

TFG: Fuzzy C-Means and clustering algorithm a comparatrive stud

Intel·ligència Artificial

Victor Garcia Domingo

vgarciadomi@uoc.edu

Consultor: Joan M. Nuñez Do Rio 5 de juny de 2019

Introduction (1/2)

- To find clustering in a dataset
 - Grouping similar observations
 - Distance function to group
- Two criteria to classify algorithms
 - Hierarchical, non hierarchical, mixture
 - Hard clustering and soft clustering
- Hard clustering
 - One observation belongs to one cluster
- Soft clustering
 - One observation can belong to more than one cluster

Introduction (2/2)

• Brief history of clustering:

- K-Means (KM)
 - Steinhaus (1956) based on the sum-of-squares criterion.
 - Well-separated clusters.
- Fuzzy C-Means (FCM)
 - Bezdek (1973) based on KM.
 - Overlapping clusters.
- Gustafson Kessel Fuzzy C-Means (GKFCM)
 - Gustafson and Kessel (1978) based on FCM.
 - Non-spherical clusters.
- Possibilistic C-Means
 - Krishnapuram and Keller (1993)
 - Outliers and noise.
- Suppressed-Fuzzy C-Means
 - Fan, Zhen and Xie (2003) based on FCM.
 - Computational efficiency.
- Fuzzy C-Means++
 - Stetco, Zeng and Keane (2015) based on FCM.
 - Computational efficiency.

Motivations

- Understand history of clustering
- Group data more efficiently
- How FCM improved KM and how soft algorithms improved FCM
- Better algorithm for each dataset

Algorithms (1/2)

- K-Means
 - Minimize the objective function

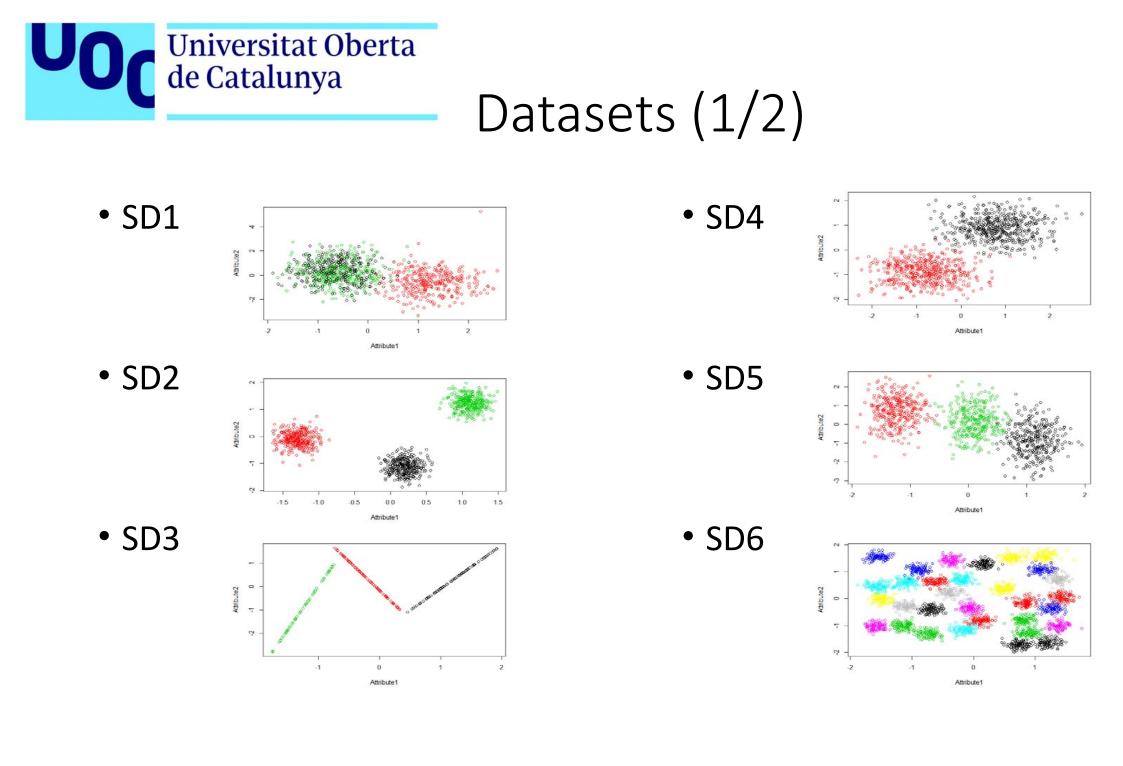
 $J_{KM}(C_k) = \sum_{i}^{C} \sum_{j}^{n} D_{ij}^2$

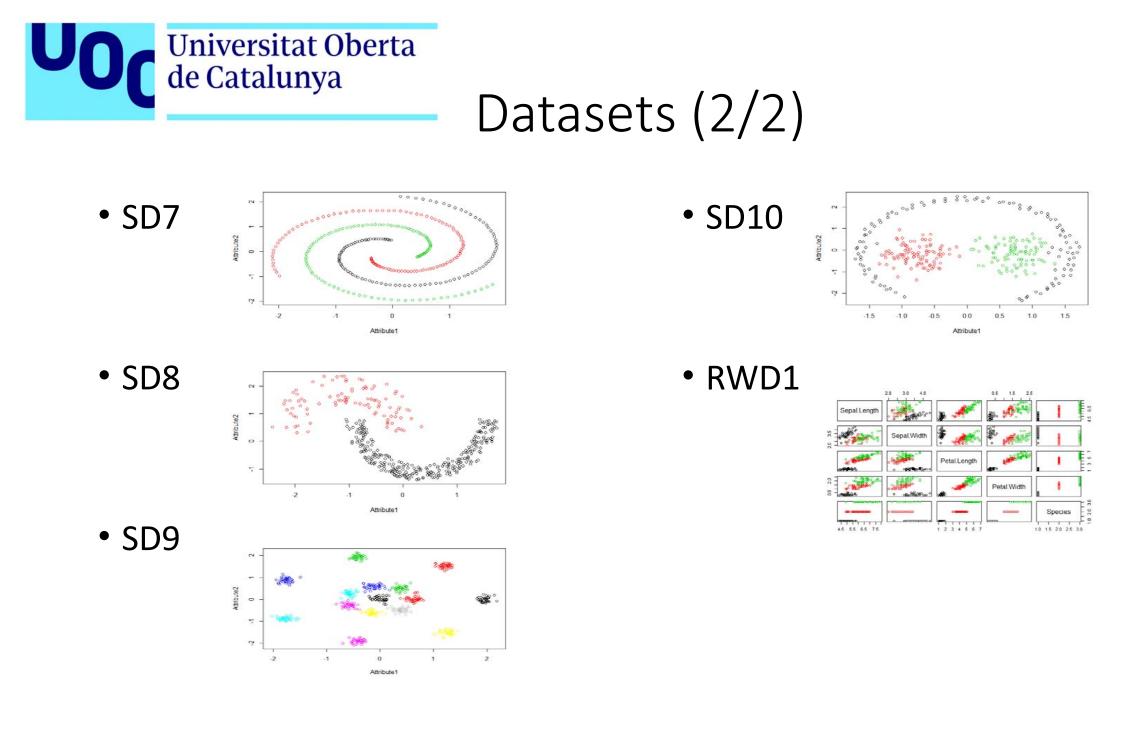
- Fuzzy C-Means
 - Minimize the objective function

 $J_{FCM}(X, U, V) = \sum_{i}^{C} \sum_{j}^{n} (u_{ij})^{q} D_{ij}^{2}$

- Fuzzy C-Means++
 - Befaile find the best starting values for the centres of the clusters.
 - $sum(dist^p)$

Algorithms (2/2)


• Suppressed-Fuzzy C-Means


$$u_{pj} = 1 - \alpha \sum_{i \neq p} u_{ij} = 1 - \alpha + \alpha u_{pj}$$

 $u_{ij}=\alpha u_{ij}, \ i\neq p$

- Gustafson Kessel Fuzzy C-Means
 - $A_i = [\rho_i \det (F_i)]^{1/n} F_i^{-1}$ ce norm by estimating the data covariance

• Po:
$$\eta_i = K \frac{\sum_{j=1}^N u_{ij}^m u_{ij}^2}{\sum_{j=1}^N u_{ij}^m}$$
 Means

Validation

- Internal validation
 - Computational efficiency
 - Performance
 - Xie-Beni

 $[\sum_i \sum_{x \in C_i} d^2(x,C_i)]/[n \cdot min_{i,j \neq i} d^2(x,C_i)]$

• S
$$\left\{\frac{1}{NC}\sum_{i}\left\{\frac{1}{n_{i}}\sum_{x\in C_{i}}\frac{b(x)-a(x)}{\max\left[b(x),a(x)\right]}\right\}\right\}$$

- External validation
 - Accuracy

Universitat Oberta de Catalunya Experiments (1/6) K-Means and Fuzzy C-Means

• Dataset SD1

Iterations K-Means	Iterations Fuzzy C- Means	Accuracy K-Means	Accuracy Fuzzy C- Means
2.89	63.68	29.8	36.5

• Dataset RWD1

Iterations K-Means	Iterations Fuzzy C- Means	Accuracy K-Means	Accuracy Fuzzy C- Means
2.14	47.17	29.5	28.7

- KM is more efficient in general
- FCM is more accurate when there is more overlapping of clusters

Universitat Oberta de Catalunya Experiments (2/6)

Fuzzy C-Means, Fuzzy C-Means++ and Suppressed-Fuzzy C-Means

• Dataset SD1

Number of clusters (k)	lt. FCM	lt. FCM++	lt. S- FCM	XB FCM	XB FCM++	XB S- FCM	Sil. FCM	Sil. FCM++	Sil. S- FCM
2	35.1	37.3	11.7	0.18	0.18	0.455	0.717	0.717	0.678
3	64.2	66.6	20	0.228	0.228	0.577	0.675	0.675	0.616
4	245.3	186.3	26.3	0.207	0.192	0.574	0.644	0.673	0.565
5	101.1	102.7	25.9	0.265	0.265	0.657	0.608	0.608	0.523

• Dataset RWD1

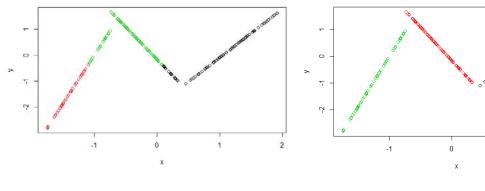
Number of clusters (k)	lt. FCM	lt. FCM++	lt. S- FCM	XB FCM	XB FCM++	XB S- FCM	Sil. FCM	Sil. FCM++	Sil. S- FCM
2	23.4	22.8	10.5	0.113	0.113	0.253	0.807	0.807	0.792
3	45.7	48.4	9.8	0.222	0.222	0.59	0.729	0.729	0.69
4	68.9	73.9	13.4	0.272	0.272	0.835	0.669	0.668	0.596
5	107.5	73	14.3	0.367	0.359	1.68	0.609	0.658	0.524

- S-FCM is more efficient general
- FCM and FCM++ per better
- FCM++ behaves sam FCM

Universitat Oberta de Catalunya Experiments (3/6)

Fuzzy C-Means and Gustafson Kessel Fuzzy C-Means

• Dataset SD3


Number of clusters (k)	lt. FCM	It. GKFCM	XB FCM	XB GKFCM	Sil. FCM	Sil. GKFCM
2	71	161	0.208	0.388	0.713	0.492
3	113	13	0.179	0.416	0.73	0.497
4	45	14	0.085	0.359	0.814	0.397
5	684	14	0.222	1.088	0.752	0.155

Dataset SD7

• 5	SD3:
-----	------

- FCM performs better and is more efficient
- GKFCM is more accurate
- SD7:
 - GKFCM performs better
 - FCM and GKFCM similar efficiency

Number of clusters (k)	lt. FCM	lt. GKFCM	XB FCM	XB GKFCM	Sil. FCM	Sil. GKFCM	
2	1000	668	0.37	0.327	0.577	0.56	~
3	210	319	0.152	0.181	0.657	0.612	
4	1000	1000	0.17	0.168	0.632	0.581	
5	1000	356	0.154	0.496	0.619	0.353	

FCM

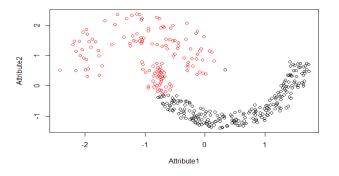
GKFCI

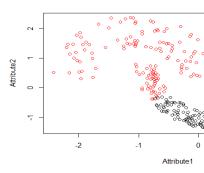
Universitat Oberta de Catalunya Experiments (4/6)

Fuzzy C-Means and Gustafson Kessel Fuzzy C-Means

• Dataset SD8

Number of clusters (k)	lt. FCM	lt. GKFCM	XB FCM	XB GKFCM	Sil. FCM	Sil. GKFCM
2	35	380	0.142	0.139	0.744	0.734
3	88	72	0.152	0.186	0.759	0.524
4	91	195	0.105	0.204	0.754	0.56
5	152	405	0.153	0.787	0.734	0.471


• Dataset SD9


	umber of usters (k)	lt. FCM	It. GKFCM	XB FCM	XB GKFCM	Sil. FCM	Sil. GKFCM
1	5	70	818	1	0.844	0.818	0.85

• Dataset SD10

	lt. FCM	It. GKFCM	XB FCM	XB GKFCM	Sil. FCM	Sil. GKFCM
2	44	45	0.277	0.257	0.65	0.633
3	61	291	0.14	0.171	0.751	0.668
4	72	707	0.28	0.176	0.71	0.7
5	113	588	0.354	0.357	0.625	0.569

- SD8:
 - GKFCM performs better for the actual number of clusters
 - FCM and GKFCM same efficiency
 - Fail to find the actual clusters
- SD9:
 - GKFCM performs better
 - FCM is more efficient
- SD10:
 - GKFCM performs better
 - FCM is more efficient
 - Fail to find the actual clusters

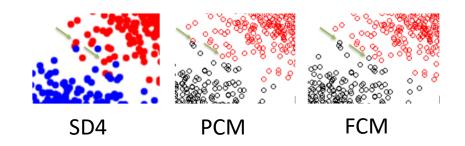
SD8 - GKFCM

Universitat Oberta de Catalunya Experiments (5/6)

Fuzzy C-Means and Possibilistic C-Means

• Dataset SD4

[It. FCM	It. PCM	Accuracy FCM	Accuracy PCM
[16	38	0,99	0,991


Dataset SD5

It. FCM	It. PCM	Accuracy FCM	Accuracy PCM
49	194	88.7%	33.5%

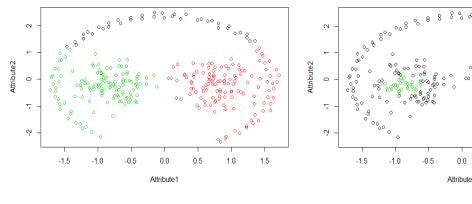
• Dataset SD6

It. FCM	It. PCM	Accuracy FCM	Accuracy PCM
234	81	89.7%	87,7%

- SD4:
 - FCM is more efficient
 - PCM is slightly more accurate, but not significant
- SD5:
 - FCM is more efficient and accurate
- SD6:
 - PCM is more efficient
 - FCM and PCM are equally accurate

Universitat Oberta de Catalunya Experiments (6/6)

Fuzzy C-Means and Possibilistic C-Means


Dataset SD9

Dataset SD10

It. FCM	It. PCM	Accuracy FCM	Accuracy PCM
32	56	99,67%	99,67%

- SD9:
 - FCM is more efficient
 - FCM and PCM same accuracy
- SD10:
 - FCM is more efficient and accurate
 - Both fail to find the correct clusters

It. FCM	It. PCM	Accuracy FCM	Accuracy PCM
56	96	76.3%	65%

SD10 - FCM

SD10 - P

Discussion

- FCM is more accurate when there is more overlapping, but KM is more efficie
- S-FCM is more efficient than FCM and FCM++, but it performs worse
- FCM++ doesn't have any advantage over FCM
- GKFCM performs better than FCM for non-spherical clusters but FCM is more efficient
- PCM does not show any advantage over FCM

Conclusions

- History of clustering and main contributions
- Series of experiments for the validation of the improvements of the algorithms
- FCM for overlapping clusters
- KM for efficiency
- FCM and KM are quite solid despite the latest algorithms
- S-FCM more efficient for overlapping clusters
- GKFCM for some non-spherical clusters
- Further investigation is needed

Thank you