
European Journal of Operational Research 254 (2016) 169–178

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

A multi-agent based cooperative approach to scheduling and routing

Simon Martin

a , ∗, Djamila Ouelhadj b , Patrick Beullens c , Ender Ozcan

d , Angel A. Juan

e ,
Edmund K. Burke

f

a Computational Heuristics Operational Research Decision Support (CHORDS) Group, University of Stirling, Department of Mathematics and Computer

Science, UK
b Centre of Operational Research and Logistics, University of Portsmouth, Department of Mathematics, UK
c Mathematical Sciences and Southampton Business School and CORMSIS, University of Southampton, SO17 1BJ, UK
d Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, UK
e Department of Computer Science – IN3, Open University of Catalonia, 156 Rambla Poblenou, Barcelona 08018, Spain
f School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

a r t i c l e i n f o

Article history:

Received 10 March 2015

Accepted 28 February 2016

Available online 4 March 2016

Keywords:

Combinatorial optimization

Scheduling

Vehicle routing

Metaheuristics

Cooperative search

a b s t r a c t

In this paper, we propose a general agent-based distributed framework where each agent is implement-

ing a different metaheuristic/local search combination. Moreover, an agent continuously adapts itself dur-

ing the search process using a direct cooperation protocol based on reinforcement learning and pattern

matching. Good patterns that make up improving solutions are identified and shared by the agents. This

agent-based system aims to provide a modular flexible framework to deal with a variety of different

problem domains. We have evaluated the performance of this approach using the proposed framework

which embodies a set of well known metaheuristics with different configurations as agents on two prob-

lem domains, Permutation Flow-shop Scheduling and Capacitated Vehicle Routing. The results show the

success of the approach yielding three new best known results of the Capacitated Vehicle Routing bench-

marks tested, whilst the results for Permutation Flow-shop Scheduling are commensurate with the best

known values for all the benchmarks tested.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

t

t

i

w

p

D

g

R

c

m

i

i

u

(

d

l

o

e

e

g

a

u

f

t

r

i

t

b

P

R

h

0

. Introduction

Heuristics often come with a set of parameters, each requiring

uning for an improved performance. Moreover, different heuris-

ics can perform well on different problem instances. Hence, there

s a growing number of studies on more general methodologies

hich are applicable to different problem domains for tuning the

arameters (Hutter, Babic, Hoos, & Hu, 2007; López-Ibánez,

ubois-Lacoste, Stützle, & Birattari, 2011; Ries & Beullens, 2015),

enerating or mixing/controlling heuristics (Burke et al., 2013;

oss, 2014). In this study, we take an alternative approach and use

ooperating agents, where each agent is enabled to take a different

ethod with different parameter settings.

By cooperative search we mean that (meta)heuristics, executed

n parallel as agents, have the ability to share information at var-

ous points throughout a search. To this end, we propose a mod-

lar agent-based framework where the agents cooperate using a
∗ Corresponding author. Tel.: +44 1786467462.

E-mail addresses: spm@cs.stir.ac.uk (S. Martin), djamila.ouelhadj@port.ac.uk

(D. Ouelhadj), P.Beullens@soton.ac.uk (P. Beullens), Ender.Ozcan@nottingham.ac.uk

E. Ozcan), ajuanp@uoc.edu (A .A . Juan), e.burke@qmul.ac.uk (E.K. Burke).

Ö

o

t

t

ttp://dx.doi.org/10.1016/j.ejor.2016.02.045

377-2217/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
irect peer to peer asynchronous message passing protocol. An is-

and model is used where each agent has its own representation

f the search environment. Each agent is autonomous and can ex-

cute different metaheuristic/local search combinations with differ-

nt parameter settings. Cooperation is based on the general strate-

ies of pattern matching and reinforcement learning where the

gents share partial solutions to enhance their overall performance.

The framework has the following additional characteristics. By

sing ontologies (see Section 3.2), we are aiming to provide a

ramework that is flexible enough to be used on more than one

ype of combinatorial optimisation problem with little or no pa-

ameter tuning. This is achieved by using our scheduling and rout-

ng ontology to translate target problems into an internal format

hat the agents can use to solve problems. So far, this approach has

een applied successfully to Capacitated Vehicle Routing (CVRP),

ermutation Flow shop Scheduling (PFSP), reported here and Nurse

ostering reported in Martin, Ouelhadj, Smet, Vanden Berghe, and

zcan (2013) .

The aim of this study is to develop a modular framework for co-

perative search that can be deployed, with little reconfiguration,

o more than one type of problem. We also test whether interac-

ion between (meta)heuristics leads to improved performance and
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2016.02.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.02.045&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:spm@cs.stir.ac.uk
mailto:djamila.ouelhadj@port.ac.uk
mailto:P.Beullens@soton.ac.uk
mailto:Ender.Ozcan@nottingham.ac.uk
mailto:ajuanp@uoc.edu
mailto:e.burke@qmul.ac.uk
http://dx.doi.org/10.1016/j.ejor.2016.02.045
http://creativecommons.org/licenses/by/4.0/

170 S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178

f

p

S

o

s

l

f

2

c

t

s

t

L

M

L

S

m

s

2

a

s

r

o

t

j

h

n

J

t

b

C

C

C

C

2

1

t

{

a

v

d

t

t

p

t

l

i
if increasing the number of agents improves the overall solution

quality.

1.1. Cooperative search in OR

The interest in cooperative search has risen due to successes

in finding novel ways to combine search algorithms. Cooperative

search can be performed by the exchange of states, solutions, sub-

problems, models, or search space characteristics. For a general

introduction see, for example, Blum and Roli (2003) , Clearwater,

Hogg, and Huberman (1992) , Crainic and Toulouse (2008) , Hogg

and Williams (1993) , Talbi and Bachelet (2006) and Toulouse, Thu-

lasiraman, and Glover (1999) . Several frameworks have been pro-

posed recently which incorporate metaheuristics such as Meignan,

Creput, and Koukam (2008) , Meignan, Koukam, and Créput (2010) ,

Milano and Roli (2004) and Talbi and Bachelet (2006) , or hyper-

heuristics, as in Ouelhadj and Petrovic (2010) . Also, El Hachemi,

Crainic, Lahrichi, Rei, and Vidal (2014) explore a general agent-

based framework for solution integration where distributed sys-

tems use different heuristics to decompose and then solve a prob-

lem.

In an effort to find ways to combine different metaheuristics in

such a way that they cooperate with each other during their exe-

cution, a number of design choices have to be made. According to

Crainic and Toulouse (2008) an asynchronous framework in partic-

ular could result in an improved search methodology; communica-

tion can then either be many-to-many (direct), where each meta-

heuristic communicates with every other, or it can be memory

based (indirect), where information is sent to a pool that (other)

metaheuristics can make use of as required.

Most cooperative search mechanisms in the OR literature

deploy indirect communication through some central pool or adap-

tive memory. This can take the form of passing whole, or possi-

bly partial, solutions, to the pool. Malek (2010) , Milano and Roli

(2004) , Meignan et al. (2008 , 2010) and Talbi and Bachelet (2006) .

Aydin and Fogarty (2004b) applied this approach to job shop

scheduling. Recently, (Barbucha, 2014) has proposed an agent-

based system for Vehicle Routing Problems where agents instanti-

ate different metaheuristics which communicate through a shared

pool.

Direct communication is used only in Vallada and Ruiz (2009)

and Aydin and Fogarty (2004a) , where whole solutions are passed

from one process to another in an island model executing a ge-

netic or an evolutionary simulated annealing algorithm respec-

tively, and in Ouelhadj and Petrovic (2010) , where a similar set-

up is used for a hyper-heuristic. All three papers addressed the

PFSP. Also, this approach is to an extent present in the evolutionary

system of Xie and Liu (2009) , who investigated the Travelling

Salesman Problem. Kouider and Bouzouia (2012) propose a direct

communication multi agent system for job shop scheduling where

each agent is associated with a specific machine in a production fa-

cility. Here a problem is decomposed into several sub-problems by

a “supervisor agent”. These are passed to “resource agents” for ex-

ecution and then passed back to the supervisor to build the global

solution.

Little work has been done on asynchronous direct cooperation

where partial solutions are rated and their parameters are com-

municated between autonomous agents all working on the total

problem. So far, no direct cooperation strategy has been applied to

more than one problem domain in combinatorial optimisation. To

this end, the agents are truly autonomous and not synchronised.

There is a gap in the literature regarding agents cooperating di-

rectly and asynchronously where the communication is used for

the adaptive selection of moves with parameters.

The outline for the rest of the paper is as follows. Section 2

provides formal problem statements for the two case studies.

Section 3 describes the proposed modular multi-agent framework
or cooperative search, while Section 4 describes how it is im-

lemented. In Section 5 we discuss the experimental design. In

ection 6 we report the results of the tests where, to the best

f our knowledge, for three of the Capacitated Vehicle Routing in-

tances we achieved better results than have been reported in the

iterature. Finally, Section 7 presents conclusions and suggestions

or future work.

. Test case problems

In this section we offer brief problem descriptions of the

ase studies applied to the agent-based framework proposed in

his paper. We chose these instances as they are representative

cheduling and routing problems. The algorithms instantiated by

he framework are state-of-the-art implementations (Juan, Ruíz,

ourenço, Mateo, & Ionescu, 2010b; Juan, Faulin, Jorba, Caceres, &

arquès, 2013; Juan, Faulin, Ruiz, Barrios, & Caballé, 2010a; Juan,

ourenço, Mateo, Luo, & Castella, 2014). These are all examples of

imheuristics (Juan, Faulin, Grasman, Rabe, & Figueira, 2015). This

akes them a good fit with the partial solutions identified by the

ystem.

.1. Permutation flow-shop scheduling problem

Let us assume that we have a set of n jobs, J = { 1 , ..., n } , avail-

ble at a given time 0, and each to be processed on each of a

et of m machines in the same order, M = { 1 , ..., m } . A job j ∈ J

equires a fixed but job-specific non-negative processing time p j , i
n each machine i ∈ M . The objective of the PFSP is to minimise

he makespan . That is, to minimise the completion time of the last

ob on the last machine C max (Pinedo, 2002). A feasible schedule is

ence uniquely represented by a permutation of the jobs. There are

 ! possible permutations and the problem is NP-complete (Garey,

ohnson, & Sethi, 1976).

A solution can hence be represented, uniquely, by a permuta-

ion S = (σ1 , ..., σ j , ..., σn) , where σ j ∈ J indicates the job in the

j th position. The completion time C σ j ,i
of job σ j on machine i can

e calculated using the following formulae:

 σ1 , 1 = p σ1 , 1 (1)

 σ1 ,i = C σ1 ,i −1 + p σ1 ,i , where i = 2 , ..., m (2)

 σ j ,i = max (C σ j ,i −1 , C σ j−1 ,i) + p σ j ,i ,

where i = 2 , ..., m, and j = 2 , ..., n (3)

 max = C σn ,m

(4)

.2. The Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (Dantzig & Ramser,

959) can be defined in the following graph theoretic nota-

ion. Let G (V , E) be an undirected complete graph where V =
 v 0 , v 1 , v 2 , ..., v n } is the vertex set and where E is a set of edges.

Let the set v i (where i = { 1 , ..., n }) represent the customers who

re expecting to be serviced with deliveries and let v 0 be the ser-

ice depot. Also associated with each vertex v j is a non-negative

emand d j . This value is given each time a delivery is made. For

he depot v 0 there is a zero demand d 0 .

The set E represents the set of roads that connect the customers

o each other and the depot. Thus each edge e ∈ E is defined as a

air of vertices (v i , v j) . Associated with each edge is a cost c i , j of

he route between the two vertices.

Finally there is also a set of unlimited trucks each with same

oading capacity. The aim is to service all the customers visit-

ng them once only and using as few trucks as possible. In any

S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178 171

p

a

e

n

q

l

g

2

p

m

i

a

b

o

f

(

s

t

E

a

a

3

3

w

s

s

p

s

m

l

b

b

h

t

w

s

o

m

b

t

2

1

t

t

3

o

i

i

a

m

c

p

a

o

b

t

s

t

3

t

t

f

i

T

o

r

i

n

m

l

s

S

otential delivery round a customer’s demand has to be taken into

ccount. The total demands of customers on the round must not

xceed the capacity of the vehicle. This means that it is normally

ot possible to visit all customers with one truck. As a conse-

uence each delivery round for a truck is called a route .

The goal of the CVRP problem is to minimise the overall travel-

ing distance to service all customers with varying demand using a

iven number of trucks, each with the same fixed capacity.

This problem is NP-Hard Garey and Johnson (1979) .

.3. Benchmark instances

We used the following benchmark instances for testing the ex-

eriments described in Section 5 . For PFSP, we selected 12 bench-

ark problems from Taillard (1993) . Each Taillard PFSP benchmark

nstance is labelled as taiX _ j _ m, where X is the instance number

nd (j , m), where j indicates the number of jobs, and m the num-

er of machines. In order to facilitate our analysis, we selected 12

f the harder instances as follows: two from the (50, 20) pool, two

rom the (100, 20) pool and then three from the (200, 10) and

200, 20) pools and finally three from the (500, 20) pool of in-

tances for which an optimal solution is not known. For CVRP, we

ested 12 problems from the benchmarks of Augerat et al. (1995) .

ach instance of this benchmark is denoted as A - nM - kL, where M

nd L indicate the number of delivery points including the depot

nd the target number of routes, respectively.

. Agent-based framework

.1. Framework architecture and operation

We describe a general agent-based distributed framework

here each agent implements a different metaheuristic/local

earch combination. An agent continuously adapts itself during the

earch process using a cooperation protocol based on the retention

artial solutions deemed as possible constituents of future good

olutions. These are shared with the other agents.

The framework makes use of two types of agent: launcher and

etaheuristic agents.

• The launcher agent is responsible for queueing the problem in-

stances to be solved for a given domain, configuring the meta-

heuristic agents, successively passing a given problem instance

to the metaheuristic agents and gathering the solutions from

the metaheuristic agents. To achieve this it converts domain

specific problem instances into the agent messaging protocol

using an ontology for scheduling and routing (see Section 3.2).

However the launcher agent plays no actual part in the search,

its job is to prepare and schedule problems to be solved by the

other agents.
• A metaheuristic agent executes one of the metaheuristic/local

search heuristic combinations that are available. These combi-

nations and their parameter settings are all defined on launch-

ing. In this way each agent is able to conduct searches using

different combinations and parameter settings from the other

agents employed in the search. Each metaheuristic agent con-

ducts its search using the messaging structure defined in the

ontology for scheduling and routing and uses no problem spe-

cific data and as such is generic.

A search proceeds with the launcher reading a number of prob-

em instances into memory. It converts them into objects that can

e defined by the Ontology for scheduling and routing (Section 3.2

elow) and then sends each object, one at a time, to the meta-

euristic agents to be addressed. For a given problem instance,

he metaheuristic agents participate in a communication protocol

hich is in effect a distributed metaheuristic that enables them to
earch collectively for good quality solutions. This is a sequence

f messages passed between the metaheuristic agents and each

essage is sent as a consequence of internal processing conducted

y each agent. One iteration of this protocol is called a conversa-

ion and is based upon the well-known contract net protocol (FIPA,

009). In order to arrive at a good solution the agents will conduct

0 such conversations.

To understand the pattern matching protocol it is necessary

o explain the proposed model for scheduling and routing used

hroughout the framework.

.2. Scheduling and routing ontology

The ontology (Gruber, 1993) plays an important role within

ur framework. It defines a set of general representational prim-

tives that are used to model a number of scheduling and rout-

ng problems. The communication protocol and the heuristics are

ll based on data structures developed from these primitives. This

eans the framework is modular in that new (meta)heuristics

an be easily developed and then deployed on different

roblems.

The ontology used by the framework generalises these notions

s abstract objects.

• SolutionElements: A SolutionElement is an abstract object that

can represent a problem specific object such as a job in PFSP

or, a customer or depot in CVRP.
• Edge: An Edge object contains two SolutionElements objects.

These are used to represent pairs of jobs or customers in a per-

mutation that will be in the cooperation protocol to identify

good patterns in improving permutations.
• Constraints: The Constraints interface is between the high level

framework and the concrete constraints used by a specific

problem. These are used to verify a valid permutation.
• NodeList: A NodeList object is a list of SolutionElements objects

or Edges. It represents a schedule of jobs in the PFSP. In the case

of CVRP, a NodeList represents a Route and is therefore a sub-

list of a full permutation.
• SolutionData: A SolutionData object is a list of NodeList ob-

jects and therefore is the permutation that is optimised by the

framework. In this study it represents a schedule of jobs in PFSP,

or a collection of routes in CVRP .

All message passing in the framework, including the whole

ntology, is written in XML. This can be advantageous as many

enchmark problems are also in XML making the interface be-

ween problem definition and ontology seamless in practice. Fig. 1

hows the structure of the ontology and how SolutionElements are

he interface between the framework and a concrete problem.

.3. Edge selection and short-term memory

The framework features a method of Edge selection and short-

erm memory. A conversation, as has been explained already, is a

ype of distributed heuristic. Its purpose is to identify constituent

eatures of incumbent solutions that are likely to lead to the build-

ng of improving solutions.

This is achieved by using objects defined in the ontology.

he solutionData object in the ontology is built from the sub-

bjects of NodeLists and Edges and SolutionElements. Thus, to rep-

esent a permutation of n jobs for PFSP, a SolutionData object

s built from one NodeList object and which itself is made up

 − 1 Edge objects which are themselves built from n SolutionEle-

ents. Similarly a CVRP representation of n customers is one So-

ution Data object with x (this number is determined during the

earch) NodeLists. The NodeLists are built of n − 1 Edges and n

olutionElements.

172 S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178

Fig. 1. The combinatorial optimisation ontology.

l

o

s

4

&

f

i

a

m

e

O

o

a

t

a

O

r

l

h

e

4

V

(

N

t

(

s

o

i

d

If we take a permutation of the unique ID numbers of each the

SolutionElements objects we can represent a SolutionData object

with 10 elements as follows: (3, 4, 6, 7, 5, 8, 9, 0, 1, 2). Furthermore

we can break this permutation into a collection of Edge objects:

(3 , 4) , (4 , 6) , (6 , 7) , (7 , 5) , (5 , 8) , (8 , 9) , (9 , 0) , (0 , 1) , (1 , 2) , (2 , 3)

During a conversation, each agent runs its metaheuristic and

produces a new incumbent solution. Each agent then breaks this

solution into Edge objects and sends then to one of the meta-

heuristic agents that has been designated as the “initiator” for the

duration of that conversation only. All metaheuristic agents are ex-

actly the same and have the potential to take on the role of an

initiator in a conversation.

The initiator agent collects all the Edge objects from all the

other agents into a list and scores them by frequency. Here, fre-

quency is the number of times an Edge appears in the initiators

list. The only Edge objects that are retained are the ones that have

the same score as the number of agents that are participating in

the conversation. The idea here is that if an Edge occurs frequently

in all incumbent solutions, it is likely to be an Edge that will be

part of an improving solution. These retained good Edges are then

shared by the initiator with the other agents.

Another feature is the learning mechanism where each agent

keeps a short-term memory of good Edges. This is a queue of good

Edges that operates somewhat like a Tabu list. An agent’s queue

is populated during the first conversation with edges from the

incumbent solution produced by its metaheuristic. Thereafter the

queue is maintained at a factor, that is 20 percent, of the size of

the candidate solution for the problem instance at hand. In sub-

sequent conversations, as new edges not already in the list arrive,

they are pushed onto the front of the queue while other edges are

removed from the back of the queue so that the size of the list

does not change.

The Edges in the short-term memory are used at the start of

each conversation to modify the performance of the agent’s meta-

heuristic to enable it to find better solutions.

The basic idea of this learning mechanism is that both the

RandNEH and RandCWS heuristics of Juan et al. (2015) used in this

study make use of ordered lists to construct new solutions. These

heuristics use biased random functions to choose items from these
ists. We use the Edges identified by the learning mechanism to re-

rder these lists and so influence the way new solutions are con-

tructed.

. Implementation

The framework is implemented using JADE (Bellifemine, Caire,

 Greenwood, 2007). It allows a developer to concentrate on the

unction and behaviour of agents while it handles inter-agent and

nter-platform communication.

The configuration file of a launcher agent lists which problems

re to be solved. It also contains how many conversations the

etaheuristic agents are going to conduct for a particular problem.

At start-up, parameters determine which metaheuristic will be

mployed as well as any parameter settings associated with it.

nce the metaheuristic agents have completed the set number

f conversations they each send their best result to the launcher

gent. The launcher then prints an output file with the best solu-

ion and objective function value.

The framework conducts a search where each agent is launched

nd registers with the JADE platform that hosts the framework.

nce this is complete, the agents wait for the launcher agent to

ead in a problem from file. The launcher will then send the prob-

em to each of the metaheuristic agents. Only when the meta-

euristic agents receive that problem from the launcher do they

mbark on a search.

.1. Heuristics used by the agents

In this study depending on whether they are solving PFSP or

RP, the agents instantiate the heuristics developed by Juan et al.

2010b , 2010a) respectively.

In the case of PFSP, the metaheuristic used is the Randomised

EH (RandNEH) algorithm of Juan et al. (2010b) . It is a stochas-

ic version of the classic heuristic of Nawaz, Enscore, and Ham

1983) . Just as the NEH algorithm creates an ordered list of jobs

orted from tardiest to quickest, the RandNEH algorithm, instead

f choosing jobs in order from the list, chooses them accord-

ng to a randomised process based on the Triangular probability

istribution.

S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178 173

C

I

a

i

c

l

(

a

w

s

o

a

f

n

o

c

l

t

t

a

e

f

r

t

t

t

t

S

g

c

4

h

t

t

d

r

d

i

v

l

o

h

s

i

i

l

w

a

r

t

d

i

& &

' '

Int

Fig. 2. The cooperation protocol showing one iteration of a conversation.

j

a

c

E

s

a

a

p

m

f

t

F

c

p

i

u

n

p

t

5

5

a
While for the CVRP, the metaheuristic used is the Randomised

larke Wright Savings (RandCWS) algorithm of Juan et al. (2010a) .

t is a stochastic version of the classic savings heuristic of Clarke

nd Wright (1964) . Rather than generating new routes by choos-

ng the greatest relevant saving from the savings list , it chooses ac-

ording to a Geometric distribution where the j th savings from the

ist is chosen by a probabilistic function described in Juan et al.

2010a) .

Both these algorithms have been integrated into our system

ccording to our framework. This was quite a simple process

here the heuristics implement the abstract objects defined in the

cheduling and routing ontology. For example, the Edge and Job

bjects of the RandNEH algorithm are now subclasses of the Edge

nd SolutionElements abstract classes of the framework. Similarly

or VRP problems, where the Route, Edge and Customer objects are

ow subclasses of the NodeElements, Edge and SolutionElements

bjects of the framework.

This means we can use the good Edges found as a result of a

onversation of the framework to modify the Job lists and Saving

ists of the RandNEH and RandCWS algorithms respectively.

In the case of PFSP, the list of Edges found by the agents is

urned into a list of SolutionElements (Jobs) where their order in

he Edge list is preserved. The Jobs list generated by the RandNEH

lgorithm is then reordered with respect to the list of Jobs gen-

rated from the Edge list, with the new Jobs being moved to the

ront of the list. This affects the operation of the RandNEH algo-

ithm where the new Jobs are likely be favoured in the construc-

ion of any new improving schedule.

It is a similar process for the RandCWS algorithm. However, this

ime the Edges in Edge list are also Super Classes of the Edges in

he Savings List. Again, the Savings List is reordered with respect

o the Edge list where these Edges are moved to the head of the

avings List. This again affects the operation of the RandCWS al-

orithm favouring the good Edges found as a result of the Agents’

onversations.

.2. Description of a conversation

Fig. 2 shows the edge selection protocol used by the meta-

euristic agents. One complete execution of the algorithm illus-

rated is a conversation . In any conversation, there will be an agent

hat takes on the role of an initiator and the others are respon-

ers. In the very first conversation agent1 will always take on the

ole of initiator. Thereafter, any agent can be the initiator, but it is

etermined in the previous conversation which agent will be the

nitiator for the current conversation (see below).

In Fig. 2 , an agent taking on the role of initiator starts a con-

ersation. At the start of a conversation, each agent either takes a

ist of Edge objects generated from a previous conversation or from

ne generated by the launch agent (see I 1 and R 1 in Fig. 2).

The agents then find new incumbent solutions using their given

euristics in conjunction with the edges provided in the previous

tep (see I 2 and R 2 in Fig. 2).

The initiator breaks its incumbent solution into edges and then

nvites the responder agents to do the same and send them to the

nitiator, I 3 and R 3 of Fig. 2 .

The receiving agents also send the value of their best-so-far so-

ution. This will be used by the initiator to determine which agent

ill be the new initiator in the next conversation (see I 4 in Fig. 2).

In I 4 , the initiator receives the Edge objects from the responding

gents and collects them together. Each Edge object is scored and

anked based on frequency. This can be seen in box I 4 of Fig. 2 as

he function getScore .

In I 4 of Fig. 2 , through the function getInitiator , the initiator also

etermines which metaheuristic agent is going to be the initiator

n the next conversation. This is achieved by choosing the best ob-
ective function value to be the initiator. In the case of a tie, the

gent is chosen arbitrarily from these values.

The initiator then sends good Edge objects, found during this

onversation, to the receiving metaheuristic agents.

Each agent keeps a pool or short-term memory of high scoring

dge objects. The pool acts as a sort of queue and its length is

et when the agent is launched. In this study all the agents have

 pool size of 20 percent of length of the instance currently being

ddressed. During the first conversation, each agent populates its

ool as good edges are identified. Once the pool is up to size, it is

aintained as a queue as described in Section 3.3 .

The other metaheuristic agents receive the lists of Edge objects

rom the initiator (see box R 4 in Fig. 2). They also update their in-

ernal memory’s or pools as described above. In box I 5 and R 5 of

ig. 2 , both initiator and responder metaheuristic agents then each

reate a new solution by using edges from their updated internal

ools. These good edges are passed to the metaheuristic the agent

s configured to execute in the current search. The metaheuristic

ses these good edges when it is next called at the start of the

ext conversation (back to I 1 and R 1 of Fig. 2). This process re-

eats and continues until the number of conversations set from

he launcher agent are completed.

. Experimental design

In this section we discuss the experimental design.

.1. Launcher agent

One launcher agent is invoked in each run. The launcher

gent reads from a configuration file the number of agents to be

174 S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178

0 50 100 150

3
9

0
0

3
9

4
0

3
9

8
0

A typical solution trjectory for RandNEH

Instance−tai051_50_20

Time(s)

F
it
n

e
s
s
 V

a
lu

e
s

(a) tai051-50-20

0 20 40 60 80

3
8

8
0

3
9

2
0

3
9

6
0

A typical solution trjectory for RandCWS

Instance−A−n45−k7
Time(s)

F
it
n

e
s
s
 V

a
lu

e
s

(b) A-n45-k7

Fig. 3. Typical Solution trajectories of the RandNEH and RandCWS algorithms.

t

W

g

t

t

t

f

i

u

<

α

t

s

w

e

t

u

d

s

w

g

s

o

c

w

f

e

2

i

5

c

e

s

o

l

instantiated (see Section 5.4) as well as the number of conversa-

tions that will be conducted during the test.

The launcher agent executes a construction heuristic to build

an initial solution for each instance and run: for PFSP a biased-

randomised version of the NEH algorithm (Nawaz et al., 1983) with

Taillard’s speedups implemented by Juan et al. (2010b) ; and for

CVRP, the Randomised CW Savings algorithm (Juan et al., 2010a;

Juan et al., 2014). This initial solution is passed on to each of the

individual agents.

5.2. The number of conversations

Using a standard computer, Juan et al. (2010a, 2010b) ; Juan

et al. (2014) noticed that the RandNEH and RandCWS heuristics

were able to provide near-optimal solutions for most instances in a

maximum time of about 2.5 minutes. We benchmarked their code

using a similar computer configuration and observed the same

phenomena. Therefore, we decided to use this running time as a

maximum-allowed computing time during our experiments, which

were run in a more powerful computing environment.

This gave us a guide as to how long our system should be run

and therefore determine the number of conversations that would

be needed. The time taken for the agents to complete a conver-

sation is mainly governed by the time taken for an agent’s given

heuristic to execute. To this end, we conducted tests showing that

both heuristics typically have a period of maximum improvement

of about 12 seconds. As an example, Fig. 3 plots the solution trajec-

tories of the PFSP instance tai051 and the CVRP instance A-n45-k9

against time. We can see that these algorithms have their period

of greatest improvement in about the first 12 seconds of opera-

tion. Thus we determined that the system should execute 10 con-

versations for our system to run for about the same time as the

standalone versions of the RandNEH and RandCWS heuristics. This

would also take into account any lag caused by the asynchronous

nature of the system.

5.3. Parameter settings

Since the RandCWS and RandNEH methods of Juan et al. were

already written in JAVA, they were integrated with minimum effort

as a module of our agent based system. They utilise the edge selec-

tion heuristic of the agent-based system by taking edges identified

during each conversation and re-ordering the jobs list of the Rand-

NEH algorithms and the savings list of the RandCWS algorithm as

explained in Section 4.1 .

Both algorithms use a random seed which is a number that in-

troduces a bias to a random number generator. In the tests for both

the PFSP and CVRP, each agent is configured with exactly the same

random seeds (Juan et al., 2010a, 2010b).
However, in their article (Juan et al., 2011) describe how

hey combined Monte-Carlo simulation techniques with the Clarke

right Savings algorithm to develop the probabilistic RandCWS al-

orithm. It was designed so that it would require little parame-

er tuning. To this end, they describe a parameter α that is used

o define different geometric distributions. Such a distribution can

hen be used by the RandCWS heuristic to choose the next edge

rom the Clarke Wright Savings list as part of its solution build-

ng process. The α-parameter is itself chosen at random from a

niform distribution between two values (a , b) where 0 < a ≤ b

 1. In their paper, Juan et al choose α-values from the interval

∈ { 0 . 05 − 0 . 25 } . They show that for any α-value in this interval,

he algorithm will give similar and good performance. In corre-

pondence with the authors, it was confirmed that the algorithm

ill perform less well for α-values of above 2.3, while at the other

nd of the range α-values close to the 0.05 will perform as any in

he cited interval.

The intuitive idea for spreading the α- v alues is to maximise the

se of different distributions during a search. While these choices

o not affect the solution quality it means the agents will produce

lightly different solutions which will produce different edges that

ill enhance the performance of the distributed edge selection al-

orithm.

In both case studies each metaheuristic is allowed to run for 12

econds each time it is called.

Following (Juan et al., 2013; Juan et al., 2014) in what we call

ur standalone experiments (that is the traditional case without

ooperative search being used) we compare our cooperating agents

ith the standalone by running the experiments for each group

or a maximum time of 40 minutes to match the computational

ffort of the system running 16 agents i.e. 16 × 150 seconds =
400 seconds (40 minutes) . Thus all agents vs standalone compar-

sons are made against this worst case scenario.

.4. Experimental set-up

The main hypothesis to be tested in these experiments is that

ooperating agents produce better results than their standalone

quivalents. The results are also compared with state-of-the-art re-

ults for each of these benchmarks. To this end, for each instance

f the tests the following scenarios were run:

The CVRP tests were conducted as follows with α- v alues se-

ected on 0.01 increments from the set {0.03 to 0.18}

• Standalone agent: 1 metaheuristic agent where the α- v alue =
0 . 03

• 4 agents: α ∈ { 0 . 03 − 0 . 06 }
• 8 agents: α ∈ { 0 . 03 − 0 . 1 }
• 12 agents: α ∈ { 0 . 03 − 0 . 14 }
• 16 agents: α ∈ { 0 . 03 − 0 . 18 }

S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178 175

Table 1

The average (avr.) and best percentage deviation from the upper bound over 20 runs for each instance for PFSP. The best values are highlighted in bold.

Instance BKS Zobolas et al. 1 agent 4 agents 8 agents 12 agents 16 agents

(percent) Avr. Best Avr. Best Avr. Best Avr. Best Avr. Best

(percent) (percent) (percent) (percent) (percent) (percent) (percent) (percent) (percent) (percent)

tai051_50_20 3850 0.77 0.92 0.39 0.84 0.55 0.76 0.47 0.69 0.39 0.63 0.44

tai055_50_20 3610 1.03 0.54 0.44 0.67 0.50 0.62 0.28 0.57 0.36 0.50 0.30

tai081_100_20 6202 1.63 1.55 1.23 1.52 1.26 1.41 1.06 1.34 1.03 1.30 1.02

tai085_100_20 6314 1.57 1.39 1.00 1.34 1.11 1.22 0.97 1.15 1.00 1.11 0.89

tai091_200_10 10,862 0.24 0.12 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

tai095_200_10 10,524 0.03 0.10 0.03 0.09 0.03 0.05 0.03 0.03 0.03 0.03 0.03

tai101_200_20 11,195 1.34 1.49 1.30 1.38 1.09 1.25 1.01 1.22 1.06 1.19 0.93

tai105_200_20 11,259 1.04 1.08 0.70 1.02 0.89 0.94 0.78 0.94 0.83 0.88 0.71

tai106_200_20 11,176 1.11 1.60 1.25 1.55 1.35 1.44 1.27 1.43 1.25 1.42 1.33

tai111_500_20 26,059 0.73 0.99 0.74 1.01 0.88 0.95 0.86 0.92 0.87 0.88 0.69

tai115_500_20 26,334 0.82 0.99 0.74 1.01 0.88 0.95 0.86 0.92 0.87 0.88 0.69

tai116_500_20 26,477 0.49 0.72 0.56 0.69 0.56 0.67 0.60 0.62 0.57 0.61 0.54

Table 2

Table showing cooperating agents performing better than the

standalone equivalent at the 95% in PFSP.

Instance 4 vs 1 8 vs 1 12 vs 1 16 vs 1

tai051_50_20 ≥ > > >

tai055_50_20 ≤ ≤ ≤ ≥
tai081_100_20 ≥ > > >

tai085_100_20 ≥ > > >

tai091_200_10 > > > >

tai095_200_10 ≥ > > >

tai101_200_20 > > > >

tai105_200_20 ≥ > > >

tai106_200_20 ≥ > > >

tai111_500_20 ≤ ≥ > >

tai115_500_20 ≤ > > >

tai116_500_20 ≥ > > >

f

j

g

t

a

t

f

t

t

c

b

d

f

o

e

a

c

p

7

r

t

c

t

p

t

p

Table 3

Table showing different groups cooperating agents perform at the 95 per-

cent confidence level in PFSP.

Instance 8 vs 4 12 vs 8 16 vs 12 16 vs 8 16 vs 4

tai051_50_20 > ≥ ≥ > >

tai055_50_20 > ≥ > > >

tai081_100_20 > ≥ ≥ > >

tai085_100_20 > ≥ ≥ > >

tai091_200_10 ≈ ≈ ≈ ≈ ≥
tai095_200_10 > ≥ ≥ ≈ >

tai101_200_20 > ≥ ≥ ≥ >

tai105_200_20 > ≤ > > >

tai106_200_20 > ≥ ≥ ≥ >

tai111_500_20 > > ≥ > >

tai115_500_20 > ≥ ≥ ≥ >

tai116_500_20 > > ≥ > >

p

s

g

e

5

m

w

6

6

k

t

f

t

(

g

s

t

c

r

i

Z

The PFSP tests were conducted similarly but without the need

or α- v alues .

They were tested in this way so that standalone agents running

ust one metaheuristic at a time can be compared statistically with

roups of cooperating agents in order to test the main hypothesis.

Every instance was tested 20 times. The resulting values are

hen used to evaluate the performance of the test. In particular the

verage and minimum value of the 20 runs for each problem are

aken. These are compared with the known optimal or best values

or each problem instance.

To test the hypothesis that agents cooperating by edge selec-

ion perform better than standalone agents, Wilcoxon signed rank

ests are conducted for each benchmark instance, with a 95 per-

ent confidence level. We used the Wilcoxon test rather than t -test

ecause we cannot guarantee that the test results will be normally

istributed (Moore & McCabe, 1989). These tests compare the dif-

erence between the distributions of 16, 12, 8, and 4 agents co-

perating with the standalone agents. A secondary hypothesis is

xplored where the performances of groups of 4, 8, 12 and 16

gents are compared using the Wilcoxon signed rank test to as-

ertain whether increasing the number of agents results in better

erformance. The following notation is used in Tables 2 , 3 , 6 and

 . Given two algorithms (or different settings for the same algo-

ithm); A vs B, > (<) denotes that A (B) is better than B (A) and

his performance difference is statistically significant at a 95 per-

ent confidence level. However, ≥ (≤) denotes that A (B) is bet-

er than B (A) although statistical significance could not be sup-

orted. Lastly, ≈ denotes the case where both approaches consis-

ently achieve the same value.

The results for each problem are averaged and the average

ercentage deviation from the known optimum is calculated. The
ercentage deviation from a known optimum is calculated in the

tandard manner:

Method solution − Best solution

Best solution

× 100 (5)

The results are also analysed to find the best result of each

roup of agents over the 20 runs of each problem instance (Juan

t al., 2013; Juan et al., 2014).

.5. Machines

All tests were run on the same Linux cluster using 8 identical

achines; two agents were run per-node of the cluster. The agents

ere configured to use 2 gigabyte of memory.

. Results of experiments

.1. Permutation flow-shop scheduling results

Table 1 shows the average percentage deviation from the best

nown or optimum value for each of the benchmark instances

ested, as well as the percentage deviation for the best value

ound across the 20 runs. The table also compares our results with

he Hybrid Genetic algorithm of Zobolas, Tarantilis, and Ioannou

2009) . Here the average value reported by Zobolas et al. (2009) is

iven as a percentage deviation from the best known solution. De-

pite the fact that this is a type of hyper-heuristic system where

he only parameter tuning is the number of conversations exe-

uted, the PFSP results are competitive with the state-of-the-art

esults for these problem instances. It is only in the larger three

nstances where our average deviation is not better than that of

obolas et al. (2009) .

176 S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178

Table 4

Patterns found by 4 cooperating agents PFSP for problem tai051_50_20.

Agents Edges

agent1 (14,15) (4,25) (32,22) (39,16) (25,50) (19,41) (13,32) (44,45) (45,6)

(50,3) (28,38)

agent2 (35,34) (9,30) (5,10) (2,44) (12,37) (1,7) (4,50) (10,1) (24,42) (50,3)

agent3 (3,12) (37,39) (30,46) (50,3) (35,15) (41,7) (34,33) (38,24) (47,23)

(42,49)

agent4 (40,21) (22,13) (6,42) (33,40) (26,2) (5,14) (7,18) (37,28) (39,35)

(44,11)

t

Table 6

Table showing cooperating agents performing better than

the standalone equivalent at the 95 percent in CVRP.

Instance 4 vs 1 8 vs 1 12 vs 1 16 vs 1

A-n38-k5 ≤ > > >

A-n39-k6 ≤ ≥ ≥ ≥
A-n44-k7 ≤ > > >

A-n45-k6 ≥ > > >

A-n45-k7 ≤ ≥ ≥ >

A-n55-k9 ≤ > > >

A-n60-k9 ≤ > > >

A-n61-k9 ≥ > > >

A-n62-k8 ≤ > ≥ >

A-n63-k9 ≤ ≥ > >

A-n65-k9 ≥ > > >

A-n80-k10 ≤ > > >

t

n

i

<

2

4

s

w

t

b

t

i

o

C

l

6

r

s

t

(

J

w

s

r

(

t

f

t
With respect to answering our main hypothesis: “is cooperation

by pattern matching better than no cooperation?”, we compared

4 agents cooperating against a standalone agent (see Section 5.3).

In addition, we wanted to test if increasing the number of agents

produced a statistically significant improvement in the results.

Tables 2 and 3 list these results; in each case we tested for sta-

tistical significance.

In Table 2 , with the exception of the tai 055 _ 50 _ 20 instance,

it can be seen that groups of 812 and 16 agents perform better

than the standalone with statistical significance. However, for the

ai 055 _ 50 _ 20 instance, 16 agents show some improvement, if not

statistically, over the standalone. Furthermore, two instances of 4

agents perform statistically better than the standalone but the rest

all show some improvement but not at the 95 percent level.

Table 3 explores the possibility that adding more agents leads

to better results. Here we can see that 8 agents perform statis-

tically better than 4, while 12 agents show some improvement,

but not statistically, over 8. The same is true for 16 over 12

agents. However the instances tai091_200_10 and tai105_200_20

achieve statistical significance as well. By the time we get to 16

vs 4 agents, 16 agents always perform statistically better except

for tai091_200_10 where statistical significance is not reached.

It should also be noted for tai091_200_10 while the cooperat-

ing agents perform better than the standalone, thereafter they all

achieve the same value. It is clear that progressively increasing the

number of agents from 4 to 8 to 12 to 16 results in an increase in

performance. However this improvement is not always statistically

significant. If we consider the column of the table where 16 agents

are compared with 8 we see that the level of improvement gains

more significance. This is suggestive that it is better to increase the

number of agents by a factor of 2.

The cooperation mechanism used in this study works by iden-

tifying and sharing good patterns that form partial solutions to the

problem at hand. These are then passed to a metaheuristic to build

a new putative solution to the problem. Given this, it is interesting

to study the patterns (edges) identified by each agent and compare
Table 5

The average (avr.) and best percentage deviation from the optimum/upper bound over 20

Instance BKS A and B Juan et al. 1 agent 4 agen

(percent) (percent) Avr. Best Avr. B

(percent) (percent) (percent) (p

A-n38-k5 734.18 3.577 0.54 0.07 0.04 0.09 0

A-n39-k6 833.14 2.233 – 0.01 0.01 0.01 0

A-n44-k6 939.33 2.394 – 0.63 0.57 0.70 0

A-n45-k6 944.88 1.383 – 0.92 0.92 0.92 0

A-n45-k7 1147.28 1.842 0.07 0.05 −0.03 0.07 −
A-n55-k9 1074.46 2.378 0.14 0.13 0.05 0.26 0

A-n60-k9 1355.80 1.64 0.13 0.50 0.50 0.50 0

A-n61-k9 1039.08 1.654 0.49 0.27 0.26 0.26 0

A-n62-k8 1294.28 4.648 – 0.70 0.62 0.76 0

A-n63-k9 1619.90 2.051 – 0.75 0.45 0.88 0

A-n65-k9 1181.69 2.392 0.66 1.06 1.05 1.05 0

A-n80-k10 1766.50 2.952 0.2 1.04 0.99 1.04 0
hem to the final solution found by the system. To this end, the fi-

al permutation (Edges which appear in the final solution and are

dentified during the search (see Table 4)are highlighted in bold)

 12 , 37, 20, 31, 39 , 35 , 34, 6, 40, 5, 10, 1, 7, 15, 33, 43, 24, 42,

7, 29, 46, 47, 36, 23, 14, 2, 44, 8, 45, 17, 13 , 22 , 21, 48, 18, 28, 16,

9, 38, 19, 26, 41, 11, 32, 25, 9, 30, 4, 50 , 3 > of jobs found by the

ystem during one run of the tai051_50_20 instance is compared

ith the patterns in Table 4 . These are all the unique edges iden-

ified during this search. These edges are identified multiple times

ut the table only shows them once.

Indeed some edges (highlighted in bold) identified by the sys-

em do end up in the final job permutation. Furthermore, we can

dentify linked edges such as 50, 3, 12 at the end and beginning

f the permutation. However, these are not as many as seen with

VRP results below because of the way the makespan 4 is calcu-

ated as a special cumulative sum of columns of jobs.

.2. Capacitated Vehicle Routing results

Table 5 compares the percentage deviation for average and best

esults for the different groups of agents from the best known

olution. The table also compares our percentage deviations for

hese problem instances with those of Altınel and Öncan (2005)

donated by A) and Juan et al. (2010b) (denoted by B). However,

uan et al. (2010b) only has results for a selection of the instances

e tested. They represent the latest work on these benchmark in-

tances so we have included them for comparison. Comparing our

esults with those of Altınel and Öncan (2005) and Juan et al.

2010b) we can see that agents improve on their results. Fur-

hermore, to the best of our knowledge, in four cases we have

ound results that are better than the current best known solu-

ions. A - n 39 - k 6 ,A - n 45 - k 7 ,A - n 55 - k 9 and A - n 63 - k 9 are highlighted in
 runs for each instance for CVRP.

ts 8 agents 12 agents 16 agents

est Avr. Best Avr. Best Avr. Best

ercent) (percent) (percent) (percent) (percent) (percent) (percent)

.04 0.02 −0.03 −0.02 −0.03 −0.03 −0.03

.01 0.01 0.01 0.01 0.01 0.01 0.01

.57 0.55 0.39 0.40 0.29 0.32 −0.12

.92 0.69 0.00 0.20 0.00 0.00 0.00

0.02 0.03 −0.03 0.03 −0.03 −0.01 −0.48

.05 0.06 0.05 0.05 0.05 0.05 0.05

.50 0.46 0.22 0.40 0.22 0.37 0.22

.26 0.25 0.13 0.23 0.12 0.22 0.12

.62 0.62 0.62 0.65 0.62 0.62 0.62

.69 0.73 0.40 0.53 0.14 0.32 0.14

.72 0.92 0.28 0.82 0.64 0.61 0.14

.99 0.98 0.77 0.87 0.77 0.85 0.70

S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178 177

4 Agents 8 Agents 12 Agents 16 Agents

3
8

6
5

3
8

7
5

3
8

8
5

No. of agents

O
b

j
fu

n
c
ti
o

n
 v

a
lu

e

(a) tai50 20

4 Agents 8 Agents 12 Agents 16 Agents

1
6

2
5

1
6

3
0

1
6

3
5

No. of agents

O
b

j
fu

n
c
ti
o

n
 v

a
lu

e

(b) A-n63-k9

Fig. 4. Boxplots of objective values obtained in 10 runs for 16, 12, 8 and 4 agents on a selected instance from the (a) STSP, (b) PFSP, and (c) CVRP problem domains.

Table 7

Table showing different groups cooperating agents perform at the 95

percent confidence level in CVRP.

Instance 8 vs 4 12 vs 8 16 vs 12 16 vs 8 16 vs 4

A-n38-k5 > > > > >

A-n39-k6 ≥ ≥ ≥ ≥ ≥
A-n44-k7 > > > > >

A-n45-k6 > > > > >

A-n45-k7 > ≥ ≥ ≥ >

A-n55-k9 > ≥ ≥ ≥ >

A-n60-k9 > ≥ ≥ > >

A-n61-k9 > ≥ ≥ ≥ >

A-n62-k8 > ≤ ≥ ≥ >

A-n63-k9 > > > > >

A-n65-k9 > ≥ > > >

A-n80-k10 > > ≥ > >

Table 8

Final Solution to CVRP problem A-n38-k5.

Route name Routes

Route1 [1, 8, 6, 12, 28, 23, 33, 1]

Route2 [1, 27, 13, 4, 2, 5, 17, 26, 7, 30, 1]

Route3 [1, 9, 34, 36, 24, 31, 11, 22, 1]

Route4 [1, 10, 18, 37, 14, 16, 3, 15, 25, 1]

Route5 [1 , 21, 38, 32, 29, 35, 20 , 19, 1]

Table 9

Patterns found by 4 cooperating agents for CVRP problem A-n38-k5.

Agents Edges

agent1 (35,20) (38,32) (29,35) (20,19) (21,38) (32,29) (1,21) (19,1)

agent2 (30,31) (11,1) (1,19) (31,11) (35,30) (19,35)

agent3 (35,20) (29,19) (1,21) (20,1) (32,29) (38,32) (21,38) (19,35) (1,19)

agent4 (19,1) (32,38) (38,29) (35,20) (21,32) (20,19) (29,35)

i

s

o

A

s

t

w

m

a

s

c

h

p

n

o

r

c

4

i

l

r

t

T

t

i

2

b

c

t

t

i

a

b

a

t

7

f

t

d

r

m

c

f

f

r

a

A

s

s

w

w

c

used.

1 http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/ .
talics for the best average value and in best for our best overall

core.

Again we tested for the main hypothesis. We compared groups

f 4, 8, 12, and 16 agents cooperating against a standalone agent.

s before, we tested for statistical significance using the Wilcoxon

igned rank test at the 95 percent confidence level. Table 6 lists

hese result using the same notation as used in Table 2 above. As

ith the PFSP, 4 agents cooperating do not show any improve-

ent from their standalone equivalent. However, groups of 8, 12

nd 16 agents with increasing certainty perform better than the

tandalone agent. Indeed 16 agents all perform better a 95 percent

onfidence level except for the A - n 39 - k 6 instance.

In Table 7 , we report the results of our tests for the secondary

ypothesis. As with the PFSP results, we can see a gradual im-

rovement as more agents are added. However, again it seems it is
ecessary to double the number of agents each time in order to

bserve improvement in results. The addition of 4 agents each time

esults in an improvement that is not always statistically signifi-

ant. However, if the agents are doubled each time in groups of

, 8 and 16 there is a greater proportion of statistically significant

mprovement from the additive case.

Finally, we show the patterns generated for a sample on prob-

em instance A - n 38 - k 5 in Table 9 and compare them to the final

esult of this run in Table 8 . We highlight in bold those edges iden-

ified by the agents in Table 9 that end up in the final solution in

able 8 . As can be seen there are many more such edges than for

he PFSP. This is because the relationship between edges and cities

s much more direct in the case of CVRP as costs are calculated as

D-euclidean distances between cities.

From this study, we conclude that with no parameter tuning

etween case studies our system can produce results which are

ommensurate with the state-of-the-art studies in both fields. Fur-

hermore, in four instances with the CVRP tests we were able to

he best of our knowledge beat the current best results for these

nstances. We were also able to show for groups of 8, 12 and 16

gents compared with the standalone equivalent, that cooperation

y pattern finding is better than no cooperation. Finally, we are

lso able to show that doubling the number agents each time leads

o improving results as shown in Fig. 4 .

. Conclusion

In this paper we proposed a general agent-based distributed

ramework where each agent implements a different metaheuris-

ic/local search combination. An agent continuously adapts itself

uring the search process using a cooperation protocol based on

einforcement learning and pattern finding. Good patterns that

ake up improving solutions are identified by frequency of oc-

urrence in a conversation and shared with the other agents. The

ramework has been tested on well known benchmark problems

or two tests cases PFSP and CVRP. In both cases, with no pa-

ameter tuning between domains, the platform performed at least

s well as the state-of-art. For CVRP, we were able, in cases of

 - n 38 - k 5 , A - n 44 - k 6 and A - n 45 - k 7 to improve on the best known

olutions for these instances. 1

We have also shown eight or more agents perform better than a

tandalone agent with a 95 percent confidence level. Furthermore,

e have shown with a reasonable level or certainty, if not always

ith 95 percent confidence, that an improvement in performance

an be achieved each time you double the number, up to 16, agents

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

178 S. Martin et al. / European Journal of Operational Research 254 (2016) 169–178

G

G

H

H

J

J

J

J

J

J

K

L

M

M

M

M

M

M

O

R

R

V

The distributed computing framework presented can be run on

a local network of personal computers each using 2 gigabyte mem-

ory.

The framework also aims to be generic and modular, needing

very little parameter tuning across different problem types tested

so far. It has been applied successfully to PFSP and CVRP. It has

also been used to model fairness in Nurse Rostering (Martin et al.,

2013) using real-world data. This flexibility is achieved by means of

an ontology which enables the agents to represent these problems

with the same internal structure.

This is an interesting and little researched topic that warrants

further investigation such as: extending the ontology to apply the

framework to new problems; adding more heuristics and meta-

heuristics and improving the pattern finding protocol.

Finally, this framework will be published as an open source

project so that other metaheuristics and cooperation protocols can

be added and tested by other researchers. The project is called

MACS (Multi-agent Cooperative Search) and will be published at

the following website: http://simonpmartin.github.io/macs/ .

Acknowledgement

The Engineering and Physical Sciences Research Council (EPSRC)

supported this work through the following project: Dynamic Adap-

tive Automated Software Engineering (DAASE) EP/J017515/1 .

Appendix A. Supplementary material

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.ejor.2016.02.045 .

References

Altınel, İ. . K. , & Öncan, T. (2005). A new enhancement of the Clarke and Wright

savings heuristic for the capacitated vehicle routing problem. Journal of the Op-
erational Research Society, 56 (8), 954–961 .

Augerat, P. , Belenguer, J. , Benavent, E. , Corberán, A. , Naddef, D. , & Rinaldi, G. (1995).
Computational results with a branch and cut code for the capacitated vehicle

routing problem. Rapport de recherche-IMAG .

Aydin, M. , & Fogarty, T. (2004a). A distributed evolutionary simulated annealing
algorithm for combinatorial optimisation problems. Journal of Heuristics, 10 (3),

269–292 .
Aydin, M. , & Fogarty, T. (2004b). Teams of autonomous agents for job-shop schedul-

ing problems: An experimental study. Journal of Intelligent Manufacturing, 15 (4),
455–462 .

Barbucha, D. (2014). A cooperative population learning algorithm for vehicle routing

problem with time windows. Neurocomputing, 146 , 210–229 .
Bellifemine, F. L. , Caire, G. , & Greenwood, D. (2007). Developing multi-agent systems

with JADE . Wiley .
Blum, C. , & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35 (3), 268–308 .
Burke, E. , Gendreau, M. , Hyde, M. , Kendall, G. , Ochoa, G. , Özcan, E. , et al. (2013).

Hyper-heuristics: A survey of the state of the art. Journal of the Operational Re-

search Society, 64 (12), 1695–1724 .
Clarke, G. , & Wright, J. (1964). Scheduling of vehicles from a central depot to a num-

ber of delivery points. Operations Research, 12 (4), 568–581 .
Clearwater, S. H. , Hogg, T. , & Huberman, B. A. (1992). Cooperative problem solving.

Computation: The micro and the macro view , 33–70 .
Crainic, T. , & Toulouse, M. (2008). Explicit and emergent cooperation schemes for

search algorithms. In Proceedings of the international conference on learning and

intelligent optimization (pp. 95–109) .
Dantzig, G. , & Ramser, J. (1959). The truck dispatching problem. Management Science,

6 , 80–91 .
El Hachemi, N. , Crainic, T. G. , Lahrichi, N. , Rei, W. , & Vidal, T. (2014). Solution inte-

gration in combinatorial optimization with applications to cooperative search and
rich vehicle routing .

FIPA (2009). FIPA iterated contract net interaction protocol specification. http://

www.fipa.org/specs/fipa0 0 030/index.html .
Garey, M. , & Johnson, D. (1979). Computers and intractability: A guide to the theory of

NP-completeness . Bell Telephone Laboratories Inc .
arey, M. R. , Johnson, D. S. , & Sethi, R. (1976). The complexity of flowshop and job-
shop scheduling. Mathematics of Operations Research, 1 (2), 117–129 .

ruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5 (2), 199–220 .

ogg, T. , & Williams, C. P. (1993). Solving the really hard problems with cooper-
ative search. In Proceedings of the national conference on artificial intelligence

(pp. 231–236) .
utter, F. , Babic, D. , Hoos, H. , & Hu, A. J. (2007). Boosting verification by automatic

tuning of decision procedures. In Proceedings of the formal methods in computer

aided design, FMCAD’07 (pp. 27–34). IEEE .
uan, A. , Faulin, J. , Grasman, S. E. , Rabe, M. , & Figueira, G. (2015). A review of

simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2 , 62–72 .

uan, A. , Ruíz, R. , Lourenço, H. R. , Mateo, M. , & Ionescu, D. (2010a). A simula-
tion-based approach for solving the flowshop problem. In Proceedings of the

winter simulation conference (pp. 3384–3395) .

uan, A. A. , Faulin, J. , Jorba, J. , Caceres, J. , & Marquès, J. M. (2013). Using parallel
& distributed computing for real-time solving of vehicle routing problems with

stochastic demands. Annals of Operations Research, 207 (1), 43–65 .
uan, A . A . , Faulín, J. , Jorba, J. , Riera, D. , Masip, D. , & Barrios, B. (2011). On the use

of monte carlo simulation, cache and splitting techniques to improve the clarke
and wright savings heuristics. Journal of the Operational Research Society, 62 (6),

1085–1097 .

uan, A. A. , Faulin, J. , Ruiz, R. , Barrios, B. , & Caballé, S. (2010b). The SR-GCWS hy-
brid algorithm for solving the capacitated vehicle routing problem. Applied Soft

Computing, 10 (1), 215–224 .
uan, A . A . , Lourenço, H. R. , Mateo, M. , Luo, R. , & Castella, Q. (2014). Using iterated

local search for solving the flow-shop problem: Parallelization, parametriza-
tion, and randomization issues. International Transactions in Operational Re-

search, 21 (1), 103–126 .

ouider, A. , & Bouzouia, B. (2012). Multi-agent job shop scheduling system based
on co-operative approach of idle time minimisation. International Journal of Pro-

duction Research, 50 (2), 409–424 .
ópez-Ibánez, M. , Dubois-Lacoste, J. , Stützle, T. , & Birattari, M. (2011). The

IRACE package, iterated race for automatic algorithm configuration. Tech. Rep.
TR/IRIDIA/2011-004 . Belgium: IRIDIA, Université Libre de Bruxelles .

alek, R. (2010). An agent-based hyper-heuristic approach to combinatorial opti-

mization problems. In Proceedings of 2010 IEEE international conference on Intel-
ligent computing and intelligent systems (ICIS): Vol. 3 (pp. 428–434) .

artin, S. , Ouelhadj, D. , Smet, P. , Vanden Berghe, G. , & Özcan, E. (2013). Cooperative
search for fair nurse rosters. Expert Systems with Applications, 40 (16), 6674–6683 .

eignan, D. , Creput, J. , & Koukam, A. (2008). A coalition-based metaheuristic for
the vehicle routing problem. In Proceedings of IEEE congress on evolutionary

computation, 20 08, CEC 20 08. (IEEE world congress on computational intelligence)

(pp. 1176–1182). IEEE .
eignan, D. , Koukam, A. , & Créput, J. C. (2010). Coalition-based metaheuristic: A

self-adaptive metaheuristic using reinforcement learning and mimetism. Journal
of Heuristics , 1–21 .

ilano, M. , & Roli, A. (2004). Magma: A multiagent architecture for metaheuris-
tics. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34 (2),

925–941 .
oore, D. S. , & McCabe, G. P. (1989). Introduction to the practice of statistics . WH

Freeman/Times Books/Henry Holt & Co .

Nawaz, M. , Enscore, E. E., Jr. , & Ham, I. (1983). A heuristic algorithm for the m-ma-
chine, n-job flow-shop sequencing problem. Omega, 11 (1), 91–95 .

uelhadj, D. , & Petrovic, S. (2010). A cooperative hyper-heuristic search framework.
Journal of Heuristics, 16 (6), 835–857 .

Pinedo, M. (2002). Scheduling: Theory, algorithms, and systems . New Jersey: Pren-
tice-Hall .

ies, J. , & Beullens, P. (2015). A semi-automated design of instance-based fuzzy pa-

rameter tuning for metaheuristics based on decision tree induction. Journal of
the Operational Research Society, 66 (5), 782–793 .

oss, P. (2014). Hyper-heuristics. In Search methodologies (pp. 611–638). Springer .
Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64 (2), 278–285 .
Talbi, E. G. , & Bachelet, V. (2006). Cosearch: A parallel cooperative metaheuristic.

Journal of Mathematical Modelling and Algorithms, 5 (1), 5–22 .

Toulouse, M. , Thulasiraman, K. , & Glover, F. (1999). Multi-level cooperative search:
A new paradigm for combinatorial optimization and an application to graph

partitioning. Euro-Par’99 parallel processing , 533–542 .
allada, E. , & Ruiz, R. (2009). Cooperative metaheuristics for the permutation

flowshop scheduling problem. European Journal of Operational Research, 193 (2),
365–376 .

Xie, X. F. , & Liu, J. (2009). Multiagent optimization system for solving the traveling

salesman problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 39 (2), 489–502 .

Zobolas, G. , Tarantilis, C. D. , & Ioannou, G. (2009). Minimizing makespan in permu-
tation flow shop scheduling problems using a hybrid metaheuristic algorithm.

Computers & Operations Research, 36 (4), 1249–1267 .

http://simonpmartin.github.io/macs/
http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.1016/j.ejor.2016.02.045
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0009
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0013
http://www.fipa.org/specs/fipa00030/index.html
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0019
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0020
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0021
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0022
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0023
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0024
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0025
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0026
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0027
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0028
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0029
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0030
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0031
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0032
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0033
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0034
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0035
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0036
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0037
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0038
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0039
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0040
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0041
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0042
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0043
http://refhub.elsevier.com/S0377-2217(16)30098-4/sbref0043

	A multi-agent based cooperative approach to scheduling and routing
	1 Introduction
	1.1 Cooperative search in OR

	2 Test case problems
	2.1 Permutation flow-shop scheduling problem
	2.2 The Capacitated Vehicle Routing Problem
	2.3 Benchmark instances

	3 Agent-based framework
	3.1 Framework architecture and operation
	3.2 Scheduling and routing ontology
	3.3 Edge selection and short-term memory

	4 Implementation
	4.1 Heuristics used by the agents
	4.2 Description of a conversation

	5 Experimental design
	5.1 Launcher agent
	5.2 The number of conversations
	5.3 Parameter settings
	5.4 Experimental set-up
	5.5 Machines

	6 Results of experiments
	6.1 Permutation flow-shop scheduling results
	6.2 Capacitated Vehicle Routing results

	7 Conclusion
	 Acknowledgement
	Appendix A Supplementary material
	 References

