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  Abstract (in English, 250 words or less): 

Organisms are formed by a huge variety of cell types. Conventional genomics 
approaches do not allow for the understanding of the diversity of cell 
populations forming tissues and organs. Recently, and with the aim of 
scrutinizing the cellular complexity of organisms, single-cell technologies have 
arisen, challenging the limitations of former methods. In this project, we have 
analyzed single-cell transcriptomics data generated in different laboratories 
and using a manifold of technologies. We first explored scRNA-Seq data 
produced by two independent groups on Drosophila melanogaster brain cells. 
Data from these reference datasets were generated using four different 
technologies, allowing for the assessment and correction of putative batch 
effects caused by the multiple platforms used. By implementing a number of 
pipelines in bash and R environments, we have processed these datasets from 
the mapping of raw fastq files to the identification of subpopulations of cells. 
Cells from the 8 identified clusters expressed several known marker genes 
involved in neuron and glia differentiation, permitting the full characterization 
of these populations. The pipeline implemented along this first part of the 
project was, afterwards, used to analyze scRNA-Seq data generated in our 
own lab on Drosophila wing imaginal discs. Within our dataset, we 
distinguished four clusters, although the low expression of known marker 
genes did not allow for a precise characterization of these populations. Still, 
we were able to identify several markers showing high variability between 
clusters, indicating that, indeed, these subpopulations represent different cell 
types within the wing. 
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1 Introduction	
 

1.1. Context and justification of the Master Thesis  

1.1.1. State of the art 

The relationship between the genotype and the phenotype is one of the eldest 

and still unsolved questions of Molecular Biology. The RNA is the first 

representation of the cellular phenotype. The specific set of genes expressed in 

the cell, the level of their expression and the usage of different transcript isoforms 

are some of the features that identify a particular cell type. Thus, the precise 

description of the transcriptome of each cell type is essential to understand the 

role of the cell within a tissue or an organ. 

The development of the Next Generation Sequencing (NGS) technologies, and 

in particular the implementation of techniques such as the RNA-Seq (massive 

parallel sequencing of bulk RNA), has allowed for an exponential increase in the 

sensitivity of the detection of gene expression as well as for the identification of 

novel genes (Wang et al., 2009). Low expressed genes, unknown transcripts and 

even transcripts generated from regulatory regions, such as enhancer RNAs 

(eRNAs), are newly reported thanks to the application of the RNA-Seq 

technologies to different cell types (Li et al., 2016; Pundhir et al., 2015). In this 

context, the need of deciphering the specific transcriptome of a particular cell type 

has become a priority. 

During the last decade, RNA-Seq has become the universal tool to uncover the 

gene expression profile of specific tissues at different developmental time points, 

but also to identify changes at the transcriptomic level when tissues undergo 

other processes, such as cancer or degeneration (Wang et al., 2009). However, 

these experiments have usually been performed in tissues or culture cell lines. 

Tissues are formed by many distinct cell types, meaning that the transcriptome 

obtained by bulk RNA-Seq experiments represents an average of the different 

cell populations conforming the tissue, masking the expression of low 

represented or rare cell types. On the other hand, culture cell lines, which are 
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supposed to be homogeneous, have been show to represent heterogeneous 

populations with different transcriptomic states (Barron and Li, 2016). 

For all these reasons, the need of uncovering the transcriptome at a single-cell 

level has become a challenge. During the last few years, this ambition has 

become a reality due to the emergence of single-cell RNA-Seq technologies 

(scRNA-Seq). By quantifying specific-cell transcriptomes we will understand the 

heterogeneity existing within a population, uncover differences between cell 

populations upon disease and even identify specific regulatory networks within 

each cell type. None of them can be fully understood from bulk RNA-Seq 

experiments. The need of identifying cell-specific transcription patterns has 

become so urgent that even huge consortia, such as the Human Cell Atlas (HCA) 

(Ponting, 2019), have been funded to perform massive scRNA-Seq experiments 

during the next few years. 

1.1.2. Open questions 

Athough the scRNA-Seq is already a reality, its technology is still in development. 

scRNA-Seq experiments are, for instance, carried out using many different 

platforms, such as MARS-Seq, 10X Chromium, Smart-Seq and CEL-Seq, that 

generate very different outputs. None of these platforms allows, however, for a 

sensitive and accurate detection of all genes expressed in the cell, meaning that 

the transcriptome obtained for each single-cell in the experiment represents a 

subset of the real number of genes that are being expressed (See et al., 2018). 

In this context, the new challenge the scientific community is facing is the 

development of computational tools able to analyze, normalize and integrate all 

the generated data. On the one side, 10X Genomics technology detection, for 

instance, is biased towards the 3’/5’ ends of transcripts; however, it allows for the 

removal of redundant reads due to PCR amplifications during the library 

preparation by the addition of Unique Molecular Identifiers (UMIs). On the other 

side, Smart-Seq detects full-length transcripts, allowing for the quantification of 

alternative splicing and intron retention events, for instance, but it cannot discard 

redundancy due to PCR amplifications, making expression level quantifications 

less accurate (See et al., 2018). Data obtained from each type of scRNA-Seq 

assay should be, thus, analyzed in a specific and suitable manner, which already 

renders into a first challenge, but the results obtained have to be comparable to 



6 
 

  

the results from the other platforms. This represents a second challenge for the 

Computational Biologists, as the biases derived from the different experimental 

protocols generate a batch effect that needs to be corrected before the 

comparison between samples. New pipelines have been generated aiming to 

diminish this batch effect and making datasets more comparable (Stuart and 

Satija, 2019). The third challenge the scientific community is facing is the 

development of new dimensionality reduction and projection methods to cluster 

the different cell types and to uncover true relationships between cells and even 

identify previously unknown cell types. These new methods will permit the 

integration of the transcriptomic profile of different cells within a samples or from 

different sources (Kiselev et al., 2019). Finally, the fourth and last challenge that 

needs to be addressed is the integration of scRNA-Seq data with other single-

cell or bulk datasets, such as haplotype, GWAS data, DNA methylation, 

chromatin accessibility, histone modifications or three-dimensional chromatin 

structure. This integration will provide for a further understanding of the 

mechanisms the cell undergoes upon processes such as differentiation and 

development. 

Although intensive research is currently being carried out in this field, the analysis 

of scRNA-Seq is still an open question, as no standard protocols exist that allow 

for the normalization and integration of data sets from different sources. However, 

the fast development of single-cell technologies and the big amount of data 

generated will enhance the efforts of the research community in order to develop 

new and more powerful tools to analyze and integrate these data. 

1.2. Objectives of the Master Thesis 

The main objectives of the current proposal are: 

1. To fully analyze scRNA-Seq datasets generated from different platforms 

and in various laboratories, from the mapping to the identification and 

characterization of cell populations. 

2. To benchmark currently available pipelines or libraries generated to 

perform single/multiple stages of the analysis of scRNA-Seq data. 

3. To build our own pipeline with a selection of such tools in order to analyze 

the scRNA-Seq experiments generated in our laboratory. 
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The specific objectives are: 

1. To collect publicly available scRNA-Seq raw data generated from different 

platforms, such as 10X, CEL-Seq2 and Smart-Seq2, to define our 

reference dataset. 

2. To map on the fruit fly reference genome and quantify gene expression 

from the different samples of scRNA-Seq in our reference dataset. 

3. To evaluate the impact of several parameters in the analysis (how many 

reads, how many genes are detected per cell, etc.).  

4. To benchmark different available pipelines to integrate the data from the 

several technologies and remove the batch effect associated to technical 

issues. 

5. To cluster the cells according to their specific transcriptomic signature and 

identify cell populations and unknown cell types by means of different 

dimensional reduction methods. 

6. To identify marker genes within clusters and perform GO analysis to 

confirm the biological identity of each group of cells passing the previous 

steps in our reference dataset. 

7. To compare the results obtained with the reference dataset with those 

published in the original references to evaluate strengths and weaknesses 

of each method. 

8. To gather all tested programs in a single script to allow for faster analysis 

and parallelization of the process.	

9.  To use our own pipeline to analyze the scRNA-Seq experiments from 

Drosophila melanogaster wing imaginal disc performed in our lab.	 	 	

1.3. Possible approaches and followed method 

The current project is divided into two main areas: first, we aim to learn about the 

different platforms available to perform single-cell RNA-Seq assays (scRNA-Seq) 

and to study the output files produced by such platforms; second, we will 

benchmark the most popular implemented pipelines to perform a thorough 

analysis of a selection of public scRNA-Seq datasets obtained from different 

sources.  

In our lab, we are interested in the mechanisms involved in cell differentiation and 

in the determination of cell fate during development. In particular, we are working 
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in the differentiation of Drosophila melanogaster imaginal discs throughout 

development. Imaginal discs are epithelial sacs in larval stages that give rise to 

the adult appendages, such as wings, legs and eyes (Ruiz-Losada et al., 2018). 

In this context, we have recently generated scRNA-Seq data from third instar 

larvae wing imaginal discs from the fruit fly. Our main objective with the current 

project is, thus, to find the best tools to analyze our single-cell data and to identify 

cell populations within the wing disc. To do so, we will, first, evaluate many 

available pipelines focused on the analysis of scRNA-Seq data and, second, 

implement a R script gathering all tested tools. As our data belongs to fruit fly 

cells, we will implement these new tools using also available data from 

Drosophila, mainly from brain tissues. The resulting pipeline will be used to 

analyze our scRNA-Seq data and compare it to other similar datasets, such as 

the data obtained also from wing imaginal disc in Aurelio Teleman’s lab (Bageritz 

et al. 2018). 

The different datasets have been selected to fulfill several purposes: 

1. They all have been performed in Drosophila tissues, which is our model 

organism in the lab. The analysis of these data will help us to identify and 

select the tools better performing in our dataset of interest. 

2. They have been generated using different experimental protocols and 

laboratories, meaning that they may be subject to a high batch effect. The 

normalization of all these datasets will allow us to integrate and visualize 

data from all sources. This expertise will also help us in the integration of 

our own dataset with similar data from other groups.	

The analysis of scRNA-Seq is complex and is still under development, meaning 

that the scientific community is investing a lot of time and resources to face this 

new challenge. Taking advantage of all the tools that are being developed, we 

plan to assess the performance of the most popular ones in several datasets and 

to gather them in a single pipeline. 

The pipelines selected to perform the current project have been selected also 

according to different criteria: 

1. They have been already reported by other groups for analysing scRNA-

Seq experiments, proving their suitability for this kind of analysis. 
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2. Most of them run under R environment, so they are appropiate to be 

integrated in our final script.	

3. Some of them can be used to approach similar questions in different ways, 

such as the batch effect removal from RunCCA and mnnCorrect, whereas 

others are complementary and perform slighly different analyses, such as 

the removal of cell cycle effect of ccRemover. 

In some steps of the analysis, such as the mapping of the sequencing reads, only 

one program is going to be used, in this case the STAR pipeline. This is because 

these programs already represent a standard in the field and have proven to 

perform in a very efficient manner. In other steps, such as the removal of the 

batch effect, many programs that pretend to solve the problem have recently 

arisen, but the question is still open, so the assess of each’s one performance 

may be essential for the success of the analysis. 

The final decision of which pipelines are suitable for being integrated within our 

R script will depend also on various aspects: 

1. The usability of the pipeline, this is, if the pipeline can run under our 

environment and if it runs in a user-friendly manner. 

2. The performance with our reference dataset. 

The functionality and the performance of the resulting script will be finally 

assessed through the analysis of our own dataset from fruit fly wing imaginal disc 

scRNA-Seq. 

1.4. Thesis planning 

1.4.1. Resources used for the progression of the project 

For the development of the current project we will mainly work under the 

framework of bash and Rstudio. 

To perform the scRNA-Seq analyses a set of pipelines and R libraries have been 

selected Seq and are susceptible of being included in the R script developed 

during this project. 

1.4.2. Tasks to be accomplished along the project 

Objective 1: Task1. Collection of the reference datasets of scRNA-Seq from 

Drosophila tissues 
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Briefly, scRNA-Seq data from full Drosophila melanogaster (the fruit fly) brains or 

selected regions, such as midbrain or specific neurons, will be obtained from 

public repositories, such as NCBI GEO or EBI ArrayExpress. These datasets 

have been generated in independent labs and using 4 different platforms and 

represent a broad example of all data types that can be generated using scRNA-

Seq technologies (Davie et al., 2018; Li et al., 2017). For instance, 10X and CEL-

Seq2 contain Unique Molecular Identifiers (UMIs) and, thus, are 3’ biased but 

PCR-amplification duplicates can be removed, whereas Smart-Seq2 and 

AdaptedSmart-Seq2 produce full-length transcripts but do not contain UMI 

information, meaning that PCR duplicates will not be distinguishable, but more 

reads covering alternative splicing and different transcript isoform usage will be 

available. 

These particular datasets have been finally selected because they belong to 

isolated cells from Drosophila melanogaster (the fruit fly) tissues, and this will 

allow us to compare them with scRNA-Seq dataset generated in our lab, 

performed by MARS-Seq from around 350 isolated cells from third instar larvae 

wing imaginal discs. The first task of the current project, and with the aim of 

accomplishing the first objective, will be, thus, obtaining the raw data from the 

specified repositories. 

Objective 2: Task 2. Mapping and quantification of scRNA-Seq data 

The second task of the work will be to map and quantify the gene expression per 

cell. To do so, reads will need to be first preprocessed according to their origin 

(presence or absence of UMIs, demultiplexed cells, etc.). Mapping will be 

performed with STAR (Dobin et al., 2013), a broadly used program that allows for 

the mapping of continuous and split reads. Split reads correspond to reads that 

do not map directly to the genome but to split sequences into the transcriptome, 

such as splice junctions. 

To perform the quantification of gene expression the tool featureCounts, 

embedded into the subread package (Liao et al., 2014), will be employed.  

Objective 3: Task 3. Quality control of the different datasets 

The third task of the work will be to perform a quality control (QC) of the different 

datasets obtained. The QC will be performed using two different programs: the 
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QC tool of the Seurat package (Butler et al., 2018) and the scater program 

(McCarthy et al., 2017). These packages will inform about the number of genes 

detected per cell, the number of UMIs, etc. If needed, UMI-tools can be also 

considered for the removal of PCR duplicates at this step, although it only runs 

under command line (Smith et al., 2017). This QC step will also allow us to filter 

out the cells presenting high level of contamination of mitochondrial RNAs, typical 

of low-quality libraries, or cells with low coverage, for instance. Both Seurat and 

scater perform other analyses, such as normalization, so, eventually, we can also 

perform fulfill other tasks with these tools. 

This first part of the project corresponds to the main block of the project according 

to the working plan and is expected to be accomplished within the first 5 weeks 

(see Gantt chart in Figure 2). 

Objective 4: Task 4. Normalization and batch effect removal 

The fourth task of the project will be the normalization of the diverse datasets, 

taking only the cells that have passed the previous step. In this step, batch effects 

due to the performance of the experiments using different experimental protocols 

or in different labs will be removed. To do so, different pipelines will be evaluated: 

RunCCA, from the Seurat package (Butler et al., 2018), and mnnCorrect 

(Haghverdi et al., 2018). RunCCA runs a canonical correlation analysis to identify 

similar cell types between datasets and cluster them closely in a two-dimensional 

space. Instead, mnnCorrect computes the distance between similar cell types 

through mutual nearest neighbor and allows for the removal of these distances 

of the original expression matrices. 

After normalization, new expression matrices will be generated. To validate that 

the normalization has reduced the multiple putative biases, we will use 

dimensionality reduction techniques, that will also allow us to visualize the 

distance between different cell types. Three different methods to reduce the 

dimensions of the scRNA-Seq expression matrices will be used: Principal 

Component Analysis (PCA) (Venables et al., 2002), t-Distributed Stochastic 

Neighbor Embedding (t-SNE) (Van der Maaten et al., 2008) and Uniform Manifold 

Approximation and Projection for R (UMAPR) (Becht et al., 2018). 

Objective 5: Task 5. Clustering of the cells according to their expression profile 
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The fifth task of the project will be to cluster the cells from all experiments 

according to their gene expression patterns. The expression of particular known 

markers will allow us to classify different cell populations within our reference 

dataset as well as, eventually, identify unknown cell types. To perform these 

analyses, we will use several tools: the Clustering through Imputation and 

Dimensionality Reduction (CIDR) tool allows for the imputation of missing data 

within the scRNA-Seq matrices and the classification of cell types through 

dimensionality reduction methods (Lin et al., 2017); the quickCluster tool from 

scran (Lun et al., 2016) and FindClusters from Seurat (Butler et al., 2018) will 

also be evaluated. 

Objective 6: Task 6. Identification of marker genes within clusters 

The identity of each cluster will be first assessed by the identification of the marker 

genes representative of each population of cells. This task will be performed by, 

first, visualizing known marker genes in the dimensionality reduction plots and, 

second, by automatic detection of highly variable genes between clusters, task 

that will be assessed with the FindMarkers tool of Seurat (Butler et al., 2018). 

Objective 6: Task 7. Gene Ontology term enrichment analysis of different cell 

clusters 

The seventh task of the project will be to perform Gene Ontology term enrichment 

analyses of the different clusters identified according to the marker genes. To do 

so, we will use the GOstats package (Falcon and Gentleman, 2007), that allows 

for the identification of Gene Ontology and KEGG pathway terms enriched within 

each cell cluster. 

Objective 7: Task 8. Comparison of obtained results with originally published 

ones 

At this step, we will have performed all the basic analyses of our reference 

dataset. Thus, the next task of the project will be to compare the results obtained 

with the data originally published in the different referenced papers. This second 

block is expected to be fulfilled within weeks 5 to 9. 

Objective 8: Task 9. Implementation of a script to perform scRNA-Seq analysis 

on our own datasets 
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The first part of the pipeline will be implemented in bash, as most of the programs 

that perform preprocessing, mapping and quantification of raw data run in this 

environment. Instead, the evaluated pipelines in R will be finally gathered in a 

single R script to allow for a faster analysis of future datasets. Figure 1 depicts a 

scheme of the pipeline implemented along the progression of the current project 

(see also appendix, all sections). The implementation of the pipeline will be 

performed along the progression of the full project. 

 

Figure 1. Pipeline implemented along the progression of the current project. 

Objective 9: Task 10. Analysis of our own scRNA-Seq data from Drosophila wing 

discs using our new pipeline 

The last task of the project will be the usage of our bash and R pipelines for the 

analysis of single-cell RNA-Seq data generated in our lab (unpublished data) on 

isolated cells from third instar larvae imaginal disc of Drosophila melanogaster. 

We will finally compare our data with data from Teleman’s lab also in the wing 

disc (Bageritz BioRxiv 2018). This last part of the project will be accomplished 

during the last two weeks of the project. 

1.4.3. Task timings and milestones 

The Figure 2 represents the Gantt chart describing the 10 tasks proposed for the 

current project as well as the timings proposed for each task. Colors represent 

the expected milestones. The first milestone, in purple, involves obtaining the 

data of reference datasets in Table 1 and the basic analyses of mapping, 
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quantifying and quality controls. The second milestone, in green, consists on the 

normalization of the data, the clustering of the different cell types and the 

identification of marker genes, altogether with the characterization of the different 

clusters through GO term enrichment analyses and the comparison with the 

original reports. The third milestone, in blue, involves the implementation of the 

bash and R scripts gathering all tested pipelines. Finally, the fourth milestone, in 

red, consists on the usage of the selected pipelines in our scripts to analyze the 

scRNA-Seq data generated in our lab and its comparison to the results obtained 

from other scRNA-Seq data of wing imaginal disc, from Teleman’s lab. 

 

Figure 2. Gantt chart representing the main tasks of the current project and the proposed timings 

for each task. 

1.4.4. Declaration of risks and contingency plan 

The current proposal is ambitious and implies a certain risk. The major risk we 

can envision is the inability of running certain scripts. Noteworthy, many of the 

pipelines described in the previous sections are currently being developed, and 

it may happen that they do not work under our environmental conditions. As a 

contingency plan, we may try to, in parallel, run pipelines developed to thoroughly 

analyze scRNA-Seq data, from the mapping to the clustering of cell types, such 

as Seurat. 
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The second major risk we can envision is the time and the computational 

resources needed to process such large amount of data. To solve this problem, 

we will implement a job array to run scripts that need to be parallelized, for 

instance, for the mapping of demultiplexed files or for quantification for each 

independent cell. 

1.5. Brief summary of obtained products 

During the progression of the current project we will generate different products: 

- Work plan. Along the work plan we have indicated the main tasks to be 

accomplished along the progression of the current project in relationship to the 

corresponding objectives. Timings and milestones have been also defined 

(Figure 2). 

- Memory. All the work performed along the project will be reported in a written 

memory, specifying the state of the art in the field, the objectives, the 

methodology, the results obtained and a general discussion about the integration 

of our results in a broader context. 

- Product: In our particular case, we will also implement a R script gathering all 

suitable programes tested along the project. The pipeline code will be included in 

the appendix of the written memory.  

- Virtual presentation: At the end of the master thesis we will also summarize the 

methodology followed and the results obtained with the publicly available 

datasets along the project as well as with our own data set. 

- Project self-evaluation: Finally, we will present a report including all the 

information about the difficulties found along the project and what could have 

been done to improve it. 

1.6. Brief summary of the following chapters 

In chapter number 2 the analysis performed on available brain samples will be 

described. This analysis follows the script found in the appendix section Brain. A 

part from the plots presented in the main report, alternative plots and more details 

and analysis can be found in the appendix. Besides, alternative clustering 
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pipelines used to analyze the brain reference dataset can be found in appendix 

sections CIDR and scran. 

Chapter 3 will be devoted to the analyses of MARS-Seq scRNA-Seq generated 

in our laboratory. The script used to generate this data, including further details 

and analyses, will be found in appendix section MARS. Both chapters 2 and 3 

will include a last discussion section, where obtained results will be discussed 

and compared in the context of the state of the art on the field and the recent 

publication publications on similar datasets. 

For analyses performed in chapter 2 and 3, the series of bash scripts 

implemented to preprocess, map and quantify the dataset will also be available 

in the appendix section Bash_scripts. 

Chapter 4 will correspond to the conclusions of the project. Final chapters of the 

report will include the glossary, the references section and the appendix. 	
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2 Analyses	on	available	Drosophila	brain	
scRNA-Seq	data	

 

2.1. Description of selected reference datasets  

With the final objective of implementing a suite of pipelines to analyze our own 

scRNA-Seq experiments on Drosophila melanogaster third instar larvae wing 

imaginal discs, we have selected a set of recently published high-quality scRNA-

Seq reference datasets from fruit fly brain (Table 1). 

 

GEO 
accession 

platform UMIs Tissue genotype Age # cells Publication 

GSE107451 10X Chromium Yes Brain w1118 adult 3 days 6,257 Davie et al. 2018. 

GSE107451 10X Chromium Yes Brain DGRP-551 adult 3 days 3,157 Davie et al. 2018. 

GSE107451 10X Chromium Yes Brain DGRP-551 adult 50 days 3,098 Davie et al. 2018. 

GSE107451 Smart-Seq2 No dorsal fan-shaped body neurons R23E10>GFP Adult 45 Davie et al. 2018. 

GSE107451 adapted Smart-Seq2 No dorsal fan-shaped body neurons R23E10>GFP Adult 34 Davie et al. 2018. 

GSE107451 CEL-Seq2 Yes dorsal fan-shaped body neurons R23E10>GFP Adult 22 Davie et al. 2018. 

GSE100058 Smart-Seq2 No projection neurons GH146>GFP Pupa 200 Li et al. 2017. 

Table 1. Description of available reference datasets used along the current project. 

 

The first selected dataset has been obtained from Li and collaborators paper on 

1046 GH146>mCD8GFP labeled projection neurons of fruit fly pupal brains, 

generated by using an adaptation of Smart-Seq2 protocol (Li et al., 2017). Cells 

sequenced with this technology do not contain UMI information, and they have 

been loaded into the GEO database in a demultiplexed manner (cell by cell). This 

dataset is rather exhaustive in terms of sequencing coverage (more than 1 million 

reads per cell, according to the authors). Due to the large size of the raw data 

files, the computational processing of the whole dataset is extremely time-

consuming. Because of this reason, and as the objective of the current project is 

to compare different scRNA-Seq platforms and pipelines, not the exhaustive 

analysis of the reference datasets, we have randomly selected the first 200 cells 

loaded into the database for our analysis. 
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The selected second dataset has been generated by Davie and collaborators, 

also on different populations of Drosophila brain cells (Davie et al., 2018). In this 

case, up to four different technologies have been utilized to produce the scRNA-

Seq datasets (Table 1). First, data were generated on around 29,000 DGRP-551 

and 28,000 w1118 brain cells by 10X Chromium technology. These two fly strains 

correspond to wild type animals in order to identify possible batch effects. To 

generate these data, brains from the two strains were obtained at different times 

after metamorphosis, to identify changes at transcriptomic level during aging. Due 

to the large size of this dataset, we have selected data from the two wild type 

strains at two different time points: 3 and 50 days after metamorphosis, with the 

aim of identifying differences in cell populations due to aging (removal of specific 

cell types, etc.). 10X technologies allow for the addition of UMIs, and data has 

been loaded into the GEO database in a multiplexed manner. Next, and with the 

goal of identifying rare cell types, CEL-Seq2 and two different protocols of Smart-

Seq2 (Smart-Seq2 and AdaptedSmart-Seq2 from now onwards) have been 

applied to obtain RNA-Seq data on 22, 45 and 34 R23E10>GFP marked cells, 

respectively. This marker is specific of a subset of dorsal fan-shaped body 

neurons (dFB), a very rare cell type in fly brains (only 9 cells per hemisphere). 

From these three methods, only CEL-Seq2 cells contain UMIs. According to the 

authors, all cells were sequenced at a coverage of around 50,000 reads per cell, 

this is, 20 times less than in the previous dataset. 

Selected datasets were obtained from GEO database (Barrett et al., 2005) in SRA 

format. Files were converted to raw fastq files by using the fastq-dump tool from 

the sratoolkit (http://ncbi.github.io/sra-tools/). 

2.2. Pre-processing of reference datasets 

Prior to the mapping step, raw data has been pre-processed in different ways 

depending on the type of data provided by the authors. 

Datasets generated with Smart-Seq2 and AdaptedSmart-Seq2 are already 

demultiplexed, and as no UMIs are included, they can be mapped directly without 

any pre-processing step. 

For datasets containing UMIs (10X and CEL-Seq2), two fastq files are provided: 

one containing the sequencing read and the other one informing about the cell 
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barcode (BC) and the UMI attached to each molecule. The BC will allow for 

afterwards demultiplexing of cells, and UMIs will inform about PCR duplicates 

generated during the library preparation. To mark each sequencing read with the 

corresponding BC and UMI, a whitelist containing all BCs used in each run has 

to be generated. Whitelists are generated using the whitelist tool from umitools 

(Smith et al., 2017). BCs from 10X and CEL-Seq2 were defined by using the --

extract-method=regex option, which allows for the identification of BC/UMI 

patterns with regular expressions. By using the regex option, for instance, BCs 

and UMIs can be identified by using the pattern --bc-

pattern="(?P<cell_1>.{12})(?P<umi_1>.{6})". This example depicts a read were 

the first 12 nucleotides represent the BC and the following 6 nucleotides 

represent the UMI. This is, actually, the BC pattern used in CEL-Seq2 samples, 

whereas 10X cells are marked by BC of 16 and UMIs of 10 nucleotides. To 

generate the whitelist, the number of BCs present in the sample can be 

automatically inferred from the data or, alternatively, can be given to the program 

as long as an estimate of the number of cells processed within the experiment is 

available. We have taken advantage of this second option, and the whitelist tool 

has identified and corrected the BCs according to the number provided in each 

case. 

In a second step, the whitelist is used to extract the BCs and the UMIs from the 

reads in which they are contained to be incorporated into the sequencing read 

identifier. This step is performed by the tool extract from umitools. In this way, 

after mapping and quantifying the reads, we will be able to demultiplex the cells 

and identify duplicates. 

2.3. Mapping and quantification of reference datasets 

Mapping scRNA-Seq datasets has been performed with STAR (Dobin et al., 

2013), a Gold Standard to map RNA-Seq reads. Prior to mapping, STAR has to 

be used to index the reference genome. In our case, we have downloaded latest 

release (95) of Drosophila melanogaster genome and annotation from Ensembl 

(Cunningham et al., 2019). 

Mapping with STAR can be run under many different options. Here we have 

applied the same parameters as in Li et. al paper (Li et al., 2017), this is “–

outFilterScoreMinOverLread 0.4 (alignment will be output only if its score, 
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normalized by read length, is higher than this value) -

outFilterMatchNminOverLread 0.4 (alignment will be output only if the number of 

matched bases, normalized by read length, is higher than this value) -

outFilterMismatchNmax 999 (alignment will be output only if it has fewer 

mismatches than this value) -outFilterMismatchNoverLmax 0.04 (alignment will 

be output only if its ratio of mismatches to *mapped* length is less than this 

value)”. The mapping output file is a bam file (http://samtools.github.io/hts-

specs/), consisting on the read identifier and the coordinates of the read within 

the reference genome (figure 3). 

SRR5685313.17906.1 83 2R 17564146 255 8S142M =
 17564146 -142

 AGAGACAGCGGACGAACCGAGAATTTATGGATGTATAAACAAAATACGAGAAACCGTCTTCACC

TAAAACGCCTGCATATGTGTGTATGAATATCGTGTATTTTGCTAATCCTGTAGCTCTTTATTGGAGAATT

TAGCAAAGCCCCATCC HGF@ACC/CGGGFEGGC/HFHHHF?EBBGGF 
Figure 3. Example of a read from a bam file. 
 

To assign mapped reads to genes, we used featureCounts, from the subread 

package, providing also the annotation of the reference genome in GTF format. 

Thus, this tool assigns each mapped read to a gene and attaches this information 

to the mapping file, tagging the read as assigned or not and, if so, attaching the 

name of the corresponding gene. When running featureCounts, another file, 

called gene_assigned, is generated, in which the name of each feature (e. g. 

gene) is stored with the total number of reads assigned to it. 

So far, cells containing and no containing UMIs have been processed in parallel. 

However, the objective of selecting diverse platforms is, in part, to assess the 

differences derived from the removal of PCR duplicates, usually thought to 

generate a bias in gene expression quantification, through their identification by 

the addition of UMIs. Thus, to quantify how many reads have been assigned at 

each gene per cell, we have followed different strategies according to the 

presence or not of UMIs. 

For technologies not containing UMIs, such as Smart-Seq2 and AdaptedSmart-

Seq2, counts assigned to reads and stored in the gene_assigned file are 
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recovered and saved in an expression matrix where all genes of the genome 

(17,739 in our annotation) are represented. 

For UMI-containing genes, umiCount tool from umitools was used to identify and 

isolate non-duplicated reads. A counts file is generated with all genes, all cell BCs 

and the number of deduplicated reads associated to each gene per each BC. At 

this step, BCs can be demultiplexed and expression matrices for each different 

cell can be generated with the number of counts per gene. 

 

Figure 4. Counts and genes summary statistics on the reference datasets. A. Frequency of total 

number of counts per cell (log scaled). B. Frequency of total number of detected genes per cell. 

C. Left panel, total number of counts per cell represented by platform. Right panel, total number 

of genes per cell represented by platform. D. Left panel, total number of counts per cell 

represented by platform and split by paper. Right panel, total number of genes per cell 

represented by platform and split by paper. 
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We finally gathered all expression matrices in a single one, generating a big 

expression matrix of 17,739 rows (genes) and 12,799 columns (cells). 

Figure 4 depicts summary statistics on total number of counts and number of 

genes identified per cell. As seen in figure 4A, most of cells present between 

1,000 and 10,000 mapped reads, although some cells reach more than 1 million 

reads (e.g. cells from Li’s Smart-Seq2). Figure 4B shows that, although the range 

of mapped reads is very high, in most of cases, only between 500 and 2,000 

genes are identified per cell. 

To distinguish which platform detects more features per cell, we have plotted total 

number of counts and genes per cell grouping the cells per technology, figure 4C. 

Smart-Seq2 cells present the highest number of total reads, likely due to the 

higher sequencing coverage of the 200 selected cells from Li et al. As expected, 

10X and CEL-Seq2 cells show a much lower number of counts, because 

sequencing coverage was much lower and, besides, only non-duplicated reads 

are represented. Smart-Seq2 is also the platform that detects more genes per 

cell, although closely followed by AdaptedSmart-Seq2 and CEL-Seq2, with a 

much lower coverage. Finally, in figure 4D, we have plotted again total number 

of counts and genes but splitting the datasets by publication. Smart-Seq2 is the 

only technology that has been used in both works, in the 200 cells from Li et al. 

and in 44 cells in Davie et al. The plots confirm that Li’s cells (in green), present 

higher number of reads than Davie’s Smart-Seq2 cells (in pink). However, the 

number of detected genes per cell is not that much different between the two 

datasets. 

2.4. Filtering of low-quality cells and normalization 

As seen in figure 4, there are many cells that present very few reads. This is 

mainly due to the sequencing of low-quality libraries. Another marker of low-

quality cells is the proportion of mapped reads falling into mitochondrial genes 

(mtRNAs). These low-quality cells have to be removed before going on with the 

analysis, as they could bias the final results. 

To do so, first we have generated a single-cell experiment with scater, an R 

package specifically designed to perform quality control and normalisation of 
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single-cell RNA-Seq assays (McCarthy et al., 2017). A scater single-cell 

experiment is a large data frame containing the expression matrix and all 

metadata associated to the dataset. In our case, the metadata informs about the 

technology used to perform the scRNA-Seq, the genotype and the age of the 

animal and the paper they belong to. We have first removed cells with low number 

of reads, this is, with more than 3 median absolute deviations below the median 

log-library size or with less than 200 detected genes. Next, we have eliminated 

genes not detected in at least 10 cells. Finally, we have removed cells where 

more than 20% of reads fell into mtRNAs. We have obtained a list of 38 mtRNAs 

from Ensembl annotation and have annotated them as spike-ins in the scater 

experiment with the isSpike tool. This spike-in control gets integrated into the 

single-cell experiment. In figure 5A, the proportion of reads assigned to 

mitochondrial genes per cell is represented as a scatter plot. Interestingly, in cells 

where more features are identified, less reads fall over mitochondrial genes, 

whereas in cells where less than 1,000 genes are detected most of reads are 

captured by the mtRNAs, confirming the hypothesis that high-quality libraries are 

void of mitochondrial reads. 

 

Figure 5. Filtering of cells and genes. A. Proportion of reads in mitochondrial genes by 

sequencing platform. Most of cells containing a high proportion of reads in mtRNAs belong to 10X 

technology. B. Number of counts per cell after cell filtering. 

After filtering, we have ended up with 12,086 cells, most of them showing more 

than 1,000 reads (figure 5B). From the 713 filtered cells, 605 have been removed 

by their proportion of mitochondrial genes, most of them obtained by 10X 
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Chromium technology. Finally, from the 17,739 initial genes, only 10,747 are kept 

after filtering and will contribute to the subsequent analyses. 

Last step prior to data visualization and analysis is the normalization. Data from 

the scater experiment is retrieved and a single-cell experiment from Seurat R 

package is generated. It was developed by Satija lab and it is specifically 

designed to perform all possible steps on single-cell RNA-Seq analyses (Butler 

et al., 2018). Thus, counts were log normalized and scaled by using Seurat tools, 

and normalized/scaled data was stored within the Seurat object. 

2.5. Visualization of RNA-Seq data by dimensionality reduction methods 

Dimensionality reduction methods are a way of reducing the variance explained 

by thousands of variables, such as all genes in the genome, in a lower number 

of features, facilitating their visualization in a two or a three-dimensional plot. 

Common reduction methods used to visualize scRNA-Seq data are Principal 

Component Analysis (PCA) (Jolliffe, 2002), t-distributed Stochastic Neighbor 

Embedding (tSNE) (Hinton, 2008) and Uniform Manifold Approximation and 

Projection (UMAP) (Becht et al., 2018). PCA is based on the identification of 

linear combinations of the original values, through the computation of their 

eigenvectors and eigenvalues. Distances between samples in a PCA plot 

represent real distances existing among them. tSNE and UMAP are machine 

learning algorithms that work under PCA. Thus, they first compute also the 

principal components, but they perform a non-linear analysis to identify the 

relationship between the neighboring points. With this approximation, both tSNE 

and UMAP allow for a representation of the data in a clustered manner, meaning 

that closest samples are represented closer and forming clusters in the plot. 

However, distances between samples and, especially between clusters, may not 

be real, as they depend on the stochasticity of the hyperparameters selected. 

2.5.1. Identification of highly variable genes 

With the objective of better understanding the cell populations on the reference 

datasets, we have started by computing and visualizing the scRNA-Seq with all 

three methods. PCA, tSNE and UMAP can be run will all cells from the dataset, 

but they may be biased by the mild contribution of non-variable genes in the 

dataset. Thus, and similarly to the approach usually followed to analyze bulk 
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RNA-Seq data, we have first identified the higher variable genes between 

samples. Seurat has a particular tool that performs this calculation on 

normalized/scaled data (FindVariableFeatures). There are several methods to 

compute variable features in Seurat, but we 

have selected the mean.var.plot, which 

calculates dispersion while controls for the 

relationship between variability and mean 

expression of features (figure 6). 

By using this method, we have identified 442 

variable genes. 
Figure 6.  Highly variable genes. Dispersion is 

represented by average expression per gene. Variable 

genes are depicted in red. 

2.5.2. Characterization of highly variable genes 

We next aimed to characterize these set of variable genes. We hypothesized that, 

being variable genes in brain cells, they should be related to neural specific 

functions. To check our hypothesis, we performed a Gene Ontology (GO) Term 

Enrichment analysis of this dataset. Gene Ontology is a public database where 

functions related to each gene have been identified and annotated (Ashburner et 

al., 2000; The Gene Ontology, 2019). It is presented in a tree-based structure, 

meaning that some categories gather several more specific ones (for instance, 

metabolism would gather catabolism and anabolism, and catabolism would 

gather glycolysis, lipolysis and so on). A GO Term Enrichment analysis pretends 

to identify a set of significantly enriched categories within a subset of genes in 

comparison to a bigger subset (the Universe). There are many classifications 

from Gene Ontology that can be interrogated (Biological Process, Cellular 

Component, Molecular Function, KEGG Pathways, etc). In our case, we decided 

to identify enriched terms in Biological Process and KEGG Pathways, as they are 

usually the most meaningful ones to elucidate biological questions. 

To perform the GO Term Enrichment analyses we used the GOstats (Falcon and 

Gentleman, 2007) and KEGG.db (Carlson et al., 2016) R packages, loading also 

the annotation of Drosophila with all gene identifiers and all categories associated 

to each gene (org.Dm.eg.db). 
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As Universe of genes, we selected all genes represented in our final expression 

matrix, this is, genes that are at least in 10 cells and have passed all thresholds 

in the filtering step (10,746 genes). GOstats allows for the identification of over 

or under-represented categories in the dataset. We selected only categories 

over-represented and, in this case, with a P value lower than 10-5, as many 

categories were enriched in this dataset (figure 7A). 

 
Figure 7. GO Term Enrichment of highly variable genes. A. Biological Process terms over-

represented in highly variable genes. B. KEGG pathway terms over-represented in highly 

variable genes.  

As expected, highly variable genes in the reference datset are related to neural 

activity, such as neuropeptide signaling pathway, response to stimulus, behavior 

and phototransduction. Many enriched categories belong to the same “tree 

branches”, meaning that the same set of genes contribute to the enrichment of 

similar categories of the tree (e.g. regulation of heart contraction, regulation of 

blood circulation and blood circulation). In figure 7B, enriched KEGG pathways 

are represented (with a P value lower than 0.01). Among them, we can find 

pathways related to hormone biosyntesis and phototransduction, both related to 

neural specific activities. 

2.5.3. Visualization of scRNA-Seq data 

As mentioned before, we are going to compare how dimensionality reduction 

methods discriminate different cell populations. To do so, we are going to plot 

PCAs, tSNEs and UMAPs on all cells. Principal components will be computed 
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taking into account the variable features identified in the previous section, as this 

will enhance the differences between cell populations, consuming significantly 

less memory and computing resources. We are going to visualize all cells 

according to the different variables stored in the metadata of the single-cell 

experiment. 

 
Figure 8. Visualization of scRNA-Seq reference data set by dimensionality reduction methods. 

Each column depicts one methodology, and in each row a different variable has been grouped by 

colors or by dot shape. Left panels, cells are represented in a PCA plot. Middle panels, cells are 

represented in a t-SNE plot. Upper panels, cells are colored by technology. Right panels, cells 

are represented in an UMAP plot. Middle panels, cells are colored by genotype. Lower panels, 

cells are colored by age. 

As seen in figure 8, results are very different depending on the dimensionality 

reduction method used. PCA distinguishes four main populations of cells within 

the cloud of dots, whereas more subpopulations are observable in tSNEs and 

UMAPs. When coloring cells by technology (upper panels), both PCA and tSNE 

integrate the four technologies as a single one. In this sense, while all cells from 

one particular platform tend to homogeneously cluster together (see Smart-Seq2 
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–in orange– and AdaptedSmart-Seq2 –in blue–, for instance), such minor classes 

are usually found embedded within the major class of cells, belonging to the 10X 

technology. In contrast, UMAP shows some clusters of cells that correspond to 

the diverse platforms used to generate the scRNA-Seq data (upper right panel). 

Noteworthy, these subpopulations coincide not only with the several technologies 

but also with the different fly genotypes (middle panels). This could mean that 

they actually represent true rare subpopulations of cells, which are difficult to 

identify when performing scRNA-Seq on full tissues, like the experiments with 

10X, where thousands of cells are processed in parallel, but would emerge after 

selecting specific cell types. 

When comparing the genotypes by different colors (middle panels), the two wild 

type strains used in 10X technology overlap almost perfectly in all three 

dimensionality reduction plots, with the exception of a small subpopulation of cells 

that is only present in w1118 animals. Very interestingly, this subpopulation of cells 

is also highlighted when animals age is plotted (lower panels), indicating that it is 

actually a population of cells only present in w1118 elder animals. This population 

of cells may not be actually related to the fly strain but to the age of the animals, 

as 50 day-old animals were only sequenced in w1118 strain. 

2.6. Batch effect removal 

Although it is very likely that the segregation of the multiple scRNA-Seq 

techniques in separated clusters is due to the actual biological variability between 

the different genotypes, we aimed to discard any possible confounding factor, 

such as batch effect, that, due to technical issues, could be masking the real 

variability between the cell populations. 

Thus, we performed a batch effect removal analysis by canonical correlation 

analysis (CCA). CCA identifies the dimensions in which the different batches 

show higher correlation and represents the samples in these dimensions (See et 

al., 2018). To do so, both batches have been analyzed independently. From the 

count matrices, filtering, normalization, identification of variable features, scaling 

and analysis of principal components have been performed for each dataset 

separately. 
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In our case, we assume that the origin of the putative batch effect may come from 

the usage of four different technologies to obtain the scRNA-Seq reads. As the 

analysis must be performed pair-wise, we have decided to divide the dataset into 

two batches according to the presence or the absence of UMIs (10X/CEL-Seq2 

and Smart-Seq2/AdaptedSmart-Seq2, respectively). 

In consequence, we have generated matrices with all cells for each batch that 

were independently analyzed (see appendix, section Brain). We obtained 1,041 

variable genes for batch 1 (Smart-Seq2/AdaptedSmart-Seq2) and 446 for batch 

2 (10X/CEL-Seq2). We next applied CCA correction from Seurat package 

(standardization and normalization default options) and reanalyzed the data as 

before (identification of variable features, scaling and calculation of principal 

components and t-SNE and UMAP dimensions) (figure 9). 
Figure 9. Visualization of scRNA-Seq after CCA 

correction. Upper panel, cells are colored by 

technology. Middle panel, cells are colored by 

genotype. Lower panel, cells are colored by age. 

When visualizing the remaining 12,086 

cells by experimental technology (figure 9 

upper panel), we still observe a group of 

cells from Smart-Seq2 that clearly cluster 

far apart from the others. Indeed, a second 

cluster with few Smart-Seq2 and 

AdaptedSmart-Seq2 is also observed in the 

plot, meaning that they likely represent 

different subsets of cells not represented in 

the other datasets. This is actually 

confirmed when checking the plots of the 

different genotypes (figure 9 middle panel). 

Cells coming from Smart-Seq2 and 

AdaptedSmart-Seq2 from the R23E10-GAL4 flies cluster altogether, whereas 

Smart-Seq2 cells from GH146-GAL4 cluster further away. Interestingly, after 

CCA correction, the subpopulation of cells from w1118 50 days-old that appeared 

in the previous plots (see figure 8, lower panels) is not as evident now, although 

two small clusters of cells still appear corresponding to this genotype and age. 
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Thus, although we think that these analyses demonstrate there was not a huge 

batch effect due to the various platforms used on the different papers, the fact 

that, now, we see a better distinction between the two Smart-Seq2 datasets has 

prompted us to select this second option to continue with the further data 

analyses. 

2.7. Visualization of known marker genes 

Once all normalization and correction steps have been performed, we will 

visualize the level of expression of known marker genes to identify 

subpopulations of cells within the reference datasets. 

Known marker genes were extracted from the reference papers (Davie et al., 

2018; Li et al., 2017) and their expression was plotted in the UMAP dimensionality 

reduction plots. Some examples of markers of subpopulations of neurons are 

represented in figure 10 and other cell types non-neuronal are depicted in figure 

11 (for more examples see the appendix section Brain). 

Whereas, according to the different Projection Neuron markers tested (figure 

10A), this cell type is spread all around the UMAP plot, photoreceptors (figure 

10B) and Kenyon Cells (figure 10C) are localized in few small and well-defined 

clusters. Photoreceptors are the neurons that reside in the ommatidia, which is 

the functional unit that forms the compound eye in the fly. Each ommatidium 

consists in 20 cells, and only 8 of them are photoreceptors, consistent with the 

low abundance of this cell type in the dataset (Katz and Minke, 2009). All cells in 

the Photoreceptor population belong to 10X technology isolated in Davie et. al, 

which is the largest population (compare to figure 9, upper panel), confirming that 

rare populations will be detectable only by analyzing several thousands of cells. 

Interestingly, markers from Projection Neurons and Kenyon Cells are mutually 

exclusive. Kenyon Cells are the neurons that reside in the mushroom bodies, and 

are related to olfactory memory (Widmann et al., 2018). Such class of cells are 

also very scarce and and, although both markers coincide in the same 

populations, they do not cluster in a single population of cells in the UMAP plot. 
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Figure 10. Representation of known neural marker genes. A. Projection Neuron marker genes. 

B. Photoreceptor marker genes. C. Kenyon Cells marker genes. 

The astrocytes are one of the most abundant types of glial cells in Drosophila, 

being responsible for the coverage of the neuropil (Freeman, 2015). In the UMAP 

plots, astrocytes are distributed into two main clusters of cells and few minor 

additional populations (figure 11A). The other three types of glial cells (figure 11B-

D) are much less abundant, and they represent very small mutually exclusive 

clusters. Finally, hemocytes are immune cells responsible for the phagocytosis 

of apoptotic cells (Gold and Bruckner, 2015) and constitute a very small 

population of cells in our dataset (figure 11E). 
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All in all, these results suggest that the analyses performed here allow for the 

identification of well-known populations of cells from the Drosophila brain, and 

that the cells corresponding to these populations cluster close together. 

 
Figure 11. Representation of known marker genes from non-neural cells. A. Astrocyte marker 

genes. B. Cortex Glia marker genes. C. Perineural Glia marker genes. D. Surface Glia marker 

genes. E. Hemocytes marker genes. 

2.8. Identification of clusters and marker genes 

The next objective of our project was to identify the different subpopulations of 

cells conforming our diverse datasets in an unsupervised manner. 

We evaluated several packages to identify cell clusters: quickCluster from scran, 

CIDR (Lin et al., 2017) and FindNeighbors/FindClusters from Seurat. However, 

Seurat was the tool proven to perform better in our data. Therefore, Seurat is the 

tool selected to perform this task (see appendix sections Scran and CIDR for 

further details of the other two packages). 

To identify cell clusters within our reference datasets, we first computed the 

shared-nearest-neighbors (SNN) of the cells. SNN algorithm allows for the 

unsupervised clustering of the samples given a number of “k” nearest-neighbors. 

In order to identify clusters, we tried two different options, “k = 20” and “k = 40” 

nearest-neighbors. In both cases, the analysis is performed by interrogating the 

variable genes detected after CCA correction. To run FindClusters we used the 

default parameters, this is, “n.start = 10” (number of random starts), “n.iter = 10” 
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(maximal number of random iterations per start) and “resolution = 1.0” (lower and 

higher numbers generate a larger and smaller number of communities, 

respectively). 

By running SNN with “k = 20” we identified up to 17 clusters, while “k = 40” 

identified only 15 (table 2). 
 

 
 
Table 2.  Number of cells identified per cluster with the different parameters used. 
 
To check the performance of the clustering, we next visualized both sets of 

clusters in the UMAP-dimensionality plots (figure 12). 

 
Figure 12. Visualization of clusters identified by Shared-Nearest-Neighbor with “k = 20”, left 

panel, and “k = 40”, right panel. 

Identification of clusters by SNN seems to perform, in general, quite satisfactorily. 

The central cloud of cells seems to be formed by 5 to 7 clusters, depending on 

the number of neighbors selected, while surrounding populations of cells are 

usually formed by one single cluster 

Although the UMAP representation suggests that more clusters should be 

identified according to the distribution of cells in the plot, a priori we cannot know 

how many clusters to expect, and we cannot know whether the identified ones 

are correct or this number represents an over-representation of the real number 

of cell populations. 

cluster ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# cells 1766 1633 1413 1366 1221 1174 792 618 449 384 363 301 173 169 103 84 77
cluster ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# cells 1989 1636 1516 1401 1223 1101 1044 593 482 389 222 180 129 100 81

k = 20

k = 20
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2.9. Characterization of identified clusters 

We finally aimed to assess the identity of the clusters identified by SNN. To do 

so, we took advantage of the known neural and non-neural markers (see figures 

9 and 10) and we also performed Gene Ontology Term Enrichment analysis of 

the 17 clusters obtained with k = 20. 

First, we selected the highest enriched marker genes from each cluster with the 

tool FindAllMarkers from Seurat. This tool identifies the marker genes that 

contribute more to the identity of the cluster (figure 12). 

 
Figure 13. Expression of highest enriched markers within clusters. A. Expression of three genes 

defined as markers according to their log(foldChange). B. Heatmap of expression of top 5 % 

genes with highest fold change of expression between clusters. 

In figure 13A, we plot the expression of three of these markers, as an example, 

in the 17 clusters identified. The first marker represented (CG31221) is an 

uncharacterized gene, but it shows a very particular expression pattern, from 

completely silenced in clusters 7, 8, 14 and 15, to very highly expressed in 

clusters 0, 1, 3, 6, 9 and 11. The expression pattern of the next marker, VAChT, 

overlaps in actually very similar to the previous one. VAChT is the  

Vesicular acetylcholine transporter gene, and it is responsible for the transport of 

acetylcholine into synaptic vesicles (FlyBase, (Thurmond et al., 2019)). Very 

interestingly, the last marker in the plot is VGlut, whose expression is completely 

complementary to VAChT. VGlut is actually a transporter protein that resides in 

glutamatergic and dopaminergic nerve terminals (FlyBase, (Thurmond et al., 

2019)), confirming that both cell types are correctlu discriminated in our clusters. 
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From all marker genes, we next selected the top 5 % according to their expression 

fold change across clusters (figure 13B). Interestingly, many of these highly 

variable marker genes are actually very well characterized in the literature, and 

most of them have essential roles during neural development. We can see how 

some genes are very cluster-specific, such as Gad1 and CG14989, whereas 

others show a broader expression pattern across cell types, like pros. This is 

consistent with the role of these proteins: pros promotes neural differentiation and 

is present both in neural progenitors and in many differentiated cells, whereas 

Gad1 is an enzyme involved in GABA neurotransmitter synthesis, being 

expressed only in a subset of neurons (FlyBase, (Thurmond et al., 2019)). 

To finally characterize the identity of the clusters we performed a GO Term 

Enrichment analysis on the marker genes of each cluster. Biological Processes 

and KEGG Pathways were assessed in this analysis (figure 14). 

 
Figure 14. GO Term Enrichment analysis of cluster marker genes. A. Biological Processes 

enriched in cluster 0. B. Biological Processes enriched in cluster 1. 

Unfortunately, the GO Term Enrichment analysis did not allow us to determine 

the identity of many of the clusters. In figure 14, we show, as example, the 

Biological Processes enriched for clusters 0 (A) and 1 (B). According to the GO 

Term Enrichment, cluster 0 could be identified as glutamatergic neurons, as some 

of the processes are related to glutamate metabolism. However, we have seen 

that VGlut is actually higher expressed in cluster 2 (figure 13B). One possibility is 
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that, actually, these two clusters represent a single one that has been separated 

according to the expression of other genes. In fact, UMAP from clusters in figure 

12 suggested that clusters 0 to 4 were very close, and so the PCA, meaning that 

the transcriptomic signature of these populations is very similar. 

GO Term Enrichment of cluster 1 (figure 14B) shows, instead, categories related 

to blood coagulation and hemostasis. Both terms, to our knowledge, cannot be 

assign to any neural cell type in particular. 

All in all, gathering all the information extracted from the cell clusters, we have 

been able to fully characterize 8 of them, mainly according to the pattern of 

expression of known cell markers and through the identification of top variable 

marker genes (figure 15). VGlut is expressed, for example, in clusters 2 and 5 

and, thus, these were the clusters marked as Glutamatergic Neurons, whereas 

Gad1 was expressed exclusively in cluster 4, and we determined that this big 

cluster of cells corresponded to GABAergic neurons. 
Figure 15. Characterization of cell 

clusters. Cluster identity has been 

determined by the expression of 

cluster-specific marker genes. 

Noteworthy, the clusters 

identified by SNN do not 

coincide perfectly with the 

expression pattern of the 

markers. For instance, 

astrocytes markers indicate 

that there are, at least, three 

populations of cells that 

correspond to this cell type 

whereas, according to Seurat, these three populations belong to, at least, three 

different clusters (7, 8 and 15). One possible explanation to this observation is 

that the genes used as markers are actually expressed in several cell subtypes 

and, in combination with other markers, they represent different subpopulations 

of astrocytes. Seurat would capture the difference between these subpopulations 
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but it would not have enough resolution to distinguish them with the tested 

markers. 

For many of the marker genes there is not enough information available to 

determine the identity of the cluster and, thus, we have not been able to fully 

characterize the identity of each cluster. 

Finally, when checking the correspondence of the clusters to the scRNA-Seq 

platforms used to generate the data (figure 9, upper panel), we see that cluster 

16 is, indeed, formed exclusively by AdaptedSmart-Seq2 cells, although some 

cells processed with this technology are also scattered around the plot. Cells 

belonging to Smart-Seq2 platform gather in a large cluster of cells and two 

additional small clusters (figure 9, upper panel). All these cells belong to several 

different Seurat clusters, especially the cells from Li’s Smart-Seq2, meaning that, 

although they are represented close in the UMAP plot, SNN is able to identify 

them as different cell types. This observation argues against the performance of 

the batch effect removal by CCA, though. 

2.10. Discussion of results  

To conclude the analysis of Drosophila brain scRNA-Seq data, we would like to 

compare the results obtained along our project with the reference works (Davie 

et al., 2018; Li et al., 2017) and discuss the main differences. 

Along the project, we have analyzed, in parallel, scRNA-Seq data processed from 

4 different platforms and two independent publications. The data generated in 

these publications were very extensive, so, to reduce computing time and to avoid 

memory issues, we subset the number of samples obtained from each paper. 

Thus, we ended up with 200 Smart-Seq2 cells from Li’s Projection Neurons and 

with 45 Smart-Seq2, 34 AdaptedSmart-Seq2, 22 CEL-Seq2 and more than 

12,000 10X Chromium from Davie’s central nervous system. 

The first challenge we faced up was the processing of the data, as 10X and CEL-

Seq2 samples contain UMIs, whereas the others do not. Datasets were, then, 

processed independently (see pipeline in figure 1) to quantify either UMI counts 

or total number of counts per feature (gene). 

 Our next goal was to remove any putative batch effect due to the different 

platforms and the different labs in which data were generated. However, the batch 
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effect observed here was not very significant and it could actually happen that 

other possible confounding factors affected the distribution of cells in the 

dimensionality reduction plots, such as the genotype and the age of the animals. 

Still, we performed CCA correction to try to reduce the possible contribution of 

the several platforms used to generate the data to the distribution of cells; 

however, no much differences were observed after CCA correction. It is very 

likely that the large number of 10X cells present in the analysis is driving all 

variability between samples in the full analysis. This is, actually, the power of this 

technology, by which you can easily obtain thousands of high-quality cells in a 

fast and affordable manner. It is, by far, the technology that is performing better 

in our analysis. 

We finally wanted to identify and characterize cell clusters in our reference 

dataset. By using Seurat package, we have obtained 17 clusters, much less than 

the number of clusters obtained in the reference publications (35 in Li et al. and 

87 to 151 clusters, depending on the resolution, in Davie et al.). This is likely due 

to the fact that many of the cells show few differences and they cannot be 

distinguished in the clustering as a whole. However, by subsetting each individual 

cluster afterwards, we would be able to distinguish more cell types within each 

one. Indeed, in Li et al., the authors initially identify 12 Projection Neuron clusters, 

and it is after analyzing the data with a newly developed machine-learning 

iterative algorithm that they distinguish up to 35 clusters of cells. Davie and 

colleagues identify between 87 and 151 clusters from their population of cells. It 

is likely due to the large dataset generated in the paper, as well as to the diverse 

time points (animal age) used to produce the data. 

Very interestingly, with the analyses performed, we were able to identify clusters 

of cells expressing many of the known marker genes reported in the two papers, 

indicating that, although the number of processed cells was much lower, we were 

able to recover most of the known cell populations present in the fruit fly brain. 

Although the main objective of the current project was not to perform and 

exhaustive analysis of the reference datasets but implementing a personalized 

pipeline to apply it afterwards to our own data, we can envision some 

improvements for further analyses of these datasets. 
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First, we suggest to analyze all datasets without removing the duplicates of UMI-

containing samples. We would expect the batch effect to be even lower than the 

observed one and Smart-Seq2 samples from Li et al. to cluster altogether with 

the 10X cells. 

Second, we would implement more clustering methods; although the ones tested 

for this project did not improve the performance of the Seurat clustering, there 

are many more methods that could be optimized for this dataset, as the machine 

learning algorithm developed in Li’s paper (Li et al., 2017). 

Third, we would represent also a higher number of known Drosophila brain 

markers in the dimensionality reduction plots. In addition, we suggest to explore 

deeper the expression pattern of the marker genes identified by Seurat to try to 

characterize other clusters in the reference dataset. 

Last, we would subcluster the clusters already identified to foster the small 

differences of cells showing a similar transcriptional profile, enhancing the 

characterization of smaller populations of cells. 
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3 Analysis	of	MARS-Seq	scRNA-Seq	data	
from	Drosophila	wing	imaginal	discs	

 

3.1. Description of the dataset 

The last part of the current project involves the analysis of a scRNA-Seq dataset 

performed by Marina Ruiz-Romero in our group. 

The single-cell dataset generated in our lab was performed with cells isolated 

from two wing imaginal discs from Drosophila melanogaster. Imaginal discs are 

the structures in the larvae that give rise to the diverse appendices in the adult 

animal and, in this case, to the adult wings (for a review see (Ruiz-Losada et al., 

2018)). The adult wing, actually, evaginates during metamorphosis from the 

central part of the wing disc, called wing pouch. The rest of the wing imaginal disc 

give rise to other structures in the adult, such as muscle and part of the thorax. 

Thus, to isolate cells giving rise only to the adult wing, the wing pouch was marked 

by expressing the fluorescent protein GFP under the control of the nubbin driver 

(nub>GFP). Afterwards, third instar larvae were manually dissected and cells 

were disaggregated by enzymatic digestion of the extracellular matrix. 

Cells from two independently disaggregated wing discs were analyzed by flow 

cytometry and GFP positive cells were sorted onto one 384-well plate, this is, 192 

cells per disc. To remove the putative batch effect produced by the independent 

processing of the two tissues, libraries for single-cell sequencing were prepared 

in two batches. In each batch, 50% of cells from each disc were included. 

Libraries were prepared by using the MARS-Seq technique. This technology, that 

has not been analyzed before in this project, is one of the first methodologies that 

was implemented to perform scRNA-Seq experiments (Jaitin et al., 2014) and it 

is actually very similar to the original CEL-Seq protocol, in the sense that 

amplification of barcoded RNA is performed by in vitro transcription, but libraries 

are prepared within the well-plate. 
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3.2. Pre-processing, mapping, quantification, filtering and normalization of the 

dataset 

Our data contain UMI information and, in consequence, it will be processed as 

10X and CEL-Seq2 datasets. However, in our case, fastq files had been already 

demultiplexed by the sequencing facility and two files were provided per cell: 

read1, containing the read sequence, and read2, containing the cell barcode and 

the UMI. Besides, two runs of sequencing were performed to increase the 

sequencing coverage and improve the gene detection per cell. 

Thus, the first step of the preprocessing consisted in the concatenation of the two 

fastq files generated in each sequencing run per cell. We next generated a 

whitelist with the cell barcodes by using the whitelist options --extract-

method=regex --bc-pattern="(?P<cell_1>.{6})(?P<umi_1>.{8})". These options 

indicate the whitelist tool that cell barcodes correspond to the first 6 nucleotides 

of the read, whereas the remaining 8 nucleotides represent the UMI. Finally, cell 

barcodes were extracted from read2 and incorporated into read1 sequence 

identifier. However, to perform the extraction of the barcodes, we were forced to 

change the extract method to --extract-method=string –bc-

pattern=CCCCCCNNNNNNNN, as the “regex” method failed when running. 

Mapping of scRNA-Seq reads was performed by using the same options as 

described for the reference datasets, and mapping statistics was computed per 

cell (figure 16). 

According to the statistics file, from the 384 cells, only 353 generated mapping 

statistics, meaning that the missing 31 cells did not contain any read, either 

because the library did not work or because no cell fell into the well when sorting. 

Median number of reads for the remaining cells is 500,000, although some cells 

reach the 2 million reads. Uniquely mapped reads represent an 80% of the total 

number of reads, whereas the proportion of multimapped and too multimapped 

reads (this is, more than 5 mapping positions in the genome and, thus, discarded) 

is, in general, very low (figure 16A). 
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Figure 16. Mapping and 

quantification statistics of 

MARS-Seq scRNA-Seq from 

fruit fly wing imaginal discs. A. 
Boxplot representing the total 

number of reads, the uniquely 

mapping and the 

multimapping. B. Number of 

detected genes regarding 

number of counts per cell. 

Cells are represenred 

according to the batch they 

were processed in. C. 
Proportion of mitochondrial 

reads per cell. D. Number of 

counts (UMIs) and genes 

detected per cell. Cells have 

been split by disc (disc1, disc2) and by batch (pink for batch1 and green for batch2). 

Mapped reads were, afterwards assigned to Drosophila genome, PCR duplicates 

were discarded and UMIs in each cell were quantified. As seen in figure 16B, we 

have not reached a plateau in gene detection, indicating that increasing the 

sequencing coverage could also increase gene detection per cell. 

Low-quality cells were next filtered out according to the proportion of reads falling 

into mitochondrial genes (figure 16C). Cells presenting more than 20% reads in 

mitochondrial genes, cells which are more than 3 MADs below the median log-

library size as well as cells for which less than 50 genes were detected were 

filtered out. Genes not detected in at least 5 cells were also discarded. After 

filtering, 262 cells and 5,146 genes were kept for further analyses. From these 

262 cells, 125 belong to disc1, and 137 to disc2. However, 178 cells were kept in 

batch1, while only 84 cells from batch2 passed the thresholds. This observation 

suggests a putative batch effect due to the independent processing of each batch. 

The lower number of counts and genes detected in the different batches is also 

observable in violin plots in figure 16D. 

Expression matrix was finally log normalized and scaled for further analyses. 
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3.3. Visualization by dimensionality reduction methods 

3.3.1. Identification and characterization of highly variable genes 

Figure 17. Highly 

variable genes from 

MARS-Seq. A. 
Dispersion is 

represented by average 

expression per gene. 

Variable genes are 

depicted in red. B. 
Biological Processes 

(upper panel) and KEGG 

Pathways (lower panel) 

enriched in variable genes. 

To visualize the MARS-Seq wing cells by dimensionality reduction methods, we 

first computed the highly variable genes from the 5,146 genes in the expression 

matrix. From these genes, 781 were identified as variable (figure 17A). GO Term 

Enrichment analysis of this subset of genes only showed categories related to 

RNA processing and splicing (figure 17B). 

3.3.2. Visualization of scRNA-Seq data 
Figure 18. PCA analysis of wing 

scRNA-Seq data. Left panel, cells 

are colored by disc. Right panel, 

cells are colored by library batch. 

We next computed principal 

components taking into 

account the 781 variable 

genes in the dataset. PCA 

plots show no batch effect due 

to the independent disaggregation of the larval wings (figure 18, left panel); 

however, and as expected, there is a strong batch effect promoted from the library 

preparation batches that drives the first two principal components in the PCA plot. 

The same batch effect is observed in t-SNE and UMAP dimensionality reduction 

plots (see appendix, MARS section). In this case, the batch effect cannot be 

ignored, and batch effect correction is essential. 
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3.4. Batch effect removal 

Batch effect removal in MARS-Seq dataset was assessed by two different 

methods: mutual-nearest-neighbor (MNN) from scran (FastMNN) and canonical 

correlation analysis (CCA) from Seurat (RunCCA). In this section, however, we 

are going to detail the latest, as it performed better and was the selected tool for 

our further analyses (see appendix MARS-Seq section for FastMNN results). 

Thus, as in the previous chapter, we reloaded each expression matrix according 

to the library batch each cell was processed in. In the previous sections, we saw 

that a higher number of cells was discarded from batch2, likely due to an issue in 

the library preparation of this subset of cells. So, we performed an independent 

analysis for the two datasets, being the batch1 formed by 178 and batch2 by 84 

cells (figure 19). 

 
Figure 19. Batch effect correction by CCA. A. Variable genes and PCA of cells from library 

batch1. B. Variable genes and PCA of cells from library batch2. C. Variable genes and 

dimensionality reduction plots of cells after CCA correction (from left to right, PCA, t-SNE and 

UMAP). 

After processing, we identified 791 variable genes within batch1 and 589 variable 

genes within batch2 (figure 19A and B). When performing PCA analysis for each 

batch, cells from disc1 and disc2 seem to gather without showing any particular 
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clustering, confirming that no batch effect was generated when isolating the cells 

from the tissues. 

After CCA correction, 823 genes were selected as variable (figure 19C). The CCA 

correction has certainly removed most of the batch effect detected across 

libraries, as seen in PCA and t-SNE plots. UMAP plot still shows segregation of 

some cells according to their batch, but is has been greatly reduced (compare to 

UMAP in appendix, section MARS-Seq). 

3.5. Visualization of known marker genes 

Although no evident subpopulations of cells were observed in the dimensionality 

reduction plots, we next aimed to identify cell types and clusters in the dataset. 

First approach was, then, to visualize known wing marker genes in UMAP 

dimensionality reduction plots (figure 20). 

Figure 20. Visualization of 

known marker genes. A. 
Wing pouch marker gene. 

B. Posterior compartment 

marker genes. C. Anterior 

compartment marker gene. 

D. Dorsal compartment 

marker gene. E. Intervein 

regions marker gene. 

The driver selected to 

isolate the wing pouch 

cells from the rest of 

cells of the wing 

imaginal disc was 

nubbin, and thus, we expected this gene to be expressed in almost all cells of the 

dataset (figure 20A). Unfortunately, the expression level is either very low or 

absent in many cells, indicating that either we have not reached enough 

sequencing coverage to detect the expression of ubiquitous genes or that MARS-

Seq technology does not perform as expected for this kind of samples. The same 

happens for the other marker genes tested (figure 20B-E). Anterior and posterior 

markers, for instance, should be complementary, representing each one around 
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50% of the cells, but the expression level of all of them is very low and no specific 

pattern is observed. 

3.6. Identification and characterization of clusters and marker genes 

To finally determine the identity of the cells in our dataset, we asked Seurat to 

identify clusters and the marker genes representing these clusters within our 

experiment (figure 21). In this way, we identified 4 clusters (figure 21A, for PCA 

and t-SNE reduction plots see appendix, section MARS-Seq). Cluster 0 was 

formed by 101 cells, cluster 1 by 89 cells, cluster 2 by 43 cells and cluster 3 by 

29 cells. A part from cluster 0, the other 3 clusters were not very well discriminated 

in the UMAP plot, being all cells mixed in a central cloud of dots. Again, this 

seems to be caused by the lack of detection of many marker genes in all cells 

belonging to a cluster, as seen in figure 21B, where expression of top 

representative marker genes of each cluster is depicted. No evident expression 

pattern is observed in the heatmap, indicating that the clustering is driven by the 

expression of few common genes. 
Figure 21. Clusters and top 

marker genes of wing scRNA-

Seq dataset. A. UMAP plot of 

clusters identified by Seurat. B. 
Heatmap of expression of top 

marker genes found in each 

cluster. C. Expression of the 4 

marker genes showing highest 

variability across clusters. D. 

UMAP plot of expression of the 

same marker genes as in C. 

From the marker genes with 

highest variability across 

clusters, we selected the 

top 4 and depicted their 

expression as violin plots 

(figure 21C) and in each cell 

in UMAP dimensionality 

reduction plots (figure 21D). The top two marker genes were, actually, 

pseudogenes (CR45859 and CR40741) (Thurmond et al., 2019), and they were 
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higher expressed in cluster 0 than in the other populations. The third top marker 

gene, fog, is a gene involved in gastrulation and axon guidance and it is 

expressed in cluster 0 and 2. The fourth marker gene, snRNA:7SK, is a small 

nuclear RNA and it is almost exclusively expressed in cluster 0. All in all, none of 

top marker genes seems to be strongly related to wing development or 

morphogenesis. 

With the aim of further characterizing the clusters, we finally performed a GO 

Term Enrichment of the representative genes of each cluster (figure 22). 

 
Figure 22. Gene Ontology Term Enrichment of MARS-Seq clusters. A. Biological process 

categories enriched in cluster 0. B. Biological process categories enriched in cluster 1. C. 
Biological process categories enriched in cluster 2. 

From the 4 clusters, only 3 showed categories enriched for Biological Process 

classification. The enriched categories were related to metabolic (cluster 1) and 

hormone (cluster 2) processes. Cluster 0 only showed two categories: snRNA 

modification and cold acclimation, with no apparent relationship. 

3.7. Discussion of the results 

In the last part of the project, we have analyzed scRNA-Seq data generated by 

Marina Ruiz-Romero in our laboratory. The sample was obtained from developing 

tissues from Drosophila melanogaster, in particular, from third instar larvae wing 

imaginal discs. Two wing imaginal discs were manually isolated and sorted into 

384-well plates. Libraries were performed according to MARS-Seq protocol, 

developed in Ido Amit’s lab as a high-throughput improvement of the CEL-Seq 

protocol (Jaitin et al., 2014). Two batches of libraries were generated, each one 
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containing 50% of cells of each isolated wing. Samples were finally pooled after 

library preparation and two runs of sequencing were performed, reaching a 

coverage of 500,000 reads per cell, on average. However, despite the high 

coverage, the number of detected genes per cell is not very high. Further analysis 

of the samples uncovered an issue in one of the library batches, for which more 

than 50% of cells were removed due to a low quality of the library. Upon cells 

removal, the batch effect still was driving cell variability, as seen in the 

dimensionality reduction plots. Thus, batch effect correction was essential to 

perform further analyses on these data. After CCA batch effect removal, cells 

clustered altogether independently of the disc and the library batch. 

Nevertheless, the quality of the libraries was not high enough to identify different 

cell populations within the dataset. This is evident when representing the 

expression of known wing marker genes. There is not clear expression pattern of 

any of them in any subpopulation of cells. The same happens with marker genes 

identified by Seurat. All this indicates that, either the sequencing coverage is not 

high enough, or quality of libraries is very limited. Given that sequencing coverage 

in MARS-Seq samples reached the 0.5M reads/cell, ten times more than the 

sequencing performed in 10X Chromium samples from Davie et al. (Davie et al., 

2018), we speculate that the technology used to generate the data was not the 

most appropriate for our samples. 

Another factor that could have influenced our analyses is the low diversity of the 

cells in the dataset. As stated above, only cells from the wing pouch were isolated 

to perform the scRNA-Seq experiments. Although the wing pouch is formed by 

many different cell types (anterior/posterior and dorso/ventral compartments, 

boundaries, veins and interveins) (Ruiz-Losada et al., 2018), the transcriptional 

signature of these cell types is very similar, as all of them represent epithelial 

cells in a similar differentiation state. The lack of variability between cell types 

would not allow for a clear discrimination between them. Indeed, in a recent work 

from Boutros and Teleman labs (Josephine Bageritz, 2018) on full third instar 

larvae wing imaginal discs, cells from different parts of the wing disc cluster 

separately, but cells from the wing pouch cluster altogether and no subpopulation 

is observed within this region, suggesting that, certainly, the variability between 

these cells is not high enough to discriminate any particular cell type.  
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4 Conclusions	
 
 
1. The reference datasets analyzed from Li et al. and Davie et al. publications, 

generated on brain isolated cells using 4 different technologies show strong 

differences at the level of sequencing coverage. At level of gene detection, the 

differences are highly reduced. 

2. These referent datasets also show a mild batch effect generated by the usage 

of four different technologies. CCA correction reduces satisfactorily this bias. 

3. Dimensionality reduction methods distinguish several populations of cells 

within the reference datasets. From PCA, t-SNE and UMAP, UMAP is the method 

that discriminates more clusters of cells, allowing for a better visualization of the 

data. 

4. Expression of known marker genes has allowed for the identification of several 

populations of known brain cell types in Drosophila, such as photoreceptors and 

astrocytes. 

5. By using unsupervised methods, we have been able to identify up to 17 

clusters of cells. Highly variable marker genes representing these clusters have 

also been identified, and their expression shows specific patterns along the 

different clusters of cells. 

6. From the 17 identified clusters, we have been able to fully characterize 8 

clusters, mainly due to the expression of known and automatically identified 

marker genes. Gene Ontology Term Enrichment analysis of cluster marker genes 

has not provided significant information on most of them. 

7. From the 4 methodologies employed to produce the scRNA-Seq datasets, 10X 

Chromium seems to be the one performing better, given the low sequencing 

coverage reached and the high number of detected genes per cell. 

8. From the several pipelines evaluated during the first part of the project, Seurat 

is the most complete and user-friendly one, performing almost all possible tasks 

in the analysis. However, other pipelines have been used to perform specific 

analyses, such as the low-quality library filtering performed by scater. The 
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pipelines selected from the previous study have been used to analyze our 

scRNA-Seq data generated in Drosophila wing imaginal discs. 

9. Cells sequenced using MARS-Seq technology in our lab present a high 

sequencing coverage (500,000 reads per cell, on average). However, plateau of 

gene detection per number of counts has not been reached. 

10. This dataset shows a strong batch effect due to the two library preparation 

batches. CCA correction also removes almost all batch effect in this dataset. No 

batch effect is detected for the independent handling of the two wing imaginal 

discs. 

11. After batch effect correction, highly variable genes between cells are related 

to RNA processing categories. 

12. Known marker genes visualized in UMAP dimensionality reduction plots show 

very low levels of expression and no clear expression patterns in the population 

of cells. 

13. Unsupervised cluster detection has identified 4 different clusters, not well-

discriminated within the dimensionality reduction plots. 

14. Top highly-variable marker genes in each cluster show very sparse 

expression within each population of cells. 

15. The low level of expression of marker genes and the low variability between 

cells in the dataset has not allowed to fully characterize any of the clusters 

identified. 

  



51 
 

  

5 Glossary	
	

BC, barcode 

CCA, canonical correspondence analysis 

CEL-Seq, cell RNA-Seq 

CIDR, Clustering through Imputation and Dimensionality Reduction 

DNA, deoxyribonucleic acid 

EBI, European Bioinformatics Institute 

eRNA, enhancer RNA 

GEO, Gene Expression Omnibus 

GWAS, genome-wide association study 

HCA, Human Cell Atlas 

MNN, Mutual Nearest-Neighbors 

NCBI, National Center for Biotechnology Information 

NGS, Next Generation Sequencing 

PCA, Principal Component Analysis 

PCR, Polymerase Chain Reaction 

QC, Quality Control 

RNA, ribonucleic acid 

RNA-Seq, high-throughput sequencing of RNA 

SNN, Shared Nearest-Neighbors 

scRNA-Seq, single-cell RNA-Seq 

t-SNE, t-distributed Stochastic Neighbor Embedding 

UMAP, Uniform Manifold Approximation and Projection 

UMI, Unique Molecular Identifier 
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7 Appendix	
 
To facilitate the handling of the documents and the visualization of the code and 

the plots generated along the project, appendix sections corresponding to R 

pipelines (Brain, CIDR, scran and MARS) will be provided as html files attached 

to this document. 

Bash scripts are detailed below. 

 

Bash_scripts 

 

01_Concatenate_files 
 
#!/bin/bash 
 
#$ -N concatenate 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
#$ -t 1-768 # substitute n by the number of files you have 
 
# Input files 
input=$( cat /sperez/masterBioinfo/01_datasets/MARS_Seq/input.txt | /bin/sed -
n ${SGE_TASK_ID}p ) && 
 
cp /sequences/fly/single-cell/fastq/2016-11-05/$input.gz fastq/ && 
cp /sequences/fly/single-cell/fastq/2017-02-02/$input.gz . && 
gzip -d fastq/$input.gz && 
gzip -d $input.gz && 
cat $input fastq/$input > fastq/$input.cat.fq && 
rm fastq/$input && 
rm $input && 
 
exit 
 
 
02_Rename_reads 
 
#!/bin/bash 
 
#$ -N rename 
#$ -cwd 
#$ -j y  # Merge error/output logs 



56 
 

  

#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
#$ -t 1-768 # substitute n by the number of files you have 
 
# Input files 
 
input=$( cat / sperez/masterBioinfo/01_datasets/MARS_Seq/input.txt | /bin/sed -
n ${SGE_TASK_ID}p ) && 
 
awk 'BEGIN{FS=":"}{print $1}' 
sperez/masterBioinfo/01_datasets/MARS_Seq/fastq/$input.cat.fq > 
renamed_fastq/$input && 
 
exit 
 
 
03_Generate_whitelist 
 
#!/bin/bash 
 
#$ -N whitelist 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
#$ -t 1-2 # substitute n by the number of files you have 
 
# Input files 
input=$( cat /sperez/masterBioinfo/01_datasets/MARS_Seq/input_2.txt | /bin/sed 
-n ${SGE_TASK_ID}p ) && 
 
mkdir whitelist/$input && 
cd whitelist/$input && 
 
~/.local/bin/umi_tools whitelist --stdin 
/sperez/masterBioinfo/01_datasets/MARS_Seq/renamed_fastq/"$input"_2.fq --
extract-method=regex --bc-pattern="(?P<cell_1>.{6})(?P<umi_ 
1>.{8})" --log2stderr > 
/masterBioinfo/01_datasets/MARS_Seq/whitelist/$input/"$input"_whitelist.txt && 
 
cd ../../ && 
 
exit 
 
 
04_Extract_barcodes 
 
#!/bin/bash 
 
#$ -N extract_umi 
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#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
input=$( cat 
/no_backup_isis/rg/sperez/masterBioinfo/01_datasets/MARS_Seq/input_2.txt | 
/bin/sed -n ${SGE_TASK_ID}p ) && 
mkdir extracted_files/$input && 
cd extracted_files/$input/ && 
 
~/.local/bin/umi_tools extract --extract-method=string --bc-
pattern=CCCCCCNNNNNNNN --stdin 
sperez/masterBioinfo/01_datasets/MARS_Seq/renamed_fastq/"$input"_2.fq --
read2-in 
sperez/masterBioinfo/01_datasets/MARS_Seq/renamed_fastq/"$input"_1.fq --
stdout 
sperez/masterBioinfo/01_datasets/MARS_Seq/extracted_files/$input/"$input"_ 
1_extracted.fastq --read2-
out=/sperez/masterBioinfo/01_datasets/MARS_Seq/extracted_files/$input/"$inp
ut"_2_extracted.fastq 
 
cd /sperez/masterBioinfo/01_datasets/MARS_Seq/ 
 
exit 
 
 
05_Mapping 
 
#!/bin/bash 
 
#$ -N map_fastq 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=6:00:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
input=$( cat /sperez/masterBioinfo/01_datasets/MARS_Seq/input_2.txt | /bin/sed 
-n ${SGE_TASK_ID}p ) && 
mkdir mapping/$input && 
cd mapping/$input && 
 
/sperez/masterBioinfo/tools/STAR-2.7.0f/bin/Linux_x86_64/STAR --genomeDir 
/sperez/masterBioinfo/tools/genomeDir/ --sjdbGTFfile /sperez/ma 
sterBioinfo/tools/subread-1.6.4-Linux-
x86_64/annotation/Drosophila_melanogaster.BDGP6.95.gtf --
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outFilterMultimapNmax 5 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
outFilterMismatchNover 
ReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --
alignMatesGapMax 1000000 --readFilesIn  
/sperez/masterBioinfo/01_datasets/MARS_Seq/extracted_files/$input/"$input 
"_2_extracted.fastq --outSAMtype BAM SortedByCoordinate && 
 
cd / rg/sperez/masterBioinfo/01_datasets/MARS_Seq/ && 
 
exit 
 
 
06_Mapping_statistics 
 
#!/bin/bash 
 
#$ -N map_statistics 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o ../logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=1G,h_rt=0:05:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
input=$( ls / sperez/masterBioinfo/01_datasets/MARS_Seq/mapping/ | /bin/sed -
n ${SGE_TASK_ID}p ) && 
cd mapping/$input/ && 
 
head -6 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print "total_reads", $2}' > 
total_number_reads.txt 
head -9 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print 
"uniquely_mapped_reads", $2}' > uniquely_mapped_reads.txt 
head -10 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print $2}' | awk 'BEGIN{FS 
= "%"}{print "prop_uniquely_mapped_reads", $1}' > 
proportion_uniquely_mapped_reads.txt 
head -24 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print 
"multimapping_mapped_reads", $2}' > multimapped_reads.txt 
head -25 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print $2}' | awk 'BEGIN{FS 
= "%"}{print "prop_multimapped_reads", $1}' > 
proportion_multimapped_reads.txt 
head -26 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print 
"too_multimapped_mapped_reads", $2}' > tooMultimapped_reads.txt 
head -27 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print $2}' | awk 'BEGIN{FS 
= "%"}{print "prop_tooMultimapped_reads", $1}' > 
proportion_tooMultimapped_reads.txt 
head -30 Log.final.out | tail -1 | awk 'BEGIN{FS = "|"}{print $2}' | awk 'BEGIN{FS 
= "%"}{print "prop_tooShort_reads", $1}' > proportion_tooShort_reads.txt 
 
cat total_number_reads.txt uniquely_mapped_reads.txt 
proportion_uniquely_mapped_reads.txt multimapped_reads.txt 
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proportion_multimapped_reads.txt tooMultimapped_reads.txt 
proportion_tooMultimapped_reads.txt proportion_tooShort_reads.txt > 
/sperez/masterBioinfo/01_datasets/MARS_Seq/statistics/"$input"_mapping_stat
istics.txt 
 
rm total* 
rm uniquely* 
rm proportion* 
rm multimap* 
rm too* 
 
cd /sperez/masterBioinfo/01_datasets/MARS_Seq/ 
 
exit 
 
 
07_Join_statistics 
 
#!/bin/bash 
 
#$ -N joinStatistics 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
 
# Run 
 
for i in $(cat samples.txt); 
do 
    join $i tmp.tsv > tmp2.tsv 
    mv tmp2.tsv tmp.tsv 
done 
 
exit 
 
 
08_Assign_features 
 
#!/bin/bash 
 
#$ -N featureCounts 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=6:00:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
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input=$( ls / sperez/masterBioinfo/01_datasets/MARS_Seq/mapping/ | /bin/sed -
n ${SGE_TASK_ID}p ) && 
mkdir featureCounts/$input && 
cd featureCounts/$input && 
 
/sperez/masterBioinfo/tools/subread-1.6.4-Linux-x86_64/bin/featureCounts -a 
/sperez/masterBioinfo/tools/subread-1.6.4-Linux-
x86_64/annotation/Drosophila_me 
lanogaster.BDGP6.95.gtf -o gene_assigned -R BAM 
/sperez/masterBioinfo/01_datasets/MARS_Seq/mapping/$input/Aligned.sortedB
yCoord.out.bam -T 4 && 
 
samtools sort Aligned.sortedByCoord.out.bam.featureCounts.bam 
assigned_sorted.bam && 
samtools index assigned_sorted.bam.bam && 
 
cd /sperez/masterBioinfo/01_datasets/MARS_Seq/ 
 
exit 
 
 
09_UMI_quantification 
 
#!/bin/bash 
 
#$ -N umi_toolsCount 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=6:00:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
input=$( ls /sperez/masterBioinfo/01_datasets/MARS_Seq/mapping/ | /bin/sed -
n ${SGE_TASK_ID}p ) && 
mkdir count/$input && 
cd count/$input && 
 
~/.local/bin/umi_tools count --per-gene --gene-tag=XT --per-cell -I 
/sperez/masterBioinfo/01_datasets/MARS_Seq/featureCounts/$input/assigned_
sorted.bam.bam -S "$input"_count 
s.tsv.gz && 
 
cd /sperez/masterBioinfo/01_datasets/MARS_Seq/ && 
 
exit 
 
 
10_Generate_expressionMatrix 
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#!/bin/bash 
 
#$ -N generate_matrices 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
#$ -t 1-384 # substitute n by the number of files you have 
 
# Input files 
input=$( ls /sperez/masterBioinfo/01_datasets/MARS_Seq/mapping/ | /bin/sed -
n ${SGE_TASK_ID}p ) && 
cd matrices/ && 
 
# Run 
zcat 
/sperez/masterBioinfo/01_datasets/MARS_Seq/count/$input/"$input"_counts.tsv
.gz | grep -v "gene" | awk '{print $1, $3}' > "$input"_counts.tsv && 
cat /sperez/masterBioinfo/tools/genes2.txt | join - -a1 -a2 -e "0" -o "0,2.2" 
"$input"_counts.tsv >"$input"_counts_allGenes.tsv && 
rm "$input"_counts.tsv && 
cd /sperez/masterBioinfo/01_datasets/MARS_Seq/ && 
 
exit 
 
 
11_Join_matrices 
 
#!/bin/bash 
 
#$ -N joinMatrices 
#$ -cwd 
#$ -j y  # Merge error/output logs 
#$ -o logs/$JOB_NAME.$TASK_ID.log # folder for the logs 
#$ -l virtual_free=6G,h_rt=2:00:00 # ask for memory and time as needed 
 
# Run 
 
for i in $(cat samples.txt); 
do 
    join $i tmp.tsv > tmp2.tsv 
    mv tmp2.tsv tmp.tsv 
done 
 
exit 
 


