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Abstract: 

Artificial intelligence (AI) is increasingly collaborating in medicine. 
Generative Adversarial Networks (GANs) constitute one of the most 
interesting algorithms or techniques of AI, concretely of Deep Learning, 
having great applications to medicine, such as the generation of medical 
images. 

This project is based on the generation of images of human tissue, 
specifically, skin lesions such as melanoma or seborrheic keratosis, using a 
dataset of 2000 real images. 

Despite the difficulties involved in GANs models in terms of definition, 
architecture, programming and training, the added value that they present 
justifies the above. 

The main application of the project in the field of medicine is to increase the 
global database of images of human tissue and thus, contribute to medical 
studies in the dermatological area. 

It has been possible to obtain images with a resolution of 64x64 and 
through a representation of reduced dimensions (PCA and tSNE) of the 
whole set of images (real and generated); the variability of the generated 
images has been visually validated against the real ones. 
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1. Introduction 
 
 
1.1 Context and justification of the project 

 
This project deals with the generation of images of human tissue through 
Generative Adversarial Networks (GANs), a well-known technique of Deep 
Learning. A GAN is based on a system of two artificial neural networks that 
compete with each other in a zero-sum game. It was introduced by Ian 
Goodfellow et al. in 2014 [1] and consists of a network that generates 
candidates (generator) based on a certain distribution of data and another 
evaluates them (discriminator) based on a real database. This iterative 
process of generation-discrimination is known as training and is carried out 
until the discriminating network does not know how to distinguish between 
real and generated data.  
Some examples of GANs in medical and other fields are:  
 Unsupervised anomaly detection with GANs to guide marker discovery 

[2]: the GAN learns a manifold of normal anatomical variability and 
combined with a anomaly scoring scheme helps identifying and labelling 
anomalies.  

 Generating videos with scene dynamics [3] 
 GAIN: missing data imputation using Generative Adversarial Networks 

[4] 

 
This work has been chosen mainly due to the technical development 
involved; the generation of data through GANs is an interesting and novel 
tool that provides a wide range of possibilities. The practical application in 
the field of bioinformatics in general and the value that the project can 
provide was the main reason for choosing it.  
 
The amount of images of human tissue is limited, there are as many as 
patient’s skins have been photographed. There is an inherent linkage 
between the image and the physical patient. Artificial Intelligence breaks 
this linkage and provides a solution to increase the worldwide database of 
images of human tissue without having to have new patients. 

 
Tangibly, what is intended to achieve with this work is to obtain validated 
images of human tissues good enough to be used for other purposes, i.e. 
contrast of hypothesis in skin cancer research. 
 
 
1.2 Goals of the project 
 
General goals: 
 Design and implementation of a Generative Adversarial Network (GAN). 
 The obtaining of images generated through the GAN. 
 Guarantee a minimum level of quality of the generated images. 
 
Specific goals: 

 Research and read documentation related to the project. 
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 Establish a database of images as input to the network. 
 Design, program and validate the system architecture. 
 Generate and validate images. 
 Write documentation about the project.  
 
 
 
1.3 Approach and methodology 
 
Several strategies have been evaluated to address the project, such as 
Agile Management or KANBAN and, finally, an iterative strategy based on 
Lean Start up has been chosen and consists of creating, measuring and 
learning. In the development phase, the focus has been on the creation of a 
viable minimum product (MVP) to work with and, later on, functionalities 
have been added to converge. 
I decided to use existing frameworks and libraries that are part of the day to 
day of Machine Learning, adapting and modifying the necessary parts to 
develop the application successfully. 
 
 
1.4 Planning 

 
The main resources to carry out the project would be a PC and the 
environment for developing Deep Learning problems. Everything needed is 
provided by Anaconda1 [5] environment.  
 
For the planning, first the tasks were identified and grouped:  
 
1. GANs research    
2. Images BBDD download    
3. Image processing    

3.1. Resolution adjustment    
4. Design of system architecture    
5. Input data    

5.1. Coding  
5.2. Testing    
5.3. Validation    

6. GAN Generator    
6.1. Coding  
6.2. Testing  
6.3. Validation    

7. GAN Discriminator   
7.1. Coding    
7.2. Testing    
7.3. Validation    

8. GAN Model  
8.1. Coding  
8.2. Testing    

                                            
1 Anaconda is a Python data science platform that helps providing the dependencies needed 
centralizedly for creating Machine Learning. 
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8.3. Validation    
9. GAN Training    
10. Output data    

10.1. Validate    
11. Quality output    
12. Optimize code    
13. Write documentation    
14. Design presentation    
15. Present 
 



4 4  

 

 
 

Figure 1. Gantt Diagram  
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Milestones 

It has been established 4 milestones along the development of the project 
that will define its course: 
 

 Definition of the system architecture: data I/O, GAN architecture... 
 For meeting this, both the data flow (input and output) and the 

network architecture (network type, number of layers and filters...)  
have to be defined.  The project starts with a Convolutional Neural 
Net for the Generator and a Deconvolutional Neural Net for the 
discriminator (DCGAN).  

 Program the generator and the discriminator: 
 Once they are defined and programmed, this milestone will be 

achieved.  

 Training of the system:  
 Loss function defined  
 Algorithm and training variables of the general model defined:  

o Batch size 
o Number of epochs 
o Latent vector size 
o Etc.  

 Obtaining a quality output 
 
 
1.5 Brief summary of obtained products  

 
As obtained products we have: 

 Folder called Code that contains 4 programs in Python:  
 model.py defines the models of neural networks (generator and 

discriminator) 
 GAN.py  implements the system for the generation of images 
 PCA_representation.py performs the PCA plotting for validate the 

generated images. 
 tSNE_representation.py performs the tSNE plotting for validate the 

generated images. 

 Folder with tests and results 
 Inside there is a folder called Validation, there can be found the 

validation plots (PCA and tSNE) for each case.  

 Folder with the dataset (ISIC_2017) 

 The memory in PDF 
 

 
1.6 Brief description of the other sections 

 
The rest of the sections will explain the technical design and development 
deeper going into the details. The Design section is about what and how the 
things will be and the Development section explains how to get them done. 
After those chapters, the reader will find the Tests and results section where 
the experiments and their outputs are explained.  
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2. Theoretical Background 
 
 
Artificial Intelligence (AI) is progressively getting more attention, 
researchers from all over the world are investigating in solutions and 
improvements to every-day problems applying AI, but what is AI? 
Massachusetts Institute of Technology (MIT) defines it through a couple of 
concepts [6]: 
 

 Computational models of human behaviour; programs that behave 
(externally) like humans  

 Computational models of human “thought” processes; programs that 
operate (internally) the way humans do  

 Computational systems that behave intelligently; intelligently meaning 
like humans 

 Computational systems that behave rationally 
 
So, Machine Learning (ML) is a tool for achieving AI. In 1959, Arthur 
Samuel, AI researcher defined machine learning informally as the ability to 
learn without being explicitly programmed. So Arthur Samuel, way back in 
the history of machine learning, actually did something very cool, which was 
he wrote a checkers program, which would play games of checkers against 
itself [7]. 
 
The way ML is performed depends on how the learning process is done, 
therefore we can distinguish among: 

 Supervised learning: it is the task of learning a function that maps an 
input to an output based on example input-output pairs. It is performed over 
labelled data [8]. 

 Unsupervised learning: the learning is done from unlabelled, 
unclassified data. This type of learning tries to identify commonalities, 
patterns in the data and predict new data based on those patterns .  

 Reinforcement learning: it is concerned with how software [9]. 

agents ought to take actions in an environment so as to maximize some 
notion of cumulative reward [10]. 
 
So, depending on which learning process we have in our problem, it will be 
address using one algorithm or another.  
In the Supervised Learning, there most widely used are:  

 Support Vector Machines 

 Linear Regression 

 Logistic Regression 

 K-Nearest Neighbour 

 Decision Trees 

 Artificial Neural Networks 
 
On the other hand, in the Unsupervised Learning: 

 K-means 

 Hierarchical Clustering 
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 Artificial Neural Networks 
The algorithm2 Artificial Neural Networks (ANN) is in both types of learning, 
it belongs to a subset of Machine Learning called Deep Learning, as seen in 
the image below. 
Deep Learning uses a cascade of multiple layers of nonlinear processing 
units for feature extraction and transformation. Each successive layer uses 
the output from the previous layer as its input [11]. 
 

 
 

Figure 2. Artificial Intelligence breakdown 

 
 
So, the Artificial Neural Networks are a computing systems inspired by the 
biological neural networks from animal brain. See Figure 3.  
They are based on a collection of connected units or nodes called artificial 
neurons disposed by layers. Each connection, like the synapses in a 
biological brain, can transmit a signal from one artificial neuron to another. 
An artificial neuron, receives a signal process it and then signal additional 
artificial neurons connected to it. 
So, the signals are propagated forward according to the activation 
function until the last layer, the output layer, in which the loss function is 
computed.  
The loss function, generally, calculates in the training process the 
difference between the obtained value from the ANN and the theoretical 
one. This value is called error. Then, this error is propagated backwards in 
order to update all of the weights (backpropagation) by means of the 
gradient descent algorithm.  
Gradient descent is a first-order iterative optimization algorithm, mainly 
used for finding the minimum of a function. In ANN it performs gradient of 
the loss function in each neuron, therefore the weights are properly updated 
depending on the neuron.  

                                            
2  Artificial Neural Networks are not an algorithm, but rather a framework   for many 
different machine learning algorithms to work together and process complex data inputs. 

 

https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain
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Figure 3. Artificial Neural Network 

 
 
Convolutional Neural Networks (CNN) [12] are a type of ANN, used mainly 
for visual imagery. Typical CNN architecture is shown in the Figure 4. 
It consists of an input and an output layer, as well as multiple hidden layers. 
The hidden layers of a CNN typically consist of convolutional layers, ReLU 
layer i.e. activation function, pooling layers, fully connected layers and 
normalization layers. 
Description of the process as a convolution in neural networks is by 
convention. Mathematically it is a cross-correlation rather than a convolution 
(although cross-correlation is a related operation). This only has 
significance for the indices in the matrix, and thus which weights are placed 
at which index. 

 
Convolutional layers apply a convolution operation to the input, passing the 
result to the next layer. The convolution emulates the response of an 
individual neuron to visual stimuli.  
Each convolutional neuron processes data only for its receptive field. 
Although fully connected feed forward neural networks can be used to learn 
features as well as classify data, it is not practical to apply this architecture 
to images. A very high number of neurons would be necessary, even in a 
shallow (opposite of deep) architecture, due to the very large input sizes 
associated with images, where each pixel is a relevant variable. For 
instance, a fully connected layer for a (small) image of size 100 x 100 has 
10000 weights for each neuron in the second layer. The convolution 
operation brings a solution to this problem as it reduces the number of free 
parameters, allowing the network to be deeper with fewer parameters. For 
instance, regardless of image size, tiling regions of size 5 x 5, each with the 
same shared weights, requires only 25 learnable parameters. In this way, it 

https://en.wikipedia.org/wiki/Multilayer_perceptron#Layers
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Receptive_field
https://en.wikipedia.org/wiki/Multilayer_perceptron
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resolves the vanishing or exploding gradients problem in training traditional 
multi-layer neural networks with many layers by using back propagation. 
 
Pooling 
Convolutional networks may include local or global pooling 
layers,[clarification needed] which combine the outputs of neuron clusters at 
one layer into a single neuron in the next layer. For example, max 
pooling uses the maximum value from each of a cluster of neurons at the 
prior layer.[12] Another example is average pooling, which uses the 
average value from each of a cluster of neurons at the prior layer.  
 
Fully connected 
Fully connected layers connect every neuron in one layer to every neuron in 
another layer. It is in principle the same as the traditional multi-layer 
perceptron neural network (MLP). 
 
Receptive field 

In neural networks, each neuron receives input from some number of 
locations in the previous layer. In a fully connected layer, each neuron 
receives input from every element of the previous layer. In a convolutional 
layer, neurons receive input from only a restricted subarea of the previous 
layer. Typically the subarea is of a square shape (e.g., size 5 by 5). The 
input area of a neuron is called its receptive field. So, in a fully connected 
layer, the receptive field is the entire previous layer. In a convolutional layer, 
the receptive area is smaller than the entire previous layer. 
 
Weights 

Each neuron in a neural network computes an output value by applying 
some function to the input values coming from the receptive field in the 
previous layer. The function that is applied to the input values is specified 
by a vector of weights and a bias (typically real numbers). Learning in a 
neural network progresses by making incremental adjustments to the 
biases and weights. The vector of weights and the bias are called 
a filter and represents some feature of the input (e.g., a particular shape). A 
distinguishing feature of CNNs is that many neurons share the same filter. 
This reduces memory footprint because a single bias and a single vector of 
weights is used across all receptive fields sharing that filter, rather than 
each receptive field having its own bias and vector of weights.  

 

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-mcdns-12
https://en.wikipedia.org/wiki/Multi-layer_perceptron
https://en.wikipedia.org/wiki/Multi-layer_perceptron
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Memory_footprint
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Figure 4. CNN architecture 

 
CNN’s lead us to the GANs that are a system of two neural networks 
contesting with each other in a zero-sum game framework. They were 
introduced by Ian Goodfellow et al. in 2014 [1]. 
Typically, the generative network learns to map from a latent space to a 
particular data distribution of interest, while the discriminative network 
discriminates between instances from the true data distribution and 
candidates produced by the generator. The generative network's training 
objective is to increase the error rate of the discriminative network (i.e., 
"fool" the discriminator network by producing novel synthesized instances 
that appear to have come from the true data distribution). 
In practice, a known dataset serves as the initial training data for the 
discriminator. Training the discriminator involves presenting it with samples 
from the dataset, until it reaches some level of accuracy. Typically the 
generator is seeded with a randomized input that is sampled from a 
predefined latent space (e.g. a multivariate normal distribution). Thereafter, 
the discriminator evaluates samples synthesized by the generator. Back 
propagation is applied in both networks so that the generator produces 
better images, while the discriminator becomes more skilled at flagging 
synthetic images. The generator is typically a deconvolutional neural 
network, and the discriminator is a convolutional neural network [13]. 
The idea to infer models in a competitive setting (model versus 
discriminator) was proposed by Li and Gross in 2013 [14]. Their method is 
used for behavioural inference. It is termed Turing Learning, as the setting 
is akin to that of a Turing test. Turing Learning is a generalization of 
GANs. Models other than neural networks can be considered. Moreover, 
the discriminators are allowed to influence the processes from which the 
datasets are obtained, making them active interrogators as in the Turing 
test. The idea of adversarial training can also be found in earlier works, 
such as Schmidhuber in 1992. In the next image is shown the architecture 
of a GAN. 
 
 

https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Turing_test
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Figure 5. GAN architecture 
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3. Definition of requirements 
 

Technical requirements 
One of the main ones for the code is to be as modular and parameterized 
as possible. Thus, it is clean, organized, easy testable and easy 
changeable. 
 
The code has to be able to perform the following actions: 

 Set global variables as dataset path, number of epochs, batch size 

 Load dataset of real images 

 Image processing 
 Resizing 
 Normalization  
 Rolling axis 

 Organize the images into batches of a specific size 

 Define GAN model (architecture & parameters) 
 Define Generator neural network 
 Define Discriminator neural network 
 Combine them into a Generator containing Discriminator neural 

network 

 Definition of hyperparameters:  
 Dimension of Z (latent space) 
 Which optimizer function to use? And which parameters to set?  [14] 
 Loss function? 
 Intermodel margin 

 Training of the complete model 
 Be able to load pre-trained models  
 Weights  
 Training and testing data 
 Definition of the labels  
 Definition of convergence 
 Save weights 

 Generate images 

 Validate generated images 
 tSNE 
 PCA 
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4. Design and methodology 
 

There have been evaluated several work methodologies to be followed in 
this project, such as Agile Management or KANBAN and finally, it has been 
decided to go for an iterative strategy based on Lean Start up. 
Lean Start up is a methodology created for developing businesses and 
products and consists in going through the whole process as fast as it is 
possible. In the next image, it can be seen the cyclic steps in a Lean Startup 
building process. 
 

 
 

Figure 6. Lean Start up cycle 

 
 In this case, the first milestone to be reached was to develop a minimum 
viable product (MVP), which validates the whole end-to-end process. That 
means when the input/output data and the model were defined and 
developed and so, the model could be trained. This MVP development 
process involves many steps in the designing phase that we will see later 
on. 
 
 So, once the MVP is ready, it starts the testing phase where all the 
insights are gotten. The MVP consisted in the GAN with a dataset of only 10 
real images in order to just generate images, even though they were only 
noise images with a pattern slightly similar to the real ones. 
 
In the following paragraphs, the designing process is going to be explained, 
from the dataset of real images to the validation of the generated images. 
 
 
DATASET COLLECTION 
The dataset used [15] to evaluate the method corresponds to the one used 
in the ISIC 2017 challenge. It consists of 2000-coloured dermoscopic 
images of both benign and malignant skin lesions (images of 1372 benign 
lesions, 254 seborrheic keratosis samples and 374 melanoma). The 
resolution is not fix, therefore they were standardized to a fixed one in the 
code. 
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 The dataset comes with a CSV file that classifies the images depending 
whether they are benign, seborrheic keratosis or melanoma following a one 
hot encoding. See image below. 

 
 

Figure 7. Real images classification 

 
 
 
IMAGE PROCESSING 

 In order to have the images from the dataset as an input for the 
Discriminator network, they cannot be fed raw. They have to be processed 
and this involves resize and normalizes them. 
Taking the dataset of images raw, it can be observed different resolutions 
like the 2 following images: 

 
 

Figure 8. 2048 x 1536           Figure 9. 962 x 722 
  

 
So, in order to develop quickly the MVP and due to Hardware awareness it 
was decided to resize all of the real images to 64 x 64 in order to be less 

time and resources consuming.  
 
Another important aspect regarding the dataset is the image normalization. 
It modifies the range of pixel intensity values with the aim to achieve 
consistency in dynamic range for the dataset itself. 
Initially, the images are in range [0,255], so the normalization done here is 
basically divide by the mean (127.5), now the range becomes [0,2] and then 
subtract by 1 in order to make it [-1,1] [16]. 
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MODEL DEFINITION 
 

 The model is composed by 2-stacked Neural Networks, the Generator 
and the Discriminator. In this phase it was needed to define the architecture 
of the GAN, several types were initially evaluated, such as DCGAN, 
LAPGAN and Conditional GAN. It was decided to go for the DCGAN as a 
first approach, it works just fine with images. 
So, remembering what a DCGAN looks like: 
 

 
 

Figure 10. Deep Convolutional Generative Adversarial Network (DCGAN) 

 
Here we have several variables to define, for building the Generator we 
have: 
 
Input dimension of the Generator 

The input of the Generator is a series of randomly generated numbers 
called latent sample that works as a noise vector (Z). 
 
Output dimension of the Generator 

 The output of the Generator works as the input for the Discriminator, 
together with the dataset of real images. So, the dimension has to match 
the size of our images. As a first approach, 64 x 64.  
 
Number of convolutions  
 This depends on how much information the images have, for example if 
the images that are trying to be generated are supposed to have many 
features, it is recommended to use several convolutions.  
In our case, we use 4 Convolutional layers, specifying the number of output 
filters in each convolution, kernel size and number of strides. Taking into 
account that the desirable generated image size is 64x64 and the length of 
the noise vector is 100, therefore in order not to have superposition of the 
moving kernel the following parameters are to: 
- kernel size = 5 
- number of strides = 5 
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In the image below it is shown how it looks: 

 

 
 

Figure 11. Convolution sliding filters 

 
 

 
Let’s assume this image has a size of 64x64, so the filters allocated in the 
upper left corner have a size of 5x5 and they move along the image with a 
stride of 5, that means there is no superposition, all the filter .  
Padding is set to same, therefore it is assured the size of output feature 
map is the same as the input. 
 
Batch normalization  
In order to reduce the amount by what the hidden unit values shift around, 
so called covariance shift, we apply Batch Normalization after each layer in 
the Generator [17]. 
 
Activation layer 

Also, after each conv layer, it is convention to apply a nonlinear layer 
(or activation layer) immediately afterward. The purpose of this layer is to 

introduce nonlinearity to a system that basically has just been computing 
linear operations during the convolutional layers (just element wise 
multiplications and summations). In the past, nonlinear functions like tanh 
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and sigmoid were used, but researchers found out that ReLU layers work 

far better because the network is able to train a lot faster (because of the 
computational efficiency) without making a significant difference to the 
accuracy. It also helps to alleviate the vanishing gradient problem, which is 
the issue where the lower layers of the network train very slowly because 
the gradient decreases exponentially through the layers.  
ReLU layer applies the function f(x) = max(0, x) to all of the values in the 
input volume. In basic terms, this layer just changes all the negative 
activations to 0. It increases the nonlinear properties of the model and the 
overall network without affecting the receptive fields of the convolutional 
layer [18]. 
 
Upsampling 
So, the idea behind the upsampling process is to reconstruct the continuous 
signal from the original one and resample it using more samples. We use a 
2D upsampling layer before any convolutional layer in the generator in order 
to increase the sampling rate of the input data. 
 
Output layer 
The output layer is a tanh activation function, which helps mapping the 
resulting values into the [-1, 1] range, which is the same range as our 
processed real images. The output from the generator and the real images 
will be fed into the discriminator for the training process. 
 

 
 
In the case of the Discriminator, regarding its structure we have: 
 
Number of convolutions  

It will have 4 convolutional hidden layers like the Generator. The first one 
will receive the 64x 64 sized images as input. In every convolutional layer, 
subsampling is performed in order to  combat unbalanced classes. This is a 
common practice in classification problems solved by CNNs and that is 
what we are doing here, trying to classify what images are good enough to 
be considered “real”.  
 
Leaky-ReLU activation layer 

Every convolutional layer is followed by a Leaky-ReLU activation function. 
Many activation functions will work fine with this basic GAN architecture. 
However, leaky ReLUs are very popular because they help the gradients 
flow easier through the architecture. 
A regular ReLU function works by truncating negative values to 0. This has 
the effect of blocking the gradients to flow through the network. Instead of 
the function being zero, leaky RELUs allow a small negative value to pass 
through. That is, the function computes the greatest value between the 
features and a small factor. 
Leaky RELUs represent an attempt to solve the dying ReLU” problem. This 
situation occurs when the neurons get stuck in a state in which RELU units 
always output 0s for all inputs. For these cases, the gradients are 
completely shut to flow back through the network. This is especially 
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important for GANs since the only way the generator has to learn is by 
receiving the gradients from the discriminator [19]. 
In our case we will go for a slope value of 0.2. 
 
Dropout 
Right after every LeakyReLU activation layer, a Dropout layer is needed for 
several reasons.  
GANs are likely to get stuck, therefore it is recommended to add some 
randomness in the training process. We do this by adding dropout that 
basically shuts down several units in certain passes in order not the develop 
co-dependencies among each other.  
Dropout also helps preventing overfitting.  
The dropout function takes a parameter called rate that is a fraction of the 
input units to drop, 0.2 in this case. 
 
 
Flatten 
A Flatten layer is needed for converting the 2d image into vector 
representation. 
 
 
Sigmoid activation layer 

Finally, the discriminator needs to output probabilities. For that, we use 
the Logistic Sigmoid activation function on the final logits. 
A sigmoid function is applied to the real-valued output to obtain a value in 
the open-range [0, 1]. 
 
 
Once the generator and the discriminator are designed, they will be 
combined in a model called generator-containing-discriminator. Basically 
this is a sequential model that puts the generator and right after the 
discriminator. For training purposes is easier to work with this rather than 
working with the 2 models separated. 
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5. Development 
 
In this chapter, we are going through the code giving explanations to what is 
needed. 
 
DEPENDENCIES 
I used Keras [20] running with a Tensorflow backend for the Machine 
Learning (ML) part of the code, i.e. definition of the neural networks, 
training...  
Keras is a high-level ML API that allows fast prototyping and 
experimentation. Keras seems to fit perfectly in the context of this work 
taking into account the time restriction and difficulty level. 
Tensorflow [21] is an open source software library for high performance 
numerical computation. Its flexible architecture allows easy deployment of 
computation across a variety of platforms (CPUs, GPUs, TPUs), and from 
desktops to clusters of servers to mobile and edge devices. Originally 
developed by researchers and engineers from the Google Brain team within 
Google’s AI organization, it comes with strong support for machine learning 
and deep learning and the flexible numerical computation core is used 
across many other scientific domains. 
I used Anaconda [5] for install dependencies and libraries, it is a data 
science platform.  
 
So, the code is structured in 2 modules: 

 model.py; Defines the Generator and Discriminator neural networks and 
also the model based on both of them combined.  

 GAN.py;  This is the main code. From here the module model.py is 
imported in order to instantiate the models. In this code happens from the 
dataset loading and processing to the training and images generation. 

 
Let’s go through the code starting from the model.py: 
 

 
 

Figure 12. model.py imported libraries 

 
 

In the Design section, it has been explained the structure of the generator 
and discriminator. So in order to develop the code, it is needed to import 
mostly all the functions and libraries from above. Once they all imported, 
they can be used straightly. 
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The Keras architecture basically starts defining a model, Sequential in this 
case, that stacks layers linearly. Then, layers like Convolutional, Dropout, 
LeakyReLU or Dense (fully connected) have to be also imported. 
 
The following image corresponds to the generator model: 
 

 
 

Figure 13. Generator definition 

 
 
It can be seen the procedure with 3 parameters that are specified in the 
header:  

 inputdim: it refers to the dimension of the randomly generated noise 
vector that works as the input of the generator. 

As we mentioned before, the value is 100 as per convention3. 

 xdim, ydim; their value depends on the size of the image. They are used 
to specify the output of the first fully connected layer of the generator.  

 
Then, the discriminator is defined. See image below to see how it is 
developed: 
 

                                            
3 GANs are recent discovery in the Artificial Intelligence world [27], so a value of 100 in the 
latent vector is commonly used. Analysis of several values can be considered as a future linea 
of research, however it is out of this project’s scope. 
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Figure 14. Discriminator definition 

 
As a highlight, it can be seen how easy the layers are stacked one following 
another once the basic architecture is clear. 
The first design and implementation of a discriminator was done in the early 
research phase in order to gain some background knowledge. In that 
design a classifier of images of cats and dogs were developed with a quite 
good success rate to be a simple one. See Annex C for more info.  
 
And the last procedure of this script model.py is the combination of 
generator and discriminator.  
Setting the model not to be trained, it allows fixing the weights in order to 
fine-tune the mode for example layer-wise.  
 

 
 

Figure 15. Generator containing discriminator 

 
 

Now the main script (GAN.py) will be shown, starting from the libraries to be 
imported:  
 

 
 

Figure 16. GAN.py imported libraries 

 
The basic imported libraries are: 

 Numpy: Python package for numeric and scientific computing [22]. 

 cv2: it is an image and video-processing library with bindings in C++, C, 
Python, and Java. OpenCV is used for all sorts of image and video 
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analysis like facial recognition and detection, license plate reading, photo 
editing… [23] 

 Scipy: Python-based ecosystem of open-source software for 
mathematics, science, and engineering [24]. 

 Argparse: this module makes it easy to write user-friendly command-line 
interfaces. The program defines what arguments it requires, 
and argparse will figure out how to parse those out of sys.argv. 
The argparse module also automatically generates help and usage 
messages and issues errors when users give the program invalid 
arguments. [25] 

 OS: this module provides a portable way of using operating system 
dependent functionality [26]. 

 Matplotlib: it is a Python 2D plotting library which produces publication 
quality figures in a variety of hardcopy formats and interactive 
environments across platforms.  

 
Also module model.py is imported in order to be able to use the neural nets 
previously defined. 
 
So, I decided to organize the main code in functions that will be called when 
is needed. For example for loading images, there is this following code that 
loads, resizes and normalizes it: 
 

 
 

Figure 17. Image loading and processing 

 
 
Also, I created a function for creating the noise vector and for creating the 
chunks for the batch distribution later on: 
 

 
 

Figure 18. Noise vector 

 
 

 
 

Figure 19. Chunks for batches organization 
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In order to run the algorithm, it is mandatory to specify some parameters 
like: 

 path: directory where the dataset of real images is located. 

 TYPE: training or generate. 

 batch_size: size of the batches of the dataset. 

 epochs: how many times the entire dataset is passed forward and 
backward through the entire neural network. 

 img_num: how many images to generate. 
 
In the image below it can be seen the function that parses all this 
parameters needed to run the algorithm: 
 

 
 

Figure 20. Get arguments 

The training process is the most important part; it gives the network the 
ability to get better through every iteration (epoch). 
It starts by setting a seed number for reproducibility of the whole process. 
Then the real images from the dataset with JPG extension are loaded. They 
have to be in a certain path that is specified in the arguments form the 
get_args function.  
The real images are organized in batches in order to be fed to the 
discriminator that way. Then the models are instantiated from the model.py 
script and the optimizer function is defined. In this case, I used Adam 
optimizer. It has shown good results in Conv. Nets even for models in 
production. Right after the models have to be compiled to use them. The 
loss chosen is the “binary_crossentropy”.  
 
To set up a point where we can assure the GAN has converged, it is 
needed to define a variable that measures the difference between the 
Generator and the Discriminator errors. That variable is called intermodel 
margin. We set a value of 0.1 for it by means of trial and error.  
 
When the training core loop begins, in the first epoch, the first thing that the 
algorithm does is looking for any trace from previous trainings, looking for 
the weights files. If it finds it, they are loaded and the training continues right 
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from that point on. This is an interesting and useful concept because it 
saves time and prevents the duplicated work; it makes the whole process 
more efficient. 

 

 
 

Figure 21. Training process I 

 
Now it starts the looping inside of the real images batches, it creates noise 
batches and generates images out of them. They are all saved for any 
troubleshooting or analysis later on. 
So, the following steps are basically the definition of the Discriminator and 
Generator inputs and labels vectors. 

 For Discriminator, the input is based on 2 vectors: 
 The generated images (fakes) 
 The images from the dataset (real) 

 For Generator, the input is the noise vector. 
Now the proper training is performed thanks to the train_on_batch Keras 
function.  
For every batch and epoch it outputs a loss both for the generator and 
discriminator and with this losses we established the convergence 
condition: 

 The absolute value of the difference has to be smaller than the 
intermodel margin. 
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So, what the convergence loop does is identify the model with smallest loss 
and keep training it until the convergence condition is reached. 

 
Figure 22. Training process II 

 
At the end of every training on batch, the weights are updated and saved 
and some of the generated images are shown in a combined plot. 
 

 
 

Figure 23. Training process III 

 
Once the GAN is trained, it can be straightly used to generate images by 
specifying in the arguments the parameter generate and the number of 
images to generate: 
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Figure 24. Generate images 
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6. Tests and results 
 
For the testing, several variables have been taking into account: 

 Number of epochs 

 Batch size 

 Resolution of images  
 
The resolution of the images is the main limitation due to the image 
processing capacity of the machine. I am running this in a MacBook Pro (i5 
2.7 GHz processor, RAM of 8 GB and Graphic card Intel Iris Graphics 
6100); it is not a set up specific for Deep Learning computing. However 
reducing the resolution, it is feasible to carry out the processing, training 
and generation of images in a relatively normal duration. 
 
Below is shown the experiments carried out with their parameter details and 
generated images in each case: 
 
 
Test #1 
Number of epochs = 10 
Batch size = 100 
Resolution of images = 64x64 
Duration = 5 hours 
 

 
Figure 25. Test #1 - Generated images 

 
 

 
Test #2 

Number of epochs = 20 
Batch size = 100 
Resolution of images = 64x64 
Duration = 11 hours 
 

 
 

Figure 26. Test #2 - Generated images 
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Test #3 
Number of epochs = 10 
Batch size = 100 
Resolution of images = 512x512 
Duration = NA 
 
Model did not converge; it remained stuck in the convergence condition.  
 
 
 
Test #4 
Number of epochs = 10 
Batch size = 100 
Resolution of images = 128x128 
Duration = 38 hours 
 

 
 

Figure 27. Test #4 - Generated images 

 
 
 
As it can be seen, the poor resolution makes the images hard to be visually 
inspected or validated. That is why the validation was performed objectively 
by means of a reduced components representation (PCA and tSNE) of 
1000 images from the dataset, for keeping the graph readable, including the 
generated images. In the graph, it is observed the distribution of the images 
along the axis and the clusters formed are noticeably logical. The reader 
can access to the code for both the PCA and the tSNE representation 
located in the Annex A and B, respectively. 
 
So, Principal Components Analysis and t-Distributed Stochastic Neighbor 
Embedding have been chosen because both of them are techniques of 
dimensionality reduction and are well suited for this task. The main 
difference between them is that tSNE is non-linear so, it would be able to 
capture some trickier manifolds. 
 
The following 2 pages are the results obtained by plotting the tSNE and the 
PCA for the Test #4: 
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Figure 28. Test #4 - tSNE 
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Figure 29. Test #4 - PCA 
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RESULTS 

 
So, for the 2 analyses there have been added 25 generated images and the 
rest are real ones. Highlighted with a blue arrow are some of the fake 
images. It can be observed that the distribution of the fake images along the 
graph visually makes sense taking into account the clusters formed.  
This means that the statistical variability of the generated images is similar 
to the variability of the dataset and could be added into the dataset for 
further studies as if they were real ones.  
A failing scenario would be that in the graphical representation, the fake 
images form a clear cluster, meaning that they have their own 
characteristics. It is not what we are looking for with this work; instead we 
are trying to bring the fake images as close as we can to the real ones.   
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7. Conclusions and future lines of research 
 
The general conclusions are:  

 Even though the hardware limitation affecting the resolution of the output 
images, the aim of the project has been reached successfully. The 
technical complexity and the lack of rigorous information due to the 
newness of the topic have made the work tough sometimes. But it has 
been rewarding to meet the goals and satisfying to develop this work in 
the medicine field. 

 Regarding the project management in terms of timing and resources, it 
has met the expectations. Due to the lack of seniorship in the field, I set a 
non-aggressive schedule with a big buffer at the end of the development 
phase in order to mitigate any timing deviation. It happened during the 
development of the training algorithm, I got stuck and spent more time 
than the one foresaw in the Gantt diagram. The buffer just worked fine for 
me in this case.  

 
Future lines of research would be:  

 Improving the algorithm to be able to distinguish among the skin lesions: 
Melanoma, Seborrheic keratosis... That would refine the model and make 
it more powerful. It can be done with a neural network as a classifier 
placed right after the discriminator of the GAN. As input to this classifier, 
the generated images those were able to “fool” the discriminator and the 
dataset for the training remains the same. 

 Explore different GAN architectures, such as LAPGAN or Conditional 
GAN, in which the noise vector and a vector of labels form the input of 
the generator.  

 With a more powerful computer set up, try to generate high-resolution 
images in order for them to be compared to the originals at the original 
resolution. 
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8. Glossary 
 
 

AI Artificial Intelligence 
ML Machine Learning 
DL Deep Learning 
ANN Artificial Neural Network 
CNN Convolutional Neural Network 
GAN Generative Adversarial Network 
DCGAN Deep Convolutional Generative 

Adversarial Networks 
MVP Minimum Viable Product  
MLP Multi-Layer Perceptron 
tSNE t-Distributed Stochastic Neighbor 

Embedding 
PCA Principal Components Analysis 
ReLU Rectified Linear Unit 
Tanh Hyperbolic tangent 
LAPGAN Laplacian Generative Adversarial 

Network 
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10. Annexes 
 
 
A. Code for implementing representation in reduced dimensions 

(PCA)4. 
 

import os 
#%matplotlib inline 
import random 
#import cPickle as pickle 
import numpy as np 
#from ggplot import * 
import keras 
from keras.preprocessing import image 
from keras.applications.imagenet_utils import decode_predictions, 
preprocess_input 
from keras.models import Model 
import matplotlib.pyplot  
from matplotlib.pyplot import imshow 
from keras.applications.imagenet_utils import decode_predictions, 
preprocess_input 
from keras import applications 
from skimage.util.shape import view_as_windows 
from skimage.transform import resize 
from scipy.spatial import distance 
from tqdm import tqdm 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from PIL import Image 
from sklearn.decomposition import PCA 
 
 
PATH = '../../../Dataset/ISIC_2017_split1_copy/' 
 
 
model = keras.applications.Xception(weights='imagenet', include_top=True) 
model.summary() 
 
feat_extractor = Model(inputs=model.input, 
outputs=model.get_layer("avg_pool").output) 
feat_extractor.summary() 
 
 
def load_image(path): 
    img = image.load_img(path, target_size=(64,64)) 
    x = image.img_to_array(img) 
    x = np.expand_dims(x, axis=0) 

                                            
4 It has been implemented in Jupyter Notebook with its graphical functionalities. 
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    x = np.rollaxis(x, 1, 3) 
    x = np.rollaxis(x, 3, 2) 
    #print(x.shape) 
    x = preprocess_input(x) 
    return img, x 
 
 
images_path = PATH 
image_extensions = ['.jpg']   # case-insensitive (upper/lower doesn't matter) 
max_num_images = 10000 
 
images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(images_path) 
for f in filenames if os.path.splitext(f)[1].lower() in image_extensions] 
if max_num_images < len(images): 
    images = [images[i] for i in sorted(random.sample(xrange(len(images)), 
max_num_images))] 
 
print("keeping %d images to analyze" % len(images)) 
 
 
features = [] 
thumbs = [] 
for i, image_path in tqdm(enumerate(images)): 
    if i % 10 == 0: 
        print("analyzing image %d / %d" % (i, len(images))) 
    img, x = load_image(image_path); 
 
    feat = feat_extractor.predict(x)[0] 
    features.append(feat) 
    thumbs.append(img) 
 
print('finished extracting features for %d images' % len(images)) 
 
 
features = pd.DataFrame(features) 
scaler = StandardScaler() 
features_scaled = scaler.fit_transform(features) 
 
 
 
pca = PCA(n_components=2) 
 
_pca = pca.fit(features).transform(features)  
#_pca = pca.fit(features_scaled).transform(features_scaled)  #scaled 
version 
 
pca_df=pd.DataFrame(_pca,columns=['pc1','pc2']) 
 
tx, ty = pca_df.pc1, pca_df.pc2 
tx = (tx-np.min(tx)) / (np.max(tx) - np.min(tx)) 
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ty = (ty-np.min(ty)) / (np.max(ty) - np.min(ty)) 
 
width = 4000 
height = 3000 
max_dim = 200 
 
full_image = Image.new('RGBA', (width, height)) 
for img, x, y ,thumb in tqdm(zip(images, tx, ty, thumbs)): 
    tile = thumb 
    rs = max(1, tile.width/max_dim, tile.height/max_dim) 
    tile = tile.resize((int(tile.width/rs), int(tile.height/rs)), Image.ANTIALIAS) 
    full_image.paste(tile, (int((width-max_dim)*x), int((height-max_dim)*y)),  
                     mask=tile.convert('RGBA')) 
 
matplotlib.pyplot.figure(figsize = (16,12)) 
imshow(full_image) 
 
 
 
 
B. Code for implementing representation in reduced dimensions 

(tSNE)5. 
 
import os 
#%matplotlib inline 
import random 
#import cPickle as pickle 
import numpy as np 
#from ggplot import * 
import keras 
from keras.preprocessing import image 
from keras.applications.imagenet_utils import decode_predictions, 
preprocess_input 
from keras.models import Model 
import matplotlib.pyplot  
from matplotlib.pyplot import imshow 
from keras.applications.imagenet_utils import decode_predictions, 
preprocess_input 
from keras import applications 
from skimage.util.shape import view_as_windows 
from skimage.transform import resize 
from scipy.spatial import distance 
from tqdm import tqdm 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from PIL import Image 
from sklearn.decomposition import PCA 
from sklearn.manifold import TSNE 

                                            
5 It has been implemented in Jupyter Notebook with its graphical functionalities. 
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PATH = '../../../Dataset/ISIC_2017_split1_copy/' 
 
 
model = keras.applications.Xception(weights='imagenet', include_top=True) 
model.summary() 
 
feat_extractor = Model(inputs=model.input, 
outputs=model.get_layer("avg_pool").output) 
feat_extractor.summary() 
 
 
def load_image(path): 
    img = image.load_img(path, target_size=(64,64)) 
    x = image.img_to_array(img) 
    x = np.expand_dims(x, axis=0) 
    x = np.rollaxis(x, 1, 3) 
    x = np.rollaxis(x, 3, 2) 
    #print(x.shape) 
    x = preprocess_input(x) 
    return img, x 
 
 
images_path = PATH 
image_extensions = ['.jpg']   # case-insensitive (upper/lower doesn't matter) 
max_num_images = 10000 
 
images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(images_path) 
for f in filenames if os.path.splitext(f)[1].lower() in image_extensions] 
if max_num_images < len(images): 
    images = [images[i] for i in sorted(random.sample(xrange(len(images)), 
max_num_images))] 
 
print("keeping %d images to analyze" % len(images)) 
 
 
features = [] 
thumbs = [] 
for i, image_path in tqdm(enumerate(images)): 
    if i % 10 == 0: 
        print("analyzing image %d / %d" % (i, len(images))) 
    img, x = load_image(image_path); 
 
    feat = feat_extractor.predict(x)[0] 
    features.append(feat) 
    thumbs.append(img) 
 
print('finished extracting features for %d images' % len(images)) 
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features = pd.DataFrame(features) 
scaler = StandardScaler() 
features_scaled = scaler.fit_transform(features) 
 
print('A') 
 
pca = PCA(n_components=200) 
_pca = pca.fit(features).transform(features) 
 
#np.random.seed(123) 
 
X = np.array(_pca) 
tsne = TSNE(n_components=2, learning_rate=150, perplexity=55, 
angle=0.2, verbose=2).fit_transform(X) 
 
tx, ty = tsne[:,0], tsne[:,1] 
tx = (tx-np.min(tx)) / (np.max(tx) - np.min(tx)) 
ty = (ty-np.min(ty)) / (np.max(ty) - np.min(ty)) 
 
width = 4000 
height = 3000 
max_dim = 200 
 
full_image = Image.new('RGBA', (width, height)) 
for img, x, y ,thumb in tqdm(zip(images, tx, ty, thumbs)): 
    tile = thumb 
    rs = max(1, tile.width/max_dim, tile.height/max_dim) 
    tile = tile.resize((int(tile.width/rs), int(tile.height/rs)), Image.ANTIALIAS) 
    full_image.paste(tile, (int((width-max_dim)*x), int((height-max_dim)*y)), 
mask=tile.convert('RGBA')) 
 
print('B') 
matplotlib.pyplot.figure(figsize = (16,12)) 
imshow(full_image) 
 
print('C') 
 
print(type(full_image)) 
img_gen = [] 
for i, img in tqdm(enumerate(images)): 
    img = image_path.split('.')[-2] 
    img = img.split('/')[-1] 
    if img == 'generated1': 
        #print(i) 
        img_gen.append(img) 
    full_image.tell(img_gen) 
 
 
 
 



 42 

C. Code for implementing classifier dogsVScats 

 
import cv2                 # working with, mainly resizing, images 
import numpy as np         # dealing with arrays 
import os                  # dealing with directories 
from random import shuffle # mixing up or currently ordered data that might 

lead our network astray in training. 
from tqdm import tqdm      # a nice pretty percentage bar for tasks. Thanks 

to viewer Daniel BA1/4hler for this suggestion 
 
TRAIN_DIR = './train' 
TEST_DIR = './test' 
IMG_SIZE = 64 
LR = 1e-3 
 
MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '2conv-basic') # just 

so we remember which saved model is which, sizes must match 
 
def label_img(img): 
    if img == '.DS_Store': 
            pass 
    else: 
        word_label = img.split('.')[-3] 
        if word_label == 'cat': return [1, 0] 
        elif word_label == 'dog': return [0, 1] 
 
 
def create_train_data(): 
    training_data = [] 
    for img in tqdm(os.listdir(TRAIN_DIR)): 
        label = label_img(img) 
        path = os.path.join(TRAIN_DIR,img) 
        if img == '.DS_Store': 
            pass 
        else: 
            img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 
            img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) 
            training_data.append([np.array(img),np.array(label)]) 
    shuffle(training_data) 
    np.save('train_data.npy', training_data) 
    return training_data 
 
 
def create_train_data(): 
    training_data = [] 
    for img in tqdm(os.listdir(TRAIN_DIR)): 
        label = label_img(img) 
        path = os.path.join(TRAIN_DIR,img) 
        if img == '.DS_Store': 
            pass 
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        else: 
            img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 
            img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) 
            training_data.append([np.array(img),np.array(label)]) 
    shuffle(training_data) 
    np.save('train_data.npy', training_data) 
    return training_data 
 
 
#Now, we can run the training: 
train_data = create_train_data() 
# If you have already created the dataset: 
#train_data = np.load('train_data.npy') 
 
 
import tflearn 
from tflearn.layers.conv import conv_2d, max_pool_2d 
from tflearn.layers.core import input_data, dropout, fully_connected 
from tflearn.layers.estimator import regression 
 
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], 

name='input') 
 
convnet = conv_2d(convnet, 32, 5, activation='relu') 
convnet = max_pool_2d(convnet, 5) 
 
convnet = conv_2d(convnet, 64, 5, activation='relu') 
convnet = max_pool_2d(convnet, 5) 
 
convnet = conv_2d(convnet, 128, 5, activation='relu') 
convnet = max_pool_2d(convnet, 5) 
 
convnet = conv_2d(convnet, 64, 5, activation='relu') 
convnet = max_pool_2d(convnet, 5) 
 
convnet = conv_2d(convnet, 32, 5, activation='relu') 
convnet = max_pool_2d(convnet, 5) 
 
convnet = fully_connected(convnet, 1024, activation='relu') 
convnet = dropout(convnet, 0.8) 
 
convnet = fully_connected(convnet, 2, activation='softmax') 
convnet = regression(convnet, optimizer='adam', learning_rate=LR, 

loss='categorical_crossentropy', name='targets') 
 
model = tflearn.DNN(convnet, tensorboard_dir='log') 
 
 
if os.path.exists('{}.meta'.format(MODEL_NAME)): 
    model.load(MODEL_NAME) 
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    print('model loaded!') 
 
 
train = train_data[:-500] 
test = train_data[-500:] 
 
 
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 
Y = [i[1] for i in train] 
 
test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1) 
test_y = [i[1] for i in test] 
 
 
model.fit({'input': X}, {'targets': Y}, n_epoch=3, validation_set=({'input': 

test_x}, {'targets': test_y}),  
    snapshot_step=500, show_metric = True, run_id=MODEL_NAME) 
 
model.save(MODEL_NAME) 
 
 
import matplotlib.pyplot as plt 
 
# if you need to create the data: 
#test_data = process_test_data() 
# if you already have some saved: 
test_data = np.load('test_data.npy') 
 
fig=plt.figure() 
 
shuffle(test_data) 
 
for num,data in enumerate(test_data[24:36]): 
    # cat: [1, 0] 
    # dog: [0, 1] 
     
    img_num = data[1] 
    img_data = data[0] 
    print(img_num) 
    #print(img_data) 
     
    y = fig.add_subplot(3, 4, num + 1) 
    orig = img_data 
    data = img_data.reshape(IMG_SIZE,IMG_SIZE,1) 
    model_out = model.predict([data])[0] 
     
    print(model_out) 
     
    if np.argmax(model_out) == 1: str_label='Dog' 
    else: str_label='Cat' 
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    y.imshow(orig,cmap='gray') 
    plt.title(str_label) 
    y.axes.get_xaxis().set_visible(False) 
    y.axes.get_yaxis().set_visible(False) 
plt.show() 
 
 
PREDICTIONS: 
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