
i

Development of an API for miRNA sequencing
data that converts mirGFF3 files to VCF

Roderic Espín Garcia
Máster en Bioinformática y Bioestadística
Área 1 - Subárea 9: Análisis de secuencias de RNA reguladores

Lorena Pantano Rubiño
Maria Jesús Marco Galindo

January 2nd, 2019

ii

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

iii

iv

 FICHA DEL TRABAJO FINAL

Título del trabajo:
Development of an API for miRNA
sequencing data that converts mirGFF3 files
to VCF

Nombre del autor: Roderic Espín Garcia

Nombre del consultor/a: Lorena Pantano Rubiño

Nombre del PRA: Maria Jesús Marco Galindo

Fecha de entrega (mm/aaaa): 01/2019

Titulación: Máster en Bioinformática y Bioestadística

Área del Trabajo Final: Análisis de secuencias de RNA reguladores

Idioma del trabajo: Inglés

Palabras clave VCF, miRNA, tool

 Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de
aplicación, metodología, resultados i conclusiones del trabajo.

Los microARN (también llamados miARN) son pequeñas moléculas de ARN de
unos 20-25 nucleótidos de longitud y que están envueltos en la regulación de
genes postrancripcionales. Los miARN son esenciales en casi cualquier proceso
biológico y se le ha asociado con varias enfermedades humanas.

Las secuencias con variaciones respecto al miARN de referencia se llaman
isomiR. Los isomiRs también pueden depender del género y la raza.

Actualmente, existe un proyecto llamado mirtop que unifica la investigación
relativa de los miARN e isomiRs cuyo objetivo es optimizar los análisis de miARN
y promover el desarrollo de herramientas analíticas de tipo downstream. En este
proyecto se ha originado un nuevo formato llamado mirGFF3, para la salida de
resultados de detección y cuantificación de miARN/isomiR.

El objetivo de este trabajo es añadir a mirtop una herramienta que convierta
ficheros mirGFF3 al formato VCF (Variant Call Format). En este formato se
almacenan las variantes genéticas respecto al genoma de referencia y es muy
utilizado como entrada en otras herramientas bioinformáticas.

Se ha utilizado Python como lenguaje de programación para la realización de la
herramienta y se utilizarán datos de muestras sintéticas y reales (ya en formato
mirGFF3) para comprobar su funcionamiento y posterior análisis mediante
gráficos, también generados por Python, aunque este análisis es independiente
del proyecto mirtop.

v

 Abstract (in English, 250 words or less):

microARN (also called miARN) are short RNA molecules with a nucleotides
length of 20-25 that regulates gene expressions. miRNAs are essential to all
biological processes and its associated with several human diseases.
isomiRs are sequence variants from annotated miRNAs. isomiRs can also
depend on sex or ethnicity.

Currently, a project called mirtop unites research of miRNAs and isomiRs with
the aim of promoting the development of downstream analysis tools. In that
project a new format called mirGFF3 was originated, for the output of
miRNA/isomiR detection and quantification results.

The main goal of this project is to add a tool to the mirtop API that converts
mirGFF3 format files to VCF (Variant Call Format). In this format, genetic variants
respect the reference genome are stored, and is a file format very used in other
useful bioinformatics tools.

Python was the programming language chosen to implement the conversion tool.
Synthetic and real samples will be used (already in mirGFF3 format) to test the
functionality. A subsequent analysis (also with python) will be carried out by
plotting graphs, although this analysis is independent from the mirtop project.

vi

vii

Table of contents

1. Introduction ... 1

1.1 Context and justification of the project ... 1
1.1.1 General description ... 1

1.1.1.1 miRNA and isomiRs ... 1
1.1.2 Justification of the Master’s Final Project .. 2

1.2 Objectives .. 2
1.2.1 General objectives .. 2

1.2.2. Specific objectives.. 2
1.3 Approach and method to follow ... 3

1.4 Planning .. 3
1.4.1 Tasks .. 4

1.4.2. Schedule .. 4
1.4.3 Milestones ... 5

1.4.4 Risk analysis ... 5
1.5 Brief summary of the results .. 6

1.6 Brief description of other chapters ... 6
2. mirGFF3 and VCF formats ... 7

2.1 The mirGFF3 format... 7
2.1.1 Headers .. 7

2.1.2 Columns and its data .. 7
2.2 The VCF ... 10

2.2.1 Meta-information lines ... 10
2.2.2 Header line .. 10

2.2.3 Data lines .. 10
2.3 Adaptation from the mirGFF3 to the VCF Format 11

3. Methods and results ... 13
3.1 Explanation of the script functions ... 13

3.2 Plots generated from the data .. 18
3.3 Results obtained .. 22

4. Conclusions .. 24
5. Bibliography .. 25

6. Appendices ... 27
6.1 Script to_vcf.py .. 27

6.2 Script plot_vcf_graphs.py ... 31

viii

Summary of figures

Figure 1: Schedule in a Gantt chart 5

Figure 2: mirGFF3 example 10
Figure 3: VCF example 11

Figure 4: Barplot with number of SNVs per sample - Synthetic samples 19
Figure 5: Boxplot with number of SNV per miRNA and sample - Synthetic
samples 19
Figure 6: Importance of the SNVs versus the miRNA expression - Synthetic
samples 20
Figure 7: Importance of the SNVs versus the miRNA expression (zoomed in) -
Synthetic samples 20
Figure 8: Barplot with number of SNVs per sample - Real samples 21

Figure 9: Boxplot with number of SNV per miRNA and per sample - Real samples
 21

Figure 10: Importance of the SNVs versus the miRNA expression - Real samples
 22

Figure 11: Importance of the SNVs versus the miRNA expression (zoomed in) -
Real samples 22

Summary of tables

Table 1: Headers of mirGFF3, adapted from miRTop - mirGFF3 format [3] 7
Table 2: Columns of mirGFF3, adapted from miRTop - mirGFF3 format [3] 8

Table 3: Attributes columns description of mirGFF3, adapted from miRTop -
mirGFF3 format [3] ... 9

Table 4: Variants categories, adapted from miRTop - mirGFF3 format 9
Table 5: Meta-informaton of VCF, adapted from the VCF specifications 10

Table 6: Data lines of VCF, adapted from the VCF specifications 11
Table 7: Expand_seqs function .. 13
Table 8: adapt_refseq function ... 14

Table 9: cigar_length function .. 14
Table 10: cigar_2_key function ... 15

Table 11: create_vcf function ... 16

1

1. Introduction

1.1 Context and justification of the project

1.1.1 General description

With the emergence of Next Generation Sequencing (NGS) technologies,
RNA transcriptomes were massively generated. This project specifically
focuses on miRNA (microRNA), which are short RNA molecules with a
nucleotides length of 20-25 that regulates gene expressions and its
identification is important to understand gene regulations. [1] [2]

In that context, an international collaboration implemented an API
(miRTop) developed in python where one of its functions converts several
miRNA quantification outputs to the mirGFF3 format [3] [4] .The approach
of this project is to further develop the current pipeline and add a new tool
that converts this same mirGFF3 format to a Variant Call Format (VCF) [5],
so it can be imported from other tools which specializes in genomic
variation analysis.

A relevant section of this project is also to execute the tool with small non-
coding RNA synthetic samples [6] to measure the accuracy of single
nucleotide changes (SNVs) by the sequencing technology. This will allow
to estimate the false discovery rate that can be used as a cutoff to filter out
SNVs or biological samples.

1.1.1.1 miRNA and isomiRs

microRNAs (miRNAs) are small RNA molecules of 20-25 nucleotides long.
miRNA genes are transcribed into a primary RNA (pri-miRNA) that is
processed into a hairpin miRNA precursor after cutting off the 5’ and 3’
tails by Drosha and DGCR8 proteins [7]. Then, the hairpin is exported to
the cytoplasm and processed by Dicer, which cleaves off the hairpin loop
and releases a miRNA duplex about 22 nucleotides long [8]. miRNAs are
essential to all biological processes, like cell differentiation, cell
proliferation and cell death [9] [10]. The deficit of excess of miRNAs has
effects with several human diseases and different types of cancer [11] .

isomiRs are sequence variants from annotated miRNAs [12]. They were
described first by Morin et al in human stem cells using NGS technologies
[2]. As consequence of Biochemical processes, sequence variations can
affect the mature miRNA sequence [13]. The imprecision of the
Drosa/Dicer cutting could make variations at 3’ and 5’ ends, but these
variations constitutive in both pathients and healthy individuals [14] [15].
isomiRs depend of the subject, that is, its sex or ethnicity [14], but also
disease subtype [16] [17], although specific functions of isomiRs is
currently not known well [18].

2

1.1.2 Justification of the Master’s Final Project

The main purpose of this project is the creation of a tool that will be able
to facilitate the research of miRNAs and contribute to their community.
With the implementation of the mirtop API and its mirGFF3 format for
miRNAs, it led to the possibility to continue its pipeline and create a tool
which converts this format to a variant generic one (VCF). This way, the
last file of the pipeline can be used in other tools specialized in genomic
variation.

1.2 Objectives

1.2.1 General objectives

1) Build and incorporate to the miRTop pipeline a python tool that converts

mirGFF3 miRNA files to VCF.

2) Test the conversion and do an analysis using a published dataset that
contains real samples and synthetic samples.

3) If the existence of SNVs is confirmed, determine the false positives rate
and apply a methodology to filter them out.

1.2.2. Specific objectives

 Build and incorporate to the miRTop pipeline a python tool that
converts GFF3 miRNA files to VCF.

1) Determine the attributes, characteristics of both mirGFF3 and VCF

formats and the relationships between them.

2) Build a python tool that converts mirGFF3 format to VCF in a
standalone style.

3) Include the tool to the miRTop project.

4) Build a unit test to check the code does what is expected.

5) Coordinate the versions and improvements of the conversion tool

to the project’s GitHub repository.

 Test the conversion and do an analysis using a published dataset
that contains real samples and synthetic samples.

6) Analyze public data set to get mirGFF3 files.

3

7) Convert to VCF

8) Check files integrity with a validator tool.

9) Fix potential bugs that appear during the process.

 If the existence of SNVs is confirmed, determine the false positives
rate and apply a methodology to filter them out.

10) Plot SNV supporting reads for each negative and read samples

11) Compare SNV rate to sequencing error rate

12) Find a characteristic that could filter out majority of SNV from
synthetic control samples and apply to real samples.

1.3 Approach and method to follow

This project is clearly centralized in the tool that converts mirGFF3 files to a
VCF format. The VCF format has been chosen since it's the standard file in
communities to annotate the genetic variations. The mirGFF3 has been
selected as the input format because it is the output format of the current
pipeline of the miRTop project, since its format content seeks to standardize
miRNA.

The next step is to select the programming language in order to develop
the tool. Although at the beginning it will be a standalone (independent and
without the need of an internet connection), afterwards the code will be
slightly modified and added to the miRTop project. Because the current
project is being developed in Python, this will be the language being used.

Before developing the code of the tool, it is important to determine the
attributes of the mirGFF3 and VCF formats and the relationships between
them, in order to adapt them correctly.

Once the tool is completed, it will be executed first using synthetic and real
samples and a VCF format file will be generated and may contain SNVs.
If there isn’t, it would mean there are no variations, although this is
practically impossible because sequencing error is expected. [7]

Assuming that SNVs are to be found, false positives must be determined
and, finally, if their existence is evidenced, a methodology will be applied
to try to prevent them or, at least, reduce its rate of appearance. But this
part may be out of scope of this project.

1.4 Planning

The project is divided into tasks, which are based on the specific objectives
that have been previously described. A schedule has been determined

4

based on the tasks which knowledge is consolidated and the ones that
need more research in order to achieve the best results. In that sense, the
tasks and its schedule are as follows:

 1.4.1 Tasks

Task 1: Establish the relationships and formatting between mirGFF3 and
VCF.

Task 2: Build an independent tool developed in Python that converts
mirGFF3 files to VCF.

Task 3: Unit testing the tool to assure proper functionality.

Task 4: Adapt the tool to the miRTop project so it will be able to continue
its pipeline.

Task 5: Coordinate everything in the GitHub’s repository.

Task 6: Test the tool with the published dataset.

Task 7: SNV calling the variations of the VCF file to determine whether
there are false positives.

Task 8: Analyze the false SNVs in order to determine (if able) its origin.

Task 9: Propose and (if possible) develop a methodology to avoid or
decrease the rate of false positives SNVs.

Task 10: Writing of the project report.

Task 11: Preparation of the presentation.

1.4.2. Schedule

The schedule of this project has been defined with a Gantt chart and is as
follows:

5

Figure 1: Schedule in a Gantt chart

Total: 85 days.

1.4.3 Milestones

Milestone 1: Independent tool working as pretended
Milestone 2: miRTop pipeline updated and working as intended
Milestone 3: False SNVs detected.
Milestone 4: Methodology to avoid/reduce false SNVs developed

1.4.4 Risk analysis

While there may always be some kind of risk in the tasks relative to the first
general objective of the project, such as difficulties involving conversion
between formats or the adaptation from standalone to the miRTop pipeline,
the riskiest tasks are part of the second and third objectives.

In particular, when determining false SNVs, a risk can be found in the fact
that, with the converted samples in the VCF format, the false positives may
not be detected (if they are).

Another risk can happen when establishing a methodology that
removes/reduces false SNVs (and not the “True” ones), because without
analyzing the data in advance, it is difficult to determine to what extent it is
possible to achieve it.

6

The second risk may be solved by applying existing methodologies that
actually diminishes false SNVs (although it will involve further research).

1.5 Brief summary of the results

The results obtained from this project are the python scripts that converts
mirGFF3 format data to VCF, and another that reads VCF files data and
generates graphics to interpret the SNVs found in the mirGFF3 file. Two
VCF files are also created from synthetic and real samples.

1.6 Brief description of other chapters

The main chapters of this project are:

- mirGFF3 and VCF formats. In this chapter the format of the
mirGFF3 and VCF files are explained and how they relate.

- Methods and results. All the functions of the script that does the
conversion are explained in this chapter, it also includes some plots
to interpret the data results of the samples. Finally, there is a section
that indicates all the produced results of the project.

7

2. mirGFF3 and VCF formats

2.1 The mirGFF3 format

mirGFF3 [3] is a text file format and is based on the GFF3 format and
adapted and focused to miRNA data. Its purpose is to store positional
features [8] and is widely used by many software [9] and it can represent
many situations like non-coding transcripts or alignments. The main idea
of the mirGFF3 format (which of course will contain miRNA data) is to
promote sharing, re-analysis and developing of downstream analysis.

All information found inside a mirGFF3 format file is divided into two
sections: headers, which are the meta-information of the data, whose lines
always start with ##. After the meta-information, every line will show a
sequence that maps a miRNA.

2.1.1 Headers

The following table shows the headers, its description, if it is required and
an example:

 Headers of mirGFF3

Name Description Required Example
VERSION The version of

mirGFF3
Yes ## mirGFF3. VERSION 1.1

source-
ontology

The database
source ontology

Yes ## source-ontology: miRBasev21
doi:10.25504/fairsharing.hmgte8

CMD Commands used to
generate the file

No

REFERENCE Genome/Database
version used

No

COLDATA Samples names
used. Separated by
a comma.

Yes ## COLDATA
TruSeq_Lab1_SynthEQ-mirbase-
ready,
TruSeq_Lab2_SynthEQ-mirbase-
ready

FILTER Meaning of the
“FILTER” tags

No ## FILTER: PASS(ok), REJECT(no
ok)

Table 1: Headers of mirGFF3, adapted from miRTop - mirGFF3 format [3]

2.1.2 Columns and its data

The fields that are tab-separated and contains information and the fields
that do not have any must be informed with a dot. The description of the
columns is as follows:

8

 Columns of mirGFF3

Name Column
number

Description Required Example

seqID 1 Precursor
name

Yes hsa-mir-675

source 2 Database
used for the
annotation
with its
version

Yes miRBasev21

type 3 Type of
miRNA
(reference
miRNA,
isomiR, etc)

Yes isomiR

start 4 Precursor
start position.

Yes 10

end 5 Precursor
end position.

Yes 31

score 6 Mapping
score or other
type of score

No 0

strand 7 If the strand is
sense (+) or
antisense (-)

Yes +

phase 8 It is currently
ignored.

No .

attributes 9 Contains the
relevant
attributes of
the specific
read

Yes Read=TGTGCGGAGAGGGC
CCACAGGG; UID=iso-22-
9V62R12P4; Name=hsa-miR-
675-5p; Parent=hsa-mir-675;
Variant=iso_5p:+1,iso_snv;
Cigar=T19MGM;
Expression=2,0,0,2;

Table 2: Columns of mirGFF3, adapted from miRTop - mirGFF3 format [3]

The ninth column attributes, which contains a specific set of feateures
separated by semicolon. The order of the fields is not important and their
information is:

Attributes of mirGFF3

Name Description Required Example
UID Unique ID based on its

sequence.
Yes iso-22-66P5J2RIM

Read Read sequence No TGTGCGGAGAGGGCC
CACAGGG

Name Mature name Yes hsa-miR-675-5p

Parent Hairpin precursor name Yes hsa-mir-675

Variant Categorical types,
adapted from isomiR-

Yes iso_5p:+1,iso_snv

9

SEA [10]. There are 8
variant categories.
Explained with more
detail in Table X

Changes Indicates nucleotides
being changed

No Changes=iso_5p=t,
iso_snv:g

Cigar CIGAR string [11] Yes T19MGM

Hits Number of hits in the
database

Yes 1

Alias Names from the
database, separated by
a comma

No MIMAT0004284

Genomic Positions on the
genome. Format:
chr:start-end,chr:start-
end

No 11:1996771-1996792(+)

Expression Raw counts separated
by a comma

Yes 2,0,0,2;

Filter Either Pass or Reject,
used to filter the
sequence

Yes Pass

Seed_fam Currently not being used No
Table 3: Attributes columns description of mirGFF3, adapted from miRTop - mirGFF3 format [3]

In the attributes column there is a field called “variants” that show affected
nucleotides in the read sequence, their definition is:

Categories of ‘Variants’

Name Description
iso_5p Extra nucleotides not included in the reference miRNA,

negative or positive values depends on whether the
sequence starts n nucleotides after (-) or before(+) the
reference.

iso_3p Same explanation as above.

iso_add_3p Same explanation as above.

iso_snv_seed The affected nucleotides are between the positions 2 and
7.

iso_snv_central_offset The affected nucleotide is at the position 8.

iso_snv_central The affected nucleotides are between the positions 9 and
12

iso_snv_central_supp The affected nucleotides are between the positions 13
and 17.

iso_snv Anything else
Table 4: Variants categories, adapted from miRTop - mirGFF3 format

An example of a few mirGFF3 lines, as well as the meta-information:

10

Figure 2: mirGFF3 example

2.2 The VCF

VCF [12] is a text file format that contains variation in the sequence and its
information. It uses meta-information, a header line and the variants with
the supporting information. The current version and the one used in this
project is the 4.3.

2.2.1 Meta-information lines

These lines are included after a double hash sign (##) and are optional
except the file format which is always required. Some of these are as
follows:

Meta-information of VCF

Name Description Format/example
fileformat Details the version

number of the VCF
##fileformat=VCFv4.3

fileDate Date of file creation ##fileDate=20181210
Source The database source ##source=miRBasev21

doi:10.25504/fairsharing.hmgte8
INFO Information fields that

are included in the data
##INFO=<ID=ID,Number=number,Type=ty
pe”,Description=”description”,Source=”sou
rce”,Version=”version”>

FILTER Filters applied to the data ##FILTER=<ID=ID,Descroption=descriptio
n>

FORMAT Genotype fields specified ##FORMAT=<ID=ID,Number=number,Typ
e=type,Description=”description”>

Table 5: Meta-informaton of VCF, adapted from the VCF specifications

2.2.2 Header line

It’s the header line and it contains the name of the 8 required columns plus
the optional ones. The mandatory and tab-separated fields are: CHROM,
POS, ID, REF, ALT, QUAL, FILTER and INFO and it must start with a hash
sign (#)

2.2.3 Data lines

They are tab-limited and missing values are stated with a dot (.).

11

Data lines of VCF

Name Description Example
CHROM Indicates the

chromosome of
reference

11

POS The reference position,
the first position being 1

1996779

ID Identifier, unique per data
record (no duplicates
allowed)

hsa-miR-675-5p-SNP1

REF Reference base/s G

ALT Alternate base/s A

QUAL Quality, in a phred-scaled
score.

7

FILTER Filter status Pass

INFO Additional information, its
description must be
informed in the meta-
information lines

NS=4

FORMAT Not required, they are the
genotype fields indicated
in the meta-information
lines

TRC:TSC:TMC:GT

Table 6: Data lines of VCF, adapted from the VCF specifications

For each sample another column can be added with information relative to
the FORMAT genotype fields.

An example of a few VCF lines, as well as its meta-information and header:

Figure 3: VCF example

2.3 Adaptation from the mirGFF3 to the VCF Format

Now that the fields of both formats are known, the next step is to link the
corresponding fields between them and adapt, if necessary, the format of
the original data to the new one.

12

The meta-information lines of the VCF format does not need the mirGFF3
format to complete it, the only exception being the ##source line, and is
the same value as the source in the mirGFF3 format.

Data lines are not directly related to the ones of the VCF format, so it is
necessary to establish their relationship as follows:

Relationship between VCF data lines and mirGFF3

VCF field mirGFF3 fields
involved

Details

CHROM Parent (hairpin precursor
name)

From the precursor name, there is a
function in the miRTop project that
resturns the chromosome and its relative
position from the reference for this
precursor.

POS seqID, Read, Name,
Parent, Variant, Cigar
and start

From all these fields, it is determined the
reference position, its nucleotides base/s
and its alternate/s. A more deep
explanation is found in the code functions.

ID Parent (hairpin precursor
name)

It uses the precursor name and the
number of variations found to that
moment.

REF seqID, Read, Name,
Parent, Variant, Cigar
and start

Same as “POS” field

ALT seqID, Read, Name,
Parent, Variant, Cigar
and start

Same as “POS” field

QUAL N/A Not used, no data to extract this
information.

FILTER Filter Same information
INFO COLDATA In COLDATA there is the number and

name of the samples involved. In INFO
there will be the information relative to the
number of samples.

FORMAT Expression The FORMAT field will have four types of
information, TRC (Total read counts), TSC
(Total SNV counts), TMC (Total miRNA
counts) and GT (Genotype information).
They are all based of the expression
values, but indirectly uses other fields
used to detect the SNVs

13

3. Methods and results

In this chapter, the functions involved in the generation of the VCF format
will be explained.

3.1 Explanation of the script functions

Function expand_seqs

Input cigar (string)
Output cigar_exp_read (string), cigar_exp_ref (string)

Description Extends the CIGAR string and adapts it for the read and
reference sequence

Table 7: Expand_seqs function

Because the CIGAR string [1] is the sequence associated to the alignment
that has been applied previously in the current mirGFF3 format, there is a
necessity in our code to adapt that CIGAR string to guess the reference
sequence length used. The operations of the CIGAR strings that will be
treated are “aligned match” (M), “insertion to the reference” (I), “deletion
from the reference” (D), and a “sequence mismatch”, that is T, C, G or A.

In this same document [1] there is a table (where the description and
symbols of CIGAR string can be found) with a column that indicates if the
operation causes the alignment to step along, this is very important
because this function will divide the CIGAR into two expanded CIGARs to
match the read and reference sequences. Deletions, matches and
mismatches won’t affect the reference position, but Insertions will do so,
at the time of separating the string into two, insertions will go one way
(reference) and deletions to the other (read). For better visualization, an
easy example is explained below:

-From the input CIGAR string (e.g. 17MIII2MDD) the function will first
extend it reading character by character, where only matches (“M”) will be
preceded by digits (which indicates matches in succession), with the
exception of “1”. Finally, the result of the extension is
“MMMMMMMMMMMMMMMMMIIIMMDD”. To separate it, as it has been
previously indicated, deletions will go to reference side and insertions to
read ones. That is:

cigar_exp_read = MMMMMMMMMMMMMMMMMIIIMM
cigar_exp_ref = MMMMMMMMMMMMMMMMMMMDD

This function (expand_seqs) is used before the adapt_refseq:

Function adapt_refseq

Input cigar_ref (string), hairpin (string), parent_ini_pos (integer),
var5p (integer)

Output refseq (string),

14

Description Generates the reference sequence from where the read will
be aligned

Table 8: adapt_refseq function

cigar_ref variable is the output of the function expand_seqs and is an
extended CIGAR string used to interpret the length of the reference
sequence.

The hairpin string, originally a file which contained all the sequences of
miRNA hairpins in a FASTA format, is the hairpin of the current miRNA
(the one being processed).

Parent_ini_pos is the integer value of the start of the reference sequence
of the parent (relative to the hairpin).
var5p it is a variant originated from iso_5p, indicates the number of
nucleotides differing to the reference’s 5’ position (in the read sequence).

This function finds the starting position of the reference sequence from the
variables above mentioned. Hence, the index of the hairpin string is
parent_ini_pos + var5p (can have a negative value), the end position will
be indicated by the cigar extended reference.

A case illustrating the mentioned task, using the same CIGAR string of the
expand_seqs function example:

*cigar_ref = MMMMMMMMMMMMMMMMMMMDD
*var5p = 1
*parent_ini_pos = 40
*hairpin = TATCAATAAGCCTTCTCTTCCCAGTTCTTCTTGGAGTCAGG
AAAAGCTGGGTTGAGAGGAGCAGAAAAGAAANNNNNNNNNNNN

The starting position will be 40+1=41 (marked in red). The length of
cigar_ref is 21, so 21+41 = 62 is the end position of the reference
sequence (marked in blue). Finally, the reference sequence of this lecture
is AAAAGCTGGGTTGAGAGGAGC.

Again, this function is another precursor of the main function which
calculates the SNVs and its positions, that is the cigar_2_key function.

Function cigar_length

Input cigar (string)
Output total_n

Description Returns the CIGAR length based on nucleotides
Table 9: cigar_length function

This function was only used for testing. There was a necessity to validate
that all the read sequences of the lectures in the mirGFF3 file had the same

15

length than the CIGAR. That is because the logic of the script is based
entirely on the CIGAR string and the read sequence.

Function cigar_2_key

Input cigar_read (string), cigar_ref (string), readseq (string),
refseq (string), pos (integer)

Output Key_pos (list of strings), key_var (list of strings), ref (list of
strings), alt (list of strings)

Description Generates a list which contains all the SNVs found in the
current lecture (key_var), the positions of these SNVs
(key_pos) and their reference (ref) and alternate (alt) bases

Table 10: cigar_2_key function

The inputs needed for this function are: cigar_read and cigar_ref are the
outputs of the expand_seqs function (they are the expanded CIGAR
strings), the readseq string is the read sequence obtained from the current
line of the mirGFF3 file, the refseq string is the output of the adapt_refseq
function and is the reference sequence, finally, the pos integer is the
reference position within the chromosome.

The output generates a list (key_var) which contains the variations found
in the current lecture. There will be two types of variations, SNVs
(variations between A, C, T and G bases) and Non SNVs (Indels). It also
generates a list (in concordance of key_var) with the positions where the
variants start (always in the reference sequence). The reference and
alternate bases are literally the ones to include in their fields of the VCF
format.

The function parses the expanded CIGAR to each of the two sequences
(read and reference), and iterates finding the variations and its positions.

It is important to not repeat the same SNV, so a system is implemented in
order to avoid it. For the SNVs the process is trivial, if the variation of the
nucleotide is in the same position and is the same base, then it’s the same
SNV, but for indels it is a little more complex. There may be a Deletion in
the same position as another lecture, which it can be interpreted as the
same SNV, but that does not take into account that there may be more
deletions (in succession), which is not the same case although the start
position is. The system employed considers the previous nucleotide to
check if there is a deletion (or an insertion in case of checking them) and
marks it in the key_var list. For the Insertions it is trickier, because even if
three insertions in succession are confirmed, the nucleotides involved may
not be the same, therefore it is not the same SNV.

In that regard, the key of the variation will have the pattern of “DX” where
X is the number of deletions in sequence and “IXIXIX…” for every insertion
in the sequence, where X are the nucleotides inserted.

To clarify it, with the same CIGAR in others examples:

16

cigar_read = MMMMMMMMMMMMMMMMMIIIMM
cigar_ref = MMMMMMMMMMMMMMMMMMMDD
readseq = AAAAGCTGGGTTGAGAGCACGA
refseq = AAAAGCTGGGTTGAGAGGAGC
pos = 140926189

Then, the mapping goes this way:

MMMMMMMMMMMMMMMMMIIIMM

AAAAGCTGGGTTGAGAGCACGA

MMMMMMMMMMMMMMMMMMMDD

AAAAGCTGGGTTGAGAGGAGC

Underlined and in yellow is marked the start of the reference positions of
the indels. Technically, it shouldn’t be allowed to mark the position of the
read sequence instead of the reference one, but both sequences are in
sync because the code interprets the indels like this:

901234567890123456 7890 Reference position

XMMMMMMMMMMMMMMMMMIIIMMDD CIGAR extended

XAAAAGCTGGGTTGAGAGCACGA Read Sequence

XAAAAGCTGGGTTGAGAG GAGC Reference Sequence

The green marks the start of the sequence, with position 140926189, in
yellow it’s shown the positions where the variant position in the reference
starts (that is, 140926206 and 140926208).

The key_var coded are ICIAIC for the three insertions in a row and D2 for
the two deletions. It is not needed to indicate the nucleotides deleted
because they will always be the same (it’s the reference sequence, not the
read one).

Finally, the reference positions are marked in red and the alternate
nucleotides in blue.

key_pos: [140926208, 140926206]
key_var: ['D2', 'ICIAIC'],
vcf_ref: ['AGC', 'G']
vcf_alt: ['A', 'GCAC']

Function create_vcf

Input mirgff3 (string), precursor (string), gtf (string), vcffile (string)

Output Without return. Instead, a file is generated with the ‘vcffile’
name

Description The most complex function of the script, generates a file with
the VCF format

Table 11: create_vcf function

17

The function is called with four parameters, the name of the mirGFF3 file
(mirgff3), the FASTA format sequences of all mature miRNA sequences
(precursor) [2], the genome coordinates (gtf) [2] and the name of the output
file.

The output is a .VCF file with the fields converted from the mirGFF3 format.

First, the function checks if the mirgff3 file exists, if it exists, decodes from
UTF-8 codec with BOM (byte order mark) signature and encodes to UTF-
8 and separates all the info by lines (ASCSII Linefeed (LF)) [3].

It follows by writing to the new .VCF file the meta-information lines. That
is, the file format (version 4.3), fileDate (based on the system’s date),
source-ontology (based on the original mirGFF3 file), the INFO data (in
this case “NS”, the number of samples), the filters applied (REJECTED if
filter not passed) and four lines (one per format type) with the Format IDs
of TRC (total read counts), TSC (total SNV counts), TMC (total miRNA
counts) and GT (genotype).

The headers are written after the meta-information, they are: CHROM
(chromosome from the reference genome), POS (reference position), ID
(self-explained) REF (reference base/s), ALT (alternate base/s), QUAL
(quality, currently inactive because of no input data), FILTER (filter status),
INFO (additional information) and one more for each sample.

An already existing function named read_gff_line returns the fields of the
mirGFF3 format file. Its input is the mirGFF3 file. Another external function
named read_gtf_to_mirna is used, this one returns a dictionary with
information relative to the genome coordinates (in fact, this same file is the
input of the function). The keys of this dictionary are actually the Parent
attribute of the mirGFF3 format file, and the CHROM (chromosome), read
sequence, reference positions, the CIGAR string, the variants (only the
iso_5p is used), hairpin and miRNA are retrieved.

With the CIGAR string, the hairpin, the iso_5p variant and the read
sequence the functions that find all the SNVs are called. A dictionary is
created to save all the keys of SNVs to avoid duplicates. The information
that contains this dictionary are all the fields needed in the VCF format and
the key is formed by CHROM+POS+SNV.

Following the previous examples, for the SNV involving the two deletions,
the key would be: chrX-140926208-D2 (Chromosome X, reference
position of 140926208 and D2 which corresponds to 2 deletions in a row).
The ID selected is hsa-miR-320d-nonSNP1294 which corresponds to the
miRNA hsa-miR-320d and is the (particular) non SNV found number
1294. As explained previously, the reference and alternate bases are AGC
and A, the quality is not needed so a . (dot) is placed. Because it has pass

the filter this is its value. Finally, with 4 samples, the NS (number of

18

samples) is 4. The remaining fields of the dictionary are relative to every

sample, but it is only needed for SNVs so they are not saved for non SNVs.

Another example, a SNV found in the position 140926210 of the
chromosome X in the same miRNA as the previous example (hsa-miR-

320d), an SNV is found (C->A). Because this is a SNV, the fields TRC,
TSC, TMC and GT are needed to be informed for every sample.

The TRC value is equal to the sum of all difference sequences with the
same SNV found, the TSC is the value of the expression of this SNV and
the TMC the sum of all the SNVs found in the miRNA (hsa-miR-320d). The
genotype (GT) will be 0|0 if there is no expression, 1|1 if the expression of
the SNV equals to the expression of the miRNA, and 1|0 if not.
These fields were informed as:

TRC = [1,2,1,0]
TSC = [2,9,3,0]
TMC = [166, 1650, 507, 719]
GT = [1|0, 1|0, 1|0, 0|0]

Here we can say that there was no expression in the fourth sample and
most expressed in the second sample for this SNV.

The lines generated for the non SNV and the SNV of the examples are as
follows:

chrX 140926208 hsa-miR-320d-nonSNP1294 AGC A .
 Pass NS=4

chrX 140926210 hsa-miR-320d-SNP10227 C A . Pass
 NS=4 TRC:TSC:TMC:GT 1:2:166:1|0 2:9:1650:1|0 1:3:507:1|0
 0:0:719:0|0

3.2 Plots generated from the data

To analyze the data of the VCF file generated, a set of plots have been
created. A list of miRNAs has been filtered before the computation of these
plots, the complete list can be found in the appendix. This is based on the
miRTop project that has defined the miRNAs that won’t have cross-
mapping events during alignment (sequences that map to multiple
miRNAs with similar scores).

The first graph is a barplot that contains the number of SNVs in each
sample:

19

Figure 4: Barplot with number of SNVs per sample - Synthetic samples

The elevate number of these false positives SNVs is maybe due to the
sequencing error rate since we assume the synthetic sample won’t have
any variation and only the sequence that was synthetized will be detected.

The second graph is a boxplot that contains the number of SNVs per
miRNA and per sample:

Figure 5: Boxplot with number of SNV per miRNA and sample - Synthetic samples

The number of SNVs per miRNA ranges from 0 to 100, having the most
miRNAs between 20 and 60 SNVs. This is very interesting since the
miRNAs in the synthetic sample should be equimolar (all miRNAs with the
same abundance). Although the original work has confirmed that miRNAs
are not detected at the same abundance, it was unknown the number of
variations for each miRNA that the sequencing technology could generate.
Here we confirm that there is a bias as well in the number of variants that
each miRNAs have.

The third plot calculates a variable (importance) being. The expression of
the SNV divided by the expression of the miRNA, in percentage (%).

20

Figure 6: Importance of the SNVs versus the miRNA expression - Synthetic samples

The majority of the SNVs are 10% (or less) of the total miRNA abundance.
The error sequencing rate for this technology has been described to be
0.1-1%. Although, almost 70% of SNVs seem to be under this value, still
there are a high percentage that is over the expected rate. For instance, if
we zoom in to observe the SNVs with an importance greater than 10%, we
see less SNVs in proportion:

Figure 7: Importance of the SNVs versus the miRNA expression (zoomed in) - Synthetic samples

In comparative, the plots from real samples:

21

Figure 8: Barplot with number of SNVs per sample - Real samples

The number of SNVs have half the SNVs than the synthetic samples, with
nearly 7.000 SNVs per sample.

Figure 9: Boxplot with number of SNV per miRNA and per sample - Real samples

It is also seen in the boxplot, with only a few outliers, the expected number
of SNVs in real samples is much lower than synthetic ones. This could be
due to the fact that real samples have few miRNAs highly expressed and
the rest are less represented.

The importance distribution follows a similar trend:

22

Figure 10: Importance of the SNVs versus the miRNA expression - Real samples

 With a zoom in for SNVs with more than 10% of importance:

Figure 11: Importance of the SNVs versus the miRNA expression (zoomed in) - Real samples

The importance values behave in a similar way than synthetic samples,
although it seems that the number of SNVs normalized by the total SNVs
detected are higher in the importance range of 50% or more. This could
be an indication that real samples could have an enrichment to real SNVs.

3.3 Results obtained

 The results obtained after the conclusion of the project:

 The code that converts to VCF is implemented in mirtop: link to
gitHub project

 It is a part of a paper to be published: link to the paper abstract

 Two VCF files have been generated from two mirGFF3 files that
contained synthetic and real miRNA samples.

https://github.com/miRTop/mirtop/blob/dev/mirtop/exporter/vcf.py
https://github.com/miRTop/mirtop/blob/dev/mirtop/exporter/vcf.py
https://www.biorxiv.org/content/early/2018/12/25/505222

23

 General description of SVNs distribution among synthetic and real
samples.

24

4. Conclusions

The main objectives set at the start of the project have been completed, a
tool has been developed. Synthetic and real samples have been
processed. A variety of different graphs with SNVs summaries were also
generated.

This project has allowed to deepen knowledge of unfamiliar areas and to
participate in a collaborative project that pursued the same goal.

The selected methodologies followed during the course of the project did
not differ. Planning has been carried out as expected and adjustments to
guarantee the success of the tasks did not alter the course.

Future lines of work may include more pipelines that uses the variant data
of the format and statistics associated to them.

Because lack of time, another goal to pursue that has not been done is to
perform an analysis which could involve machine learning algorithms with
synthetic and real samples in order to obtain more precise information of
how false positives could be filtered out. Although to reach this goal, there
is a need to have a prior knowledge of validated SNVs in the samples,
otherwise the machine learning algorithm will be bias to false positive
SNVs. Another limitation of synthetic samples is that we are unsure about
the purity of the sample, where some SNVs could be due to the error of
synthesis process and not an error in the sequencing protocol.

25

5. Bibliography

[1] Cai X, Hagedorn CH, Cullen BR., "Human microRNAs are processed from
capped, polyadenylated transcripts that can also function as mRNAs.,"
RNA. 2004 Dec;10(12):1957-66., 2004.

[2] Morin,R.D., O’Connor,M.D., Griffith,M., Kuchenbauer,F., Delaney,A.,
Prabhu,A.L., Zhao,Y., McDonald,H., Zeng,T., Hirst,M. et al., "Application of
massively parallel sequencing to microRNA profiling and discovery in
human embryonic stem cells.," Genome Res., 18, 610–621., 2008.

[3] Pantano, L., "GFF3 format with miRNA and isomiR information from
sequencing data," [Online]. Available:
https://github.com/miRTop/mirGFF3/blob/master/definition.md.

[4] Pantano, L., "project for small RNA standard annotations," [Online].
Available: http://mirtop.github.io/.

[5] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric
Banks, Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T.
Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin, 1000 Genomes
Project Analysis Group, "The variant call format and VCFtools,"
Bioinformatics. 2011 Aug 1; 27(15): 2156–2158, 2011.

[6] M, Tewari, "Systematic assessment of next-generation sequencing for
quantitative small RNA profiling: synthetic equimolar pool," 2018. [Online].
Available:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94584.

[7] T. B. P. R. K. R. H. G. Denli AM, "Processing of primary," Nature. 2004;432:
231–235.

[8] P. P. Perron MP, "Protein interactions and complexes in human microRNA
biogenesis," Front Biosci. 2008;13: 2537–2547..

[9] B. DP, "Metazoan MicroRNAs," Cell. Elsevier; 2018;173: 20–51. .

[10] B. DP., "MicroRNAs: genomics, biogenesis, mechanism, and function.,"
Cell. 2004;116:281–297..

[11] N. M. Ardekani AM, "The Role of MicroRNAs in Human Diseases," Avicenna
J Med.

[12] B. P. B. E. E. K. E. J. M. M. e. a. Desvignes T, "Nomenclature: A View
Incorporating Genetic Origins, Biosynthetic Pathways, and," Trends Genet.
2015;31: 613–626.

[13] E. X. M. E. Pantano L, "SeqBuster, a bioinformatic tool for the processing
and analysis of small RNAs datasets, reveals ubiquitous miRNA
modifications in human embryonic cells.," Nucleic Acids Res. 2010;38: e34.
.

[14] L. E. R. I. Loher P, "IsomiR expression profiles in human lymphoblastoid
cell," Oncotarget. 2014;5: 8790–8802.

[15] R. I. Telonis AG, " Race Disparities in the Contribution of miRNA Isoforms
and tRNADerived Fragments to Triple-Negative Breast Cancer.," Cancer
Res. 2018;78: 1140–1154.

26

[16] T. A. L. P. L. E. R. I. Magee RG, " Profiles of miRNA Isoforms and tRNA
Fragments in Prostate Cancer.," Sci Rep. 2018;8: 5314. .

[17] M. R. L. P. C. I. L. E. R. I. Telonis AG, "Knowledge about the presence or
absence of miRNA isoforms (isomiRs) can successfully discriminate
amongst 32 TCGA cancer types," Nucleic Acids Res. 2017;45: 2973–2985.
.

[18] D. P. L. K. E. J. M. G. U. B. F. J. S. E. A.-P. V. B. R. E. V. O. P. G. T. E. F.
M. R. F. e. a. Lorena Pantano, "Unification of miRNA and isomiR research:
the mirGFF3 format and the mirtop API," 2018.

[19] F. &. G. C. &. B. M. &. H. K. &. B. M. &. S. J. &. M. G. Pfeiffer, "Systematic
evaluation of error rates and causes in short samples in next-generation
sequencing," Scientific Report, svolume 8, Article number: 10950, 2018.

[20] [Online]. Available: http://gmod.org/wiki/GFF3. [Accessed 19 October
2018].

[21] [Online]. Available: http://gmod.org/wiki/GMOD_Components. [Accessed
19 October 2018].

[22] G. P. A. A. E. F. Gianvito Urgese, "isomiR-SEA: an RNA-Seq analysis tool
for miRNAs/isomiRs expression level profiling and miRNA-mRNA
interaction sites evaluation," BMC BioinformaticsBMC series – open,
inclusive and trusted201617:148, 31 March 2016.

[23] [Online]. Available: https://samtools.github.io/hts-specs/SAMv1.pdf.
[Accessed 21 October 2018].

[24] [Online]. Available: https://samtools.github.io/hts-specs/VCFv4.3.pdf.
[Accessed 21 October 2018].

[25] O. M. G. M. K. F. D. A. P. A.-L. e. a. Morin RD, "Application of massively
parallel sequencing to microRNA profiling and discovery in human,"
Genome Res. 2008;18: 610–621..

27

6. Appendices

6.1 Script to_vcf.py

The script that reads a mirGFF3 file and generates a VCF one.

1. from __future__ import print_function
2.
3. from fasta import read_precursor
4. from mapper import read_gtf_to_precursor, read_gtf_to_mirna
5. from body import read_gff_line
6.
7. import time
8. import datetime
9. import sys
10.
11. def cigar_length(cigar):
12. """
13. Args:
14. 'cigar(str)': CIGAR standard of a compressed alignment representation,

 this CIGAR omits the '1' integer.
15. Returns:
16. 'total_n(int)': CIGAR length in nucleotides.
17. """
18. total_n = 0
19. match_n = "0"
20. for i in cigar:
21. if i.isdigit():
22. match_n = match_n + str(i)
23. else:
24. total_n = total_n + int(match_n) + 1
25. if i == "D" or (i == "M" and match_n != "0"):
26. total_n = total_n - 1
27. match_n = "0"
28. return(total_n)
29.
30. def cigar_2_key(cigar_read, cigar_ref, readseq, refseq, pos):
31. """
32. Args:
33. 'cigar_read(str)': CIGAR extended string of the read sequence, output

of the expand_seqs.
34. 'cigar_ref(str)': CIGAR extended string of the reference sequence, out

put of the expand_seqs.
35. 'readseq(str)': the read sequence
36. 'refseq(str)': the reference sequence
37. 'pos(str)': the initial current position of the chromosome.
38. Returns:
39. 'key_pos(str list)': a list with the positions of the variances.
40. 'key_var(str list)': a list with the variant keys found.
41. 'ref(str list)': reference base(s).
42. 'alt(str list)': altered base(s).
43. """
44. key_pos = []
45. key_var = []
46. ref = []
47. alt = []
48. n_I = 0 # To balance the position between read and ref sequences
49. for i in range(len(cigar_ref)): # Parsing for SNPs and Dels
50. if cigar_ref[i] == "M":
51. continue
52. elif cigar_ref[i] in ["A", "T", "C", "G"]:
53. key_pos.append(pos + i+1 + n_I)

28

54. key_var.append(cigar_ref[i])
55. ref.append(refseq[i])
56. alt.append(cigar_ref[i])
57. elif cigar_ref[i] == "D":
58. if i == 0:
59. print("Unexpected 'D' in the first position of CIGAR")
60. elif i > 0:
61. if cigar_ref[i-1] == "D":
62. ref[-1] = ref[-

1] + refseq[i] # Adds new Del in the REF column
63. key_var[-1] = "D" + str(int(key_var[-

1][1:]) + 1) # Adds 1 to the number of Dels in succession
64. else:
65. key_pos.append(pos + i + n_I)
66. key_var.append("D1")
67. ref.append(refseq[i-1:i+1])
68. alt.append(refseq[i-1])
69.
70. for i in range(len(cigar_read)): # Parsing for Insertions
71. if cigar_read[i] == "I":
72. if i == 0:
73. print("Unexpected 'I' in the first position of CIGAR")
74. elif cigar_read[i-1] == "I":
75. alt[-1] = alt[-

1] + readseq[i] # Adds the new Insert in the ALT column
76. key_var[-1] = key_var[-

1] + 'I' + readseq[i] # Adds new Ins in the Key
77. n_I = n_I - 1
78. else:
79. key_pos.append(pos + i + n_I)
80. alt.append(readseq[i-1:i+1])
81. ref.append(readseq[i-1])
82. key_var.append("I" + alt[-1][-1])
83. n_I = n_I - 1
84. else:
85. continue
86. return (key_pos, key_var, ref, alt)
87.
88. def expand_seqs(cigar):
89. n_Mpar = "0"
90. cigar_exp = ""
91. for i in cigar:
92. if i.isdigit():
93. n_Mpar = n_Mpar + i # Gets the number of matched nucleotides
94. elif i == "M":
95. if n_Mpar == "0":
96. cigar_exp = cigar_exp + "M"
97. else:
98. cigar_exp = cigar_exp + str(''.join("M"*int(n_Mpar))) # Adds

all the "M"s
99. n_Mpar = "0"
100. elif i in ["A", "T", "C", "G", "I", "D"]:
101. cigar_exp = cigar_exp + i
102. else:
103. print("Unexpected value")
104. cigar_exp_read = cigar_exp.replace("D", "")
105. cigar_exp_ref = cigar_exp.replace("I", "")
106. return(cigar_exp_read, cigar_exp_ref)
107.
108.
109. def adapt_refseq(cigar_ref, hairpin, parent_ini_pos, var5p):
110. index = parent_ini_pos + var5p
111. max_index = index + len(cigar_ref)
112. refseq = hairpin[index:max_index]
113. return(refseq)
114.

29

115.
116. def create_vcf(mirgff3, precursor, gtf, vcffile):
117. """
118. Args:
119. 'mirgff3(str)': File with mirGFF3 format that will be converted

120. 'precursor(str)': FASTA format sequences of all miRNA hairpins
121. 'gtf(str)': Genome coordinates
122. 'vcffile': name of the file to be saved
123. Returns:
124. Nothing is returned, instead, a VCF file is generated
125. """
126. #Check if the input files exist:
127. try:
128. gff3_file = open(mirgff3, "r")
129. except IOError:
130. print ("Can't read the file", end=mirgff3)
131. sys.exit()
132. with gff3_file:
133. data = gff3_file.read().decode("utf-8-sig").encode("utf-8")
134.
135. gff3_data = data.split("\n")
136. vcf_file = open(vcffile, "w")
137.
138. ver = "v4.3" # Current VCF version formatting
139. vcf_file.write("##fileformat=VCF%s\n" % ver)
140. date = datetime.datetime.now().strftime("%Y%m%d")
141. vcf_file.write("##fileDate=%s\n" % date)
142. source = "\n".join(s for s in gff3_data if "## source-

ontology: " in s)[20:]
143. line = 0
144. sample_names = []
145. while gff3_data[line][:2] == "##":
146. if gff3_data[line][:19] == "## source-ontology:":
147. source = gff3_data[line][20:]
148. elif gff3_data[line][:11] == "## COLDATA:":
149. sample_names = gff3_data[line][12:].split(",")
150. line += 1
151. vcf_file.write("##source=%s\n" % source)
152. # ref_file = "N/A" # Temporary
153. # vcf_file.write("##reference=%s\n" % ref_file)
154. vcf_file.write('##INFO=<ID=NS,Type=Integer,Description="Number of s

amples"\n')
155. vcf_file.write("##FILTER=<ID=REJECT,Description='"'Filter not passe

d'"'>\n")
156. vcf_file.write('##FORMAT=<ID=TRC,Number=1,Type=Integer,Description=

"Total read count">\n')
157. vcf_file.write('##FORMAT=<ID=TSC,Number=1,Type=Integer,Description=

"Total SNP count">\n')
158. vcf_file.write('##FORMAT=<ID=TMC,Number=1,Type=Integer,Description=

"Total miRNA count">\n')
159. vcf_file.write('##FORMAT=<ID=GT,Number=1,Type=Integer,Description="

Genotype">\n')
160. header = "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT"
161. for s in range(len(sample_names)):
162. header = header + "\t" + sample_names[s]
163. vcf_file.write(header)
164.
165. hairpins = read_precursor(precursor)
166. gff3 = read_gtf_to_precursor(gtf)
167. gtf_dic = read_gtf_to_mirna(gtf)
168. all_dict = dict() # initializing an empty dictionary where all inf

o will be added
169. key_list = [] # Initializing a list which will contain all the key

s of the dictionary

30

170. mirna_dict = dict() # initializing an empty dictionary where mirna
 info will be put

171. n_SNP = 0
172. n_noSNP = 0
173. no_var = 0
174. for line in range(0, len(gff3_data)):
175. if gff3_data[line][1] == "#":
176. continue
177. else:
178. gff_fields = read_gff_line(gff3_data[line])
179. gtf_name = gff_fields['attrb']['Name']
180. gtf_parent = gff_fields['attrb']['Parent']
181. if gtf_parent not in gff3:
182. continue
183. if gtf_name not in gff3[gtf_parent]:
184. continue
185. parent_ini_pos = gff3[gtf_parent][gtf_name][0]
186. parent_end_pos = gff3[gtf_parent][gtf_name][1]
187. vcf_chrom = gtf_dic[gtf_name][gtf_parent][0]
188. vcf_pos = int(gff_fields['start']) + int(gtf_dic[gtf_name][

gtf_parent][1])
189. hairpin = hairpins[gtf_parent]
190. variants = gff_fields['attrb']['Variant'].split(",")
191. cigar = gff_fields['attrb']["Cigar"]
192. readseq = gff_fields['attrb']['Read']
193.
194. var5p = [s for s in variants if 'iso_5p' in s] # Obtaining

 iso_5p value:
195. if len(var5p):
196. var5p = int(var5p[0][7:]) # Position of iso_5p value
197. else:
198. var5p = 0 # 0 if iso_5p is not found
199.
200. (cigar_exp_read, cigar_exp_ref) = expand_seqs(cigar)
201. refseq = adapt_refseq(cigar_exp_ref, hairpin, parent_ini_po

s, var5p)
202. (key_pos, key_var, vcf_ref, vcf_alt) = cigar_2_key(cigar_ex

p_read, cigar_exp_ref, readseq, refseq,
203. (vcf_pos

 + var5p))
204.
205. if len(key_var) > 0:
206. for s in range(len(key_var)):
207. key_dict = vcf_chrom + '-' + str(key_pos[s]) + '-

' + str(key_var[s])
208. raw_counts = gff_fields['attrb']['Expression']
209. raw_counts = [int(i) for i in raw_counts.split(',')

]
210. nozero_counts = [int(i > 0) for i in raw_counts] #

 counts for every sample if expr != 0.
211. if str(key_var[s]) in ["A", "C", "T", "G"]:
212. if gtf_name in mirna_dict: # Adding expression

 values to same mirnas
213. mirna_dict[gtf_name]['Z'] = [sum(x) for x i

n zip(mirna_dict[gtf_name]['Z'], raw_counts)]
214. else:
215. mirna_dict[gtf_name] = {}
216. mirna_dict[gtf_name]["Z"] = raw_counts
217. if key_dict in all_dict:
218. if all_dict[key_dict]["Type"] in ["A", "C", "T"

, "G"]:
219. all_dict[key_dict]['X'] = [sum(x) for x in

zip(all_dict[key_dict]['X'], nozero_counts)]
220. all_dict[key_dict]['Y'] = [sum(x) for x in

zip(all_dict[key_dict]['Y'], raw_counts)]
221. else:

31

222. key_list.append(key_dict)
223. all_dict[key_dict] = {}
224. all_dict[key_dict]["Chrom"] = vcf_chrom
225. all_dict[key_dict]["Position"] = key_pos[s]
226. all_dict[key_dict]["mirna"] = gtf_name
227. all_dict[key_dict]["Type"] = key_var[s]
228. if key_var[s][0] in ["A", "C", "T", "G"]:
229. n_SNP += 1
230. all_dict[key_dict]["SNP"] = True
231. all_dict[key_dict]["ID"] = gff_fields['attr

b']['Name'] + '-SNP' + str(n_SNP)
232. all_dict[key_dict]['X'] = nozero_counts
233. all_dict[key_dict]['Y'] = raw_counts
234. else:
235. n_noSNP += 1
236. all_dict[key_dict]["SNP"] = False
237. all_dict[key_dict]["ID"] = gff_fields['attr

b']['Name'] + '-nonSNP' + str(n_noSNP)
238. all_dict[key_dict]["Ref"] = vcf_ref[s]
239. all_dict[key_dict]["Alt"] = vcf_alt[s]
240. all_dict[key_dict]["Qual"] = "."
241. all_dict[key_dict]["Filter"] = gff_fields['attr

b']['Filter']
242. all_dict[key_dict]["Info"] = "NS=" + str(len(sa

mple_names))
243. else:
244. no_var += 1
245. # Writing the VCF file:
246. for s in key_list:
247. variant_line = ("\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" %
248. (all_dict[s]["Chrom"], all_dict[s]["Position"],

all_dict[s]["ID"],
249. all_dict[s]["Ref"], all_dict[s]["Alt"], all_dic

t[s]["Qual"],
250. all_dict[s]["Filter"], all_dict[s]["Info"]))
251. if all_dict[s]["Type"] in ["A", "T", "C", "G"]:
252. format_col = "TRC:TSC:TMC:GT"
253. variant_line = variant_line + "\t" + format_col
254. samples = ""
255. for n in range(len(sample_names)):
256. X = all_dict[s]["X"][n]
257. Y = all_dict[s]["Y"][n]
258. Z = mirna_dict[all_dict[s]["mirna"]]["Z"][n]
259. if Y == 0:
260. GT = "0|0"
261. elif Z == Y:
262. GT = "1|1"
263. else:
264. GT = "1|0"
265. samples = samples + "\t" + str(X) + ":" + str(Y) + ":"

+ str(Z) + ":" + GT
266. variant_line = variant_line + samples
267. else:
268. format_col = ""
269. variant_line = variant_line + format_col
270. vcf_file.write(variant_line)
271. vcf_file.close()

6.2 Script plot_vcf_graphs.py

Adapted to plot and get 3 samples for real data. The code for the synthetic
data is slightly modified:

32

1. from __future__ import print_function
2. import sys, csv
3. import matplotlib.pyplot as plt
4. import pandas as pd
5.
6. def SNP_to_dict(line, n_samples, snpdict):
7. """
8.
9. """
10. key = line[2] # ID
11. snpdict[key] = {}
12. snpdict[key]['mirna'] = key[:(key.find("-

SNP"))] # Gets the mirna name string
13. snpdict[key]['ID'] = line[0] + '-' + line[1] + '-

' + line[4] # CHROM + POS + ALT
14. samples_data = line[len(line) - n_samples:]
15. samples = [] # Expression values will be appended here
16. for sample in samples_data:
17. sample = sample.replace(':', ',')
18. samples.append(sample[:len(sample)].split(","))
19. snpdict[key]['X'] = []
20. snpdict[key]['Y'] = []
21. snpdict[key]['Z'] = []
22. snpdict[key]['GT'] = []
23. for i in range(n_samples):
24. snpdict[key]['X'].append(samples[i][0])
25. snpdict[key]['Y'].append(samples[i][1])
26. snpdict[key]['Z'].append(samples[i][2])
27. snpdict[key]['GT'].append(samples[i][3])
28. return(snpdict)
29.
30.
31. def create_vcf_tables(mirvcf, mirna_list_file):
32. """
33. Args:
34. 'mirvcf': a file with VCF format
35. 'mirna_list_file': a .csv list which contains the miRNAs to analyze
36. Returns:
37. ''
38. """
39. mirna_list=[]
40. with open(mirna_list_file, 'rb') as csvfile:
41. reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
42. for row in reader:
43. mirna_list.append(', '.join(row))
44. mirna_list = (mirna_list[1:])
45.
46. # Check if the input file exist:
47. try:
48. vcf_file = open(mirvcf, "r")
49. except IOError:
50. print ("Can't read the file", end=mirvcf)
51. sys.exit()
52. with vcf_file:
53. data = vcf_file.read().decode("utf-8-sig").encode("utf-8")
54.
55. vcf_data = data.split("\n") # Parsing the VCF file:
56. mirna_SNPs = []
57. mirna_keys = []
58. snp_dict = {}
59. mirna_snp_dict = {}
60. for line in range(0, len(vcf_data)):
61. if vcf_data[line][0:2] == "#C":
62. sample_names = vcf_data[line].split("\t")[9:] # Get sample names

from header
63. elif vcf_data[line][0] == "#":

33

64. continue
65. else:
66. variant = vcf_data[line]
67. cols_info = variant.split("\t")
68. # print("cols_info: ", cols_info)
69. n_samples = int(cols_info[7][3:])
70. mirna = cols_info[2]
71. mirna_dict = dict()
72.
73. if mirna.find("-SNP") == -1: # Non-SNP
74. continue
75. else:
76. mirna = mirna[:(mirna.find("-SNP"))]
77. if mirna in mirna_list:
78. snp_dict = SNP_to_dict(cols_info, n_samples, snp_dict)
79. samples_data = cols_info[len(cols_info) - n_samples:]
80. samples = [] # Expression values will be appended here
81. for sample in samples_data:
82. sample = sample.replace(':', ',')
83. samples.append(sample[:-2].split(","))
84. SNPs_samples = [0] * n_samples # Creating an empty list t

o allocate number of diff SNP
85. SNPs_same = [0] * n_samples # Creating an empty list to a

llocate number of same SNPs
86.
87.
88. snp_df = pd.DataFrame.from_dict(snp_dict, orient='index')
89.
90. ### INI PLOT 3 ###
91. cols = ["isomiR ID", "X", "Y", "Z", "Importance", "Group"]
92. cols = ["Importance"]
93. count_list = []
94. counts_list = []
95. for j in range(3):
96. lst = []
97. for i in range(len(snp_df)):
98. if int(snp_df["X"][i][j]) == 0:
99. continue
100. elif int(snp_df["Z"][i][j]) == 0:
101. importance = 0
102. else:
103. importance = int(snp_df["Y"][i][j]) / float(snp_df["Z"]

[i][j]) * 100
104. if importance < 1:
105. imp_group = 0
106. else:
107. imp_group = (int(importance)/10)+1 # To classify
108. if imp_group > 10: imp_group = 10
109. lst.append([imp_group])
110. count_list.append(lst)
111. plot2_df = pd.DataFrame(count_list[j], columns=cols)
112. counts_list.append(plot2_df['Importance'].value_counts().sort_i

ndex().tolist())
113.
114. index = ["<1%", "1%~10%", "10%~20%", "20%~30%", "30%~40%", "40%~50%

",
115. "50%~60%","60%~70%","70%~80%","80%~90%", "90%~100%"]
116.
117. counts__df = pd.DataFrame({sample_names[0]:counts_list[0],
118. sample_names[1]:counts_list[1],
119. sample_names[2]:counts_list[2]},
120. index = index)
121. counts__df.plot.bar(rot=0)
122. plt.show()
123.
124. ### END PLOT 3 ###

34

125.
126. ### INI PLOT 1 ###
127.
128. SNPs_count = []
129. SNPss_count = []
130. mirnas = []
131. mirnass = []
132.
133. for j in range(3):
134. SNPs_count = []
135. mirnas = []
136. for i in range(len(snp_df)):
137. if int(snp_df["X"][i][j]) > 0:
138. SNPs_count.append(1)
139. mirnas.append(snp_df["mirna"][i])
140. SNPss_count.append(SNPs_count)
141. mirnass.append(mirnas)
142.
143. plt.bar(sample_names[0:3], [len(mirnass[0]), len(mirnass[1]),
144. len(mirnass[2])])
145. plt.show()
146. ### END PLOT 1 ###
147.
148. ### INI PLOT 2 ###
149.
150. plot2_s_list = []
151. for j in range(3):
152. plot2_s1 = pd.DataFrame({"mirna": mirnass[j], "SNPs": SNPss_cou

nt[j]})
153. plot2_s1_sum = plot2_s1.groupby(["mirna"]).sum()
154. plot2_s_list.append(plot2_s1_sum)
155.
156. data = pd.DataFrame({sample_names[0]:plot2_s_list[0]['SNPs'],
157. sample_names[1]:plot2_s_list[1]['SNPs'],
158. sample_names[2]:plot2_s_list[2]['SNPs']})
159. data.boxplot()
160. plt.show()
161.
162. ### END PLOT 2 ###

