EGC schemes is the evaluation of the weights:

– MRC soft combination scheme defines weight coefficients as

wM RCi = γi√∑N
k=1 γ 2

k

, 1 ≤ i ≤ N

where γi represents the instantaneous SNR of the i th cognitive radio user. MRC obtains
the normalized weight assigned to each node. Nodes with strong signals are further ampli-
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fied, while weak signals are attenuated. Despite the optimal performance of this scheme,
it is rarely used because it requires an estimation of the channel gains.

– On the other hand, the weights of EGC soft combination scheme are calculated as

wEGCi = 1√
N

, 1 ≤ i ≤ N .

Sensors have identical assigned weights which depend on the number of cooperative users
N . EGC is a near-optimal scheme and does not require channel estimation.

3.2 Hard-decision Combining Data Fusion Schemes

When employing hard combining algorithms, the final decision is reached by taking only into
consideration the individual decisions reported by each cognitive radio. The main advantage
of this method is the reduction of the communication overhead.

Decision Fusion [22]: The fusion center adds up all local reports and compares the out-
come with a threshold in order to decide whether there is a primary signal present or not.
This method is the simplest one. Depending on the threshold value, we can have different
variants:

A. OR Rule: declares signal presence when at least one user reports that the channel is
occupied. The threshold value is 1.

B. Majority Rule: declares signal presence when more than a half of the secondary users
declare that the channel is occupied.

C. AND Rule: the decision threshold is the total number of reporting users. This implies
that all users must report that the channel is occupied in order for the final decision to
be occupied.

3.3 Data Fusion Schemes Allowing for Soft and Hard-decision

In this section, we describe four data fusion mechanisms which enable both hard and soft
decision approaches. In order to simplify the explanations, we will introduce some notation
first: u is the final sensing decision, and ui is the sensing result of the i th secondary user.
P (ui | H0) is the a priory probability of ui when u is zero, and P (ui | H1) is the a priory
probability of ui when u is one.

Bayesian Detection [21]: This method is based on calculating the cost of the decisions
taken by the secondary users. All possible decisions are considered: u = 0 when the band
is occupied, u = 1 when the band is free, u = 0 when the band is free, and u = 1 when
the band is occupied. In the first two cases, the final decision is incorrect, and thus a high
cost is associated with these decisions. In the last two cases, the final decision is correct, and
thus the associated cost is zero. The overall cost is the sum of the four costs weighted by
the probabilities of the corresponding cases. The Bayesian detection is based on calculating
the likelihood ratio test [21] and using the overall cost as the threshold. This test can be
represented by the following expression:

∏
i

p (ui | H1)

p (ui | H0)

H1

>

<

H0

P0 (C10 − C00)

P1 (C01 − C11)
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where the a priori probabilities of both hypotheses (H0 and H1) are represented by P0 and P1,
respectively. The main problem of this method is that it requires these a priori probabilities
to be known in advance.

Neyman–Pearson Detection [21]: The objective of the Neyman–Pearson test is to guarantee
a target false alarm probability while minimizing the miss detection probability or vice versa.
This method is based on calculating the likelihood ratio test and comparing the result with a
threshold, as shown in the following expression:

∏
i

p (ui | H1)

p (ui | H0)

H1

>

<

H0

λ

The threshold is calculated from the predefined probabilities of false alarm or miss detection.
Unfortunately, in cognitive radio networks where the signal reception conditions are different
for each node, thresholds cannot be obtained analytically and their numerical evaluation is
an NP-complete problem. In contrast to Bayesian, this method does not require the a priori
probabilities of the testing hypotheses. However, it still requires the knowledge of a priori
probabilities of ui ’s when u is zero or one.

Sequential Probability Ratio Test [21]: This method is based on performing several sensing
rounds so that the final decision is taken after merging a variable number of sensing results.
The protocol assumes that the number of sensing results can be increased and adjusted as
necessary, so it guarantees both a bounded false alarm probability, P01, and a bounded miss
detection probability, P10. This sequential detection scheme applies the likelihood ratio test
as follows:

Sn =
n∏

i=0

p (ui | H1)

p (ui | H0)
,

where n is the number of samples and can be different from the total number of secondary
users. The fusion center decides whether or not the band is occupied based on the following
conditions: ⎧⎨

⎩
Sn ≥ η1 ⇒ accept H1

Sn ≤ η0 ⇒ accept H0

η0 < Sn < η1 ⇒ take another observation

Threshold values η1 and η0 are calculated as follows:

η0 = 1 − P01

P10
and η1 = P01

1 − P10
.

Dempster-Shafer Evidence Theory [20]: Dempster-Shafer (DS) is an alternative model to
the traditional Bayesian probabilistic theory for the mathematical representation of uncer-
tainty. It offers a way to combine evidence from multiple observers without the need to know
about a priori or conditional probabilities as in the likelihood ratio test approaches. However,
it needs to determine the initial estimates of nodes’ trustworthiness.

DS theory defines a set of hypothesis A ∈ � for which evidence can be provided, and a
density function m, called the Basic Probability Assignment (BPA), that represents the belief
that one is willing to commit exactly to A, given a certain piece of evidence. BPA fulfills two
conditions: m(∅) = 0 and

∑
A⊂� m(A) = 1.
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BPAs from different information sources can be combined with Dempster’s orthogonal
rule to get a new joint distribution. The compound BPA can be calculated as follows:⎧⎪⎨

⎪⎩
m(C) = 1

1−k

∑
i, j

Ai ∩B j =C

m1(Ai )m2(B j )

m(∅) = 0

where k = ∑
i, j

Ai ∩B j =∅
m1(Ai )m2(B j ). The coefficient 1

1−k is called normalization factor

and is used to avoid non zero mass from being assigned to the empty set after combination.
It has the effect of attributing any mass associated with conflict to the null set.

The combination of m is only possible if m1 and m2 are two BPAs induced from two
independent evidence sources, and the following condition is met:∑

i, j
Ai ∩B j =∅

m1(Ai )m2(B j ) < 1

The decision strategy of DS evidence theory is supported by BPAs. The hypothesis that
maximizes the density function m is selected.

4 Security Issues

Cooperative sensing can significantly improve the accuracy of individual sensing approaches
[15]. However, the performance of the collaborative approach can also be reduced by the fol-
lowing problems:

Firstly, nodes may fail to detect the primary signal because they suffer from severe fading,
or simply because they use malfunctioning sensing terminals.

Secondly, nodes may send false sensing information to the fusion center in order to alter
the final decision. This problem is known as the spectrum sensing data falsification (SSDF)
attack. In this case, secondary users intentionally manipulate the sensing reports, thus leading
the data fusion algorithms to make the wrong decision. A survey of the effects of this kind
of attacks can be found in [16].

SSDF attackers can be classified according to the way they send false sensing reports.
This classification leads to three different types of attackers:

– The first type of attacker is the one who always reports the same sensing result. An
Always-Yes attacker always declares that the primary user is active. On the other hand,
an Always-No attacker always reports an absence of primary signal.

– The second type of attacker is the one who always reports the opposite of its local spectrum
sensing result.

– The third type is the one who occasionally reports extreme false values. Thus, they mislead
the system once in a while, but they behave correctly during the rest of the time.

As a result of all these problems, cooperative data fusion techniques must implement
countermeasures to mitigate the risk of SSDF attacks and the effects of false reports sent by
malfunctioning devices unintentionally. The solutions proposed for these problems are based
on the following strategies:

– Reputations: the fusion center keeps track of the reporting history of a sensing terminal.
Nodes that usually send false reports have low reputation and their sensing data have low
or no impact on the final sensing decision.
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– Cross-correlation: despite the heterogeneity of devices, node locations, fadings, etc.,
the SNR reported from different sensing terminals must be consistent. This fact can be
exploited to identify outliers and discard false reports.

In the next sections, we will review the main proposals based on both reputation and
cross-correlation schemes.

5 Reputation-based Algorithms of Decision

Reputation-based algorithms detect malicious secondary users from the accumulation of fail-
ures on their sensing reports. Figure 2 shows the overall protocol scheme. In each sensing
round, nodes sense the spectrum and compose a report with information about the received
power or their decision on the channel occupancy. Reports are sent to the fusion center, which
processes them to achieve a final decision. In order to counteract the impact of malicious
users’ reports, different operations can be applied to the sensing decision procedure:

1. Pre-filtering: Nodes whose sensing results significantly deviate from that of others, or
nodes with low reputation, are filtered out from the data fusion module. Only consistent
reports remain in order to make a more reliable decision.

2. Data Fusion: A data fusion rule is applied to make a global decision about the presence
of primary users in the sensed spectrum band. User’s contributions to the final decision
can be weighted based on their reputation parameters.

3. Reputation Update: Reputation values need to be adjusted for the next sensing round.
Update of node’s reputation is based on either the global decision or others node’s reports.
Several computational reputation models can be applied.

Fig. 2 Overall architecture of
the trust and reputation model
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A cooperative sensing scheme is qualified by its Data Fusion method. Therefore, the data
fusion method defines the main features of the Pre-filtering and Reputation Update modules.
The data fusion module incorporates weights on the conventional data fusion approaches.
Weights are based on trust or reputation of nodes. On each sensing process round, trust and
reputation parameters should be updated by means of a computational reputation model.
Reputation update makes nodes reputation accurate and improves robustness of scheme.

5.1 Weighted Data Fusion Techniques

In a weighted collaborative scheme each node has its own weight in the data fusion process.
Weights represent the behaviour of past sensing for each secondary node. They also give
different node’s contributions on the final decision. When scheme incorporates pre-filtering
only nodes that pass through the filter are authorized to participate in the decision process.

A Trust-Weighted Aggregation Scheme: Qin et al. [19] introduce the notion of self-confi-
dence and trust. Self-confidence is a rate supplied by a sensing terminal of its own confidence
on the accuracy of its sensing results. Trust is a measure of reputation, and represents the
historical accuracy of terminals’ sensing reports. Specifically, the trust factor of the scheme
is computed using the generic de-centralized reputation evaluation model BRS (Beta Repu-
tation System) [9] with the particularity that each user has a different score for each possible
sensing context (e.g. geographical location, sensing band, etc.). Besides, a forgetting factor
under each context is used to gradually decrease the influence of older ratings. Thus, the trust
factor τi p of a user i in the context (or sensing band) p, can be computed as follows:

τi p =
∑N−1

j=0 ρ
N−1− j
i p α j i p∑N−1

j=0 ρ
N−1− j
i p (α j i p + β j i p)

where N is the accumulated number of ratings that user i has been given in the past,
ρi p(0 ≤ ρi p ≤ 1) is the forgetting factor of i in the context p, α j i p is the j th positive
behavior score of i in the context p, and β j i p is the j th negative behavior score of i in the
context p.

The scheme defines a pre-filter that discards nodes which trust factor is below a threshold.
Then, the contributions of secondary users are merged using a majority fusion rule approach
that weights nodes’ decisions based on their trust factor.

In the proposed system the fusion center is itself a sensing node. The fusion center as
well as the secondary nodes of the network sense the spectrum and rate their binary sensing
decisions based on the received power and the channel gain between the transmitter and
themselves. In order to take a final decision, the fusion center complements its decision with
data from other sensors. The more it trusts in its own decision, the less weight the secondary
users have. The aggregated sensing result Rp for the particular context p is calculated as:

Rp = θ� f p + (1 − θ)

∑M
i=1 τi p�i p∑M

i=1 τi p

where θ is the confidence level of the fusion center, � f p is the sensing result of the fusion
center in the context p, �i p is the sensing result of user i in the context p, τi p is the trust
factor of user i in the context p, and M is the number of users whose sensing results have
passed the pre-filter.

After the final decision is taken, nodes’ trust factors are updated. Nodes that agree with the
overall decision are added a point to its positive behavior score, while those who disagree are
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added a point to its negative score. Besides, nodes whose sensing result has caused a com-
plaint from a primary user are punished with N negative points, being N the total number of
ratings that a user has been given in the past.

A Weighted Sequential Probability Ratio Test (WSPRT): Chen et al. present a new weighted
fusion approach [3] based on the Sequential Probability Ratio Test (SPRT). The a priori prob-
abilities of the likelihood ratio test are raised to the power of a weight w, which is a function
of the node’s trust factor. The decision variable is

Wn =
n∏

i=0

(
P[ui |H1]
P[ui |H0]

)wi

with wi ∈ [0, 1] the weight factor of user i .
The reputation update module evaluates the consistency of nodes’ reports with respect

to the overall decision over a past period. If a node i has agreed with the final decision, its
trust factor ri is incremented by one; otherwise it is decremented by one. Based on the new
computed trust factor, the weight of a node wi is obtained using the following function:

wi = f (ri ) =
{

0, ri ≤ −g
ri +g

max(ri )+g , ri > −g

The variable g(< 0) is used to obviate penalizations in case of short-term randomness or
temporary interferences, and to avoid that some punctual incorrect reports negatively effect
the system’s performance.

This scheme presents a trade-off between data collection overhead and robust perfor-
mance. As the primary signal strength or nodes’ density decreases, the average number of
samples required to keep an accurate performance raises.

Like other algorithms based on the likelihood ration test, WSPRT requires the a priori
probabilities of nodes’ decisions under the hypothesis of the test. The authors introduce a
procedure to calculate them based on the physical location of the nodes and the path loss of
the environment.

A Weighted Data Fusion Scheme with Confidence Vector: Lim et al. also deal with repu-
tation and self-confidence factors on node’s reports [11] like the trust-weighted aggregation
scheme of Qin et al. [19].

Nodes rate the confidence they have with their binary sensing results using a real number
between 0 and 1, where 0 means no confidence and 1 stands for complete assurance. Then,
they reassign the confidence value with a positive sign if their sensing decision is that the
spectrum band is occupied, and with a negative sign otherwise. The signed confidence factor
is sent to the fusion center as a sensing report.

The fusion center merges nodes’ sensing reports using a weighted majority fusion rule
that gives a higher contribution to nodes with a high reputation. The resultant final decision
u(n) is computed as follows:

u(n) =
{

1,
∑

i ciwi ≥ 0
0,

∑
i ciwi < 0

with ci the confidence factor of user i , and wi the trust factor of user i .
Trust factors are timely updated and represent the successful detection ratio of a node with

respect to the overall decision in its past sensing history. Thus, higher weights are assigned
to reliable nodes which make correct local detections.
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A Weighted-Collaborative Scheme: In contrast to the protocols seen so far, Huang et al. first
considered a weighted collaborative scheme over soft-decision [7]. They consider nodes eval-
uate the spectrum using an energy detection model. Then data is merged through a product
fusion rule adjusting user’s contributions with a weight factor. Weights represent the repu-
tation of a node. Reputation decreases when a node is under deep fading thereby reducing
node’s influence on the final decision. The weight factor assigned to the i th user in the nth
sensing process is defined as

Wi (n + 1) = Wi (n)Pd i (n)/W (n)Pd(n)

where,

W (n)Pd(n) = 1

N

N∑
i=1

Wi (n)Pd i (n)

Pd i is the detection probability of the i th user, which is based on the node’s received SNR
level, and N is the total number of secondary users. Authors assume the environmental con-
ditions of a site are known and thus the probability distribution functions can be obtained to
calculate detection probabilities.

Matsui et al. designed a similar weighted cooperative scheme [13]. The difference is that
the reputation is a value inversely proportional to the distance between the fusion center and
the cognitive radio node. The further the node is, the lower the reputation becomes. They
assume that the fusion center exactly knows the location of secondary users and system
stations, which are stationary.

An Average Combination Scheme: Kaligineedi et al. apply a weighted collaborative data
fusion over a soft-decision model [10].

Nodes sense the spectrum using energy detectors and send the received energy level to
the fusion center. The scheme first applies a pre-filter that discards the extreme outliers of
the acquired data distribution, i.e. the reports which are numerically distant from the rest of
the data. The thresholds are computed as follows:

bl(k) = b1(k) + 3biqr (k)

bu(k) = b3(k) + 3biqr (k)

The lower bound, bl(k), is a linear combination of the value in the cut-off position of the
first quartile, b1(k), and the interquartile range value, biqr (k). The interquartile range value
is the difference between the value in the cut-off position of third quartile and the value in
the cut-off position of first quartile. Then, the upper bound, bu(k), is computed as a linear
combination of the value in the cut-off position of third quartile, b3(k), and the interquartile
range value.

After pre-filtering, the fusion center combines the remaining sensing reports using a
weighted majority fusion rule that gives a higher contribution to nodes with a good rep-
utation, i.e., nodes with a high trust factor. The final decision is computed as follows:

u(n) =
{

1,
∑

i λi (k)ei (k) ≥ eT

0,
∑

i λi (k)ei (k) < eT

where λi (k) is the trust factor of user i at instant k, ei (k) is the energy value reported by
user i at the instant k, and eT is the threshold level. The threshold is obtained empirically by
Monte Carlo simulations to meet the required probability of detection.
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Finally, the scheme updates nodes’ trust factors. The trust factor gives a measure of reli-
ability of a particular user. It is based on the past and present sensing data sent by the user
as well as the sensing data sent by other users. To evaluate the trust factors, the fusion center
computes the nodes’ instant trust penalties di at each sensing iteration k using the following
formula:

di (k) = |ei (k) − μ(k)|
σ(k)

where μ(k) and σ(k) are, respectively, the mean and the variance of the sensing data that
has passed the initial filter of the protocol at the instant k. Then, instant trust penalties are
summed over a certain period of time L to obtain Di (k):

Di (k) =
k∑

k′=k−L+1

di (k
′)

Comparing the Di (k) values of different users would give a clear idea of which sensing nodes
are deviating.

The authors propose two approaches for computing nodes’ trust factors based on Di (k).
The first one is by identification of mild outliers among D(k) in a analogous way to what the
initial filtering module does. A node’s trust factor is set to one if its Di (k) lies between the
defined thresholds; otherwise, the assigned trust factor is zero. The second approach assigns
trust factors such that they are exponentially decreasing according to the distance from Di (k)

to the median m D(k): λi (k) = e−|m D(k)−Di (k)|
Trust factors are a mean to identify malicious nodes. Depending on the characteristics

of the environment the time frame L used to compute the trust factors has to be adjusted.
Small time frame values are useful for identifying nodes which behave maliciously over short
periods of time, while large values help identifying long-term attacks.

Multiple Malicious User Detection by Onion-Peeling Approach: Focusing on performing
an accurate pre-filtering, Wang et al. present a soft-decision reporting scheme [23] that is
robust against malicious users. The protocol can be used with any of the existing collabora-
tive data fusion algorithms, either based on hard or soft combining. The contribution of the
authors is in the design of a powerful pre-filter based on the users’ report histories.

The authors define an heuristic approach to iteratively identify malicious nodes, batch by
batch. Initially all nodes are presumed to be honest. For every node, the fusion center com-
putes a suspicious level, i.e., the a posteriori probability that it is an attacker. To calculate a
node’s suspicious level, the scheme needs to know both the honest node and malicious node
report probabilities. These probabilities are estimated assuming that the fusion center knows
the position of the nodes and the attackers’ policy. Moreover, the primary user is assumed to
be static.

When the suspicious level of a node goes beyond a threshold it is discarded from the final
decision process and moved into a malicious user set. After applying this filtering procedure
to all the nodes, the way to calculate the suspicious level is updated. The protocol starts a new
filtering iteration, in which new malicious users will be identified. The process is repeated
until no more malicious nodes can be found. Eventually the reports from honest users are
fused to make the final decision.
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A Dempster-Shafer Theory of Evidence Data Fusion Scheme: Qihang et al. designed a
soft-decision data fusion scheme [18] that uses the DS theory of evidence. They estimate
the nodes’ trustworthiness from their channel condition and their distance to the primary
node. Specifically, when local sensing is performed with an energy detection model, the
trustworthiness is computed from the cumulated power of their received signal. Based of
these parameters, the commitment of a node to a certain hypothesis is established in the
form of BPAs. Finally, the Fusion Center combines the BPAs of all individual nodes using
the Dempster’s orthogonal rule. It selects the hypothesis associated with the mass function
whose credibility is higher:

H1 : m(H1) < m(H0)

H0 : m(H0) < m(H1)

Using the same basic DS scheme as [18], in [17] Nguyen-Thanh and Koo estimate
the DS hypothesis applying the Hubber’s robust statistics method [8]. Robust statistics
are more resistant to wireless network failures and attacks than classical statistical esti-
mators such as mean and standard deviation. Moreover, they can be obtained using the
available past sensing node’s received power data; no other information about the context is
required.

Hence, the Nguyen-Thanh and Koo scheme first estimates the distribution of both hypoth-
eses H0 and H1 of each user and filters the users with abnormal statistics data. The BPA values
of the remaining users are combined using the Demptser’s combining rule. The novelty intro-
duced by Nguyen-Thanh and Koo in the data fusion process is that they weight the nodes’
BPAs using a normalized trust factor. The fusion center maintains four counters to evalu-
ate the reliability of each network node i : n00i (n), n01i (n), n10i (n), n11i (n), where nabi (n)

means the number of times the local decision of user i is a and the global one is b over n
decisions. Then, the trust factor of a node is:

ri = n11i (n)

n11i (n) + n10i (n)
· n00i (n)

n00i (n) + n01i (n)

and the BPAs of each user are adjusted with a weight wi as follows:

m′
i (H) = ri (n)

maxi (ri (n))
· mi (H)

Simulation results indicate the scheme presents a good performance even when 70% of
users are malicious or affected by fading or deep shadowing.

6 Cross-correlation Based Algorithms of Decision

In order to mitigate the effect of malicious users, cross-correlation based algorithms gather
sensing nodes into sets according to the similarity of some of their sensing characteristics
such as location, fading environment, etc. The data fusion process in usually performed in
several steps. First, reports from nodes in a set are merged to obtain an overall group report.
Then, group reports are combined to get the final decision.

The overall architecture of cross-correlation based schemes is the same than those based
in reputations (see Fig. 2). Nevertheless, there is a difference in the order in which operations
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are performed. In cross-correlation based schemes, the calibration of the users’ weights is
made before executing the data fusion. This is due in these schemes, users are weight accord-
ing to the deviation of their sensing reports compared with the others, and no information
about which is the final decision is required. On the contrary, reputation based schemes need
to know if the local decision of a user agrees with with final one to be able to update the
user’s weight in the system.

Next, three different data fusion schemes are revised. They group nodes according differ-
ent features such as the received signal strength or the location.

A Decision Fusion Scheme by Hierarchy Configuration: Wang et al. propose to classify
nodes according to their SNR level and then merge node’s reports using a hierarchal rule
[24]. The scheme can be both employed in a decentralized and a centralized (with a fusion
center) cognitive radio network. However, since the performance of the first approach is more
limited, we will focus on the decentralized configuration.

Users sense the spectrum through an energy detector and estimate the received SNR from
the expected value of the signal energy under H0 and H1 hypotheses. Users send the SNR to
the fusion center, which analyzes them and creates groups of nodes that have a similar SNR
value. The data fusion is started merging the reports of the group whose SNR is the lowest.
The combining rule used in this first fusion level is the majority rule since it is nearly optimal
when the sensing capabilities of nodes are very similar. In this case, the detection and false
alarm probabilities of the nodes are approximately equal.

Then, the result of the lowest SNR group is inserted in the immediately above group. This
hierarchical process is performed throughout all the groups. The data fusion rule employed
in each case is the OR rule if the group has up to two values, and the majority rule otherwise.
Each group set the threshold of the majority rule according to its members reports and the
received value from the lower group.

A Double Thresholds based Cooperative Spectrum Sensing Scheme: Xu et al. propose a
double-threshold energy detector combined with a two-level decision fusion rule in order to
counteract both Always-Yes and Always-No attacks [25].

The scheme defines two thresholds that are employed during the local sensing to classify
the nodes into three groups, namely G1, G2 and G3; depending on the energy level they
receive from the analyzed spectrum band, they are set in a group or another. Nodes in G1
and G2 groups are meant to send a binary sensing report to the fusion center, while G3
members send their observed multi-bit energy value. Thus, the local decision of i th user can
be expressed as:

di =
⎧⎨
⎩

1, if yi > λ2; (ui ∈ G1)

yi , if λ1 ≤ yi ≤ λ2; (ui ∈ G3)

0, if yi < λ1; (ui ∈ G2)

with yi the received energy by node i .
The fusion center starts the data fusion process combining the energy values from G3

nodes using either the Maximal Ratio Combining (MRC) or Equal Gain Combining (EGC)
rule. The output decision of G3 is then mixed with the binary decisions from G1 and G2
using a revised version of the conventional OR, AND or Majority fusion rules, to get a final
decision D.
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D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If
N1+N2+1∑

i=1

di ≥ 1 + num (a)

If
N1+N2+1∑

i=1

di = N1 + N2 + 1 − num (b)

If
N1+N2+1∑

i=1

di ≥ 1

2
(N1 + N2 + 1 + num) (c)

0, Otherwise

where num represents the number of untrusted users and it is the minimum between N1 and
N2; N1 and N2 are respectively the number of users in G1 and G2. All users in G3 are
considered trusted. In the equation, a decision of D = 1 denotes the primary user is present,
and D = 0 means primary user is absent. Besides, the rule described by equation (a) is the
Revised OR rule, (b) is the Revised AND rule and (c) is the Revised Majority rule.

An Attack-Tolerant Distributed Sensing Protocol (ADSP): Min et al. introduce a novel
cluster-based distributed sensing that exploits shadow fading correlation for the detection of
malfunctioning sensors or malicious nodes [14]. The scheme is based on local energy detec-
tion and employs the fact that nearby nodes are subject to similar environmental conditions,
and so, their received signal strengths must be alike.

Nodes sense the spectrum and report their energy detector’s output as well as their location
to the fusion center. The fusion center first groups nodes in close proximity into a cluster and
performs a pre-filtering that consists on making a cross-correlation between the reports of
all available pair of nodes in a cluster. For each node, the fusion center counts the number
of cross-correlations which output lies outside the thresholds. Thresholds are set differently
for each pair of neighboring nodes as they depend on nodes’ relative distance and measured
energy. The final value of the counter provides a measure to filter abnormal nodes using the
following rule:

I s Normali =
{

true; counteri > β · |Ni |
f alse; counteri ≤ β · |Ni |

with β ∈ [0, 1], and Ni the set of neighbors of node i (the members of its cluster)
After filtering abnormal nodes, the fusion center merges the remaining sensing reports

using a variation of the Equal Gain Combining (EGC) rule named Weighted Gain Combining
(WGC). The authors propose to weight the nodes’ sensing reports using a factor that states
the statistical significance of the report in terms of its correlation with the others. Thus, the
protocol can further improves its attack-tolerance. The weights in WGC are defined as:

wi =
∑

j∈Nv(i)wi j

|Nv(i)| , where wi j = 1 − 2|FRi |R j (ri |r j) − 0.5|

with Nv(i) the set of valid neighbors of node i , and FRi |R j (ri |r j) the cumulative distribution
function of node i’s report (ri ) given node j’s report (r j ).

To obtain the final decision, the result of the WGC is compared with a threshold which is
derived from desired probability of false alarm. As with other fusion rules, there is a trade-off
in determining the value of the threshold; the lower the probability of false alarm, the higher
the mis-detection rate.
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7 Analysis of Secure Data Fusion Schemes

The aim of this section is to analyze and compare the performance and the limitations of
cooperative sensing protocols. A comparison of the secure cooperative sensing protocols
discussed in this paper is presented in Table 1. The following paragraphs describe the infor-
mation shown in this table.

The first two columns contain the type of protocol (reputation or cross-correlation based)
and the method’s name.

The third column (Required information from the CR network) points out the information
required to carry out the data fusion process. Some schemes assume that the system is able
to provide this information, and others require additional systems to provide the necessary
data (such as positioning devices).

The ‘Fusion Approach’ column indicates whether the protocol is based on hard-decision
or soft-decision combining.

The ‘Pre-filter’ column shows which methods apply pre-filtering over the received reports
and what parameter is used to discard the reports.

The ‘Weighted Data Fusion’ column indicates whether the data fusion method scales the
nodes’ contributions with a weight factor, and points out what is the basic algorithm used for
data fusion. As the column shows, some protocols apply new fusion techniques to scale the
different contributions.

The ‘Cost overhead’ column contains the potential overhead in the response time or the
amount of data transmissions resulting from the fact that the protocol requires a high number
of secondary users or iterations.

The ‘Rob.’ column provides an evaluation of the protocols’ robustness. Because differ-
ent types of malicious users can be involved in the attack to a cooperative sensing process,
we can define different levels of robustness for each protocol. Schemes that provide high
protection against multiple types of attacks and under a high number of attackers are given
the maximum robustness grade. On the other hand, schemes that are robust only under some
assumptions or a low number of attackers are given a low robustness grade.

The ‘Adap.’ column provides an evaluation of the protocols’ adaptability. The adaptability
depends on whether the protocols are able to adapt dynamically to system parameter changes
or, instead, they are not flexible against context changes and require different configura-
tions depending on the situation. In order to obtain the robustness and adaptability measures,
simulations of the different protocols have been used.

The ‘802.22 standard’ column indicates whether the protocol complies with the IEEE
802.22 standard. The IEEE 802.22 WRAN standard specifies a maximum false alarm proba-
bility of 10% and a minimum detection probability of 90%. The required probabilities must
be reached with a SNR of −22 dB. Few of the studied schemes are consistent with the
specifications of the IEEE 802.22 standard.

Now that we have described the different parameters used in our comparison, we will
discuss the most relevant features of the protocols explored in this paper.

Two of the methods reviewed provide a high level of protection against malicious users:
the Onion-peeling approach [23] and the D-S theory of evidence data fusion [17]. Both of
them are soft-combining schemes and demonstrate high adaptability. These schemes per-
form efficiently both when nodes dynamically change their attack behavior (their reputa-
tions change dynamically) and when nodes occasionally report extreme false values (their
reputations recovers rapidly). However, their implementation is complex and leads to an
overhead in decision time because they are iterative. As the number of iterations increases, the
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efficiency of the protocols improves. These schemes show good performance under low SNR
levels.

The Onion-Peeling approach [23] used for multiple malicious user detection provides an
accurate pre-filtering stage. This scheme uses a sophisticated iterative algorithm to identify
malicious nodes. The simulations show that the scheme achieves high probability of detection
at low probabilities of false alarm when 30% of the users are malicious and have high attack
probability.

The D-S data fusion method [17] provides two separate distributions which allow to make
an accurate identification of different types of malicious nodes and to obtain reliable rep-
utations. The protocol yields good results in scenarios with a 50% of malicious users, and
considering many different types of attacks. The method used for estimating the parameters
provides robust statistics that are based on the sensing reports obtained after a certain number
of iterations.

The other protocols studied do not appear so robust, but they are still efficient against mali-
cious users. Trust Weighted Aggregation Scheme, Weighted Sequential Probability Ratio Test
and Attack-Tolerant Distributed Sensing Protocol would be in this category. The first and the
second are hard-combining schemes, and the third is a soft-combining one.

The Trust weighted aggregation protocol [19] introduces concepts such as the confidence
level or the forgetting factor, which contribute to a more accurate data fusion. The confi-
dence level allows users to rate themselves on the reliability of their sensing reports, and it is
suitable for filtering users. However, the confidence level has not proven to be useful when
secondary users are malicious. By adjusting the protocol parameters, such as the forgetting
factor or the threshold, this protocol can be applied to different environments. However, this
scheme does not provide dynamic adaptability since the history of behaviors and forgetting
factors are specific for each environment and channel.

The Weighted sequential probability ratio test [3] achieves robustness of the data fusion
process at the cost of increasing the number of samples from the sensing nodes. This fact pro-
duces an overhead in the amount of data communications. This method is also robust under
different network conditions by adjusting the number of samples. Additionally, reputations
are computed in such a way that they can be easily recovered when nodes make occasional
wrong decisions. However, this scheme is complex because it must obtain nodes’ locations.

The key feature of the Attack-tolerant distributed sensing protocol [14] is that it groups
nodes that are in close proximity. The protocol takes advantage of the nodes’ reports corre-
lation and uses it to pre-filter abnormal behaviors. This scheme provides good results even
under low SNR environments. However, it is not robust when attacks do not exhibit signifi-
cant deviations to be detected. In addition, the protocol presents low adaptability because the
threshold of the final decision is fixed, since it is based on the tolerated probability of false
alarm.

Other protocols, such as Average combination scheme and Double Threshold based
scheme, also have low robustness, but they are simple and have low cost overhead.

The Average combination protocol [10] provides a pre-filter to detect attackers whose
results deviate from those of other users. The detection technique does not adapt to dynamic
changes on attacker’s behavior. Besides, the threshold of the final decision is fixed throughout
the sensing process. From the simulations carried out, the protocol has proven to be not robust
neither under low SNR environments nor when the number of malicious users is higher than
20%.

The Double threshold protocol [25] proposes an energy detector with two thresholds to
detect two different types of attacks. As it does not use pre-filtering or weight factors, robust-
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ness only depends on the definition of the threshold values. The adaptability of this protocol
is low because the threshold values are fixed. Finding accurate thresholds is a difficult task
since these depend on the probability of each type of attack.

Finally, some protocols assume that sensing measurements suffer from different fading but
their simulations do not consider SSDF attacks. Schemes like a Weighted data fusion scheme
with confidence vectors, a Weighted-collaborative scheme or a Decision fusion scheme by
hierarchy rule assign different contributions to nodes according to the reliability of their
sensing reports.

The Weighted data fusion protocol with confidence vectors [11] makes an accurate final
decision introducing confidence vectors and weights into the sensing results. However, the
adaptability to new environment conditions is low because the reputation of nodes is com-
puted considering their historic reports. Thus, the adaptation of the scheme depends on the
number of previous samples used to calculate the weights.

The Weighted-collaborative protocol [7] introduces weights by assuming fading environ-
ments to make an accurate sensing decision. This scheme has low adaptability because the
reputation depends on past probabilities of detection. However, this protocol is worse than the
Weighted data fusion with confidence vectors protocol because it uses all the previous sam-
ples to compute the reputations. Thus, when the environment changes, the reputations have
the contribution of the past weights and probabilities of detection. The scheme performance
improves when increasing either the number of users or the number of sensing iterations.

The Decision fusion scheme by hierarchy rule [24] proposes a combination of serial and
parallel configurations to make the final decision. The SNR levels are taken into account to
group the nodes. Thus, this protocol achieves adaptation to new environments rapidly. The
abnormalities of the received reports can be detected because they are compared with those
from neighboring nodes. However, the implementation of this scheme is complex.

In conclusion, there is no optimal scheme. If robustness is the most important charac-
teristic, then the D-S theory of evidence data fusion scheme provides the highest protection
against attacks. On the other hand, if flexibility and dynamic adaptability are more important,
then cross-correlation based schemes, and in particular the Detection fusion by hierarchy rule
protocol, is the most suitable.

8 Conclusions

Cooperative sensing protocols for cognitive radio networks have been a subject of quite a
number of investigations in recent years. Most of these investigations have been motivated by
the need to design an efficient and reliable data fusion scheme that can deal with inaccuracies
and false reports. To ensure right decisions, protocols based on reputations and cross-correla-
tion issues have been proposed. This paper reviewed the main cooperative sensing protocols
that assume the existence of malicious nodes in the network and try to nullify their effects.
Different strategies have been presented along with their limitations and advantages. It has
been shown that most robust protocols require the knowledge of prior context variables (noise
distribution, channel gain, probability of malicious users,…). More research is required along
the lines introduced in this review to create a cognitive radio network that can really learn
from the environment and improve its sensing accordingly to cope with all the security attacks
that threaten the network.
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