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Abstract

Upper probability measures are measures of uncertainty that generalize
probability measures in order to deal with non-measurable events. Following
an approach that goes back to previous works by Hájek, Esteva, and Godo,
we show how to expand Rational  Lukasiewicz Logic by modal operators υ in
order to reason about upper probabilities of classical Boolean events ϕ so that
υ(ϕ) can be read as “the upper probability of ϕ”. We build the logic U(R L)
for representing upper probabilities and show it to be complete w.r.t. a class
of Kripke structures equipped with an upper probability measure. Finally,
we prove that the set of U(R L)-satisfiable formulas is NP-complete.

1 Introduction

Probability measures are a common tool in the formalization and quantification of
our degrees of confidence in the occurrence of some events. However, classical prob-
ability theory seems to fail in formalizing certain situations when the information
is not complete.

Consider the following case. Suppose we have a box with 100 balls inside. We
know that there are 50 red balls, while the remaining balls are either blue or green.
What is the probability to pick up a green ball? We know exactly how many the
red balls are, so we know that the probability of picking up a red ball is 0.5, and
so is the probability of picking up either a blue or a green ball. But we do not
have sufficient information about the distribution of green and blue balls to be
able to know the exact probability of picking up a ball of one of those colors. The
events “picking up a blue ball” and “picking up a green ball” are non-measurable
from the point of view of probability theory. However, we have enough information
to know that the probability of those events may vary in an interval bounded by
a maximum and a minimum probability. We know for sure that the probability
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α of picking up a blue ball is somewhere between [0, 0.5], and, consequently, the
probability of picking up a green ball lies in the interval [0, 0.5− α]. Then, we can
represent the uncertainty of the situation at hand by means of a set of probability
measures P = {µα : α ∈ [0, 0.5]}, such that the probability of “picking up a red
ball” is 0.5, the probability of “picking up a blue ball” is α, and the probability of
“picking up a green ball” is 0.5 − α. Given the set P we can then determine the
best and worst estimate for an event ϕ by taking the supremum and the infimum
of µα(ϕ) in P.

This can be formalized as follows (see [22]). Given a set of probability mea-
sures µi over the same Boolean algebra, the upper probability π(ϕ) is defined as
sup{µi(ϕ)} and the lower probability λ(ϕ) is defined as inf{µi(ϕ)}. Upper and
lower probabilities are dual, since from an upper probability we can define a lower
probability as follows: λ(ϕ) = 1− π(¬ϕ), and viceversa.

Upper and lower probabilities can be also seen as classes of fuzzy measures.
Recall that, given a set W of possible situations, a fuzzy measure [21] is a mapping φ
from the Boolean algebra of subsets of W into the real unit interval [0, 1] satisfying
the following properties: (i) φ(⊥) = 0, (ii) φ(>) = 1, (iii) if ` ϕ → ψ then
φ(ϕ) ≤ φ(ψ). As shown by Anger and Lembcke in [1], any upper probability is a
fuzzy measure π such that for all natural numbers m,n, k, and all ϕ1, . . . , ϕm, if
{{ϕ1, . . . , ϕm}} is an (n, k)-cover1 of (ϕ,>), then

(]) k + nπ(ϕ) ≤
m∑
i=1

π(ϕi).

Halpern and Pucella proved in [14] that when the sample space is finite there are
only finitely many instances of the above property. Indeed, there exist constants
k0, k1, . . . such that if W is a finite set, for all natural numbers m,n, k ≤ k|W |, and
all ϕ1, . . . , ϕm, if {{ϕ1, . . . , ϕm}} is an (n, k)-cover of (ϕ,>), then (]) holds.

Similarly we can see any lower probability as a fuzzy measure λ such that for
all natural numbers m,n, k, and all ϕ1, . . . , ϕm, if {{ϕ1, . . . , ϕm}} is an (n, k)-cover
of (ϕ,>), then

(]]) k + nλ(ϕ) ≥
m∑
i=1

λ(ϕi).

Halpern and Pucella studied in [14] a logic for reasoning about upper probabili-
ties extending classical logic by a probabilistic modal operator whose interpretation
corresponds to an upper probability measure. In this work, we aim at providing an
alternative treatment for the logical representation of upper probabilities by taking
a different approach.

Esteva, Hájek, and Godo proposed in [12, 8] a new interpretation of measures
of uncertainty in the framework of t-norm based logics [11, 10]. Given a sentence
as “The proposition ϕ is probable (believable, plausible)”, its degrees of truth

1A proposition ϕ is said to be covered n times by a multiset {{ϕ1, . . . , ϕm}} of propositions,
if every situation in which ϕ is true makes true at least n propositions from ϕ1, . . . , ϕm as well.
An (n, k)-cover of (ϕ,>) is a multiset {{ϕ1, . . . , ϕm}} that covers > k times and covers ϕ n+ k
times.
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can be interpreted as the degree of uncertainty of the proposition ϕ. Indeed,
the higher is our degree of confidence in ϕ, the higher the degree of truth of the
above sentence will be. In some sense, the predicate “is probable (believable,
plausible)” can be regarded as a modal operator over the proposition ϕ. Then,
given a measure of uncertainty φ, we can define modal many-valued formulas κ(ϕ),
whose interpretation is given by a real number corresponding to the degree of
uncertainty assigned to ϕ under φ. Furthermore, we can translate the peculiar
axioms governing the behavior of an uncertainty measure into formulas of a certain
t-norm based logic, depending on the operations we need to represent.

In this work, we show how the above approach can be adapted to represent and
reasoning about upper probability measures by relying on Rational  Lukasiewicz
Logic [6].

The paper is organized as follows. In the next section we briefly recall the
main properties of  Lukasiewicz logic and Rational  Lukasiewicz logic. In Section 3,
we introduce the logic U(R L) for reasoning about upper probabilities and prove a
completeness result. Finally, in Section 4, we study the computational complexity
of the set of U(R L)-satisfiable formulas and show that it is NP-complete. We end
with some final remarks.

2 Rational  Lukasiewicz Logic

Recall that  Lukasiewicz logic  L (see [3]) is built up from the primitive connective
→ and the truth constant 0. Further connectives are defined as follows:

¬ϕ is ϕ→ 0̄, ϕ ∧ ψ is ϕ&(ϕ→ ψ),
ϕ&ψ is ¬(ϕ→ ¬ψ), ϕ⊕ ψ is ¬(¬ϕ&¬ψ),
ϕ ∨ ψ is ((ϕ→ ψ)→ ψ), ϕ↔ ψ is (ϕ→ ψ)&(ψ → ϕ).

The axioms of  Lukasiewicz logic are the following:

( L1) ϕ→ (ψ → ϕ), ( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)),
( L3) (¬ϕ→ ¬ψ)→ (ψ → ϕ), ( L4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ).

The only inference rule is modus ponens, i.e.: from ϕ→ ψ and ϕ derive ψ.
A proof in  L is a sequence ϕ1, . . . , ϕn of formulas such that each ϕi either is an

axiom of  L or follows from some preceding ϕj , ϕk (j, k < i) by modus ponens. As
usual, a set of formulas is called a theory. We say that a formula ϕ can be derived
from a theory T , denoted as T ` ϕ, if there is a proof of ϕ from a set T ′ ⊆ T . A
theory T is said to be consistent if T 6` 0.

The algebraic semantics for  Lukasiewicz logic is given by MV-algebras [3], i.e.
structures A = 〈A,⊕,¬, 0〉 satisfying the following equations:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, (MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x, (MV4) ¬¬x = x,
(MV5) x⊕ ¬0 = 0, (MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

The class of MV-algebras forms a variety MV that also is the equivalent al-
gebraic semantics for  Lukasiewicz logic, in the sense of Blok and Pigozzi [2]. As
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shown by Chang, MV is generated as a quasivariety by the standard MV-algebra,
i.e. the MV-algebra over the real unit interval [0, 1], where x⊕ y = min(x+ y, 1),
and ¬x = 1− x.

An evaluation e for  Lukasiewicz logic’s formulas into the standard MV-algebra
is a mapping e : Form → [0, 1] assigning to all propositional variables a value from
the real unit interval, that can be extended to compound formulas as follows:

e(¬ϕ) = 1− e(ϕ), e(ϕ↔ ψ) = 1− |e(ϕ)− e(ψ)| ,
e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)), e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)),
e(ϕ⊕ ψ) = min(1, e(ϕ) + e(ψ)), e(ϕ&ψ) = max(0, e(ϕ) + e(ψ)− 1).

An evaluation e is a model for a formula ϕ if e(ϕ) = 1. An evaluation e is a model
for a theory T , if e(ψ) = 1, for every ψ ∈ T .

The fact that the MV is the equivalent algebraic semantics for  Lukasiewicz
logic and is generated as a quasivariety by the standard MV-algebra implies that
 Lukasiewicz logic is finitely strongly standard complete, i.e.: for every finite theory
T and every formula ϕ, T ` ϕ iff every model e of T also is a model of ϕ.

A very well-known result by McNaughton [19] states that the free MV-algebra
over n-generators coincides with the set of continuous piecewise linear polynomial
functions with integer coefficients over the nth-cube. In other words, every con-
tinuous piecewise linear polynomial function with integer coefficients over [0, 1]n is
definable by a term in  Lukasiewicz logic.

Rational  Lukasiewicz logic R L is an expansion  Lukasiewicz logic introduced by
Gerla in [6], obtained by adding the unary connectives δn, for each n ∈ N, plus the
following axioms:

(D1) δnϕ⊕ · · · ⊕ δn︸ ︷︷ ︸
n

ϕ↔ ϕ, (D2) ¬δnϕ⊕ ¬(δnϕ⊕ · · · ⊕ δnϕ︸ ︷︷ ︸
n−1

).

The algebraic semantics for R L is given by DMV-algebras (divisible
MV-algebras), i.e. structures A = 〈A,⊕,¬, {δn}n∈N, 0〉 such that 〈A,⊕,¬, 0〉 is
an MV-algebra and the following equations hold for all x ∈ A and n ∈ N:

(δn1) n.δnx = x, (δn2) δnx ∗ (n− 1).δnx = 0,

where by n.x we denote the element of A inductively defined by 0.x = 0, (n−1).x =
n.x ⊕ x. An evaluation into the real unit interval is extended for the connectives
δn as follows: e(δnϕ) = e(ϕ)

n .
Notice that in R L we can define all the rationals in [0, 1] in the following way:

- 1
n is given by δn1, i.e. e(δn1) = 1

n · 1,

- m
n is given by m.δn1, i.e. e(m.δn1) = 1

n
⊕ · · · ⊕

1

n︸ ︷︷ ︸
m

.

As shown in [6], the variety of DMV-algebras is generated as a quasivariety
by the standard DMV-algebra over [0, 1], and R L is finitely strongly standard
complete. Moreover, the free DMV-algebra over n-generators coincides with the
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set of continuous piecewise linear polynomial functions with rational coefficients
over the nth-cube.

Finally, recall that the satisfiability problem for both Lukasiewicz logic and
Rational Lukasiewicz logic is NP-complete, as proved [20] in and [6], respectively.

3 Reasoning about Upper Probabilities

In this section, we will build the logic U(R L) for reasoning about upper probabilities
by relying on R L. To begin, notice that the condition (]) is equivalent to

k
m + n

mπ(ϕ) ≤
m∑
i=1

π(ϕi)
m ,

given that n, k ≤ m. It is then clear that
m∑
i=1

π(ϕi)
m ≤ 1, and so it makes sense to

rely on R L. Indeed, what we need in order to represent upper probability measures
is to rely on a logic that allows the representation of rational numbers, the product
of rationals and formulas, and the sum. Thus R L perfectly fits this description.
Furthermore, the presence of the standard involutive negation makes possible to
define also lower probabilities.

Notice that R L is not the only logic adequate for the representation of upper
probabilities. For example, logics like RPP L′∆ [15] and  LΠ 1

2 [4] both represent
suitable choices. However, as far as we know, satisfiability for both RPP L′∆ and
 LΠ1

2 is in PSPACE [13, 18], thus this does not currently allow us to obtain an
NP-containment result for the logic for upper probabilities as shown in the next
section.
U(R L) is built over R L extending its language by including modal formulas

whose interpretation corresponds to an upper probability measure. We define the
language in two steps. First, we have classical Boolean formulas ϕ, ψ, etc., defined
in the usual way from the classical connectives (∧,¬) and from a countable set V
of propositional variables p, q, . . . , etc. The set of Boolean formulas is denoted by
L. Elementary modal sentences are formulas of the form υ(ϕ), where υ is a unary
operator taking as arguments Boolean sentences. Compound modal formulas are
built by means of the R L-connectives. Nested modalities are not allowed.

The axioms of the logic U(R L) are the following:

(i) The set of classical Boolean tautologies

(ii) Axioms of R L for modal formulas

(iii) The following axiom:

(π1) ¬υ(⊥).

Deduction rules of U(R L) are those of R L, plus:

(iv) modalization: from ` ϕ (i.e. ϕ is derivable in Classical Logic) derive υ(ϕ)

(v) monotonicity: from ` ϕ→ ψ derive υ(ϕ)→ υ(ψ).
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(v) upper probability rule (UP): if ϕ→
∨

(J⊆{1,...,m}
|J|=k+n )

∧
j∈J

ϕj , and
∨

(J⊆{1,...,m}
|J|=k )

∧
j∈J

ϕj

are propositional tautologies, then derive

k.δm ⊕ n.δmυ(ϕ)→
m⊕
j=1

δmυ(ϕj).

We now define the semantics for U(R L) by introducing Upper Probability
Kripke structures.

An Upper Probability Kripke model is a structure K = 〈W,U , e, π〉, where:

• W is a non-empty set of possible worlds.

• U is a Boolean algebra of subsets of W .

• e : V ×W → {0, 1} is a Boolean evaluation of the propositional variables, that
is, e(p, w) ∈ {0, 1} for each propositional variable p ∈ V and each world w ∈
W . Any given truth-evaluation e(·, w) is extended to Boolean propositions
as usual. For a Boolean formula ϕ, we will denote by [ϕ]W the set of worlds
in which ϕ is true, i.e. [ϕ]W = {w ∈W | e(ϕ,w) = 1}.

• π : U → [0, 1] is an upper probability measure over U , such that [ϕ]W is
π-measurable for any non-modal ϕ.

• e(·, w) is extended to elementary modal formulas by defining e(υ(ϕ), w) =
π([ϕ]W ), and to arbitrary modal formulas according to the R L-semantics.

A structure K is a model for Φ, written K |= Φ, if eK(Φ) = 1. If T is a set of
formulas, we say that K is a model of T if K |= Φ for all Φ ∈ T . The notion of
logical entailment relative to a class of structures K, written |=K, is then defined
as follows:

Γ |=K Φ iff K |= Φ for each K ∈ K model of Γ.

If K denotes the whole class of Upper Probability Kripke structures we shall write
Γ |=U(RL) Φ. When |=K Φ holds we will say that Φ is valid in K, i.e. when Φ gets
value 1 in all structures K ∈ K.

Proposition 3.1 (Soundness) The logic U(R L) is sound with respect to the class
of Upper Probability Kripke structures.

Proof. We just have to show that (π1) is valid in the class of Upper Probability
Kripke structures and that the rules of inference preserve validity in a model.

- e(π1) = 1, given that π(⊥) = 0.

- As for the modalization rule, suppose that K |= ϕ, then [ϕ]W = W . Hence
e(υ(ϕ), w) = 1, that is K |= υ(ϕ).

- As for the monotonicity rule, suppose that K |= ϕ → ψ. Clearly we have
that e(υ(ϕ)) = π(ϕ) ≤ π(ψ) = e(υ(ψ)), hence K |= υ(ϕ)→ υ(ψ).
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- As for the upper probability rule, suppose that ϕ →
∨

(J⊆{1,...,m}
|J|=k+n )

∧
j∈J

ϕj ,

and
∨

(J⊆{1,...,m}
|J|=k )

∧
j∈J

ϕj are propositional tautologies. Then, for all natural

numbers m,n, k, and all ϕ1, . . . , ϕm, {{ϕ1, . . . , ϕm}} is an (n, k)-cover of
(ϕ,>), and so

k + nπ(ϕ) ≤
m∑
i=1

π(ϕi),

meaning that e(k.δm ⊕ n.δmυ(ϕ)→
m⊕
j=1

δmυ(ϕj)) = 1.

For any ϕ,ψ ∈ L, define ϕ ∼ ψ iff ϕ ↔ ψ is provable in classical propositional
logic. The relation ∼ is an equivalence relation in classical logic and [ϕ] will denote
the equivalence class of ϕ. Obviously, the quotient set L/∼ forms a Boolean algebra
which is isomorphic to a subalgebra B(Ω) of the power set of the set Ω of Boolean
interpretations of the crisp language L. For each ϕ ∈ L, we shall identify the
equivalence class [ϕ] with the set {ω ∈ Ω | ω(ϕ) = 1} ∈ B(Ω) that makes ϕ true.
We shall denote by M the set of upper probability measures defined over L/∼ or,
equivalently, on B(Ω).

Notice that each upper probability measure π ∈M induces an Upper Probabil-
ity Kripke structure 〈Ω,B(Ω), eπ, π〉 where eπ(p, ω) = ω(p) ∈ {0, 1} for each ω ∈ Ω
and each propositional variable p. Denote by Kπ the class of Upper Probability
Kripke structures induced by π ∈ M. Abusing the language, we will say that an
upper probability measure π ∈ M is a model of a modal theory T whenever the
induced Kripke structure 〈Ω,B(Ω), eπ, π〉 is a model of T .

Given the above notions, we can now prove completeness for U(R L).

Theorem 3.2 (Finite Strong completeness) The logic U(R L) is finitely
strongly complete w.r.t. the class of Upper Probability Kripke models, i.e.

T `U(RL) Φ iff eπ(Φ) = 1

for each upper probability measure π ∈M model of T .

Proof. The proof is a straightforward adaptation of the one given by Hájek in
[11] for reasoning about probability, and can be seen as a special case of a more
general proof for logics for fuzzy measures given in [17]. Then, we simply briefly
sketch the main steps of the proof.

First, we translate theories over U(R L) into theories over R L. We define a the-
ory, called F , as follows:
(i) take as propositional variables of the theory variables of the form fϕ, where ϕ
is a classical proposition from L,
(ii) take as axioms of the theory the following ones, for each ϕ and ψ:
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(F1) fϕ, if ϕ is a classical tautology,
(F2) fϕ → fψ, whenever ϕ→ ψ is a classical tautology,
(F3) ¬f⊥.

(F4) k.δm ⊕ n.δmfϕ →
m⊕
j=1

δmfϕj , with

ϕ→
∨

(J⊆{1,...,m}
|J|=k+n )

∧
j∈J

ϕj , and
∨

(J⊆{1,...,m}
|J|=k )

∧
j∈J

ϕj

being classical tautologies.
Then define the mapping ? from modal formulas to R L-formulas as follows:

- (υ(ϕ))? = fϕ,

- (Φ⊕Ψ)? = Φ? ⊕Ψ?,

- (\(Φ))? = \(Φ?), for \ being ¬ or δn.

Let us denote by T ? the set of all formulas translated from T .
Then, following [11], one can easily check that for any Φ,

T `U(RL) Φ iff T ? ∪ F `RL Φ?. (1)

Now we prove that the semantical analogue of (1) also holds, that is,

T |=U(RL) Φ iff T ? ∪ F |=RL Φ?. (2)

Assume T ? ∪ F 6|=RL Φ?. This means that there exists an R L-evaluation e which
is model of T ? ∪ F such that e(Φ?) < 1. Define an upper probability measure πe
on B(Ω) as follows:

πe([ϕ]) = e(fϕ).

Moreover, let

e′(p, w) = w(p)

for each propositional variable p. We prove that πe is an upper probability measure
by showing that, given e, the axioms of upper probabilities do hold.

(i) By F1 we have that for any Boolean tautology>, e(f>) = 1. Then πe(>) = 1.

(ii) By F2 if ϕ → χ is a classical tautology, then fϕ → fχ is an axiom. Conse-
quently πe(ϕ) ≤ πe(χ).

(iii) Given F3, e(¬f⊥) = 1. But, e(¬f⊥) = e(f⊥)→ 0. Therefore, e(f⊥)→ 0 = 1,
which means e(f⊥) = 0, and consequently πe(⊥) = 0

(iv) By F4 if ϕ →
∨

(J⊆{1,...,m}
|J|=k+n )

∧
j∈J

ϕj , and
∨

(J⊆{1,...,m}
|J|=k )

∧
j∈J

ϕj are classical tau-

tologies, then k.δm ⊕ n.δmfϕ →
m⊕
j=1

δmfϕj
is an axiom of F , and so k.δm ⊕

n.δmπe(ϕ)→
m⊕
j=1

δmπe(ϕj) holds.
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Therefore, we have proved that πe actually is an upper probability measure. Then,
it is clear that the model Ke = 〈Ω,B(Ω), πe, e′〉 is a model of T . Indeed, for any
w ∈ Ω, e′(ϕ,w) = 1 for any ϕ in T , and the truth degree of modal formulas
Ψ coincides with the truth evaluation e(Ψ?) since it only depends on the values
of πe and e over the elementary modal formulas π(ϕ) and atoms fϕ respectively.
Therefore e′(Ψ, w) = e(Ψ?) for every modal formula Ψ, and in particular e′(Φ, w) =
e(Φ?) < 1.

Conversely, suppose that there is an Upper Probability Kripke structure K =
(W,U , e, π) that is a model of T , but K 6|= Φ. Take an arbitrary w ∈ W , and
define:

eK(fϕ) = e(υ(ϕ), w) = π([ϕ]W ).

Clearly, eK is a model of axioms F1−F4 since π is an upper probability measure.
Therefore eK(Ψ?) = 1 for every Ψ? ∈ T ? ∪ F but eK(Φ?) < 1, as desired.

From (1) and (2), to prove the theorem it remains to show that

T ? ∪ F `RL Φ? iff T ? ∪ F |=RL Φ?.

However, the above equivalence in general does not hold, since F contains infinitely
many instance of axioms F1-F4, and R L is not standard complete w.r.t. infinite
theories. The solution is to take disjunctive normal forms exactly as done in [11].
Indeed, we can replace the infinitely many formulas in F by finitely many instances
of those axioms by substituting to each atom fϕ its corresponding disjunctive
normal form built from the propositional variables appearing in T .

Still, we have to be careful, since F4 holds for all n,m, k ∈ N. However,
notice that there are finitely many propositional variables in T , and so the related
Boolean algebra of provably equivalent propositions has finitely many atoms. Then,
as proven by Halpern and Pucella (see above and [14]), there are only finitely many
instances of (]), and similarly there are only finitely many instances of F4, in which
we can substitute disjunctive normal forms. Then, the whole theory can be reduced
to a finite set. The rest of the proof proceeds exactly as in [11, 17].

4 Computational Complexity

In this section we will show that the logic U(R L) is decidable, and the problem of
checking the satisfiability for its formulas is NP-complete. In order to do so, we will
rely on the logic AXup introduced by Halpern and Pucella, who also showed that
satisfiability for AXup is NP-complete. We will show that the problem of checking
satisfiability for formulas of U(R L) is reducible to checking the satisfiability of a
formula in AXup.

We begin by briefly describing the main properties of AXup. The language of
AXup is built from a set of classical propositional variables p1, p2, . . . closed under
¬ and →. A modal operator `, standing for “likelihood”, is applied over Boolean
formulas, so that `(ϕ) is a likelihood term interpreted as “the upper probability of
ϕ”. A basic likelihood formula is an expression of the form
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a1`(ϕ1) + · · ·+ ak`(ϕk) > b,

where a1, . . . , ak, b are rational numbers and k ≥ 12. Likelihood formulas are
Boolean combinations of basic likelihood formulas.

The semantics for AXup is given by upper probability structures that are Kripke
models equipped with an upper probability measure π. A basic likelihood formula
a1`(ϕ1) + · · · + ak`(ϕk) > b, is satisfiable in a model K iff a1π([ϕ1]K) + · · · +
akπ([ϕk]K) > b, where [ϕi]K is the set of worlds in the model in which ϕi is
true. Satisfiability of Boolean combinations of basic likelihood formulas is obviously
defined.

Halpern and Pucella showed that AXup is complete w.r.t. interpretations into
the above class of upper probability structures. Moreover, they showed that the
problem of checking satisfiability for AXup is NP-complete. By relying on the
above result, we will prove that also satisfiability in U(R L) is NP-complete:

Theorem 4.1 The set of U(R L)-satisfiable formulas is NP-complete.

Proof. For the sake of simplicity we assume that all the U(R L)-probabilistic
formulas are combinations of elementary probabilistic formulas in the language
〈⊕,¬, {δn}, 0〉.

To prove hardness just notice that a classical formula ϕ is satisfiable iff so is
υ(ϕ) in U(R L).

Now, we prove NP-containment. We begin by showing how to translate a
probabilistic formula Φ into a Boolean combination of linear polynomial equalities
and inequalities. Let S = {Ψ1, . . . ,Ψm} be the set of all subterms of Φ, with Ψm

corresponding to Φ. Clearly the length of S is linear in the number of subterms of
Φ.

Now, to subterms Ψi,Ψj associate variables xiϕ, y
j , so that if Ψi is an elementary

probabilistic formula π(ϕ), then Ψi 7→ xiϕ, while if Ψj is a complex modal formula
Ψj 7→ yj . For each subterm corresponding 0, let 0 7→ 0.

Let

K⊕ = {(zi′ , zj′ , zk′) : zi′ = zj′ ⊕ zk′}
K¬ = {(zi′ , zj′) : zi′ = ¬zj′}
Kδn = {(zi′ , zj′) : zi′ = δnzj′}
K0 = {(zi′ , 0) : zi′ = 0}

(for each index n occurring in ϕ), where zi′ , zj′ , zk′ are variables corresponding to
either xiϕ or yj .

Now, the graph of the operation corresponding to a connective 〈⊕,¬, {δn}〉
can be defined by means of a Boolean combination of polynimial equalities and
inequalities. Indeed,

2In the original formulation of their logic, Halpern and Pucella allowed real coefficients. How-
ever, in order to study computational complexity they needed to have integer coefficients only.
Naturally, everything works as well if we have rational coefficients that can be represented as
fractions a

b
of coprime natural numbers a and b, and whose size |a

b
| is given by the sum |a|+ |b|

of the lengths of a and b written in binary.
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s⊕ w = u is t⊕(u, s, w) := ((s+ w) < 1 ∧ u = (s+ w)) ∨ ((s+ w) ≥ 1 ∧ u = 1),
¬s = w is t¬(w, s) := w = 1− s, and
δns = w is tδn(w, s) := w = 1

ns.

Now, to each (zi′ , zj′ , zk′) ∈ K⊕ assign t⊕(zi′ , zj′ , zk′), to each (zi′ , zj′) ∈ K¬ assign
t¬(zi′ , zj′), to each (zi′ , zj′) ∈ Kδn assign tδn(zi′ , zj′) (for each index n occurring in
the connectives δn in Φ), and to each (zi′ , 0) ∈ K0 assign t0(zi′ , 0), where t0(zi′ , 0)
is zi′ = 0.

Let a, b, c, and d be the number of occurrences of ⊕,¬, 0, and all the δn,
respectively, in ϕ. Let χ be the following formula:(

a∧
1
t⊕
)
∧
(
b∧
1
t¬
)
∧
(
c∧
1
t0
)
∧
(
d∧
1
tδn

)
∧ (ym = 1) .

An easy inspection shows that an assignment of upper probabilities to elementary
probabilistic formulas π(ϕ) satisfies Φ iff the same assignment to the variables xiϕ
is such that ym = 13.

Now, we want to translate χ into a formula in the language of Halpern and
Pucella’s logic AXup. In χ every formula t⊕ is a disjunction of two incompatible
formulas

((s+ w) < 1 ∧ u = (s+ w)) and ((s+ w) ≥ 1 ∧ u = 1).

The satisfiability of t⊕ is then equivalent to the satisfiability of one of the above
disjuncts. There are a occurrences of ⊕ in Φ, meaning that the satisfiability of Φ is
equivalent to the satisfiability of the disjunction of up to 2a mutually incompatible
Boolean conjunctions of linear equations and inequalities. In particular, if an as-
sessment of upper probabilities to elementary probabilistic formulas in Φ satisfies
Φ, then the same assignment to the variables xiϕ satisfies one of the disjuncts in
each t⊕ in χ.

Now, for each occurrence of ⊕, non-deterministically guess if the equation x⊕y
is strictly less than 1 or not. This reduces the satisfiability of χ to the satisfiability
of the formula χ′ defined as(

a∧
1
t′⊕
)
∧
(
b∧
1
t¬
)
∧
(
c∧
1
t0
)
∧
(
d∧
1
tδn

)
∧ (ym = 1),

where each t′⊕ corresponds to either

((s+ w) < 1 ∧ u = (s+ w)) or ((s+ w) ≥ 1 ∧ u = 1).

Now, in χ′ there are variables yi defined by a linear equation. We want to
translate χ′ into a formula in the language of AXup, so we have to get rid of the
variables that do not correspond to elementary probabilistic formulas. Get rid of
all the occurrences of the yj by eliminating all the equations defining the yj and
substituting the definition in the rest of the formula. In this way we reduce χ′ to a

3Notice that we are not claiming that χ as a Boolean combination of linear equalities and
inequalities is satisfiable iff so is Φ. We are saying that an assessment of upper probabilities
satisfies Φ iff the same assessment to the variables xi

ϕ satisfies χ.
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formula χ′′ in which the only variables appearing are the xiϕ. Substitute the term
`(ϕ) to each xiϕ. We eventually obtain a formula in the language of AXup whose
satisfiability implies the satisfiability of Φ. Satisfiability in AXup is in NP, hence
the claim follows.

Example 4.2 We give an example to show how the above algorithm works. Let Φ
be ¬υ(ϕ→ ψ)⊕ δmυ(ψ).

S = {υ(ϕ→ ψ),¬υ(ϕ→ ψ), υ(ψ), δmυ(ψ),¬υ(ϕ→ ψ)⊕ δmυ(ψ)}

is the set of all subterms of Φ.
Take the following assignment of variables:

υ(ϕ→ ψ) 7→ xϕ→ψ, ¬υ(ϕ→ ψ) 7→ y1, υ(ψ) 7→ xψ,
δmυ(ψ) 7→ y2, ¬υ(ϕ→ ψ)⊕ δmυ(ψ) 7→ y3.

Now, k⊕ = {(y3, y2, y1)}, K¬ = {(y1, xϕ→ψ)}, and Kδm = {(y2, xψ)}.
Then, we define the formula χ as follows (applying the definition of the graph

of the connectives):

(y1 = 1− xϕ→ψ) ∧ (y2 = 1
mxψ)∧

(((y1 + y2 < 1) ∧ (y3 = y1 + y2)) ∨ ((y1 + y2 ≥ 1) ∧ (y3 = 1))) ∧ (y3 = 1).

Now, we have to guess for the occurrence of ⊕ which of the disjunts,

((y1 + y2 < 1) ∧ (y3 = y1 + y2)) or ((y1 + y2 ≥ 1) ∧ (y3 = 1)),

is satisfied. In this particular case, if we want Φ to be satisfiable, we obviously have
to choose ((y1 + y2 ≥ 1) ∧ (y3 = 1)).

Then, we get the formula χ′

(y1 = 1− xϕ→ψ) ∧ (y2 = 1
mxψ) ∧ ((y1 + y2 ≥ 1) ∧ (y3 = 1)) ∧ (y3 = 1).

Now, to complete the translation, we have to get rid of the variables that do not
correspond to elementary probabilistic formulas. We know that y1 = 1−xϕ→ψ, y2 =
1
mxψ, and y3 = 1, then we eliminate all those equalities and make the corresponding
substitutions, obtaining the formula χ′′:

1− xϕ→ψ + 1
mxψ ≥ 1.

Finally, we substitute `(ϕ→ ψ) to xϕ→ψ, and `(ψ) to xψ, obtaining the formula

1− `(ϕ→ ψ) + 1
m`(ψ) ≥ 1,

in the language of AXup. The above formula is satisfiable iff there is an upper
probability measure such that π(ϕ → ψ) + 1

mπ(ψ) ≥ 0. This can be checked in
non-deterministic polynomial time in AXup Then, under the above guess, the sat-
isfiability of 1− `(ϕ→ ψ) + 1

m`(ψ) ≥ 1 implies the satisfiability of Φ.

Let Φ be any U(R L)-formula. We say that Φ is �-r-satisfiable if there exists an
Upper Probability Kripke model 〈W,U, π, e〉 such that e(Φ)�r, where r ∈ Q∩ [0, 1],
and � ∈ {=,≤,≥}.
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Corollary 4.3 The set of all �-r-satisfiable formulas is in NP.

Proof. Let r be a rational number in [0, 1] of the form n
m . The result immediately

follows from the above theorem and from the fact that Φ is ≤-r-satisfiable iff
(Φ → n.δm1) is satisfiable, Φ is ≥-r-satisfiable iff (n.δm1 → Φ) is satisfiable, and
Φ is =-r-satisfiable iff (Φ↔ n.δm1) is satisfiable.

In many real-life situations assessments of uncertainty are not precisely made
over a set of events with a specific algebraic structure. Still, such assessments must
be required to be coherent, that is: they must satisfy the axioms of a measure
whenever they are extended over the whole Boolean algebra generated by those
events.

Definition 4.4 Let C be a countable set of events, and φ be a real-valued assess-
ment defined on C. We call φ a coherent upper probability measure if there is an
upper probability measure π over the Boolean algebra generated by C such that
φ(ϕ) = π(ϕ) for all ϕ ∈ C.

Then we have:

Corollary 4.5 The problem of checking the coherence of a rational assessment of
upper probabilities to a finite set of events is in NP.

Proof. Let {φ(ϕi) = αi}, with αi ∈ Q ∩ [0, 1], and 1 ≤ i ≤ n, be a rational
assessment to a finite set of events. Then the coherence of the above assessment
is tantamount to checking the simultaneous satisfiability of the formulas {υ(ϕi)↔
αi}. This can be clearly translated into a conjunction of formulas in AXup. Hence,
the claim follows.

5 Final Remarks

Other logical treatments for representing measures of uncertainty within the ap-
proach adopted in this paper were presented in several works. We can mention
the treatment of probability measures, necessity measures and belief functions pro-
posed by Esteva, Hájek, and Godo in [12, 11, 8, 7]; the treatment of conditional
probability proposed by the present author and Godo in [9]; the treatment of
(generalized) conditional possibility and necessity given by the present author in
[16]; and finally the treatment of simple and conditional non-standard probability
given by Flaminio and Montagna in [5]. A more general approach covering fuzzy
measures in general was given by the present author in [17].

To conclude let us mention that the main difference between our approach and
the one proposed by Halpern and Pucella relies on the properties of the chosen log-
ical framework. Their approach is fundamentally two-valued and is strongly based
on the presence of axioms of linear inequalities which allow to represent basic op-
erations between formulas. On the contrary, our approach exploits the advantage
that, in Rational  Lukasiewicz logic (that is many-valued) the operations associ-
ated to the evaluation of the connectives are continuous piecewise linear functions,
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whose combinations yield the whole set of continuous piecewise linear polynomial
functions with rational coefficients defined over the nth-cube. Therefore, in our
treatment we do not need to add axioms for having peculiar operations, since the
operations needed to compute with upper probabilities are already available in the
semantics of Rational  Lukasiewicz logic. From the logical point of view, this allows
us to obtain a very elegant and simple treatment .
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[12] P. Hájek, L. Godo, and F. Esteva. Fuzzy logic and probability. In Proceedings
of the 11th UAI Conference, pages 237–244, Montreal, 1995.
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