
i

Implementación de Redes Generativas
Adversarias (GANs) para la generación de
imágenes de tejido humano.

Pedro Juan Segura Cabrera

Máster Universitario en Bioinformática y Bioestadística
Estadística y Bioinformática 5

Ferran Reverter Comes
Alexandre Sánchez Pla
02/01/2019

https://cv.uoc.edu/webapps/aulaca/classroom/Classroom.action?s=00ef5ef0a5fbaf5616302a00bce48972813667b4f4d0b2321dd172d13df29904b1c24acfc8a50f873ebd8bcbb316022f3ba8123211dab818d927967f095760d2&subjectId=645575&origin=cv&domainCode=181_m0_181_01&classroomId=648121

ii

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

iii

 FICHA TRABAJO FINAL

Título:
Implementation of a Generative
Adversarial Network (GAN) for the
generation of images of human tissue.

Name of author: Pedro Juan Segura Cabrera

Nombre del consultor/a: Ferran Reverter Comes

Nombre del PRA: Alexandre Sánchez Pla

Fecha de entrega
(mm/aaaa):

01/2019

Titulación:
Máster Universitario en Bioinformática y
Bioestadística

Área del Trabajo Final: Bioinformática y Bioestadística Área 5

Idioma del trabajo: Inglés

Palabras clave
GAN, IA, Disciminator, Generator, MVP,
CNN, Deep Learning

Abstract:

Artificial intelligence (AI) is increasingly collaborating in medicine.
Generative Adversarial Networks (GANs) constitute one of the most
interesting algorithms or techniques of AI, concretely of Deep Learning,
having great applications to medicine, such as the generation of medical
images.

This project is based on the generation of images of human tissue,
specifically, skin lesions such as melanoma or seborrheic keratosis, using a
dataset of 2000 real images.

Despite the difficulties involved in GANs models in terms of definition,
architecture, programming and training, the added value that they present
justifies the above.

The main application of the project in the field of medicine is to increase the
global database of images of human tissue and thus, contribute to medical
studies in the dermatological area.

It has been possible to obtain images with a resolution of 64x64 and
through a representation of reduced dimensions (PCA and tSNE) of the
whole set of images (real and generated); the variability of the generated
images has been visually validated against the real ones.

iv

Index

1. Introduction .. 1
1.1 Context and justification of the project ... 1
1.2 Goals of the project ... 1
1.3 Approach and methodology ... 2
1.4 Planning .. 2
1.5 Brief summary of obtained products .. 5
1.6 Brief description of the other sections.. 5

2. Theoretical Background ... 6
3. Definition of requirements .. 12
4. Design and methodology ... 13
5. Development .. 19
6. Tests and results ... 27
7. Conclusions and future lines of research ... 32
8. Glossary ... 33
9. Bibliography ... 34
10. Annexes ... 37

v

List of figures

Figure 1. Gantt Diagram .. 4
Figure 2. Artificial Intelligence breakdown ... 7
Figure 3. Artificial Neural Network ... 8
Figure 4. CNN architecture .. 10
Figure 5. GAN architecture .. 11
Figure 6. Lean Start-up cycle .. 13
Figure 7. Real images classification .. 14
Figure 8. 2048 x 1536 Figure 9. 962 x 722 .. 14
Figure 10. Deep Convolutional Generative Adversarial Network (DCGAN) 15
Figure 11. Convolution sliding filters .. 16
Figure 12. models.py imported libraries... 19
Figure 13. Generator definition .. 20
Figure 14. Discriminator definition ... 21
Figure 15. Generator containing discriminator ... 21
Figure 16. GAN.py imported libraries .. 21
Figure 17. Image loading and processing.. 22
Figure 18. Noise vector ... 22
Figure 19. Chunks for batches organization .. 22
Figure 20. Get arguments.. 23
Figure 21. Training process I ... 24
Figure 22. Training process II .. 25
Figure 23. Training process III ... 25
Figure 24. Generate images .. 26
Figure 25. Test #1 - Generated images ... 27
Figure 26. Test #2 - Generated images ... 27
Figure 27. Test #4 - Generated images ... 28
Figure 28. Test #4 - tSNE .. 29
Figure 29. Test #4 - PCA ... 30

 1

1. Introduction

1.1 Context and justification of the project

This project deals with the generation of images of human tissue through
Generative Adversarial Networks (GANs), a well-known technique of Deep
Learning. A GAN is based on a system of two artificial neural networks that
compete with each other in a zero-sum game. It was introduced by Ian
Goodfellow et al. in 2014 [1] and consists of a network that generates
candidates (generator) based on a certain distribution of data and another
evaluates them (discriminator) based on a real database. This iterative
process of generation-discrimination is known as training and is carried out
until the discriminating network does not know how to distinguish between
real and generated data.
Some examples of GANs in medical and other fields are:
 Unsupervised anomaly detection with GANs to guide marker discovery

[2]: the GAN learns a manifold of normal anatomical variability and
combined with a anomaly scoring scheme helps identifying and labelling
anomalies.

 Generating videos with scene dynamics [3]
 GAIN: missing data imputation using Generative Adversarial Networks

[4]

This work has been chosen mainly due to the technical development
involved; the generation of data through GANs is an interesting and novel
tool that provides a wide range of possibilities. The practical application in
the field of bioinformatics in general and the value that the project can
provide was the main reason for choosing it.

The amount of images of human tissue is limited, there are as many as
patient’s skins have been photographed. There is an inherent linkage
between the image and the physical patient. Artificial Intelligence breaks
this linkage and provides a solution to increase the worldwide database of
images of human tissue without having to have new patients.

Tangibly, what is intended to achieve with this work is to obtain validated
images of human tissues good enough to be used for other purposes, i.e.
contrast of hypothesis in skin cancer research.

1.2 Goals of the project

General goals:
 Design and implementation of a Generative Adversarial Network (GAN).
 The obtaining of images generated through the GAN.
 Guarantee a minimum level of quality of the generated images.

Specific goals:

 Research and read documentation related to the project.

 2

 Establish a database of images as input to the network.
 Design, program and validate the system architecture.
 Generate and validate images.
 Write documentation about the project.

1.3 Approach and methodology

Several strategies have been evaluated to address the project, such as
Agile Management or KANBAN and, finally, an iterative strategy based on
Lean Start up has been chosen and consists of creating, measuring and
learning. In the development phase, the focus has been on the creation of a
viable minimum product (MVP) to work with and, later on, functionalities
have been added to converge.
I decided to use existing frameworks and libraries that are part of the day to
day of Machine Learning, adapting and modifying the necessary parts to
develop the application successfully.

1.4 Planning

The main resources to carry out the project would be a PC and the
environment for developing Deep Learning problems. Everything needed is
provided by Anaconda1 [5] environment.

For the planning, first the tasks were identified and grouped:

1. GANs research  
2. Images BBDD download  
3. Image processing  

3.1. Resolution adjustment  
4. Design of system architecture  
5. Input data  

5.1. Coding
5.2. Testing  
5.3. Validation  

6. GAN Generator  
6.1. Coding
6.2. Testing
6.3. Validation  

7. GAN Discriminator
7.1. Coding  
7.2. Testing  
7.3. Validation  

8. GAN Model
8.1. Coding
8.2. Testing  

1 Anaconda is a Python data science platform that helps providing the dependencies needed
centralizedly for creating Machine Learning.

 3

8.3. Validation  
9. GAN Training  
10. Output data  

10.1. Validate  
11. Quality output  
12. Optimize code  
13. Write documentation  
14. Design presentation  
15. Present

4 4

Figure 1. Gantt Diagram

5

Milestones

It has been established 4 milestones along the development of the project
that will define its course:

 Definition of the system architecture: data I/O, GAN architecture...
 For meeting this, both the data flow (input and output) and the

network architecture (network type, number of layers and filters...)
have to be defined. The project starts with a Convolutional Neural
Net for the Generator and a Deconvolutional Neural Net for the
discriminator (DCGAN).

 Program the generator and the discriminator:
 Once they are defined and programmed, this milestone will be

achieved.

 Training of the system:
 Loss function defined
 Algorithm and training variables of the general model defined:

o Batch size
o Number of epochs
o Latent vector size
o Etc.

 Obtaining a quality output

1.5 Brief summary of obtained products

As obtained products we have:

 Folder called Code that contains 4 programs in Python:
 model.py defines the models of neural networks (generator and

discriminator)
 GAN.py implements the system for the generation of images
 PCA_representation.py performs the PCA plotting for validate the

generated images.
 tSNE_representation.py performs the tSNE plotting for validate the

generated images.

 Folder with tests and results
 Inside there is a folder called Validation, there can be found the

validation plots (PCA and tSNE) for each case.

 Folder with the dataset (ISIC_2017)

 The memory in PDF

1.6 Brief description of the other sections

The rest of the sections will explain the technical design and development
deeper going into the details. The Design section is about what and how the
things will be and the Development section explains how to get them done.
After those chapters, the reader will find the Tests and results section where
the experiments and their outputs are explained.

 6

2. Theoretical Background

Artificial Intelligence (AI) is progressively getting more attention,
researchers from all over the world are investigating in solutions and
improvements to every-day problems applying AI, but what is AI?
Massachusetts Institute of Technology (MIT) defines it through a couple of
concepts [6]:

 Computational models of human behaviour; programs that behave
(externally) like humans

 Computational models of human “thought” processes; programs that
operate (internally) the way humans do

 Computational systems that behave intelligently; intelligently meaning
like humans

 Computational systems that behave rationally

So, Machine Learning (ML) is a tool for achieving AI. In 1959, Arthur
Samuel, AI researcher defined machine learning informally as the ability to
learn without being explicitly programmed. So Arthur Samuel, way back in
the history of machine learning, actually did something very cool, which was
he wrote a checkers program, which would play games of checkers against
itself [7].

The way ML is performed depends on how the learning process is done,
therefore we can distinguish among:

 Supervised learning: it is the task of learning a function that maps an
input to an output based on example input-output pairs. It is performed over
labelled data [8].

 Unsupervised learning: the learning is done from unlabelled,
unclassified data. This type of learning tries to identify commonalities,
patterns in the data and predict new data based on those patterns .

 Reinforcement learning: it is concerned with how software [9].

agents ought to take actions in an environment so as to maximize some
notion of cumulative reward [10].

So, depending on which learning process we have in our problem, it will be
address using one algorithm or another.
In the Supervised Learning, there most widely used are:

 Support Vector Machines

 Linear Regression

 Logistic Regression

 K-Nearest Neighbour

 Decision Trees

 Artificial Neural Networks

On the other hand, in the Unsupervised Learning:

 K-means

 Hierarchical Clustering

 7

 Artificial Neural Networks
The algorithm2 Artificial Neural Networks (ANN) is in both types of learning,
it belongs to a subset of Machine Learning called Deep Learning, as seen in
the image below.
Deep Learning uses a cascade of multiple layers of nonlinear processing
units for feature extraction and transformation. Each successive layer uses
the output from the previous layer as its input [11].

Figure 2. Artificial Intelligence breakdown

So, the Artificial Neural Networks are a computing systems inspired by the
biological neural networks from animal brain. See Figure 3.
They are based on a collection of connected units or nodes called artificial
neurons disposed by layers. Each connection, like the synapses in a
biological brain, can transmit a signal from one artificial neuron to another.
An artificial neuron, receives a signal process it and then signal additional
artificial neurons connected to it.
So, the signals are propagated forward according to the activation
function until the last layer, the output layer, in which the loss function is
computed.
The loss function, generally, calculates in the training process the
difference between the obtained value from the ANN and the theoretical
one. This value is called error. Then, this error is propagated backwards in
order to update all of the weights (backpropagation) by means of the
gradient descent algorithm.
Gradient descent is a first-order iterative optimization algorithm, mainly
used for finding the minimum of a function. In ANN it performs gradient of
the loss function in each neuron, therefore the weights are properly updated
depending on the neuron.

2 Artificial Neural Networks are not an algorithm, but rather a framework for many
different machine learning algorithms to work together and process complex data inputs.

https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain

 8

Figure 3. Artificial Neural Network

Convolutional Neural Networks (CNN) [12] are a type of ANN, used mainly
for visual imagery. Typical CNN architecture is shown in the Figure 4.
It consists of an input and an output layer, as well as multiple hidden layers.
The hidden layers of a CNN typically consist of convolutional layers, ReLU
layer i.e. activation function, pooling layers, fully connected layers and
normalization layers.
Description of the process as a convolution in neural networks is by
convention. Mathematically it is a cross-correlation rather than a convolution
(although cross-correlation is a related operation). This only has
significance for the indices in the matrix, and thus which weights are placed
at which index.

Convolutional layers apply a convolution operation to the input, passing the
result to the next layer. The convolution emulates the response of an
individual neuron to visual stimuli.
Each convolutional neuron processes data only for its receptive field.
Although fully connected feed forward neural networks can be used to learn
features as well as classify data, it is not practical to apply this architecture
to images. A very high number of neurons would be necessary, even in a
shallow (opposite of deep) architecture, due to the very large input sizes
associated with images, where each pixel is a relevant variable. For
instance, a fully connected layer for a (small) image of size 100 x 100 has
10000 weights for each neuron in the second layer. The convolution
operation brings a solution to this problem as it reduces the number of free
parameters, allowing the network to be deeper with fewer parameters. For
instance, regardless of image size, tiling regions of size 5 x 5, each with the
same shared weights, requires only 25 learnable parameters. In this way, it

https://en.wikipedia.org/wiki/Multilayer_perceptron#Layers
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Receptive_field
https://en.wikipedia.org/wiki/Multilayer_perceptron

 9

resolves the vanishing or exploding gradients problem in training traditional
multi-layer neural networks with many layers by using back propagation.

Pooling
Convolutional networks may include local or global pooling
layers,[clarification needed] which combine the outputs of neuron clusters at
one layer into a single neuron in the next layer. For example, max
pooling uses the maximum value from each of a cluster of neurons at the
prior layer.[12] Another example is average pooling, which uses the
average value from each of a cluster of neurons at the prior layer.

Fully connected
Fully connected layers connect every neuron in one layer to every neuron in
another layer. It is in principle the same as the traditional multi-layer
perceptron neural network (MLP).

Receptive field

In neural networks, each neuron receives input from some number of
locations in the previous layer. In a fully connected layer, each neuron
receives input from every element of the previous layer. In a convolutional
layer, neurons receive input from only a restricted subarea of the previous
layer. Typically the subarea is of a square shape (e.g., size 5 by 5). The
input area of a neuron is called its receptive field. So, in a fully connected
layer, the receptive field is the entire previous layer. In a convolutional layer,
the receptive area is smaller than the entire previous layer.

Weights

Each neuron in a neural network computes an output value by applying
some function to the input values coming from the receptive field in the
previous layer. The function that is applied to the input values is specified
by a vector of weights and a bias (typically real numbers). Learning in a
neural network progresses by making incremental adjustments to the
biases and weights. The vector of weights and the bias are called
a filter and represents some feature of the input (e.g., a particular shape). A
distinguishing feature of CNNs is that many neurons share the same filter.
This reduces memory footprint because a single bias and a single vector of
weights is used across all receptive fields sharing that filter, rather than
each receptive field having its own bias and vector of weights.

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-mcdns-12
https://en.wikipedia.org/wiki/Multi-layer_perceptron
https://en.wikipedia.org/wiki/Multi-layer_perceptron
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Memory_footprint

 10

Figure 4. CNN architecture

CNN’s lead us to the GANs that are a system of two neural networks
contesting with each other in a zero-sum game framework. They were
introduced by Ian Goodfellow et al. in 2014 [1].
Typically, the generative network learns to map from a latent space to a
particular data distribution of interest, while the discriminative network
discriminates between instances from the true data distribution and
candidates produced by the generator. The generative network's training
objective is to increase the error rate of the discriminative network (i.e.,
"fool" the discriminator network by producing novel synthesized instances
that appear to have come from the true data distribution).
In practice, a known dataset serves as the initial training data for the
discriminator. Training the discriminator involves presenting it with samples
from the dataset, until it reaches some level of accuracy. Typically the
generator is seeded with a randomized input that is sampled from a
predefined latent space (e.g. a multivariate normal distribution). Thereafter,
the discriminator evaluates samples synthesized by the generator. Back
propagation is applied in both networks so that the generator produces
better images, while the discriminator becomes more skilled at flagging
synthetic images. The generator is typically a deconvolutional neural
network, and the discriminator is a convolutional neural network [13].
The idea to infer models in a competitive setting (model versus
discriminator) was proposed by Li and Gross in 2013 [14]. Their method is
used for behavioural inference. It is termed Turing Learning, as the setting
is akin to that of a Turing test. Turing Learning is a generalization of
GANs. Models other than neural networks can be considered. Moreover,
the discriminators are allowed to influence the processes from which the
datasets are obtained, making them active interrogators as in the Turing
test. The idea of adversarial training can also be found in earlier works,
such as Schmidhuber in 1992. In the next image is shown the architecture
of a GAN.

https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Turing_test

 11

Figure 5. GAN architecture

 12

3. Definition of requirements

Technical requirements
One of the main ones for the code is to be as modular and parameterized
as possible. Thus, it is clean, organized, easy testable and easy
changeable.

The code has to be able to perform the following actions:

 Set global variables as dataset path, number of epochs, batch size

 Load dataset of real images

 Image processing
 Resizing
 Normalization
 Rolling axis

 Organize the images into batches of a specific size

 Define GAN model (architecture & parameters)
 Define Generator neural network
 Define Discriminator neural network
 Combine them into a Generator containing Discriminator neural

network

 Definition of hyperparameters:
 Dimension of Z (latent space)
 Which optimizer function to use? And which parameters to set? [14]
 Loss function?
 Intermodel margin

 Training of the complete model
 Be able to load pre-trained models
 Weights
 Training and testing data
 Definition of the labels
 Definition of convergence
 Save weights

 Generate images

 Validate generated images
 tSNE
 PCA

 13

4. Design and methodology

There have been evaluated several work methodologies to be followed in
this project, such as Agile Management or KANBAN and finally, it has been
decided to go for an iterative strategy based on Lean Start up.
Lean Start up is a methodology created for developing businesses and
products and consists in going through the whole process as fast as it is
possible. In the next image, it can be seen the cyclic steps in a Lean Startup
building process.

Figure 6. Lean Start up cycle

 In this case, the first milestone to be reached was to develop a minimum
viable product (MVP), which validates the whole end-to-end process. That
means when the input/output data and the model were defined and
developed and so, the model could be trained. This MVP development
process involves many steps in the designing phase that we will see later
on.

 So, once the MVP is ready, it starts the testing phase where all the
insights are gotten. The MVP consisted in the GAN with a dataset of only 10
real images in order to just generate images, even though they were only
noise images with a pattern slightly similar to the real ones.

In the following paragraphs, the designing process is going to be explained,
from the dataset of real images to the validation of the generated images.

DATASET COLLECTION
The dataset used [15] to evaluate the method corresponds to the one used
in the ISIC 2017 challenge. It consists of 2000-coloured dermoscopic
images of both benign and malignant skin lesions (images of 1372 benign
lesions, 254 seborrheic keratosis samples and 374 melanoma). The
resolution is not fix, therefore they were standardized to a fixed one in the
code.

 14

 The dataset comes with a CSV file that classifies the images depending
whether they are benign, seborrheic keratosis or melanoma following a one
hot encoding. See image below.

Figure 7. Real images classification

IMAGE PROCESSING

 In order to have the images from the dataset as an input for the
Discriminator network, they cannot be fed raw. They have to be processed
and this involves resize and normalizes them.
Taking the dataset of images raw, it can be observed different resolutions
like the 2 following images:

Figure 8. 2048 x 1536 Figure 9. 962 x 722

So, in order to develop quickly the MVP and due to Hardware awareness it
was decided to resize all of the real images to 64 x 64 in order to be less

time and resources consuming.

Another important aspect regarding the dataset is the image normalization.
It modifies the range of pixel intensity values with the aim to achieve
consistency in dynamic range for the dataset itself.
Initially, the images are in range [0,255], so the normalization done here is
basically divide by the mean (127.5), now the range becomes [0,2] and then
subtract by 1 in order to make it [-1,1] [16].

 15

MODEL DEFINITION

 The model is composed by 2-stacked Neural Networks, the Generator
and the Discriminator. In this phase it was needed to define the architecture
of the GAN, several types were initially evaluated, such as DCGAN,
LAPGAN and Conditional GAN. It was decided to go for the DCGAN as a
first approach, it works just fine with images.
So, remembering what a DCGAN looks like:

Figure 10. Deep Convolutional Generative Adversarial Network (DCGAN)

Here we have several variables to define, for building the Generator we
have:

Input dimension of the Generator

The input of the Generator is a series of randomly generated numbers
called latent sample that works as a noise vector (Z).

Output dimension of the Generator

 The output of the Generator works as the input for the Discriminator,
together with the dataset of real images. So, the dimension has to match
the size of our images. As a first approach, 64 x 64.

Number of convolutions
 This depends on how much information the images have, for example if
the images that are trying to be generated are supposed to have many
features, it is recommended to use several convolutions.
In our case, we use 4 Convolutional layers, specifying the number of output
filters in each convolution, kernel size and number of strides. Taking into
account that the desirable generated image size is 64x64 and the length of
the noise vector is 100, therefore in order not to have superposition of the
moving kernel the following parameters are to:
- kernel size = 5
- number of strides = 5

 16

In the image below it is shown how it looks:

Figure 11. Convolution sliding filters

Let’s assume this image has a size of 64x64, so the filters allocated in the
upper left corner have a size of 5x5 and they move along the image with a
stride of 5, that means there is no superposition, all the filter .
Padding is set to same, therefore it is assured the size of output feature
map is the same as the input.

Batch normalization
In order to reduce the amount by what the hidden unit values shift around,
so called covariance shift, we apply Batch Normalization after each layer in
the Generator [17].

Activation layer

Also, after each conv layer, it is convention to apply a nonlinear layer
(or activation layer) immediately afterward. The purpose of this layer is to

introduce nonlinearity to a system that basically has just been computing
linear operations during the convolutional layers (just element wise
multiplications and summations). In the past, nonlinear functions like tanh

 17

and sigmoid were used, but researchers found out that ReLU layers work

far better because the network is able to train a lot faster (because of the
computational efficiency) without making a significant difference to the
accuracy. It also helps to alleviate the vanishing gradient problem, which is
the issue where the lower layers of the network train very slowly because
the gradient decreases exponentially through the layers.
ReLU layer applies the function f(x) = max(0, x) to all of the values in the
input volume. In basic terms, this layer just changes all the negative
activations to 0. It increases the nonlinear properties of the model and the
overall network without affecting the receptive fields of the convolutional
layer [18].

Upsampling
So, the idea behind the upsampling process is to reconstruct the continuous
signal from the original one and resample it using more samples. We use a
2D upsampling layer before any convolutional layer in the generator in order
to increase the sampling rate of the input data.

Output layer
The output layer is a tanh activation function, which helps mapping the
resulting values into the [-1, 1] range, which is the same range as our
processed real images. The output from the generator and the real images
will be fed into the discriminator for the training process.

In the case of the Discriminator, regarding its structure we have:

Number of convolutions

It will have 4 convolutional hidden layers like the Generator. The first one
will receive the 64x 64 sized images as input. In every convolutional layer,
subsampling is performed in order to combat unbalanced classes. This is a
common practice in classification problems solved by CNNs and that is
what we are doing here, trying to classify what images are good enough to
be considered “real”.

Leaky-ReLU activation layer

Every convolutional layer is followed by a Leaky-ReLU activation function.
Many activation functions will work fine with this basic GAN architecture.
However, leaky ReLUs are very popular because they help the gradients
flow easier through the architecture.
A regular ReLU function works by truncating negative values to 0. This has
the effect of blocking the gradients to flow through the network. Instead of
the function being zero, leaky RELUs allow a small negative value to pass
through. That is, the function computes the greatest value between the
features and a small factor.
Leaky RELUs represent an attempt to solve the dying ReLU” problem. This
situation occurs when the neurons get stuck in a state in which RELU units
always output 0s for all inputs. For these cases, the gradients are
completely shut to flow back through the network. This is especially

 18

important for GANs since the only way the generator has to learn is by
receiving the gradients from the discriminator [19].
In our case we will go for a slope value of 0.2.

Dropout
Right after every LeakyReLU activation layer, a Dropout layer is needed for
several reasons.
GANs are likely to get stuck, therefore it is recommended to add some
randomness in the training process. We do this by adding dropout that
basically shuts down several units in certain passes in order not the develop
co-dependencies among each other.
Dropout also helps preventing overfitting.
The dropout function takes a parameter called rate that is a fraction of the
input units to drop, 0.2 in this case.

Flatten
A Flatten layer is needed for converting the 2d image into vector
representation.

Sigmoid activation layer

Finally, the discriminator needs to output probabilities. For that, we use
the Logistic Sigmoid activation function on the final logits.
A sigmoid function is applied to the real-valued output to obtain a value in
the open-range [0, 1].

Once the generator and the discriminator are designed, they will be
combined in a model called generator-containing-discriminator. Basically
this is a sequential model that puts the generator and right after the
discriminator. For training purposes is easier to work with this rather than
working with the 2 models separated.

 19

5. Development

In this chapter, we are going through the code giving explanations to what is
needed.

DEPENDENCIES
I used Keras [20] running with a Tensorflow backend for the Machine
Learning (ML) part of the code, i.e. definition of the neural networks,
training...
Keras is a high-level ML API that allows fast prototyping and
experimentation. Keras seems to fit perfectly in the context of this work
taking into account the time restriction and difficulty level.
Tensorflow [21] is an open source software library for high performance
numerical computation. Its flexible architecture allows easy deployment of
computation across a variety of platforms (CPUs, GPUs, TPUs), and from
desktops to clusters of servers to mobile and edge devices. Originally
developed by researchers and engineers from the Google Brain team within
Google’s AI organization, it comes with strong support for machine learning
and deep learning and the flexible numerical computation core is used
across many other scientific domains.
I used Anaconda [5] for install dependencies and libraries, it is a data
science platform.

So, the code is structured in 2 modules:

 model.py; Defines the Generator and Discriminator neural networks and
also the model based on both of them combined.

 GAN.py; This is the main code. From here the module model.py is
imported in order to instantiate the models. In this code happens from the
dataset loading and processing to the training and images generation.

Let’s go through the code starting from the model.py:

Figure 12. model.py imported libraries

In the Design section, it has been explained the structure of the generator
and discriminator. So in order to develop the code, it is needed to import
mostly all the functions and libraries from above. Once they all imported,
they can be used straightly.

 20

The Keras architecture basically starts defining a model, Sequential in this
case, that stacks layers linearly. Then, layers like Convolutional, Dropout,
LeakyReLU or Dense (fully connected) have to be also imported.

The following image corresponds to the generator model:

Figure 13. Generator definition

It can be seen the procedure with 3 parameters that are specified in the
header:

 inputdim: it refers to the dimension of the randomly generated noise
vector that works as the input of the generator.

As we mentioned before, the value is 100 as per convention3.

 xdim, ydim; their value depends on the size of the image. They are used
to specify the output of the first fully connected layer of the generator.

Then, the discriminator is defined. See image below to see how it is
developed:

3 GANs are recent discovery in the Artificial Intelligence world [27], so a value of 100 in the
latent vector is commonly used. Analysis of several values can be considered as a future linea
of research, however it is out of this project’s scope.

 21

Figure 14. Discriminator definition

As a highlight, it can be seen how easy the layers are stacked one following
another once the basic architecture is clear.
The first design and implementation of a discriminator was done in the early
research phase in order to gain some background knowledge. In that
design a classifier of images of cats and dogs were developed with a quite
good success rate to be a simple one. See Annex C for more info.

And the last procedure of this script model.py is the combination of
generator and discriminator.
Setting the model not to be trained, it allows fixing the weights in order to
fine-tune the mode for example layer-wise.

Figure 15. Generator containing discriminator

Now the main script (GAN.py) will be shown, starting from the libraries to be
imported:

Figure 16. GAN.py imported libraries

The basic imported libraries are:

 Numpy: Python package for numeric and scientific computing [22].

 cv2: it is an image and video-processing library with bindings in C++, C,
Python, and Java. OpenCV is used for all sorts of image and video

 22

analysis like facial recognition and detection, license plate reading, photo
editing… [23]

 Scipy: Python-based ecosystem of open-source software for
mathematics, science, and engineering [24].

 Argparse: this module makes it easy to write user-friendly command-line
interfaces. The program defines what arguments it requires,
and argparse will figure out how to parse those out of sys.argv.
The argparse module also automatically generates help and usage
messages and issues errors when users give the program invalid
arguments. [25]

 OS: this module provides a portable way of using operating system
dependent functionality [26].

 Matplotlib: it is a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive
environments across platforms.

Also module model.py is imported in order to be able to use the neural nets
previously defined.

So, I decided to organize the main code in functions that will be called when
is needed. For example for loading images, there is this following code that
loads, resizes and normalizes it:

Figure 17. Image loading and processing

Also, I created a function for creating the noise vector and for creating the
chunks for the batch distribution later on:

Figure 18. Noise vector

Figure 19. Chunks for batches organization

 23

In order to run the algorithm, it is mandatory to specify some parameters
like:

 path: directory where the dataset of real images is located.

 TYPE: training or generate.

 batch_size: size of the batches of the dataset.

 epochs: how many times the entire dataset is passed forward and
backward through the entire neural network.

 img_num: how many images to generate.

In the image below it can be seen the function that parses all this
parameters needed to run the algorithm:

Figure 20. Get arguments

The training process is the most important part; it gives the network the
ability to get better through every iteration (epoch).
It starts by setting a seed number for reproducibility of the whole process.
Then the real images from the dataset with JPG extension are loaded. They
have to be in a certain path that is specified in the arguments form the
get_args function.
The real images are organized in batches in order to be fed to the
discriminator that way. Then the models are instantiated from the model.py
script and the optimizer function is defined. In this case, I used Adam
optimizer. It has shown good results in Conv. Nets even for models in
production. Right after the models have to be compiled to use them. The
loss chosen is the “binary_crossentropy”.

To set up a point where we can assure the GAN has converged, it is
needed to define a variable that measures the difference between the
Generator and the Discriminator errors. That variable is called intermodel
margin. We set a value of 0.1 for it by means of trial and error.

When the training core loop begins, in the first epoch, the first thing that the
algorithm does is looking for any trace from previous trainings, looking for
the weights files. If it finds it, they are loaded and the training continues right

 24

from that point on. This is an interesting and useful concept because it
saves time and prevents the duplicated work; it makes the whole process
more efficient.

Figure 21. Training process I

Now it starts the looping inside of the real images batches, it creates noise
batches and generates images out of them. They are all saved for any
troubleshooting or analysis later on.
So, the following steps are basically the definition of the Discriminator and
Generator inputs and labels vectors.

 For Discriminator, the input is based on 2 vectors:
 The generated images (fakes)
 The images from the dataset (real)

 For Generator, the input is the noise vector.
Now the proper training is performed thanks to the train_on_batch Keras
function.
For every batch and epoch it outputs a loss both for the generator and
discriminator and with this losses we established the convergence
condition:

 The absolute value of the difference has to be smaller than the
intermodel margin.

 25

So, what the convergence loop does is identify the model with smallest loss
and keep training it until the convergence condition is reached.

Figure 22. Training process II

At the end of every training on batch, the weights are updated and saved
and some of the generated images are shown in a combined plot.

Figure 23. Training process III

Once the GAN is trained, it can be straightly used to generate images by
specifying in the arguments the parameter generate and the number of
images to generate:

 26

Figure 24. Generate images

 27

6. Tests and results

For the testing, several variables have been taking into account:

 Number of epochs

 Batch size

 Resolution of images

The resolution of the images is the main limitation due to the image
processing capacity of the machine. I am running this in a MacBook Pro (i5
2.7 GHz processor, RAM of 8 GB and Graphic card Intel Iris Graphics
6100); it is not a set up specific for Deep Learning computing. However
reducing the resolution, it is feasible to carry out the processing, training
and generation of images in a relatively normal duration.

Below is shown the experiments carried out with their parameter details and
generated images in each case:

Test #1
Number of epochs = 10
Batch size = 100
Resolution of images = 64x64
Duration = 5 hours

Figure 25. Test #1 - Generated images

Test #2

Number of epochs = 20
Batch size = 100
Resolution of images = 64x64
Duration = 11 hours

Figure 26. Test #2 - Generated images

 28

Test #3
Number of epochs = 10
Batch size = 100
Resolution of images = 512x512
Duration = NA

Model did not converge; it remained stuck in the convergence condition.

Test #4
Number of epochs = 10
Batch size = 100
Resolution of images = 128x128
Duration = 38 hours

Figure 27. Test #4 - Generated images

As it can be seen, the poor resolution makes the images hard to be visually
inspected or validated. That is why the validation was performed objectively
by means of a reduced components representation (PCA and tSNE) of
1000 images from the dataset, for keeping the graph readable, including the
generated images. In the graph, it is observed the distribution of the images
along the axis and the clusters formed are noticeably logical. The reader
can access to the code for both the PCA and the tSNE representation
located in the Annex A and B, respectively.

So, Principal Components Analysis and t-Distributed Stochastic Neighbor
Embedding have been chosen because both of them are techniques of
dimensionality reduction and are well suited for this task. The main
difference between them is that tSNE is non-linear so, it would be able to
capture some trickier manifolds.

The following 2 pages are the results obtained by plotting the tSNE and the
PCA for the Test #4:

29

Figure 28. Test #4 - tSNE

 30

Figure 29. Test #4 - PCA

31

RESULTS

So, for the 2 analyses there have been added 25 generated images and the
rest are real ones. Highlighted with a blue arrow are some of the fake
images. It can be observed that the distribution of the fake images along the
graph visually makes sense taking into account the clusters formed.
This means that the statistical variability of the generated images is similar
to the variability of the dataset and could be added into the dataset for
further studies as if they were real ones.
A failing scenario would be that in the graphical representation, the fake
images form a clear cluster, meaning that they have their own
characteristics. It is not what we are looking for with this work; instead we
are trying to bring the fake images as close as we can to the real ones.

 32

7. Conclusions and future lines of research

The general conclusions are:

 Even though the hardware limitation affecting the resolution of the output
images, the aim of the project has been reached successfully. The
technical complexity and the lack of rigorous information due to the
newness of the topic have made the work tough sometimes. But it has
been rewarding to meet the goals and satisfying to develop this work in
the medicine field.

 Regarding the project management in terms of timing and resources, it
has met the expectations. Due to the lack of seniorship in the field, I set a
non-aggressive schedule with a big buffer at the end of the development
phase in order to mitigate any timing deviation. It happened during the
development of the training algorithm, I got stuck and spent more time
than the one foresaw in the Gantt diagram. The buffer just worked fine for
me in this case.

Future lines of research would be:

 Improving the algorithm to be able to distinguish among the skin lesions:
Melanoma, Seborrheic keratosis... That would refine the model and make
it more powerful. It can be done with a neural network as a classifier
placed right after the discriminator of the GAN. As input to this classifier,
the generated images those were able to “fool” the discriminator and the
dataset for the training remains the same.

 Explore different GAN architectures, such as LAPGAN or Conditional
GAN, in which the noise vector and a vector of labels form the input of
the generator.

 With a more powerful computer set up, try to generate high-resolution
images in order for them to be compared to the originals at the original
resolution.

 33

8. Glossary

AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
GAN Generative Adversarial Network
DCGAN Deep Convolutional Generative

Adversarial Networks
MVP Minimum Viable Product
MLP Multi-Layer Perceptron
tSNE t-Distributed Stochastic Neighbor

Embedding
PCA Principal Components Analysis
ReLU Rectified Linear Unit
Tanh Hyperbolic tangent
LAPGAN Laplacian Generative Adversarial

Network

 34

9. Bibliography
[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. (2014)
Generative Adversarial Networks. [Online].
https://arxiv.org/pdf/1406.2661.pdf

[2] Thomas Schelgl, Philipp Seeböck, Sebastian M. Waldstein, Ursula
Schmidt-Erfurth, and Georg Langs. (2017) Unsupervised Anomaly
Detection with Generative Adversarial Networks to Guide Marker
Discovery. [Online]. https://arxiv.org/pdf/1703.05921.pdf

[3] Carl Vondrick, Antonio Torralba, and Hamed Pirsiavash. (2016)
Generating videos with scene dynamics.

[4] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. (2018) GAIN:
Missing Data Imputation using Generative Adversarial Nets.

[5] Anaconda. Anaconda. [Online]. https://www.anaconda.com

[6] Artificial Intelligence. MIT. [Online]. https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-825-techniques-in-artificial-
intelligence-sma-5504-fall-2002/lecture-notes/Lecture1Final.pdf

[7] Stanford University. https://see.stanford.edu/. [Online].
https://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-
Lecture01.pdf

[8] Supervised Learning. Wikipedia. [Online].
https://en.wikipedia.org/wiki/Supervised_learning

[9] Unsupervised Learning. Wikipedia. [Online].
https://en.wikipedia.org/wiki/Unsupervised_learning

[10] Reinforcement Learning. Wikipedia. [Online].
https://en.wikipedia.org/wiki/Reinforcement_learning

[11] Deep Learning. Wikipedia. [Online].
https://en.wikipedia.org/wiki/Deep_learning

[12] Convolutional NN. Wikipedia. [Online].
https://en.wikipedia.org/wiki/Convolutional_neural_network

[13] Wikipedia. https://en.wikipedia.org/wiki/Generative_adversarial_network.

[14] Gauci Li W and Gross R. M. (2013) A Coevolutionary Approach to Learn

https://arxiv.org/pdf/1703.05921.pdf
https://www.anaconda.com/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/Lecture1Final.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/Lecture1Final.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/Lecture1Final.pdf
https://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture01.pdf
https://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture01.pdf
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Convolutional_neural_network

 35

Animal Behavior through Controlled Interaction.

[15] P. Kingma Diederik and Jimmy Lei Ba. (2015) Adam: a Method for
Stochastic Optimization International Conference On Learning
Representations, 2015. [Online]. https://arxiv.org/abs/1412.6980v8

[16] N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W.,
Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al. Codella. (2017) Skin
lesion analysis toward melanoma detection: A challenge at the 2017
international symposium on biomedical imaging (isbi), hosted by the
international skin imaging collaboration (isic). arXiv preprint
arXiv:1710.05006.

[17] [Online].
https://eclass.teicrete.gr/modules/document/file.php/TP283/Lab/03.%20La
b/lesson3Notes.pdf

[18] Towards data science. [Online]. https://towardsdatascience.com/batch-
normalization-in-neural-networks-1ac91516821c

[19] Adit Deshpande. Adeshpande3. [Online].
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-
To-Understanding-Convolutional-Neural-Networks-Part-2/

[20] Thalles Silva. sthalles.github.io. [Online]. https://sthalles.github.io/intro-to-
gans/

[21] François Chollet and others. Keras. [Online]. https://keras.io

[22] G
oogle. Tensorflow. [Online]. https://www.tensorflow.org

[23] Numpy. Numpy. [Online]. http://www.numpy.org

[24] cv2. OpenCV. [Online]. https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_setup/py_intro/py_intro.ht
ml#intro

[25] SciPy. SciPy. [Online]. https://www.scipy.org/scipylib/index.html

[26] Argparse. Argparse. [Online].
https://docs.python.org/3/library/argparse.html

[27] OS. OS. [Online]. https://docs.python.org/3/library/os.html

[28] Alec Radford, Luke Metz, and Soumith Chintala. (2015) Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial
Networks.

https://arxiv.org/abs/1412.6980v8
https://eclass.teicrete.gr/modules/document/file.php/TP283/Lab/03.%20Lab/lesson3Notes.pdf
https://eclass.teicrete.gr/modules/document/file.php/TP283/Lab/03.%20Lab/lesson3Notes.pdf
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://sthalles.github.io/intro-to-gans/
https://sthalles.github.io/intro-to-gans/
https://keras.io/
https://www.tensorflow.org/
http://www.numpy.org/
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#intro
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#intro
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_setup/py_intro/py_intro.html#intro
https://www.scipy.org/scipylib/index.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/os.html

 36

[29] Matplotlib. Matplotlib. [Online]. https://matplotlib.org

https://matplotlib.org/

 37

10. Annexes

A. Code for implementing representation in reduced dimensions

(PCA)4.

import os
#%matplotlib inline
import random
#import cPickle as pickle
import numpy as np
#from ggplot import *
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions,
preprocess_input
from keras.models import Model
import matplotlib.pyplot
from matplotlib.pyplot import imshow
from keras.applications.imagenet_utils import decode_predictions,
preprocess_input
from keras import applications
from skimage.util.shape import view_as_windows
from skimage.transform import resize
from scipy.spatial import distance
from tqdm import tqdm
import pandas as pd
from sklearn.preprocessing import StandardScaler
from PIL import Image
from sklearn.decomposition import PCA

PATH = '../../../Dataset/ISIC_2017_split1_copy/'

model = keras.applications.Xception(weights='imagenet', include_top=True)
model.summary()

feat_extractor = Model(inputs=model.input,
outputs=model.get_layer("avg_pool").output)
feat_extractor.summary()

def load_image(path):
 img = image.load_img(path, target_size=(64,64))
 x = image.img_to_array(img)
 x = np.expand_dims(x, axis=0)

4 It has been implemented in Jupyter Notebook with its graphical functionalities.

 38

 x = np.rollaxis(x, 1, 3)
 x = np.rollaxis(x, 3, 2)
 #print(x.shape)
 x = preprocess_input(x)
 return img, x

images_path = PATH
image_extensions = ['.jpg'] # case-insensitive (upper/lower doesn't matter)
max_num_images = 10000

images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(images_path)
for f in filenames if os.path.splitext(f)[1].lower() in image_extensions]
if max_num_images < len(images):
 images = [images[i] for i in sorted(random.sample(xrange(len(images)),
max_num_images))]

print("keeping %d images to analyze" % len(images))

features = []
thumbs = []
for i, image_path in tqdm(enumerate(images)):
 if i % 10 == 0:
 print("analyzing image %d / %d" % (i, len(images)))
 img, x = load_image(image_path);

 feat = feat_extractor.predict(x)[0]
 features.append(feat)
 thumbs.append(img)

print('finished extracting features for %d images' % len(images))

features = pd.DataFrame(features)
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)

pca = PCA(n_components=2)

_pca = pca.fit(features).transform(features)
#_pca = pca.fit(features_scaled).transform(features_scaled) #scaled
version

pca_df=pd.DataFrame(_pca,columns=['pc1','pc2'])

tx, ty = pca_df.pc1, pca_df.pc2
tx = (tx-np.min(tx)) / (np.max(tx) - np.min(tx))

 39

ty = (ty-np.min(ty)) / (np.max(ty) - np.min(ty))

width = 4000
height = 3000
max_dim = 200

full_image = Image.new('RGBA', (width, height))
for img, x, y ,thumb in tqdm(zip(images, tx, ty, thumbs)):
 tile = thumb
 rs = max(1, tile.width/max_dim, tile.height/max_dim)
 tile = tile.resize((int(tile.width/rs), int(tile.height/rs)), Image.ANTIALIAS)
 full_image.paste(tile, (int((width-max_dim)*x), int((height-max_dim)*y)),
 mask=tile.convert('RGBA'))

matplotlib.pyplot.figure(figsize = (16,12))
imshow(full_image)

B. Code for implementing representation in reduced dimensions

(tSNE)5.

import os
#%matplotlib inline
import random
#import cPickle as pickle
import numpy as np
#from ggplot import *
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions,
preprocess_input
from keras.models import Model
import matplotlib.pyplot
from matplotlib.pyplot import imshow
from keras.applications.imagenet_utils import decode_predictions,
preprocess_input
from keras import applications
from skimage.util.shape import view_as_windows
from skimage.transform import resize
from scipy.spatial import distance
from tqdm import tqdm
import pandas as pd
from sklearn.preprocessing import StandardScaler
from PIL import Image
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

5 It has been implemented in Jupyter Notebook with its graphical functionalities.

 40

PATH = '../../../Dataset/ISIC_2017_split1_copy/'

model = keras.applications.Xception(weights='imagenet', include_top=True)
model.summary()

feat_extractor = Model(inputs=model.input,
outputs=model.get_layer("avg_pool").output)
feat_extractor.summary()

def load_image(path):
 img = image.load_img(path, target_size=(64,64))
 x = image.img_to_array(img)
 x = np.expand_dims(x, axis=0)
 x = np.rollaxis(x, 1, 3)
 x = np.rollaxis(x, 3, 2)
 #print(x.shape)
 x = preprocess_input(x)
 return img, x

images_path = PATH
image_extensions = ['.jpg'] # case-insensitive (upper/lower doesn't matter)
max_num_images = 10000

images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(images_path)
for f in filenames if os.path.splitext(f)[1].lower() in image_extensions]
if max_num_images < len(images):
 images = [images[i] for i in sorted(random.sample(xrange(len(images)),
max_num_images))]

print("keeping %d images to analyze" % len(images))

features = []
thumbs = []
for i, image_path in tqdm(enumerate(images)):
 if i % 10 == 0:
 print("analyzing image %d / %d" % (i, len(images)))
 img, x = load_image(image_path);

 feat = feat_extractor.predict(x)[0]
 features.append(feat)
 thumbs.append(img)

print('finished extracting features for %d images' % len(images))

 41

features = pd.DataFrame(features)
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)

print('A')

pca = PCA(n_components=200)
_pca = pca.fit(features).transform(features)

#np.random.seed(123)

X = np.array(_pca)
tsne = TSNE(n_components=2, learning_rate=150, perplexity=55,
angle=0.2, verbose=2).fit_transform(X)

tx, ty = tsne[:,0], tsne[:,1]
tx = (tx-np.min(tx)) / (np.max(tx) - np.min(tx))
ty = (ty-np.min(ty)) / (np.max(ty) - np.min(ty))

width = 4000
height = 3000
max_dim = 200

full_image = Image.new('RGBA', (width, height))
for img, x, y ,thumb in tqdm(zip(images, tx, ty, thumbs)):
 tile = thumb
 rs = max(1, tile.width/max_dim, tile.height/max_dim)
 tile = tile.resize((int(tile.width/rs), int(tile.height/rs)), Image.ANTIALIAS)
 full_image.paste(tile, (int((width-max_dim)*x), int((height-max_dim)*y)),
mask=tile.convert('RGBA'))

print('B')
matplotlib.pyplot.figure(figsize = (16,12))
imshow(full_image)

print('C')

print(type(full_image))
img_gen = []
for i, img in tqdm(enumerate(images)):
 img = image_path.split('.')[-2]
 img = img.split('/')[-1]
 if img == 'generated1':
 #print(i)
 img_gen.append(img)
 full_image.tell(img_gen)

 42

C. Code for implementing classifier dogsVScats

import cv2 # working with, mainly resizing, images
import numpy as np # dealing with arrays
import os # dealing with directories
from random import shuffle # mixing up or currently ordered data that might

lead our network astray in training.
from tqdm import tqdm # a nice pretty percentage bar for tasks. Thanks

to viewer Daniel BA1/4hler for this suggestion

TRAIN_DIR = './train'
TEST_DIR = './test'
IMG_SIZE = 64
LR = 1e-3

MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '2conv-basic') # just

so we remember which saved model is which, sizes must match

def label_img(img):
 if img == '.DS_Store':
 pass
 else:
 word_label = img.split('.')[-3]
 if word_label == 'cat': return [1, 0]
 elif word_label == 'dog': return [0, 1]

def create_train_data():
 training_data = []
 for img in tqdm(os.listdir(TRAIN_DIR)):
 label = label_img(img)
 path = os.path.join(TRAIN_DIR,img)
 if img == '.DS_Store':
 pass
 else:
 img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
 img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
 training_data.append([np.array(img),np.array(label)])
 shuffle(training_data)
 np.save('train_data.npy', training_data)
 return training_data

def create_train_data():
 training_data = []
 for img in tqdm(os.listdir(TRAIN_DIR)):
 label = label_img(img)
 path = os.path.join(TRAIN_DIR,img)
 if img == '.DS_Store':
 pass

 43

 else:
 img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
 img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
 training_data.append([np.array(img),np.array(label)])
 shuffle(training_data)
 np.save('train_data.npy', training_data)
 return training_data

#Now, we can run the training:
train_data = create_train_data()
If you have already created the dataset:
#train_data = np.load('train_data.npy')

import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression

convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1],

name='input')

convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)

convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR,

loss='categorical_crossentropy', name='targets')

model = tflearn.DNN(convnet, tensorboard_dir='log')

if os.path.exists('{}.meta'.format(MODEL_NAME)):
 model.load(MODEL_NAME)

 44

 print('model loaded!')

train = train_data[:-500]
test = train_data[-500:]

X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
Y = [i[1] for i in train]

test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]

model.fit({'input': X}, {'targets': Y}, n_epoch=3, validation_set=({'input':

test_x}, {'targets': test_y}),
 snapshot_step=500, show_metric = True, run_id=MODEL_NAME)

model.save(MODEL_NAME)

import matplotlib.pyplot as plt

if you need to create the data:
#test_data = process_test_data()
if you already have some saved:
test_data = np.load('test_data.npy')

fig=plt.figure()

shuffle(test_data)

for num,data in enumerate(test_data[24:36]):
 # cat: [1, 0]
 # dog: [0, 1]

 img_num = data[1]
 img_data = data[0]
 print(img_num)
 #print(img_data)

 y = fig.add_subplot(3, 4, num + 1)
 orig = img_data
 data = img_data.reshape(IMG_SIZE,IMG_SIZE,1)
 model_out = model.predict([data])[0]

 print(model_out)

 if np.argmax(model_out) == 1: str_label='Dog'
 else: str_label='Cat'

 45

 y.imshow(orig,cmap='gray')
 plt.title(str_label)
 y.axes.get_xaxis().set_visible(False)
 y.axes.get_yaxis().set_visible(False)
plt.show()

PREDICTIONS:

	1. Introduction
	1.1 Context and justification of the project
	1.2 Goals of the project
	1.3 Approach and methodology
	1.4 Planning
	1.5 Brief summary of obtained products
	1.6 Brief description of the other sections

	2. Theoretical Background
	3. Definition of requirements
	4. Design and methodology
	5. Development
	6. Tests and results
	7. Conclusions and future lines of research
	8. Glossary
	9. Bibliography
	10. Annexes

