U Universitat Oberta uoc.edu
c de Catalunya

Citation for published version

Costea, M., Ciobanu, R.-l., Marin, R.-C., Dobre, C., Mavromoustakis, C.X.,
Mastorakis, G., & Xhafa, F. (2017). Total order in opportunistic networks.
Concurrency and computation, 29(10).

DOI

Document Version

This is the Accepted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
02 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)

, Which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1002/cpe.4056
http://creativecommons.org/licenses/by-nc-nd/3.0/es

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1-25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Total Order in Opportunistic Networks

Mihail COSTEA!, Radu-Ioan CIOBANU', Radu-Corneliu MARIN®,
Ciprian DOBRE'*, Constandinos X. MAVROMOUSTAKIS?,
George MASTORAKIS?, Fatos XHAFA*

LDepartment of Computer Science, University Politehnica of Bucharest, Romania ?> Department of Computer Science,
University of Nicosia, Cyprus 3Department of Informatics Engineering, Technological Educational Institute of Crete,
Greece *Department of Computer Science, Technical University of Catalonia, Barcelona, Spain

SUMMARY

Opportunistic network applications are usually assumed to work only with unordered immutable messages,
like photos, videos or music files, while applications that depend on ordered or mutable messages, like
chat or shared contents editing applications, are ignored. In this paper, we examine how total ordering
can be achieved in an opportunistic network. By leveraging on existing dissemination and causal order
algorithms, we propose a Commutative Replicated Data Type algorithm based on Logoot for achieving total
order without using tombstones in opportunistic networks where message delivery is not guaranteed by the
routing layer. Our algorithm is designed to use the nature of the opportunistic network to reduce the metadata
size compared to the original Logoot, and even to achieve in some cases higher hit rates compared to the
dissemination algorithms when no order is enforced. Finally, we present the results of the experiments for the
new algorithm by using an opportunistic network emulator, mobility traces and Wikipedia pages. Copyright
© 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: opportunistic networks; delay tolerant; consistency; total order

1. INTRODUCTION

Opportunistic networks (ONs) [28] offer a decentralized communication infrastructure in
environments where, due to high mobility of participating nodes, a path cannot be apriori established
between a source and a destination. In this case, nodes exchange data only when connections occur
opportunistically (i.e., when nodes come in contact) over wireless protocols such as IEEE 802.11,
Bluetooth, ZigBee, WiFi Direct, etc. They use what is today known as the store-carry-and-forward
(SCF) paradigm [29]: a node can produce data, and transmit it to another node when an opportunity
occurs. Each node then forwards the data to another one having possibly a higher chance of
succesfully delivering the message! to its destination, and/or cache it for a limited time period.

Up to now, most work in ONs has been directed towards message forwarding or dissemination,
where messages are usually considered immutable.

A system that supports messaging in ONs can be quite practical as a means to disseminate
information quickly. However, for practical applications, dissemination should be accompanied with
the means to manage the meaning of the information. For example, for a chat application, it makes
sense for a user participating in a conversation to see his friend’s answer only after he sees the actual

*Correspondence to: University Politehnica of Bucharest, Spl. Independentei 313, Romania, E-mail:
ciprian.dobre @cs.pub.ro
In opportunistic networks, data items are generally called messages.

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 M.COSTEA ET AL

question being posed. For a social application, a user expects to see a comment to a photo or status
update his friend shares only after he sees the actual share. While these examples might look simple
(they can be solved by simply numbering the order of events and re-constructing the correct order at
the destination), they can be extended to messages showing collaborative operations such as editing
or deletion. For example, imagine in the social application the user has an option to edit his own
post. In this case, it becomes important whether one sees the comment to the original post, or to the
edited one. In general, in collaborative applications, besides fast dissemination, the order of actions
associated with various messages becomes important.

Only a few researchers have tackled the problem of mutable content that requires a given
order [11, 32, 4], even though important user applications are based on it [26]. Examples of
such applications, as shown above, include distributed discussion forums or social networks (i.e.,
ONs can solve problems related with censorship and would allow fast convergence of messages
horizontally in co-located islands of people).

In distributed discussion forums, thus, users post news or questions in discussion threads, and
others respond to them. While different discussion threads are independent from each other and do
not require any order, messages in the same thread should respect a total order, such that every user
sees the same (logic of) discussion. Similarly to discussion forums we have social networks, where
users post something about themselves, or an interesting article, melody or citation they have found
on the Internet or somewhere else, which also requires a total order for future responses. Other
types of applications that require a total order are collaborative editing applications, like Google
Docs or wiki pages. Every participant in a collaborative editor, or even a simple viewer of a wiki
page, should have a consistent view of the contents. To refer to another example of why the order
is important, consider a message being sent to two different users, and one user receives “I hate
water", while the other one receives “I hate water less than I hate flying" (i.e., completely different
meaning). This can happen if the text message is being collaborative and simultaneously edited by
different users, and does not correctly propagate to other nodes.

The problem we pose in this article is as follows: In an opportunistic network supporting message
exchanges between sets of mobile devices, is it possible to come up with a solution as to enforce total
order between messages received? In total order, if multiple users are updating® the same messages
simultaneously, all users that receive them will consistently see similar resulted messages.

Total ordering is important for applications with mutable (i.e., that can change, even accidentally
and with potential negative effect, as in the above example) contents, recently considered in ONs
as well. Mobility support and the (potential) lack of centralized control (as opposed to traditional
networks) make ONs especially attractive as an infrastructure for applications. In recent years, users
have shifted from desktops to laptops and smartphones, and more recently to wearables such as
smartwatches. Consequently, many traditional applications are already being migrated towards ONs
- e.g., during the Hong Kong protests, FireChat® successfully replaced more traditional messaging
apps such as Facebook Messenger or WhatsApp [13, 10]. Except for the ever-more-present access to
mobile device, FireChat also solved the problem of circumventing government-enforced censorship.

Another reason for the ON adoption is sometimes the lack of a proper network/communication
infrastructure. Emerging countries are not properly connected to the global network (this is also
the case with disaster scenarios, when telecommunications infrastructure can be partially or totally
destroyed). But, as smartphones have become affordable through programs such as Android
One [16], ONs represent a viable solution for connecting together ad-hoc such devices - which
leads to a request for applications similar to the ones mentioned above.

Finally, ONs can provide a better environment when it comes to privacy. ONs are able to work
without connecting to the global network, providing an isolated environment. If participant nodes in
ONs are not allowed to read the contents of the messages they carry unless they are the destination,

In contrast to causal order, that assumes users can produce new messages, in case of total order they can also update
existing messages using insert or delete operations.

§We acknowledge FireChat [24] as one pioneer application in the domain, even though it does not use an ON
infrastructure per se.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 3

government agencies or hackers will not be able to easily eavesdrop, as messages are exchanged
only between the nodes themselves, without the help of an infrastructure that can log messages
whenever a third party wants [3].

In this article, we tackle the problem of ordering ONs messages so they follow total order before
being delivered to the application layer. Our contributions consist of two parts: firstly, we propose
a new Commutative Replicated Data Types / Conflict-Free Replicated Data Type (CRDT) [34]
algorithm for achieving total order based on Logoot [39]. Using the high inter-contact times
which are normal in ONs, our proposed algorithm reduces the metadata that must be carried
with each message. Secondly, we run experiments to test the proposed algorithm by using the
MobEmu [8] emulator, together with three mobility traces and Wikipedia pages to simulate insertion
and removals.

The rest of this paper is organized as follows: Section 2 contains the related work, while in
Section 3 we propose a causal order algorithm. Next, in Sections 4 and 5 we present the details about
the total order algorithm we propose for ONs. In Section 6 we present the experimental results, and
Section 7 contains conclusions.

2. RELATED WORK

With mobile devices becoming almost ubiquitous, today we witness the advent of several new types
of mobile networks. Such networks are composed almost entirely of mobile devices, and differ
considerably from the classic wired networks, both in terms of structure, but also with regard to the
protocols and algorithms used for routing and data dissemination.

One type of such mobile networks that have been deeply researched in recent years is
represented by opportunistic networks (ONs). However, up-to-now research in ONs focused mostly
on improving delivery performance, through routing or dissemination algorithms for choosing
next hop [9], adequate mobility models, or approaches to motivate nodes to participate [7]. We
previously walk the same path, and proposed the SPRINT ONs routing protocol [6], or the ONSIDE
algorithm [5] for dissemination. ONSIDE, for example, uses social information to disseminate data
by using nodes that are not necessarily interested in a given message, but they have a high chance
of encountering nodes that are.

When it comes to ensuring an order for message delivery, Operational Transformation (OT) [12]
and Commutative Replicated Data Types (CRDT) [34] are well-known algorithms designed for
causal order. They represent an interesting starting point for us as well, for several reasons. First,
any algorithm that requires either a central node or synchronization between nodes cannot simply
work in ONs. Apart from the CAP theorem [15] (i.e., consistency, availability and partition tolerance
cannot be simultaneously provided in a distributed system), in ONSs it is impossible to assign a node
to assist with total ordering, because, at any moment, it can get out of direct contact with any
other node or it might leave the network and never return. The use of a synchronization protocol
between nodes, such as the three-phase commit protocol [36] or Paxos [20], is also extremely hard
to implement in ONs, simply because in just networks it is possible that messages never reach their
destination.

2.1. Operational Transformation

OT algorithms promise to achieve convergence, causality and intention preservation in distributed
systems, without using locking and serialization [12]. They originate from research on shared
editors, where users can edit the data at any time and in any part. The idea is to use operation
transformation to achieve consistency, without waiting for messages from other nodes before
applying user changes [12]. The earliest OT algorithm is dOPT [12], designed by Ellis et al., that
supports transformations for insertion or removal of a single character. Operations are performed
immediately at the originating site, offering good responsiveness. But there are some special cases
where concurrency control for operation transformation fails, and two nodes can end up with
different views of the shared contents. Algorithms like NICE [35] and SOCT3/4 [38] require a

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

4 M.COSTEA ET AL

notification server or sequencer to maintain a global total order of execution, making them difficult
to implement in ONss.

Although OT algorithms seem promising, they seem to share a set of common problems that made
them unsuitable for our problem. Many of them include transformations for and work with only one
character (i.e., developing apps with one message per one character, over ONSs, is not suitable). We
would like to maximize the actual data transported by each node in regards to metadata, as nodes in
ONSs must carry a message for as long as possible to ensure that it reaches its destination(s), without
wasting space that can be used for storing other messages. In addition, decentralized OT algorithms
require a garbage collection mechanism to reduce the operation log size, which is improbable to
obtain in ONs. Another problem is that most of these algorithms are complex and hard to extend
to other applications besides share editors. We would like to use algorithms that can be used for
more application types with minimal changes. Lastly, the complexity of the OT algorithms requires
high computation for executing the operation transformations, while ONs nodes are usually mobile
devices with limited resources in terms of processing power, memory and battery.

2.2. Commutative Replicated Data Types

Another solution we considered for total ordering in ONs consists in the use of CRDT based
algorithms. A CRDT is a data structure designed to achieve strong eventual consistency (SEC) [34]
in distributed systems. SEC is a subset of eventually-consistent systems where nodes that have
received and delivered the same set of messages will immediately reach an equivalent state. As
conflicts are not present in SEC, there is no need for a special process to handle them, and nodes
end up with the same view of the contents, making them ideal for ONs. Among the first CRDT
algorithms being proposed is WOOT [25] by Gérald Oster et al. WOOT relies on the property that in
a document every character is located between another two characters. By knowing the neighbors,
WOQT is able to perform character insertion and removal. In order to ensure consistency for
concurrent edits, a deterministic algorithm based on the same rules at all nodes is used to order
them. But there is a problem related to this algorithm: it requires tombstones to correctly ensure
consistency. T'ombstones are the elements removed from the document, and, when they are deleted,
they are only made invisible in the user view, without actually being released from memory. A
garbage collection is required to remove tombstones, which is impractical in ONs as executing
synchronization algorithms such as Paxos is improbable, just as mentioned in a previous paragraph.

An important CRDT algorithm is Logoot [39] by Stéphane Weiss et al.. In Logoot, each character
gets assigned to a unique identifier. Identifiers are generated from a densely ordered set, where for
a given set S and any two elements x and y in .9, there is another element z in S such that z < z < y,
and, by ensuring causal order, consistency can be maintained at all participant nodes. Logoot is able
to create unique identifiers between any two characters by using a clock value that is incremented
with every insert operation, and a list of pairs of integers made of a random value z and a site ID s
such that the previous identifier « value is smaller than the new x, which itself is smaller than the
next identifier x value. In case x is equal for both previous and next identifiers, then the site IDs are
used to order the characters. It is possible for the IDs to not respect the “<” relation, — in this case, a
new pair of integers made of another random value = and the site ID is appended to the pairs of the
previous identifier in order to create a new identifier that can be positioned between its neighbors.
Because of this, the Logoot identifiers can grow infinitely. If we add the fact that an identifier is
required for every different character, we will end up with a high overhead associated with every
message, which is undesirable in ONs (as mentioned previously). But an important fact related to
Logoot is that it does not require tombstones. Characters can be removed at any time, and they do
not need to be kept in memory in order to maintain consistency, eliminating the need for a garbage
collection. The fact that a garbage collection is not necessary makes it an ideal candidate for ONs
in case the previous limitation related to message overhead can be overcome.

As an alternative to Logoot, Mihai Letia et al. present the Treedoc algorithm [21], where
the document identifiers are represented by a binary tree. The tree nodes contain the document
characters, while the path from the root of the tree to the node with the actual character represents the
character identifier. The left child of a node represents the previous character, while the right child

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 5

represents the next character. By using this approach, Treedoc obtains a more compact space for the
characters identifiers. But some tombstones are required because a node cannot be removed from
memory unless it does not have any children, though it is safe to remove nodes with no children.
Due to tombstones and the fact that the tree can become unbalanced in some scenarios, a garbage
collection mechanism is unfortunately required.

A really promising CRDT algorithm where multiple characters can be supported by a single
identifier is LogootSplit [1] by Luc André et al. The algorithm is based on Logoot, eliminating the
need for garbage collection. It supports sequence of characters using a single identifier by adding
a new field to the Logoot identifier. Let us consider the same example presented by the authors in
their article, where a new string “HEY”” has been created. In Logoot, the three characters would have
identifiers similar to: {< daa, H >, < dab, E >, < dac,Y >} (the authors use a notation different
from the original Logoot algorithm, but the daa string can be considered the equivalent of the Logoot
identifier, while “H” is the first character in “HEY”). In the new algorithm, the “HEY” string would
have the identifier {< dala.c|, HEY >}. In case of a further append of the characters “WO”, then
these characters will have the identifier {< da[d.e], WO >}, and once its corresponding message is
received by other nodes, the “WQO” string is merged with “HEY”, resulting in a single string with the
unique ID {< dala.e], HEYWO >}. Instead of having 5 different identifiers that would have a size
of 3 x 5 = 15 characters, the new string will have an identifier of only 4 characters. Inserting new
characters in a string with a new identifier is as simple as splitting the existing string and creating
a new identifier using the same rule as the Logoot algorithm. Removing characters is done in the
same manner as Logoot, though reusing some identifiers is not permitted.

2.3. Algorithms for DTNs and ONs

In [27], the authors present how HTTP can be achieved over DTN. Although the work focus
on end-to-end communication over a DTN, theoretically the approach could work for total order
applications by piggybacking the contents of a message over HTTP in a DTN or ONs. However,
the overhead will be too high for small messages. For example, if a user writes a few words every
few minutes without having any contact with another node, then any total order algorithm we are
aware that runs over reliable protocols will generate different messages for those contents as they are
written at different times. The algorithm will merge those message in a single message as no contact
occurred, reducing the metadata size that travels with every node. Also, as we target mobile devices
such as smartphones that have limited memory, we prefer to avoid any unnecessary overhead, and
utilizing protocols such as HTTP when they are not necessary would incur a space overhead that
could be used for actual content. A similar situation is described in [4].

All of the previously presented algorithms for total order were created for environments different
from ONs. As far as we know, we are pioneers in this directions in ONs. Most of the presented
algorithms offer real-time group editing with multiple users in either a distributed systems or a
peer-to-peer network (i.e., they assume either end-to-end reliable communication, nodes having
enough resources, or mechanisms such as Paxos or garbage collection be already available). A result
approaching tangentially our problem is presented in [18], by Teemu Kirkkéinen et al.. The authors
present the construction of a shared editor over ONs, but instead of enforcing total order, they use
revision control mechanism (merging), and adopt or discard whole versions of the documents. To
make a better idea of the difference, the authors propose the equivalent of a distributed file system,
while we target the construction of a distributed shared doc editor (among others). Although the
idea might look promising, it poses a series of limitations which we consider to be too restrictive
for ONs. One of their assumptions is that every node in the ON carries a copy of the document
contents in order to be able to modify it. This ensures that, at any contact between two nodes,
changes can be propagated from a node to another and the contents of the document can be updated
in order to display a consistent view to the user. The problem is that not every node in an ON
might be interested in the contents of that document (and yes, there might be multiple documents
simultaneous being carried). Requiring nodes that have no interest in the document to hold a copy of
it represents an overhead that cannot be ignored in ONs with limited resources, including memory.
Nodes should carry only the contents they are interested in and a limited amount of messages that

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

6 M.COSTEA ET AL

are not intended for them, and which are routed using a dissemination algorithm as in the first part
of this section. These messages not intended for the user can be removed at any time in case there
is no more free memory, being replaced with new data or new messages, which leads to scenarios
where the removed messages might never reach their destination. Another problem is that some sort
of merging is needed in the case of merge conflicts, leading to cases where useful data might be
discarded or user intervention is required in order to avoid the data loss. Both of these scenarios are
undesirable.

2.4. Summary

Except for [18] that uses revision control mechanism for ensuring a total order in an ON, we are
unaware of any attempts to ensure total order in ONs or DTNs by using the high inter-contact
times present in these networks. Our proposed algorithm takes advantage of these high inter-
contact times in order to reduce metadata size, by merging messages during contacts that can occur
after a few minutes or hours or even days, and it is able to achieve total order even if messages
are lost or duplicated, by relying on clocks and document view synchronization at direct contact
between nodes. Also, the routing layer of the ON is unaware of our order algorithm and can work
independently for applications that do not require any order.

The algorithm is based on Opportunistic Causal Barriers (presented next), and Logoot, and part
of it is similar to LogootSplit in the regard that we also support a single identifier for a sequence of
characters, but our algorithm is able to use the space identifier better than LogootSplit and reuse any
deleted identifier. The algorithm is explained in section 4.

3. OPPORTUNISTIC CAUSAL BARRIERS - AN ALGORITHM FOR CAUSAL ORDER

In this section we first propose Opportunistic Causal Barriers, an algorithm designed to achieving
causal order in opportunistic networks. In our system, causality is defined based on the happened
before relation presented by Lamport [19]. There are two types of events: generate(m), which
is the moment a node generates a new message, and download(m), which is the moment a node
downloads a message from another node that holds that message. The causality relation "—" is
defined as:

Definition 1
For any two events e; and es events, e; — eq if:

1. e; and e, are two events on the same node, then e¢; occurs before ey or

2. e; is the generation of a message by node n; and es is the download of that message at any
other node n; or

3. there is an event e, such that ¢; — e, and e, — €5

In order for causal ordering of message delivery to be respected, for any two messages m; and
me such that m; — meo, then mo is delivered to the application only after m4 has been delivered.
Otherwise, if mo is downloaded before m, it must be delayed until m, is downloaded.

Instead of using the send(m) and receive(m) concepts, we use generate(m) and download(m).
In an ON, the concepts of sending or receiving a message do not hold. A message is not sent or
received, but downloaded by other nodes if they consider it relevant either for them or for another
node with which an opportunistic contact might occur. As there are no send or receive events, we
define causality in terms of the generation and downloading moments.

The algorithm we propose reduces the message overhead and ensures a deadlock free scenario in
case nodes come in direct contact with any other node that is logically part of the same application,
a.k.a. thread from now on (e.g. for a chat application, they are part of the same thread discussion)
and does not discard prior content. We call this feature direct download of missing messages. In
order to explain how message merging and direct download of missing messages work, we present
our proposed ON system architecture in Figure 1.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 7

Causal Order Layer
(optional)

Routing Layer

Figure 1. Opportunistic Networks System Architecture

At the lowest level, we have the Communication Layer for actually transferring bits of data from
one node to another one when they are in a direct contact (i.e. they can reach each other using
methods present in traditional networks). At the next level, we have the Routing Layer. The routing
layer contains messages generated locally and messages generated at other nodes intended to him or
for participant nodes in future opportunistic contacts. The order of messages at this layer is given by
the routing algorithm, while the memory is split in two: one for messages generated by or intended to
the local node, and one for messages meant for other users, which we call data memory. Afterwards,
we have the Causal Order Layer, which is optional, depending if the application requires causality
or not. This layer contains the own generated messages and messages from other nodes which have
as destination the local node, while their order respects causality. The messages memory is shared
with both the routing and the application layers, just that we store extra information for keeping track
of causality. At the highest level, we have the Application Layer. Each application can be composed
of multiple threads, and in every thread we ensure causal order between messages. The application
layer memory is shared with the causal order layer, and only messages that respect causality are
shown to the user, while downloaded message that do not respect it are hidden until obtaining the
predecessors.

3.1. Messages Merging

In order to reduce the metadata size, Opportunistic Causal Barriers proposes merging messages
generated at the same node. Merged messages have a single C'B vector instead of one C'B per every
message. Merging messages uses the concept of mutable message:

Definition 2

A mutable message represents the last part of the causal layer memory, where the application thread
can only append newly generated messages. A mutable message can become immutable only when
an opportunistic contact between two nodes occurs, and when one of the next rules applies:

1. the content of the mutable message must be downloaded, an operation that leads to the split
of the mutable message in two parts to accommodate the network capacity, with the first part
becoming immutable and being downloaded by the other node, while the last part remains
mutable, and future appends are merged with it, or

2. the local node downloads and delivers a message from the other node that is meant for
the application thread which contains the mutable message; the mutable message is split in
multiple immutable parts with fixed or variable sizes that permits other nodes from future
contacts to efficiently download any part

An immutable message cannot be converted back into a mutable message. The scope of the
(im)mutable messages is to reduce the metadata of the application contents that travels with each
message, and to preserve causality. Causality is preserved due to the two rules for making a message
immutable. In the first case, any appended messages depend causally only on previously generated

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

8 M.COSTEA ET AL

messages at the local site, so it is fine to merge them with these messages in order to use a single
CB. The second mutable part after the split will update its C'B in order to depend causally on the
first immutable part. In the second case, when we download a message on which future generated
messages must depend on, we split the existing mutable message in smaller immutable parts and
add dependencies between them as in the original Causal Barriers algorithm. Any new message
generated locally will depend on the last immutable part of the split message and on any downloaded
message that has just been delivered.

Unsuccessful attempts of another node to download the contents of a message (e.g. the contact
duration is too short to download the message, or the routing algorithm decides not to download it),
or downloads of messages from other nodes that do not result in a delivery due to missing causal
predecessors, will not change the state of the mutable message. Only successful downloads and
deliveries can make a message immutable.

Another important aspect to mention is that the length of the mutable message is variable. That is,
with every append, the mutable message grows, being limited only by the physical storage memory.
A mutable message can have a length of zero in case the application thread has just been started, or
in case the last part after the split operation is empty.

3.2. Direct Download of Missing Messages

In contrast to traditional networks where lost messages are sent again, in an ON we can end up with
messages that never reach their destinations, even though two nodes that run the same application
might have a direct contact in the future. This scenario is possible because the data memory for the
routing layer is limited. Once the data memory is full, and the routing algorithm decides to download
a new message, it will first remove a message from the data memory to make space for it. Due to
this reason, some messages might end up being lost forever. As this scenario is a normality in ONs,
we have to design algorithms that can cope with messages lost forever.

Because messages might be lost forever, we can end up with the next deadlock scenario: we have
three nodes n;, n; and ny, all participating in the same application thread. n; generates a message
mq, which after a short period is downloaded by n;. Then n; generates a new message ms, which
now depends causally on message m;. After a period of time and a multitude of contacts between
n; and other nodes beside ny, n; has to remove m, from its data memory in order to make room
for other messages downloaded by the routing layer. After a short period, n; comes in contact with
ny, which downloads message mo. But message m; is not present anymore in the data memory,
though it is present in the application memory (or the causal order memory in our case), a fact not
taken into consideration by routing algorithms. If n; never has a contact with n;, and all other nodes
have removed m; from their memory, then we have arrived at a deadlock, as any messages causally
dependent on ms, and ms itself, will never be delivered at ny,.

In order to cope with the previous scenario, we introduce the concept of direct download
of missing messages at the causal layer, by bypassing the routing layer. Not only does direct
downloading of missing messages avoid deadlocks for the above scenario, but it also improves the
hit rate and delivery latency compared to routing algorithms that do not impose any order. We make
the assumption that any participant node in an application thread will eventually get in direct contact
with at least one node from the same application thread. This assumptions holds for the scenarios
where total order in opportunistic networks is required, as proved by Samir Okasha in [23].

Downloading of missing messages is done only after the routing layer has downloaded its
messages from the data memory, and in the limit of remaining resources (i.e. contact duration or
battery). The routing layer has priority because it downloads messages for any application, including
previous messages intended to us that have not been removed from its data memory. Plus, we aim
to eventually get out of the deadlock scenario. The download algorithm works as follows:

1. Firstly, we download all the missing messages already delivered to the application thread
based on the causality order (i.e. messages that depend causally on previous messages are
download after these previous messages).

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 9

2. Secondly, we download all the missing messages in the delayed queue based on the same
causality order.

3. Lastly, we insert any downloaded message in the data memory, so nodes not interested in our
application thread can can carry these messages in their data memory to nodes that might be
interested in them.

The first two steps can be halted at any moment, in case the network capacity limit has been
reached. For the last part, we insert the messages in the data memory based on the causality order:
firstly predecessors are inserted in the data memory, eliminating any previous messages present in
the memory, and when we reach the full capacity of the memory such that only the messages that
were just downloaded are present in it, Opportunistic Causal Barriers stops (we do not want to
remove our own inserted messages from the data memory).

4. A TOTAL ORDER ALGORITHM FOR OPPORTUNISTIC NETWORKS

In the following Sections we propose the Opportunistic Logoot algorithm for achieving total order
in ONs. The algorithm extends Opportunistic Causal Barriers with two new features: mutable
messages and direct download of missing messages (features needed in order to increase the
metadata reduction and ensure correctness in case of lost messages). More exactly, while a message
is mutable, besides trying to use a single causal barrier for different messages lightredgenerated at
the application layer, in the new algorithm we try to also merge the identifiers used for ensuring total
order, while the download algorithm has been modified in order to automatically identify removed
contents (i.e. deletion of text in a share editor), without keeping any tombstones.

We first define the application content model used by Opportunistic Logoot, the identifiers used
for total ordering, and the operations supported by the content model. In Section 5 we present how
Opportunistic Logoot merges messages in order to reduce metadata size, and how it handles lost
messages.

4.1. Opportunistic Logoot Operations

Our algorithm supports two operations for modifying the contents of an application:

1. insert(pos, base_element), which inserts a base element at position pos

2. remove(pos), which removes a base element stored at position pos

A base element represents the smallest possible element in the contents of an application. For
example, in a text editor, the base element is a character, while in a chat it is the whole message
until the user presses enter. Applications will work only with this API. It is not up to the application
layer to handle merges between multiple base elements, with this task being ensured by the order
algorithm (i.e. our proposed algorithm). The reason for this approach is to provide a simple API
which could be used for more types of applications than only text editors. Applications just have to
provide base elements or split the contents in base elements (e.g. for a text editor, the string “abc”
would be split into “a”, “b” and “c”).

4.2. Opportunistic Logoot Identifiers

In order to support a total order between all base elements, we use identifiers similar to the ones
presented in Logoot. The original Logoot algorithm uses unique identifiers generated in a densely
ordered set in order to ensure global order between all participant nodes (see [39]). At any moment,
it is possible to create a new identifier between any two existing identifiers, and deleted elements
are removed immediately from memory, without being transformed into tombstones.

Just as Logoot, we require only causality. Starting from existing causal order algorithms [33,
2, 31], we proposed the Opportunistic Causal Barriers algorithm in Section 3. For the identifier
notation, we use the same convention as in the original Logoot proposal.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

10 M.COSTEA ET AL

Our content model is identical to the Logoot document model, just that, instead of lines, we use a
sequence of base elements, which we shall simply call sequence. The construction of sequences will
be explained in a further paragraph. A sequence is defined by a pair <id, sequence_content>, where
“id” represents the unique identifier and “sequence_content" is a concatenation of base elements
representing the sequence itself. There are two default sequences: <id_left_limit, null_sequence>
and <id_right_limit, null_sequence>. These sequences cannot be removed and they are used to
make sure that we always create identifiers only between them.

The id field is represented by a list of pairs < x;, s;, l;, 7; > and a logical clock clkg, where z; is
the node ID (an integer), s; is the unique site ID, [; is the ID of the first base element in the sequence
(or the range left limit), and r; is the ID of the last base element in the sequence (or the range right
limit). A site represents any device that can exchange messages in the ON. Both [; and r; are short
integers, r; >= [; and a sequence has r; — [; + 1 base elements. The clk;, is the logical clock of the
site s which created the ID and it is used to make sure that identifiers are unique in case of reusing
the same list of pairs after removing an element, a behavior similar to the original Logoot. The
difference from the original Logoot is that we added the fields I; and r; to support sequences of base
elements, which is an addition similar to LogootSplit. In summary, an id is defined as:

Definition 3
id = <z, S0, lo, 70>, <T1, 81,11, 71>, eee <Tp—1,Sn—1,In_1,Tn_1>, <clks>, where n is the number
of pairs <x;, s;, l;, ;>

For example, the sequence “This is an example." created at node 4 can have the identifier
< 4,3,1,19 >, where z; (i.e the node ID) is 4, 3 is the site identifier, 1 is the range left limit and 19
is the range right limit. Every character can be uniquely identified using the numbers between left
and range limits, i.e. 1 for “T", 2 for “h", and so on.

In order to obtain a total order between identifiers, we define the comparison relation between
them. First we define the relation <,,4;, that compares two pairs, and then we define the relation <;4
that compares two identifiers.

Definition 4
Let pairy = <x1, s1,11,r1> and pairy = <xa, So,lo, 19>.
Pairy <pgir Pairg <= x1 <x2V (1 =22 A1 < S2)V (T1 =22 As1 =82 A 11 <o)

Definition 5

Let idy = po,p1,...pn—1,clky and id> = qo, q1,...Gm—_1, clko be two identifiers, where p; or ¢; =
<T;,Si, li, r;>.

id] <;qidy < k< mANk <= n, (Vl < k,pl = ql) A\ (k =nV pg <pair Qk)

For example < 4,3,4,5 > is less than < 4,6,2,4 > due to the site IDs, while < 4,3,4,5 > is
greater than < 4, 3, 1,2 > due to the range left limit.

It is important to mention that, for any two consecutive identifiers id; and ids, if all pairs until
the last pair are equal (i.e. same site identifier generation), then r; < l, where r; is the range right
limit for ¢d; and [, is the range left limit for ids for the last pairs. It is not possible for the same site
to have superposition for two different sequences as this would mean that different base elements
are on the same positions. More exactly, it is impossible to have < 4,3,2,6 > and < 4,3,4,8 > as
identifiers for different sequences as base elements between 4 — 6 would superposition.

Another important observation is that our algorithm can reuse identifiers deleted after a remove
operation, just as the original Logoot. The reused identifier is slightly different from the old
identifier, as it has a higher clock value clk compared to the initial identifier.

4.3. Insertion

In order to execute an insertion insert(pos, base element), we need to find either the sequence where
to insert the new base element, or the previous and next sequences in case base element must be
inserted between two sequences or merged to one of them, search that depends on the value of pos.
In order to find the correct place for base element, we first explain how we calculate the number of
base elements in the application contents.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 11

Definition 6

n—1
num_of_base_elements = E last_pair_range;q,
i=0

where n is the total number of sequences,
last_pair_range;q, = rm—1 — lim—1 + 1,
m is the total number of pairs for id;

For example, the total number of elements for < 2,3,4,8 >, < 4,4,11,16 >, and < 5,3,4,4 >
is 12.

Finding the correct sequence(s) where to insert the new base element is done in a linear time in
terms of the number of sequences, i.e. O(n), which is different from the number of base elements.
Depending on how long each sequence is and the value pos, we can end up with two scenarios:

1) insertion between two sequences

2) insertion in the middle of a sequence

1) Insertion between two sequences — Let us assume we have two sequences seq; and seqs
between which we have to insert a new base element elem at a site with the ID s. When inserting a
new element elem between two sequences seq; and seqs, we can distinguish four cases:

a. both seq; and seq- identifiers where generated at sites with IDs different from s

b. seq; identifier was generated at the current site with ID s and seqs identifier was generated at
a different site

c. seq; identifier was generated at a different site, while seq; identifier was generated at the
current site with ID s

d. both seq; and seq, identifiers where generated at the current site with ID s

In the first case, we will create a new sequence new_seq with a single base element elem that will
have an identifier between seq; and seq identifiers. The rule to generate this identifier is similar to
Logoot:

Definition 7

A new identifier new_id inserted between idy = pg, p1, .--Pn—1, clk1 and ids = qo,q1, ---Gm—1, clko,
with p; or ¢; = <x;, S;, l;, 7>, must have a shortest number of pairs pg, p1,...pi, < x,s,l,r >,i < n
such that idy <;q new_id <;q ids

The x value can be generated using multiple rules, but we have used only three. The first rule
is to generate it in increments. That is, = px; + 1, where px; is the first integer of the previous
sequence id; as mentioned above and ¢ < n, or x = 1 if ¢ = n (i.e. new pair). This rule is useful for
applications that usually append elements at the content end, just as chat applications. The second
rule is useful for share text editors, and it creates a random « between [pz;; gx;] if all pairs until
are either equal or there is no space between px;_; and gx;_1. px; is the x value of a pair in idy,
while gx; is the x value of a pair in ids. If 7 has passed over n, we use the default left limit 1 instead
of px;, while if 7 has passed over m, we use the default right limit max_value instead of gx;. The
third rule is also useful for share text editors, but it produces deterministic results beneficial for the
experiments section, and it chooses © = (pz; + qx;)/2 in case all pairs until ¢ are either equal or
there is no space for between px;_; and qz;_1. If i passed over n or m, we use the same rules as for
the random method. We call this method the half method.

In the second case, we try to append elem to seq; and increment the last pair range right limit r
of seq; identifier. This is possible only if r < max_value. Otherwise, instead of merging, we will
create a new sequence with only elem inside, just as in the first case.

The third case is similar to the second case, just that instead of appending we will try to place
elem at the beginning of seqs and decrement the last pair range left limit /, as long as [> 1.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

12 M.COSTEA ET AL

In the last case we will try to either place elem at the end of seq; or at the beginning of segz. It
is important to notice that, in case all pairs of seq; and seq, are equal, with the except of last pair
that is different only in terms of range left and right limits, then we are allowed to merge the new
element with seq; or seqs only if 1 + 1 < o, where r is the range right limit of seq; last pair and
lo is the left right limit of seqs. We are not allowed to have base elements that might end on the
same position.

2) Insertion in the middle of a sequence — Let us assume we have a sequence seq and an element
elem which we try to insert in the middle of seq (i.e. between the [and r value of the last pair of
the seq identifier). We will first try to directly insert elem at its right position inside seq without
splitting it and by decrementing [or incrementing r to take in consideration elem, but only if we
do not end up with a superposition with the previous or next sequences. Otherwise, we split the
sequence in two, and, where elem must be inserted, we create a new sequence with a single element
elem using the same mechanism as above.

It is important to mention that merging is allowed only for mutable messages, otherwise we will
treat insertion as in the first case presented in Section 4.3. The concept of mutable messages will be
explained in a further paragraph. Also, with every insertion that does not end in a merging operation,
we will increment the clk, value of the site s.

4.4. Removal

Removal is simpler. In case a sequence has only one element, we just delete it. In case the sequence
has more than one element, we have two cases:

a. removal at the beginning or the end of the sequence, which means that we just accordingly
update the range left or right limit of the last pair

b. removal in the middle of the sequence, which means that we split the sequence in two, create
two identifiers that are similar to the first one, and update the range right limit of the left
sequence and the range left limit of the right sequence to not include the removed element

In case the site ID s is different from the site ID that generated the sequence, or the message is
immutable, then we will create a new mutable removal message that will be placed on the routing
layer to be disseminated to the other nodes in the ONs. Consecutive removals are merged together
until the message becomes immutable. In case the message is mutable, we just remove the element
from the corresponding sequence, without generating a new removal message. This is one of the
key aspects of our algorithm, as base elements that are just inserted, and after a few moments they
are removed (i.e. grammatical corrections), will never generate messages that waste resources in the
ON.

The complexity to execute the remove operation is identical to the insert operation: O(n) in terms
of the number of sequences.

5. OPPORTUNISTIC LOGOOT FEATURES FOR OPPORTUNISTIC NETWORKS

Identifiers for a sequence of characters, together with mutable messages, lead to a lower metadata
size compared to the original Logoot that uses one identifier per every character. Mutable messages
not only reduce metadata size, but also increase hit rates by generating fewer messages at the routing
layer. The hit rates are also increased by the direct download of missing messages, though it is
mainly used for ensuring correctness of our algorithm in case of lost messages.

It is important to mention that the routing layer of the ON is unaware of our algorithm and
any application that uses it. Our algorithm is allowed to modify a message contents and the data
structures it controls until a message is downloaded for the first time by another node, and afterwards
that message cannot be modified anymore. Once a message is downloaded for the first time, it
becomes immutable and the routing layer handles it without any knowledge of the message contents.
Applications are unware of how the other layer work. They will only work with the API mentioned
at 4.1, and it is up to the total order and causal order layers to combine messages and identifiers

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 13

until a message is downloaded. Once the message is downloaded, the contents become immutable
and the routing layer takes over.

As shown in Figure 1, mutable messages represent the last part of the memory per application
thread situated at the causal order layer. Any new message is appended at the end of the
corresponding mutable message, having the same Causal Barrier vector (C'B) as all previous
messages merged together inside the mutable message (for more details about C'B see [31]). If we
do not merge messages, then we would have to use one C'B per every new message, resulting in an
overall higher metadata size. A mutable message becomes immutable either when it is downloaded
by another node, or when downloading messages from other nodes, as any future message to
generate will depend causally on these downloaded messages. When making a message immutable,
if required, we split the original mutable message in smaller parts in order to accommodate the
network capacity, with every part having its own C'B and depending causally on the precedent
part which was generated earlier, as proved by the append operation. This step is required as a
mutable message can have a significant size in case a lot of messages have been generated from
the last interaction with another node, which represents the only moment when a mutable message
is made immutable. But even in this case the remaining number of merged messages per every
part is still high enough to produce significant savings, as shown in section 6. After that, once a
message becomes immutable, we are not allowed to modify it anymore because messages generated
afterwards will depend on its C'B, C B that should not be changed as it ensures causality.

5.1. Mutable Messages

In order to maximize the metadata size reduction, we have extended the mutable messages feature
to Opportunistic Logoot. The new system architecture is presented in figure 2, and it contains a new
layer called Total Order Layer for applications that require total order. Just as the causal order layer,
the total order layer is optional and can be ignored by application that do not require it.

A difference from the causal order layer consists in the fact that a mutable message at the total
order layer can be situated at any part in the content model, and not only at the end. The causal
order layer supports only appends to correctly ensure causality, but Opportunistic Logoot needs to
support insertions and removals at any position in the document. To cope with this requirement and
increase the metadata savings, we have slightly relax causality. More exactly, we ensure causality
only between immutable messages, and base elements present in mutable messages can be arranged
in any way before becoming part of a mutable message. Of course, this causal relaxation might
be too much for some application types, but without it we would have an overall higher metadata
size and in some cases even result in the requirement of tombstones as we would have to keep the
messages for the removed elements, something we strongly tried to avoid. For a shared editor, we
think that user intention is still preserved, as we shall see in the next paragraph.

Though we have relax causality, we still need to discuss how base elements will be ordered once a
message becomes immutable. The conditions to insert or remove elements from a mutable message
are the same as the conditions to merge or remove a base element from an existing sequence, as
explained in the previous paragraphs. Let us consider the following example where the contents of
the application present at user u are made only of one immutable message: “This is a fact.". Every
base element is represented by a character, and what value the identifier of the immutable message
has is not important for this example. Before coming in contact with another node, user v makes the
next transformations:

1. This interstng awesome fact is a faetreal ebent.

2. This interesting awesome fact is a real ebvent.

3. This interesting aweseme-fact is a real event.

For this example, we will have three mutable messages at the total order layer, each with a
single Opportunistic Logoot identifier. In the first step, the first mutable message contains the text

“interstng awesome fact " with a newly generated identifier, the second mutable message contains
the corresponding identifier for “fact", but no text as this is a remove operation, and the third mutable

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

14 M.COSTEA ET AL

Total Order Layer
(optional)

Causal Order Layer
(optional)

Routing Layer

- _______ AN

J
=} - S | immutable Message | S [Message for Other Nodes

Figure 2. New Opportunistic Networks System Architecture

message contains “real ebent" and its new identifier. In the second step, the user corrects the text in
the first mutable message to “interesting awesome fact " and its identifier is updated to reflect the
change, and then he corrects the third mutable message contents to “real event" without modifying
the identifier as the number of elements is the same. In the last step he removes “awesome", but the
first message is mutable, so there is no need to generate a remove message, but only to update the
corresponding identifier. When a contact occurs with another node that is interested in the above
contents, these three mutable messages are merged and ordered consecutively in a message at
the causal order layer, using a single C'B vector for all of them. Of course, we still have three
Opportunistic Logoot identifiers, but there is no need to use three C'B vectors. This merge of total
order messages at the causal order layer can also be seen in Figure 2, where multiple total order
messages are part of the same causal order message (for Thread 1, messages 2 and 5 from the total
order layer are part of message 2 at the causal order layer, and messages 3 and 6 are part of message
3, while for Thread N, the message generated in the middle of an immutable message that leads to
a split, together with the last message, is part of the mutable message at the causal order layer).

In case we had strict causality for all messages as they are generated at the application layer, then,
instead of three mutable messages with only three identifiers, we would have had seven messages
requiring seven identifiers. The reasons are that we could support only append, and any remove
or insert at a later time would have to use a new identifier as it has been generated later at the
application layer.

As a final observation regarding mutable messages, the total order layer messages can be merged
together only with messages of the same operation type (i.e. we can merge only consecutive
removals from the same identifier or consecutive inserts). The reason is that insertion generates
a new identifier, while removal contains the identifier of the removed element. At the causal order
layer the situation is different and we can merge messages with different types, as the causal order
algorithm has no knowledge of operation types.

5.2. Downloading Missing Messages

In contrast to traditional networks where lost messages are sent again, in an ON we can end up with
messages that are never received, even though two nodes that run the same application might have a
direct contact in the future. This scenario is possible because the data memory for the routing layer is
limited, so old messages are sometimes removed to make room for new messages even though these
old messages have not yet been received by all nodes that are interested in them. As this scenario
is a normality in ONs, we have to design algorithms that can cope with messages lost forever. It is
important to note that even though messages are lost forever, the contents are not, as they are still
present at the nodes interested in them (i.e. for a shared document that is all of its characters, from
where we can generate new messages if another node requires them). In order to cope with this
scenario, we introduce the concept of download of missing messages on direct contact.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 15

Because messages might be lost forever, we can end up with different views for different users,
even if the total order is still respected. Unfortunately, this means we are in an inconsistent state.
The condition under which our algorithm, with the downloading missing messages feature, ensures
consistency, becomes: In an opportunistic network, consistency will happen after nodes stay in
direct contact for a sufficient time for them to synchronize their contents views. In other words,
this is a case of eventual consistency. In order to ensure consistency, instead of only downloading
messages at the routing layer, we shall go up to the application layer and download the actual
missing parts. This is possible only on direct contact between two nodes participating in the same
application, because, even if the routing layer has removed the message from its data memory, the
application will keep the contents as long as the user wants to have them.

Downloading the missing parts of the contents is done after the routing layer has downloaded its
messages and in the limit of remaining resources (i.e. contact duration or battery). So it is possible
for the download process to be interrupted at any time, a case that is handled differently from the
case where all missing parts are downloaded.

For now, let us assume that we have enough resources/memory to download all missing messages,
and then we shall extend our algorithm to the case of limited resources. Before presenting the
download algorithm, we have to mention that every node n; stores a map {n;,last_insert}
containing the Opportunistic Logoot identifier for the last insert operation received from n,;. The
space complexity is O(n) in terms of the number of nodes, though for some nodes there will be no
entry until we find out about them. This situation with nodes that we do not know about has shortly
been presented in the Oppostunistic Causal Order algorithm, and it does not affect the download
operation.

The algorithm works as follows:

1. we make all messages in the corresponding application thread immutable, as downloading
them will affect causality for future new messages

2. we download all identifiers from the other node

3. we compare the identifiers one by one to see which base elements are missing or which base
elements have been removed; figuring if a base element is missing or has been removed is done
by using the map {n;, last_insert}, and it will be presented shortly by using an example

4. we generate new messages for the missing base elements and we download them, but without
yet delivering them to the causal and total order layer; in case the two nodes finish their direct
contact due to any reason before downloading the missing parts, then we keep the contents of
the application just as before the direct contact

5. after downloading all the missing base elements and by knowing which base elements were
removed, we download the internal data structures regarding the causal order algorithm from
the other node and use it to advance the local causal order data structures; for example, for
CBCAST [2] we download the vector clock of the other node and select the highest value per
every node from the downloaded vector clock and the local vector clock, while for Causal
Barriers [31] and Opportunistic Causal Barriers, we download the delivered vector (see [31]),
and select the highest value per every node from the downloaded delivered vector and the
local delivered vector

6. we deliver the downloaded base elements in ascending order of the Opportunistic Logoot
identifier clock value and insert them at the correct position, while at the same time removing
the base elements as figured at step 2

The algorithm has the complexity ©((INV + M) x K), where N is the number of identifiers present
at the first node, M is the number of identifiers present at the second node, and K is the average
number of pairs per identifier. The identifiers are compared and advanced one by one in ascending
order, avoiding useless comparisons, so this is why we have considered an average value for K.
Though, in our experiments, K was usually between 1 and 2, but for really large documents
with a lot of insertions in the middle of existing identifiers, this might change. As a performance
improvement, in case of termination of direct contact in the middle of step 4, we can keep the

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

16 M.COSTEA ET AL

already downloaded messages in a cache, saving resources in case of a future contact, but this does
not affect correctness. This is how we have extended the direct download to the case with limited
resources.

As we have seen, we can execute steps 5 and 6 only if all messages have been downloaded from
the other node. We do this in order to correctly handle causality for future messages received from
other nodes. The reason is that a user can insert base elements in the middle of the application
contents, and if the messages of the base elements at the contents end are immutable, then we
should deliver the new generated elements only after delivering the elements at the contents end.
If we would not download all messages, then step 5 will be executed incorrectly, as the delivered
vector (or vector clock) only knows how many messages were delivered from each node, but not
which were the actual delivered messages.

It is important to mention that causality is relaxed during the download of missing messages. In
case of messages for insert operations generated after messages for remove operations that were lost
forever, we will process the insertion on direct contact without knowing if the remove was generated
before or after the insertion. The motive we do not know this information is that we do not keep
tombstones. After completing the download algorithm, the rules for causality return to normal.

We shall now explain with an example how we identify removed elements when executing step 3
of the download algorithm. For the sake of simplicity, let us consider that we are working with the
original Logoot identifiers and no merged messages. A Logoot identifier is similar to our algorithm,
just that it is only made of << z;, s; >> without the left and right range limits. For an explanation
of z; and s; see 4.2. Extending the process to the Opportunistic Logoot identifiers is a trivial matter.
Also, in order to simplify our explanation even more, let us consider three nodes ni, no and ng
with only ng generating insertions, while all of the nodes can generate removals. The general case
where any node can generate insertions is handled anyway separately, based on the clock value of
each identifier and the corresponding value to the identifier site generator in the {n;, last_insert}
map we have mentioned in step 2. Let us consider the example shown in Figure 3, containing only
the Logoot identifiers (the text is not important), where ngs has generated 10 messages, but not all
of them have been received by n,. For further clarity, instead of writing < 1,3 >, 1 for the first
message at site 3 with timestamp 1, we will simply write m@t; (since the site is the same in this
example). Thus, we have the initial scenario shown in Figure 3a.

We can observe that ms, m;@Qt1g and ms, m;@tg are not shown at ny even if messages at later
positions are shown. The reason is that mg, m1@t;¢ and ms, m; @ty are generated after mgQtg, as
the clock value suggests. As they are generated after mg@Qtg, then they depend causally on it, so they
cannot be delivered to the application thread until mg@Qtg is received. The map {n;, last_insert}
has the entry {nj3, ms, m1Qt19} at node n, while at node ns it has the entry {ns, mgQtg}.

Afterwards, n, deletes the elements with mo@to, ms3, mqQt19 and m4Qt4 as identifiers, while no
deletes m3@Qts3 and m4@t,4. The remaining messages for each node are shown in Figure 3b.

Let us assume that n; and ns, due to interactions with other nodes, eliminate the corresponding
“remove” messages from the data memory, and those messages never arrive at the other node.
Afterwards, they have a direct contact. As shown in Figure 3b, node n; downloads all identifiers
from node ns. Node n; sees that only m;@Qt;, mo@ts, msQ@ts and mg@Qtg are present at ny, but from
those, my@ts is not present at node n;, while mz@Qts and all identifiers after mg@Qtg are present. So
node n; looks at the map {n;, last_insert}, and sees that, for the identifiers generated from ng, the
entry is mg, mq@t;(for node n1’s map, while for ns it is mg@tg. As the clock value is 10, it means
that at some point all messages until mg, m,@t;y were present locally. So any identifier not present
at node nq, but present at node ns, which has the clock value < 10, has been removed locally. This
is a given fact because causality does not allow us to deliver messages with a higher clock before
delivering messages with a smaller clock if they were generated at the same site (messages generated
at different sites have independent identifier clock values and they are processed separately). So node
n1 knows that it does not need to download mo@t5 as it was removed locally, but it has to remove
mz@Qtg, because node ny no longer has it, and the message has a lower clock than 10, which means it
was removed remotely. m4@Qt, was removed at both nodes, something neither of them can know (as
they do not keep tombstones), and they do not even have to know to display the same text correctly

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOLI: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 17

mi@tt TOL m3mi@io mi@td | mé@t6 m
A4

mi@tt m3@t3

(c) Step 3 (after the data exchanged between nodes n; and ns)

Figure 3.Identifying removed elements (dotted arrows represent data transfers, while normal arrows
represent temporal message dependencies).

(if they come in contact with a node that has m4@Qt, present locally, then they would known they
have removed it). But n; still sees that it has identifiers present locally but not present at ny, and
those are the identifiers with values greater than mg@Qtg. But mg@tg is the last insert at no, SO 71
knows that ny could not have removed them as they were never delivered at no, which means it has
to keep them.

Now let us consider n,. The download process works exactly as for nq, just that it will do an
extra step. All of the identifiers less than or equal to the last insert mg@Qtg are processed as above
(i.e. mg@Qtg is removed), while elements with greater identifiers will be downloaded. But the last
insert mg, m,Qt1o at n; has been removed, which means it will not be downloaded. At a later time
it is possible for the message with mg, m1@t;(y to be downloaded from another node n that did
not remove it from its data memory, but ns’s newest last insert would be ms, m;Qtg, resulting in
an invalid operation. In order to cope with this problem we simply update n5’s last insert to the
last insert of nq, as ms, m @t is still present in the map {n;,last_insert}, even if it has been
removed from the application thread. This is not a tombstone, as once a newer element from 73
is received, we discard the previous last insert and just memorize the new insert in its place. The
download algorithm will still work correctly due to causality, as the node figures out it has removed
the discarded last insert if it is present at the other node with which it came in contact. Of course, if
the other node does not have the discarded element present, the local node will not know it discarded
the previous last insert, but it does not have to know, as the contents are still displayed correctly.
The messages that each node ends up with are shown in Figure 3c.

As for extending the above algorithm to Opportunistic Logoot identifiers, the process is really
simple. Let us have the next identifier generated at node ny: < 1,1,0,9 >,0. This identifier is
split into 10 parts: < 1,1,0,0>,01<1,1,1,1>01<1,1,2,2>01... 1 <1,1,9,9 >,0, and
afterwards node n; executes the download algorithm just as explained above for the original Logoot
identifiers. After the download algorithm ends, node n; merges back all consecutive identifiers
that were generated at the same site and have the same clock value and range values of the last
pair consecutive (i.e. < 1,1,0,0 >,0 and < 1,1,1,1 >,0 can be merged into < 1,1,0,1 >,0, but
<1,1,3,3>,0and < 1,1,5,5 >,0 cannot be merged if < 1,1,4,4 >,0 was removed, as the range
values are not consecutive).

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

18 M.COSTEA ET AL

As a final observation, our algorithm is able to handle duplicate messages by using the clock
value. In case of receiving a new messages from a node, we check if the clock value of at the causal
order is greater or not from the clock value of the last delivered message from that node. As delivered
messages are shown at the application layer, then the last delivered message must have the highest
clock value as imposed by the logic of the causal order algorithm. In case we receive a message with
a smaller or equal clock value, then we drop it as it is a duplicate. This approach applies only at a
destination node. For messages at intermediate nodes that only forward them towards destinations,
it is up to the routing layer algorithm to take care of duplicates, and not our algorithm. Also, it is
impossible to have duplicate mutable messages as a mutable message is present only at its creator
until it is downloaded, when it becomes immutable and starts to be available in the network.

5.3. A Case Study

In this subsection, we present two scenarios where we believe opportunistic networks can be useful,
and where total order is a requirement. Firstly, let us imagine a scenario where a stadium is full with
supporters attending a match. It is well-known that, in such situations, download and upload speeds
are very small, because tens of thousands of people access the infrastructure (i.e., 3G, 4G, WiFi)
simultaneously. Therefore, opportunistic networking is extremely helpful (and suitable), since the
network being formed is very dense, so messages can spread quickly. Thus, only a small number
of nodes would connect to the wireless infrastructure, and act as relays for the other nodes. Let
us now assume that a team of reporters from the television network that broadcasts the match is
spread throughout the stadium, gathering information from various sources (e.g., from the players
and coaching staff on the benches, from the supporters, from the commentary cabin, etc.). In order
to offer a more immersive experience for the fans at home, they can aggregate all this information in
a single live commentary feed, that would then be used by the TV commentators or published as a
live analysis of the match on a website. This can be done using all the devices inside the stadium as
ON nodes, and transmitting data opportunistically. However, since events on the pitch are causally
related (for example, an injury observed by the sideline reporter can be the cause of a substitution),
the live commentary feed would require the events to be in the correct order. Furthermore, an ad-hoc
forum can be created for the fans in the stadium, where they can share their opinions and discuss
the match live, without the need to connect to the wireless infrastructure. This too requires a total
order of messages, as specified in Section 1.

Another scenario that would benefit from total order in opportunistic networks is a distributed
crowd-sourced review application. Users would install an app on their mobile devices which, after
visiting a tourist attraction or having dinner at a restaurant, would require them to perform a review.
Users would also attach pictures or any kind of media to the review, which would be specific to the
time that they visited the place. Decentralizing such an applications through ONs means cutting the
costs of keeping all the data on servers, and would permit the information in the reviews to age. The
application would allow reviews to be amended, which would require chronological sorting of the
messages in order for other users to see the most recent version of the review. Furthermore, other
users would have the possibility of adding additional information to a review, or discussing their
opinions, which would also require the content to be displayed in the correct order.

These are only two scenarios which show that total order in opportunistic networks is something
that can bring benefits in real-life situations. In the future, we wish to expand on these use cases
and highlight even more advantages that ONs can bring in terms of costs and effectiveness, when
compared to infrastructure-based networks.

6. EXPERIMENTS

In this section we present our experimental results. We prove that our algorithm obtains good results
compared to the hit rate and delivery latency of bare routing / dissemination algorithms, while in
some cases even surpasses them. Also, due to merging messages, our algorithm is able to reduce the
metadata size by a significant magnitude when compared to the original Logoot.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 19

Table I. Information about the Mobility Traces

Trace Nodes | Duration Type Topics
Sigcomm 76 4 days Conference 720

UPB 24 64 days Academic 5
Infocom 99 4 days Conference 35

6.1. Experimental Setup

The experiments were run using MobEmu [8], an opportunistic network emulator that uses real
mobility traces to simulate the behavior of different ONs routing algorithms. The mobility traces
used in the tests are Infocom [17], Sigcomm [30], and UPB [22], and they contain both the node
contacts and information about their interests. Details can be found in table I. Sigcomm and UPB
also contain information about social connections between nodes, while for Infocom, the social
aspect needed by some algorithms had to be disabled.

We have two models for generating messages: one based on a series of Wikipedia pages, and
one similar to the experimental setup presented at [5]. The data is modeled as messages that are
generated through channels to which nodes subscribe to. Each channel is represented by a topic of
interest. When a node subscribes to a channel, it is interested in any message that is generated on
that channel. Nodes can generate data only in the channels they are subscribed to, and data intended
for a channel cannot be downloaded on another channel. Every node that has at least one interest
generates messages either from the Wikipedia page, or by using a predefined rule if the channel
does not have a page assigned to it. For UPB and Infocom, some participant nodes did not have any
interests (Sigcomm has interests for all participants). Those nodes do not generate any messages,
but they can carry messages for other nodes.

We have used four Wikipedia pages [42, 44, 41, 43], each with 18, 14, 14 and 7 contributors at
the moment we have accessed the pages to obtain their corresponding XML (see bibliography for
access times). All of the pages are short in comparison with most Wikipedia pages, but unfortunately
we where restricted by the mobility traces to search for pages with a few number of contributors
(i.e. UPB has 18 nodes for the topic with the most number of users interested in it). Pages that were
longer, and which we tried to consider as alternatives, had more contributors than what the traces
supported. This is a limitation, but unfortunately we could not go around it.

To replay the Wikipedia pages history we used the corresponding XML file containing the page
revisions. The XML can be obtained using [40]. Then we used a diff library [14] to compute
modifications performed between each two revisions at the level of characters. In order to have
concurrent edits, we have considered that each line in the Wikipedia page is independent from
any other line, but, to also have causality, modifications to the same line depend on previous
modifications to that line. That is, for insertions, we can generate the first element of a line without
waiting for any other elements from other contributors, but starting with the second element of a
line and so on, we have to wait for the previous element to be delivered to its application thread.
As for removals, we issue them only after the elements to remove have arrived at the contributors
that want to remove them. Of course, this means that we will not arrive at an identical page as the
last revision in the XML file, but as we do not have any traces for ONs, we had to create a parallel
model even if Wikipedia pages were obtained in a client-server architecture. But as long as we can
correctly obtain the same page for all contributors if we force them in direct contact, then we think
this trade-off is not that costly.

To make sure that all of the messages generated from the Wikipedia revisions are evenly spread,
they are generated at fixed times: a whole revision is processed at the time

i * (traceEndTime — traceStartTime)

mazNumO f Revisions Per Contributor

, where 7 is the index for a revision. In case some elements of a revision are not processed due to
missing dependencies (i.e. for insertions starting with the second element in a line or for removals

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

20 M.COSTEA ET AL

for which we have not received the element they are dependent on), we try to process them again at
the next 1.

Not all messages are generated using the above model, as not all channels have been assigned to
Wikipedia pages. For our second model, represented by the remaining channels and that simulates
extra network traffic, we have used a similar generation method as in the experimental setup
from [5]. Each node generates 80 messages per day, with the exception of the last day, in the two-
hour interval when most of the contacts happen (around midday in all three traces), by randomly
selecting one of its interests as a channel for a message.

The actual number of messages that can be stored at a node for routing or dissemination is finite,
in order to simulate limited resources in ONs. In case the data memory is full, on downloading a
new message that is or not intended for that node, but that might be required by another node in
the future, the first downloaded message in the data memory is removed to make space. As data
memory values, we have used 50, 250, 1000, 3000 and 10000 messages / node memory.

6.2. Results

We have run our experiments using ONSIDE [5] and Epidemic [37], first without ensuring any
order, and then with the original Logoot and our proposed algorithm Opportunistic Logoot on top
of it, though any other routing algorithm should work. As an observation, the original Logoot is
not able to cope with lost messages as causality will stop it from delivering new messages to the
application layer, but it is still important for a comparison when it comes to metadata size. ONSIDE
is a ON routing algorithm that uses a node’s online social connections, its interests and the history
of contacts to decrease congestion and required bandwidth, without affecting the overall network’s
hit rate and delivery latency. The Epidemic algorithm floods the network by downloading every
available message from other nodes.

As metrics, we have considered the metadata size, hit rate and delivery latency. Hit rate and
delivery latency are defined similarly to [5], with hit rate representing the ratio between the number
of messages successfully delivered at interested nodes, just that separately for both routing and
application layers, while delivery latency is the average amount of time passed between message
generation and delivery to the corresponding layer. We have also used hop count, which is the
average number of nodes that carried a message until the destination, and delivery cost, which is the
ratio between the total number of exchanged messages over the total number of generated messages,
in order to present how the routing algorithm behaves, even if they are mostly related to the routing
algorithm and not to a total order algorithm.

Opposed to Logoot, Opportunistic Logoot has been run for every experiment five times, with
1, 25, 100, 1000 and oo as the maximum number of Wikipedia elements allowed to exist in an
immutable message at the causal order layer. A Wikipedia element is either an insert or a removal
operation of a single character. MobEmu considers a message as the basic unit exchanged between
nodes, not the size of the message, so, in our model, immutable messages are the basic unit for
messages exchanged between nodes. In order to simulate the network as a limited resource, we have
chosen 1, 25, 100 and 1000 as limits because the payload of a Wikipedia element is the character
itself for insert operations, or no payload at all for removal operations. The position where the
insertion or the removal is performed is not sent with the message, as the Logoot identifiers are used
to correctly insert or remove elements, and Logoot identifiers are part of the metadata. Also, the
type of the operation is part of the metadata and not part of the payload, because the Opportunistic
Logoot identifiers require a single entry for the type of its whole identifier (merging base elements
is done based on the operation type), while original Logoot needs a type entry for every identifier.
Having 1, 25, 100 and 1000 as limits is realistic, because, if we consider every character of the insert
operation as having two bytes (Unicode characters), then, for 1000 as limit, we would have in the
worst case around 2 KB of payload, which is still not that much, but it might be close to reality as
users might not generate very long paragraphs until they come in contact with other nodes. co was
chosen as a theoretical limit.

As for the number of messages that can be exchanged during a contact, we have chosen a limit
of 1 message per second. This means that the average amount of data exchanged per second is only

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 21

Hit Rate for Routing Layer Hit Rate for Application Layer
1.25 T T 1.25 T T T
No Order / Logoot —+— No Order ——
Opportunistic Logoot - 1 element ---x--- Logoot ---x---
Opportunistic Logoot - 25 elements ------ Opportunistic Logoot - 1 element -------
Opportunistic Logoot - 100 elements & Opportunistic Logoot - 25 elements &
Opportunistic Logoot - 1000 elements —-#-— Opportunistic Logoot - 100 elements &~
Opportunistic Logoot - Infinity elements ---e---- Opportunistic Logoot - 1000 elements ---&----
T b 1F Opportunistic Logoot - Infinity elements - - -

Hit rate
Hit rate

0.25 L L L 0.25 L L L
50 250 1000 3000 10000 50 250 1000 3000 10000

Data memory size (number of messages) Data memory size (number of messages)
(a) Routing layer hit rate (b) Application layer hit rate
Number of Messages at the Routing Layer Delivery Latency for Routing Layer
30
24000 | ' ' No Order/Logool —— ' ' No Order)Logoot —_—
Opportunistic Logoot - 1 element ---x--- Opportunistic Logoot - 1 elements ---x---
Opportunistic Logoot - 25 elements ------ Opportunistic Logoot - 25 elements -------
Opportunistic Logoot - 100 elements & Opportunistic Logoot - 100 elements &
Opportunistic Logoot - 1000 elements ——=-— Opportunistic Logoot - 1000 elements ——=-—
Opportunistic Lpgoot - Infinity elements --o---- 2% Opportunistic Logoot - Infinity elements ---o----
18000 T+ Bl
@
3
j=
@
2 =
2 <
= g
5 12000 [4 S
H 5
£
5
z M % %
6000 b
0 . . . 14 . . .
50 250 1000 3000 10000 50 250 1000 3000 10000
Data memory size (number of messages) Data memory size (number of messages)
(c) Routing layer num. of messages (d) Routing layer delivery latency

Figure 4. Sigcomm trace results, ONSIDE routing algorithm.

a few KB, as we shall see in the experiments. Exchanging a few KB per second using the current
technologies can be considered pessimistic in some scenarios, as 802.11n Wi-Fi can reach around
100 Mbps, but we have chosen this value because not only Wi-Fi can be used for communication,
but also Bluetooth, NFC and so on, and interferences can appear.

Figures 4 and 5 contain the results for the Sigcomm mobility trace. The total number of Wikipedia
elements is 11406, and the number of extra messages is 7840, resulting in a maximum of 19246
generated messages. As we can see, both the hit rate and the delivery latency at the routing and
application layers are better for our algorithm when compared to Logoot and No Order in almost all
cases. For a merging limit of 25 and more, the main reason our algorithm performs well is given by
the merging itself, as it reduces the number of routing layer messages to around 50%. But the direct
download of missing messages also helps with this behavior, as proved by the case where we run
Opportunistic Logoot with a limit of only 1 element. For this case, the number of messages at the
routing layer is similar to Logoot and No Order, but not equal, due to the fact that our algorithm will
not generate a message for elements that are removed while a message is mutable. More exactly, for
every remove operation in a mutable message, we avoid the generation of not one, but two messages,
as both the insert operation and the corresponding remove operation do not generate messages. This
saving in routing messages, coupled with direct download, leads to better results for our algorithm
even if we have a limit of 1 element for merging. Logoot and No Order have the same hit rate for
routing layer because Logoot is just run on top of the routing algorithm without doing anything
in plus, while the hit rate at the application layer is less for Logoot because the causal order layer
withholds messages in case they do not respect causality.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

22 M.COSTEA ET AL

Delivery Latency for Application Layer Metadata Size
30 T T 4000 T

NB Order —+— ‘Logoot —_—

Logoot ---x--- Opportunistic Logoot - 1 element ---x---
Opportunistic Logoot - 1 elements ------ Opportunistic Logoot - 25 elements ---%---
Opportunistic Logoot - 25 elements & Opportunistic Logoot - 100 elements &
Opportunistic Logoot - 100 elements —-#-— Opportunistic Logoot - 1000 elements &~
Opportunistic Logoot - 1000 elements ---e---- Opportunistic Logoot - Infinity elements --o----
26 - Opportunistic Logoot - Infinity elements - -~ 3000 =

2000 - b

Latency (h)
Metadata size (KB)

1000 q

I I 0
50 250 1000 3000 10000 50 250 1000 3000 10000

Data memory size (number of messages) Data memory size (number of messages)
(a) Application layer delivery latency (b) Metadata size
Delivery Cost Hop Count
80

24 % ' No Order/‘Logool —— ' No Order)Logoot —_—
) Opportunistic Logoot - 1 element ---x--- Opportunistic Logoot - 1 element ---x---
* Opportunistic Logoot - 25 elements ------ \ Opportunistic Logoot - 25 elements -------

Opportunistic Logoot - 100 elements & \, " Opportunistic Logoot - 100 elements &
. _Opportunistic Logoot - 1000 elements --=-— AN s Opportunistic Logoot - 1000 elements ——=-—
* Opportunistic Logoot - Infinity elements ------ Opportunistic Logoot - Infinity elements ---o----

Delivery cost
Hop count

. . . 0 . . .
50 250 1000 3000 10000 50 250 1000 3000 10000
Data memory size (number of messages) Data memory size (number of messages)
(c) Delivary cost (d) Hop count size

Figure 5. Sigcomm trace results, ONSIDE routing algorithm.

As for the metadata size, our algorithm significantly reduces the overhead, even in the case of
a limit of 1 element where our identifiers are longer than the Logoot identifiers. Logoot requires
around 2700 KB of metadata size for a data memory of 50 messages, which increases up to 3100
KB when the data memory increase to co. This behavior is normal, because, when we increase the
data memory, we reach higher hit rates and deliver more messages to the application layer, which
means we fulfill more dependencies for the Wikipedia elements and generate more elements at the
routing layer. But having 2700 - 3100 KB of metadata is a lot, because, if we consider that the
elements sent with every message are Unicode characters on two bytes, then we can have around
22 KB of payload as we have 11406 Wikipedia elements. 2700 KB of metadata for only 22 KB of
payload (i.e. the payload is less than 1% of the metadata) means that the original Logoot cannot
even be considered for our case scenario of shared editors with character granularity.

Our algorithm is able to produce good results, as it requires only 400 KB for a limit of 1 element,
while for a limit of 25 elements, the metadata size is 32 KB, and as we go to oo, the metadata size
even reaches 15 KB, which is less than the payload size. The significant savings in metadata for
limits greater than 1 are normal, as this is an ON environment where users do not communicate in
real time. Users have enough time to generate an acceptable amount of content in mutable messages
where users might be out of contact for 10 - 30 minutes (though in ONss it is possible to be out of
contact for hours or even days), and take advantage of the merge operation. As an acceptable amount
of content we consider only 25 - 100 characters, which we think any user could write in about 10-30
minutes (we have to also take in account grammatical corrections, as Logoot would generate new
messages even for those, while our mutable messages avoid this scenario). Those 25 - 100 characters

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 23

do not need to be consecutive to reduce metadata (though that would be the best case scenario), as
merging is not done only at the total order layer for Opportunistic Logoot identifiers, but also at the
causal order layer that uses the same C'B vector even for elements that are not consecutive.

But even if we do not merge messages, we still reduce the metadata, as proved by the fact that
our algorithm uses only 400 KB for a limit of 1 element when compared to the 2700 - 3100 KB in
the case of the original Logoot. The main reason for this behavior is given by the range limits in our
identifiers, which are the motive our identifiers are longer than the original Logoot identifiers. This
might look like a paradox, but, by using the range limits, our identifiers arrive at an average amount
of pairs per identifier less than the average amount of pairs per the original Logoot identifier. In our
experiments, we generate the x value in the identifier using the half method (see section 4.3), so, in
case of consecutive insertions, we run out of identifiers made of only one pair in log(N') operations.
But N = 2147483647 (the maximum integer in Java), so after log(2147483647) ~ 31 insertions,
which is really fast, we have to use 2+ pair identifiers. We could have used next available instead,
but that solution comes with even a higher cost as insertions in the middle of the contents will
have longer identifier from first insertion. But this limitation of the Logoot identifiers does not have
such a dramatic effect on our identifiers. Even with a limit of 1 element, if the same site generates
consecutive elements, we choose as an identifier the next available value (i.e. for <10,5,2,2> we
would use <10,5,3,3>). This is similar to the next available method, but it works differently. In
case we would want to insert a new element between <10,5,2,2> and <10,5,3,3>, and <10,5,3,3> is
mutable and there is no immutable message with identifier <10,5,4,4>, then we move the element
with identifier <10,5,3,3> to <10,5,4,4>, and assign <10,5,3,3> to the new element. The original
Logoot does not do this, and that is why we obtain better results even for a limit of 1 element. As for
the reason our algorithm does not have an increase in metadata size as we increase the data memory,
we have the fact that almost all dependencies for Wikipedia elements were received even in the case
of 50 messages.

As mentioned earlier, we ran our algorithm also for UPB and Infocom traces, and we also
used Epidemic instead of ONSIDE as a routing algorithm. The results have similar trends, with
differences only given by the routing algorithm no matter the trace. For UPB we have higher
inter-contact times, so our algorithm is able to save even more metadata as more messages are
merged, which in turn means better hit rates. But for Infocom the inter-contact times are less than
for Sigcomm and UPB, resulting in less metadata savings. As for using Epidemic as a routing
algorithm, just as mentioned, the results have similar trends when it comes to metadata savings and
better hit rates due to these savings. Due to space constraints and the fact that the results are similar,
we have chosen not to present them here. For a detailed information about those differences see the
ONSIDE article [5].

7. CONCLUSIONS

In this paper, we have presented an algorithm for total order in ONs called Opportunistic Logoot.
The experiments showed that, by using Opportunistic Logoot identifiers with messages merging, we
are able to significantly reduce the metadata size. This reduction results in more space for messages
at the routing layer, which, together with direct download of missing messages, is able to produce
comparable results for the hit rate at application layer in regard to the hit rate at the routing layer
even when not enforcing any order, and in some cases obtain better results.

It is important to note that the experiments have limitations. The mobility traces we have used
do not represent all the types of ONs as they have been obtained only in academic and conference
environments. Another problem is that the Wikipedia pages used in Section 6 were created in a
server-client architecture, and we have modeled them to support decentralized nodes, which is not
the equivalent of how users will really use the shared documents in an ON. Unfortunately, we are
not aware of any distributed shared documents created especially for ONs where messages are not
exchanged in real time.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOL: 10.1002/cpe

24

M.COSTEA ET AL

ACKNOWLEDGMENT

This work was supported by the Romanian national project MobiWay, Project PN-II-PT-PCCA-
2013-4-0321. The authors would like to thank reviewers for their constructive comments and

val

10.
11.

12.
13.

14.
15.

16.
17.

19.

20.

22.
23.
24.
25.

26.

27.

uable insights.

REFERENCES

. L. Andre, S. Martin, G. Oster, and C.-L. Ignat. Supporting adaptable granularity of changes for massive-scale
collaborative editing. In Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom),
2013 9th International Conference Conference on, pages 50-59, Oct 2013.

. Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group multicast. ACM Trans.
Comput. Syst., 9(3):272-314, August 1991.

. RM. Bloom and WJ. Dunn. The Constitutional Infirmity of Warrantless NSA Surveillance: The Abuse of
Presidential Power and the Injury to the Fourth Amendment. Boston College Law School faculty papers. Boston
College Law School, 2007.

. Gang Cheng, Yong Zhang, Mei Song, Da Guo, Deyu Yuan, and Xuyan Bao. An novel message delivery mechanism
in opportunistic networks. In Human Centered Computing, pages 900-909. Springer, 2014.

. R.-I. Ciobanu, R.-C. Marin, C. Dobre, V. Cristea, and C.X. Mavromoustakis. ONSIDE: Socially-aware and Interest-
based dissemination in opportunistic networks. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1-6, May 2014.

. Radu-Ioan Ciobanu, Ciprian Dobre, and Valentin Cristea. SPRINT: social prediction-based opportunistic routing.
In World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th International Symposium and
Workshops on a, pages 1-7. IEEE, 2013.

. Radu-lIoan Ciobanu, Ciprian Dobre, Mihai Dascdlu, Stefan Trausan-Matu, and Valentin Cristea. Sense: A
collaborative selfish node detection and incentive mechanism for opportunistic networks. Journal of Network and
Computer Applications, 41:240-249, 2014.

. Raduloan Ciobanu, Ciprian Dobre, and Valentin Cristea. Social aspects to support opportunistic networks in an
academic environment. In Ad-hoc, Mobile, and Wireless Networks, volume 7363 of Lecture Notes in Computer
Science, pages 69-82. Springer Berlin Heidelberg, 2012.

. Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. From opportunistic networks to opportunistic

computing. Comm. Mag., 48(9):126—-139, September 2010.

Colin Daileda. How People in Hong Kong Can Communicate if Cell Networks Go Down, 2016. http:

//mashable.com/2014/09/29/hong-kong-cell-network-chat/, Last access February 2, 2016.

Michael Demmer and Kevin Fall. The design and implementation of a session layer for delay-tolerant networks.

Computer Communications, 32(16):1724-1730, 2009.

C. A.Ellis and S. J. Gibbs. Concurrency control in groupware systems. SIGMOD Rec., 18(2):399—407, June 1989.

Alex Fitzpatrick. Hong Kong’s Protesters Don’t Need the Internet to Chat With One Another, 2016. http:

//goo.gl/uYRmco, Last access Janary 10, 2016.

Neil Fraser. google-diff-match-patch, 2012. https://code.google.com/p/

google-diff-match-patch/, Last access on January 12, 2016.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant

web services. SIGACT News, 33(2):51-59, June 2002.

Google Inc. Android One, 2016. http://www.android.com/one/, Last access January 13, 2016.

Pan Hui, Jon Crowcroft, and Eiko Yoneki. BUBBLE Rap: social-based forwarding in delay tolerant networks. In

Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc

"08, pages 241-250, New York, USA, 2008. ACM.

. Teemu Kirkkédinen and Jorg Ott. Shared content editing in opportunistic networks. In Proc. of the 9th ACM

MobiCom Work. on Challenged Networks, CHANTS ’14, pages 61-64, New York, USA, 2014.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558-565,

July 1978.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, May 1998.

. Mihai Letia, Nuno M. Preguica, and Marc Shapiro. CRDTs: Consistency without concurrency control. CoRR,

abs/0907.0929, 2009.

Radu-Corneliu Marin, Ciprian Dobre, and Fatos Xhafa. Exploring predictability in mobile interaction. In EIDWT,

pages 133-139, 2012.

Samir Okasha. Altruism, Group Selection and Correlated Interaction. The British Journal for the Philosophy of

Science, 56(4):703-725, December 2005.

Open Garden. FireChat, 2016. http://opengarden.com/firechat, Last access January 14, 2016.

Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data Consistency for P2P Collaborative Editing.

In Proc. of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, CSCW ’06, pages

259-268, New York, NY, USA, 2006. ACM.

Jorg Ott and Jussi Kangasharju. Opportunistic content sharing applications. In Proceedings of the 1st ACM

workshop on Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Applications,

pages 19-24. ACM, 2012.

Jorg Ott and Dirk Kutscher. Bundling the Web: HTTP over DTN. In Proceedings of the ACM WNEPT Workshop,

2006.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://mashable.com/2014/09/29/hong-kong-cell-network-chat/
http://mashable.com/2014/09/29/hong-kong-cell-network-chat/
http://goo.gl/uYRmco
http://goo.gl/uYRmco
https://code.google.com/p/google-diff-match-patch/
https://code.google.com/p/google-diff-match-patch/
http://www.android.com/one/
http://opengarden.com/firechat

28.
29.

30.

TOTAL ORDER IN OPPORTUNISTIC NETWORKS 25

Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic networking: data forwarding in disconnected
mobile ad hoc networks. Communications Magazine, 44(11):134-141, 2006.

Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic networking: data forwarding in disconnected
mobile ad hoc networks. Communications Magazine, IEEE, 44(11):134—141, 2006.

Anna-Kaisa Pietildinen, Earl Oliver, Jason LeBrun, George Varghese, and Christophe Diot. MobiClique:
Middleware for Mobile Social Networking. In Proc. of the 2Nd ACM Workshop on Online Social Networks, WOSN
’09, pages 49-54, New York, NY, USA, 2009. ACM.

31. Ravi Prakash, Michel Raynal, and Mukesh Singhal. An adaptive causal ordering algorithm suited to mobile
computing environments. Journal of Parallel and Distributed Computing, 41:190-204, 1997.

32. Christian Rohner, Fredrik Bjurefors, Per Gunningberg, Liam McNamara, and Erik Nordstrom. Making the most
of your contacts: transfer ordering in data-centric opportunistic networks. In Proceedings of the third ACM
international workshop on Mobile Opportunistic Networks, pages 53—60. ACM, 2012.

33. André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement causal ordering. In Proc. of the 3rd
International Work. on Distributed Algorithms, pages 219-232, London, UK, UK, 1989. Springer-Verlag.

34. Marc Shapiro, Nuno Preguiga, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types. In Proc.
of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages
386400, Berlin, Heidelberg, 2011. Springer-Verlag.

35. Haifeng Shen and Chengzheng Sun. Flexible notification for collaborative systems. In Proc. of the 2002 ACM
Conference on Computer Supported Cooperative Work, CSCW 02, pages 77-86, New York, NY, USA, 2002.
ACM.

36. D. Skeen and Michael Stonebraker. A formal model of crash recovery in a distributed system. Software
Engineering, IEEE Transactions on, SE-9(3):219-228, May 1983.

37. Amin Vahdat and David Becker. Epidemic routing for partially-connected ad hoc networks. Technical report,
UCSanDiego, 2000.

38. Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher Suleiman. Copies convergence in a distributed real-time
collaborative environment. In Proc. of the 2000 ACM Conference on Computer Supported Cooperative Work,
CSCW ’00, pages 171-180, New York, NY, USA, 2000. ACM.

39. Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic replication algorithm for
collaborative editing on p2p networks. In Distributed Computing Systems, 2009. ICDCS ’09. 29th IEEE
International Conference on, pages 404—412, June 2009.

40. Wikipedia. Help:export, 2015. http://en.wikipedia.org/wiki/Help:Export, Last access on
January 12, 2016.

41. Wikipedia. Hoverbox, 2015. http://en.wikipedia.org/wiki/Hoverbox, Last access on February 1,
2016.

42. Wikipedia. Japanese in Mangaland, 2015. http://en.wikipedia.org/wiki/Japanese_in_
Mangaland, Last access on January 30, 2016.

43. Wikipedia. Opportunistic mesh, 2015. http://en.wikipedia.org/wiki/Opportunistic_mesh,
Last access on January 10, 2016.

44. Wikipedia. Sagas of the demonspawn, 2015. http://en.wikipedia.org/wiki/Sagas_of_ the_
Demonspawn, Last access on February 2, 2016.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)

Prepared using cpeauth.cls DOLI: 10.1002/cpe

http://en.wikipedia.org/wiki/Help:Export
http://en.wikipedia.org/wiki/Hoverbox
http://en.wikipedia.org/wiki/Japanese_in_Mangaland
http://en.wikipedia.org/wiki/Japanese_in_Mangaland
http://en.wikipedia.org/wiki/Opportunistic_mesh
http://en.wikipedia.org/wiki/Sagas_of_the_Demonspawn
http://en.wikipedia.org/wiki/Sagas_of_the_Demonspawn

	Caratula_Article_Postprint_CC_BY-NC-ND_en
	totalorder
	1 Introduction
	2 Related Work
	2.1 Operational Transformation
	2.2 Commutative Replicated Data Types
	2.3 Algorithms for DTNs and ONs
	2.4 Summary

	3 Opportunistic Causal Barriers - An Algorithm for Causal Order
	3.1 Messages Merging
	3.2 Direct Download of Missing Messages

	4 A Total Order Algorithm for Opportunistic Networks
	4.1 Opportunistic Logoot Operations
	4.2 Opportunistic Logoot Identifiers
	4.3 Insertion
	4.4 Removal

	5 Opportunistic Logoot Features for Opportunistic Networks
	5.1 Mutable Messages
	5.2 Downloading Missing Messages
	5.3 A Case Study

	6 Experiments
	6.1 Experimental Setup
	6.2 Results

	7 Conclusions
	caratula Wiley2.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és la versió revisada per parells del següent article:
	Costea, M. [et al] (2017) Total order in opportunistic networks. "Concurrency and computation. Practice and experience". Vol.29, Issue 10. Pp. 1-17. Doi: 10.1002/cpe.4056,
	la qual ha estat publicada en la versió definitiva a http://dx.doi.org/10.1002/cpe.4056.
	Aquest article pot ser utilitzat per a fins no comercials, d'acord amb els termes i condicions d’auto-arxiu de Wiley.
	This is the peer reviewed version of the following article:
	Costea, M. [et al] (2017) Total order in opportunistic networks. "Concurrency and computation. Practice and experience". Vol.29, Issue 10. Pp. 1-17. Doi: 10.1002/cpe.4056,
	which has been published in final form at http://dx.doi.org/10.1002/cpe.4056.
	This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

