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A large number of decision-making processes in strategic sectors such as transport, production
and finance involve NP-hard problems. Trends such as globalization make systems larger and
more complex. Frequently, these problems are characterized by high levels of uncertainty and dy-
namism. Metaheuristics have become predominant methods for solving challenging optimization
problems in reasonable computing times. However, they frequently assume that the inputs, the ob-
jective functions, and the set of optimization constraints are deterministic and known in advance.
These constitute strong assumptions that lead to work on oversimplified versions of real-world
problems. As a consequence, the solutions obtained may have a poor performance when imple-
mented. Simheuristics integrate simulation into metaheuristics to solve stochastic optimization
problems in a natural way. Similarly, learnheuristics combine statistical learning and metaheuris-
tics to tackle optimization problems in dynamic environments, where inputs may depend on the
structure of the solution.

From a methodological perspective, the main contributions of this thesis are the design of
learnheuristics and a classification of works hybridizing statistical / machine learning and meta-
heuristics. It discusses the potential of learnheuristics in a number of fields and studies two specific
cases. The first is a routing problem in which the depots are heterogeneous, in terms of their com-
mercial offer, and customers show different willingness to consume depending on how well the
assigned depot fits their preferences. Thus, different customer-depot assignment maps lead to dif-
ferent customer-expenditure levels. Regression models are employed to capture the relationship
between each customer’s willingness to spend as a function of several variables, including the
assigned depot as well as other customer’s features (age, gender, etc.). The second case describes
a vehicle routing problem where each customer’s demand depends on the order in which the cus-
tomers are visited. Moreover, several applications are presented in transport, production, finance,
and computing. In the first field, the smart design of routes, including capacitated depots and ve-
hicles, are addressed analyzing stochastic demands, and sustainability indicators. Moreover, the
waste collection problem and a routing problem with a heterogeneous fleet, asymmetric costs and
site-dependency are studied. In the production arena, the optimization of jobs’ sequences under
stochasticity, considering multiple production lines and a common deadline, is discussed. Strate-
gies to invest on risky assets are proposed and assessed. Finally, the parameter fine-tuning of
metaheuristics and the effect of the number of agents and the computing time on metaheuristics’
performance are investigated.
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Un gran nombre de processos de presa de decisions en sectors estratègics com el transport, la pro-
ducció i les finances impliquen problemes NP-difícils. Tendències com la globalització fan que
els sistemes siguin cada cop més grans i complexos. Sovint, aquests problemes es caracteritzen per
alts nivells d’incertesa i dinamisme. Les metaheurístiques s’han convertit en mètodes molt popu-
lars per resoldre problemes d’optimització difícils en temps de càlcul raonables. No obstant això,
sovint assumeixen que els inputs, les funcions objectiu, i el conjunt de restriccions d’optimització
són deterministes i coneguts. Aquests constitueixen supòsits forts que obliguen a treballar en ver-
sions simplistes de problemes del món real. Com a conseqüència, les solucions poden conduir
a resultats pobres quan s’apliquen. Les simheurístiques integren la simulació a les metaheurís-
tiques per resoldre problemes d’optimització estocàstica d’una manera natural. Anàlogament,
les learnheurístiques combinen l’estadística amb les metaheurístiques per fer front a problemes
d’optimització en entorns dinàmics, on els inputs poden dependre de l’estructura de la solució.

Des d’un punt de vista metodològic, les principals contribucions d’aquesta tesi són el disseny
de les learnheurístiques i una classificació dels treballs que combinen l’estadística / l’aprenentatge
automàtic i les metaheurístiques. La tesi discuteix el potencial de les learnheurístiques en un
conjunt de camps i estudia dos casos específics. El primer és un problema de rutes en el qual els
magatzems són heterogenis, en termes de la seva oferta comercial, i els clients mostren diferents
disposicions a consumir en funció de com el magatzem assignat s’ajusti a les seves preferències.
Per tant, diferents mapes d’assignació de clients a magatzems condueixen a diferents nivells de
despesa. Es fan servir models de regressió per representar la relació entre la disposició de cada
client per consumir com una funció de diverses variables, incloent-hi el magatzem assignat, així
com característiques d’altres clients (edat, gènere, etc.). El segon cas descriu un problema de
rutes on la demanda de cada client depèn de l’ordre en què es visiten aquests. D’altra banda,
es presenten diverses aplicacions en el transport, la producció, les finances, i la informàtica. En
el primer camp, el disseny intel·ligent de rutes, incloent-hi magatzems i vehicles amb capacitat
limitada, s’aborda analitzant demandes estocàstiques i indicadors de sostenibilitat. A més a més,
el problema de la recol·lecció de residus i un problema de rutes amb una flota heterogènia, i costos
asimètrics i dependents del lloc s’estudien. En l’àmbit de la producció, es discuteix l’optimització
de seqüències de tasques considerant estocasticitat, múltiples línies de producció i una data límit.
Es proposen i avaluen estratègies per invertir en actius de risc. Finalment, s’investiguen la selecció
de valors dels paràmetres de les metaheurístiques i l’efecte de la quantitat d’agents i del temps de
càlcul en el rendiment de les metaheurístiques.
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Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte,
la producción y las finanzas implican problemas NP-difíciles. Tendencias como la globalización
hacen que los sistemas sean cada vez más grandes y complejos. Con frecuencia, estos proble-
mas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas se han
convertido en métodos muy usados para resolver problemas difíciles de optimización en tiempos
de computación razonables. Sin embargo, suelen asumir que los inputs, las funciones objetivo y
el conjunto de restricciones de optimización son deterministas y se conocen de antemano. Estas
fuertes suposiciones conducen a trabajar en versiones simplificadas de problemas del mundo real.
Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento cuando se im-
plementan. Las simheuriśticas integran simulación en metaheurísticas para resolver problemas de
optimización estocástica de una manera natural. De manera similar, las learnheurísticas combi-
nan aprendizaje estadístico y metaheurísticas para abordar problemas de optimización en entornos
dinámicos, donde los inputs pueden depender de la estructura de la solución.

Desde un punto de vista metodológico, las principales aportaciones de esta tesis son el diseño
de las learnheurísticas y la clasificación de los trabajos que combinan estadística / aprendizaje
automático y metaheurísticas. La tesis discute el potencial de las learnheurísticas en una serie de
campos y estudia dos casos específicos. El primero es un problema de enrutamiento en el que
los almacenes son heterogéneos, en términos de su oferta comercial, y los clientes muestran una
disposición diferente de consumir dependiendo de lo bien que el almacén asignado se ajuste a sus
preferencias. Por lo tanto, diferentes mapas de asignación de clientes a almacenes conducen a
diferentes niveles de consumo. Se utilizan modelos de regresión para representar la relación entre
la disposición de cada cliente a gastar en función de varias variables, incluyendo el almacén asig-
nado, así como las características de otros clientes (edad, género, etc.). El segundo caso describe
un problema de enrutamiento de vehículos en el que la demanda de cada cliente depende del orden
en que se visitan los clientes. Además, se presentan varias aplicaciones en transporte, producción,
finanzas e informática. En el primer campo, el diseño inteligente de rutas, incluyendo almacenes
y vehículos con capacidad limitada, se aborda analizando demandas estocásticas e indicadores de
sostenibilidad. También se estudia el problema de la recolección de residuos y un problema de
enrutamiento con una flota heterogénea, y costes asimétricos y en función del sitio. En el ámbito
de la producción, se analiza la optimización de secuencias de tareas considerando estocasticidad,
múltiples líneas de producción y un plazo común. Se proponen y evalúan estrategias para invertir
en activos de riesgo. Finalmente, se investigan el ajuste de parámetros de metaheurísticas y el
efecto del número de agentes y el tiempo de computación en el rendimiento de las metaheurísti-
cas.
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Chapter 1

Introduction

This chapter introduces the thesis. Its sections are: motivation, main goal and
original contributions, and dissertation outline.

1.1 Motivation
Metaheuristics constitute a heterogeneous family of algorithms designed to solve a high number
of complex combinatorial optimization problems (COPs) without having to deeply adapt them to
each problem (Boussaïd et al., 2013). They represent the first recourse forNP-hard problems that
are required to be solved in real time. Their quickness and flexibility to address realistic and rich
(i.e., complex) problems are two significant advantages in comparison to exact methods. However,
they can not guarantee optimal solutions, but tend to provide near-optimal ones. As synthesized in
Talbi (2009), “optimization is everywhere; optimization problems are often complex; then meta-
heuristics are everywhere”. Certainly, metaheuristics are highly popular among researchers and
companies, and may be found in a large number of fields. For instance, their use is frequent
in: routing, scheduling, telecommunications, machine learning, cryptology, etc. The first works
on heuristics (more experience-based procedures) were written in the 1940s (in particular, Polya,
1945, is considered to be the first), but metaheuristics started to be widely used in the 1970s and
1980s. Since then, their importance in operation research (OR) has rapidly increased.

Fields such as logistics (including both transport and production logistics), finance and com-
puting are strategic sectors for all developed economies. A number of complex decision-making
processes in real-life related applications can be modeled as COPs (Faulin et al., 2012). All theses
problems areNP-hard in nature, which leads to the use of metaheuristics. In logistics, road trans-
port is key for the efficient flow of goods in supply chains. The multi-depot vehicle routing prob-
lem (MDVRP) represents a non-trivial extension of the classical vehicle routing problem (VRP)
combining assignation and routing issues. In the MDVRP with heterogeneous depots (MDVRP-
HD), the customers show different willingness to consume depending on how well the assigned
depot fits their preferences. The MDVRP with stochastic demands (MDVRP-SD) allows demands
to follow probability distributions, either theoretical o empirical ones. Also in the routing arena,
the interest of the waste collection problem (WCP) and the WCP with stochastic waste levels
(WCP-SW) is growing due to the expansion of cities and the relevance of the negative external-
ities of this service. In fact, there is a growing concern for environmental and social impacts of
routing activities in general, which calls for the design of routes based on sustainability indica-
tors. Regarding production, task scheduling is present in the elaboration of products, the design
of timetables, etc. The permutation flowshop scheduling problem (PFSP) is a classical problem,
which usually aims to find the permutation of jobs that minimizes the total makespan, considering
different machines and related restrictions. For instance, the PFSP with stochastic processing times
(PFSP-ST) has been extensively studied during the last decade. Frequently, there is a product com-
posed of several components that need to be independently processed before a deadline, when they
have to be assembled and the product delivered. This problem is called distributed permutation
flowshop scheduling problem with stochastic times (DPFSP-ST). In finance, investments drive the
economic growth and social welfare of countries. Metaheuristics are becoming key methodolo-
gies for addressing a wide range of problems in this field. For instance, the portfolio optimization
problem (POP) consists in selecting a subset of risky assets from a portfolio and setting the weight
of the investment of each asset in order to minimize the portfolio’s variance for a given required
rate of return. Most works fail to account for stochastic returns and covariances, rendering them
unrealistic in the presence of heightened uncertainty in financial markets. On the contrary, the
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stochastic POP (SPOP) deal with returns and covariances modelled as random variables. Finally,
computing includes a large number of procedures that may be optimized. Some examples are the
parameter-fine tuning on metaheuristics, and the analysis of the effect of the number of agents and
the maximum computing time on metaheuristics’ performance.

Nowadays, there are two important trends in the literature on metaheuristics. The first sustains
the original ideas of metaheuristics: the practical usefulness and logic of simple methodologies
relying on local searches (see e.g., Gardi et al., 2014). In contrast, the second encompasses hybrid
methodologies, which benefit from the advantages of each component. Indeed, simplicity is an
important criteria to assess an algorithm. It facilitates the correct implementation of the algorithm
by researchers and companies. However, there are many reasons why an hybrid algorithm may
be required: (i) to obtain better results in terms of objective function values and/or computational
times; and (ii) to deal with more realistic and richer problems. For instance, most matheuristics
(Maniezzo et al., 2009) fall into the first case, solving a subproblem with an exact method. Talbi
(2013) presents the combinations of metaheuristics and: (i) complementary metaheuristics; (ii) ex-
act methods; (iii) constraint programming; and (iv) machine learning. While the author discusses
interesting ideas, the number of works cited is low and the proposed classification is neither based
on works nor on applications, but is a very general framework usable for all the combinations
mentioned. In the context of hybrid algorithms, there is another powerful type which combines
metaheuristics and simulation, so called simheuristics (Juan et al., 2015a). The framework has
been developed during the last years and aims to reduce the lack of works addressing stochastic
COPs (SCOPs) (Bianchi et al., 2009). Indeed, the literature has studied some of these problems
but usually relying on analytical approaches making hard assumptions or complex approaches. It
is crucial to address the stochasticity of these problems, since it is present in most real-life appli-
cations. For instance, traveling times greatly depends on factors which are difficult to predict (and
so their effects) such as the weather, road works, accidents, etc. Similarly, processing times in
scheduling can be affected by machine failures, delays in inputs delivers, etc.

This thesis studies and integrates powerful and well-known methodologies such as simulation,
metaheuristics and statistical learning. It presents several works aiming to further explore, test and
disseminate simheuristics. An original contribution is the development of learnheuristics com-
bining statistical learning and metaheuristics to deal with COP with dynamic inputs (COPDIs),
i.e., problems in which the inputs depend on the solution. A number of applications are ana-
lyzed, focusing on the fields previously mentioned: routing, production, finance, and computing.
A graphical representation of the main methodologies and applications is shown in Figure ??.

Figure 1.1: Scheme of key methodologies and applications of this thesis.

1.2 Main goal and original contributions
The main goal of this research is to explore the advantages of hybrid algorithms combining statisti-
cal learning and/or simulation techniques with metaheuristics. It facilitates the design of method-
ologies able to solve realistic and rich problems, avoiding hard assumptions usually present in
the related literature. This general goal has been concreted in the following results and original
contributions:
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C1. An original approach combining metaheuristics and statistical learning for solving COPDIs,
and a general classification and review of works combining statistical learning and meta-
heuristics.

C2. In the routing arena, efficient metaheuristics for solving the MDVRP-HD, the WCP, power-
ful simheuristics for addressing the MDVRP-SD, the WCP-SW, and the HSAVRP-SD, and
a novel approach considering sustainability indicators.

C3. Regarding production, a simple simheuristic for tackling the DPFSP-ST.

C4. Related to finance, a comprehensive review of works on portfolio optimization and risk man-
agement relying on metaheuristics, an efficient metaheuristic and simheuristic for address-
ing the POP and the SPOP, respectively, and an analysis of the benefits due to diversification
of introducing commodity futures in stock portfolios.

C5. Considering computing, a classification and an extensive review of works on the parameter
fine-tuning of metaheuristics, a methodology based on clustering techniques and design of
experiments (DOE) for the parameter fine-tuning of metaheuristics, and an analysis of the
effects of increasing the number of agents and the computing time on the performance of
well-known heuristics.

1.3 Dissertation outline
The rest of this thesis is structured in the following three blocks: methodology (chapters ?? to ??),
applications (?? to ??), and conclusions, future research, and contributions (?? and ??).

The first block focuses on the existing methodology employed and the pure methodological
contributions. In particular, chapter ?? introduces metaheuristics, describing their context, re-
viewing the main definitions and classifications, and presenting a few popular ones. Chapter ??
is devoted to simheuristics, i.e., the integration of simulation techniques into metaheuristics-based
frameworks to deal with SCOPs. Chapter ?? provides a brief definition of statistical learning,
highlighting the main branches and methods. Afterwards, chapter ?? puts forward learnheuristics,
which combine statistical learning and metaheuristics to address COPDIs.

The block of applications covers problems in transportation, production, finance, and comput-
ing. Chapter ?? analyzes five challenging transportation problems: the MDVRP-SD, the MDVRP-
HD, the MDVRP with sustainability indicators, the WCP, and the HSAVRP-SD. Different meta-
heuristics/simheuristics are designed, implemented and validated for them. In the context of pro-
duction, chapter ?? deals with the DPFSP-ST. Chapter ?? studies optimization problems in fi-
nance, presenting a review and focusing on the POP and the SPOP. Next, chapter ?? addresses the
parameter fine-tuning of metaheuristics, and discusses issues of parallel computing.

Finally, the last block draws some conclusions, and identifies potential lines of future work in
chapter ??, while lists the publications, and presentations in chapter ??.
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Chapter 2

Metaheuristics optimization

This chapter presents metaheuristics. After introducing them, the main classification
criteria are discussed, and biased randomization techniques are presented. Later,
the following ones are described: the multi-start, the iterated local search, the sim-
ulated annealing and the variable neighborhood search.
It is based on the following journal articles: Calvet et al. (2017), Calvet et al. (sub-
mitted[a]), and Calvet et al. (submitted[b]).

2.1 Introduction
OR is a well-established field with a huge and active research community. One of its main goals
is to support decision-making processes in complex scenarios, i.e., providing optimal (or near-
optimal) solutions to COPs defined by a given objective function and a set of realistic constraints.
The number of applications is immense, e.g.: transportation and logistics, finance, production,
and telecommunication systems. A noticeable part of the efforts developed by the OR commu-
nity has focused on developing exact methods to find optimal solutions to a wide range of COPs.
When dealing with NP-hard COPs, this usually requires simplifying somewhat the model and/or
addressing only small- and medium-sized instances to avoid incurring in prohibitive computing
times. Another noticeable part of the efforts has been invested in developing heuristic and meta-
heuristic approaches that cannot guarantee optimality of the provided solutions but are usually
more powerful in terms of the size of the instances they can solve in reasonable computing times
(Talbi, 2009). Additionally, these approximated methods are quite flexible, which makes them
suitable for tackling more realistic and richer models. While heuristics are simple and fast proce-
dures based on the specific COP being addressed, metaheuristics represent a heterogeneous family
of algorithms designed to solve a high number of COPs without having to deeply adapt them to
each problem.

Metaheuristics have an enormous number of applications in many fields such as: engineering
design, telecommunications, robotics, bioinformatics, system modeling, chemistry, and physics,
among many others. A number of them are nature-inspired, include stochastic components, and
have several parameters that must be fine-tuned and may interact (Boussaïd et al., 2013). As
Feo and Resende (1995) state, the effectiveness of metaheuristics depends upon their ability to
adapt to a particular instance problem, avoid entrapment at local optima, and exploit the structure
of the problem. The authors also highlight the potential benefit of restart procedures, controlled
randomization, efficient data structures, and preprocessing.

2.2 Classification
Many classification criteria have been proposed to differentiate metaheuristics (Talbi, 2009). The
most important are highlighted next.

• Memory usage versus memoryless methods.

• Iterative versus greedy. An iterative metaheuristic is built from one (or more) complete
solution, which is transformed at each iteration. On the other hand, a greedy algorithm
starts from an empty solution and, as the execution proceeds, it is built progressively.
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• Deterministic versus stochastic. A deterministic metaheuristic makes deterministic deci-
sions; consequently, using the same initial solution will lead to the same final solution.
Whereas with stochastic metaheuristics, one could obtain different solutions.

• Single-solution based search versus population-based search. Single-solution based meta-
heuristics transform a single solution during their execution. While in population-based
metaheuristics, a set of solutions is considered. The first group is exploitation oriented,
they intensify the search in local regions. In contrast, population-based metaheuristics are
exploration oriented, they allow a better diversification.

Figure ?? includes some of the most popular metaheuristics (first works are cited): ant colony
optimization (ACO) (Dorigo, 1992), artificial immune systems (AIS) (Farmer et al., 1986), ge-
netic algorithms (GA) (Holland, 1962), greedy randomized adaptive search procedure (GRASP)
(Feo and Resende, 1989), iterated local search (ILS) (Martin et al., 1992), particle swarm op-
timization (PSO) (Kennedy and Eberhart, 1995), scatter search (SS) (Glover, 1977), simulated
annealing (SA) (Kirkpatrick, 1984), tabu search (TS) (Glover, 1986), and variable neighborhood
search (VNS) (Mladenovic, 1995). They are grouped according to the following criteria: (i) single-
solution versus population-based metaheuristics (SMs and PMs, respectively); (ii) whether they
use memory; and (iii) whether they are nature-inspired. Circles’ size is proportional to the number
of Google Scholar indexed articles, from 2006 to 2015, that include the complete name of the
specific metaheuristic and “metaheuristics” or “heuristics” in the article (March 15, 2016). The
success of the first implementations of metaheuristics aroused the interest of journals in new ver-
sions of these methods, which increased the number of authors exploring this topic. Unfortunately,
some publications add only marginal contributions to the already existing frameworks (Sörensen,
2015). In this chapter four metaheuristics will be introduced: the multi-start (MS), the ILS, the
SA and the VNS. Despite being relatively simple, many state-of-the-art optimization methods are
based on them.

Figure 2.1: Main metaheuristics grouped by different criteria.

2.3 Biased randomization
In optimization, a heuristic is defined as a method for building a feasible solution based on an
iterative process. At each iteration, the next movement is chosen from a list of potential candidates
that has been previously sorted according to a problem-specific criterion. Pure greedy heuristics
select the best next element on the short run, aiming to get a good solution at the end. This simple
procedure has two drawbacks: (i) there is no guarantee of finding an optimal solution; and (ii) it is
deterministic, so it always returns the same solution. Some pure greedy heuristics are the classical
Clarke and Wright savings (CWS) heuristic (Clarke and Wright, 1964) in routing, and the NEH
heuristic (Nawaz et al., 1983) in scheduling.

Biased randomization (Grasas et al., submitted) refers to the introduction of randomization in
the construction phase and/or the neighborhood search of optimization algorithms. On the one
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hand, randomization allows increasing the search area covered by selecting a candidate other than
the best next option. On the other hand, biased means that the procedure is not totally random in
the sense that not all the elements have the same probability of being selected. In particular, each
element is assigned a given probability depending on the criterion of the procedure, the higher the
element is in the list, the higher the probability.

Thus, using biased randomization leads to potentially different outputs each time the procedure
is executed. Since running a simple heuristic may take a few seconds or less, implementing biased
randomization may improve the solution found taking small amounts of time. The assignation
of probabilities can be done by using empirical or theoretical probability distributions. There are
analytical expressions that allow the quickly generation of random observations from most theo-
retical distributions. For this reason, these distributions constitute an efficient option. Examples
of distributions widely used are the geometric, the triangular, and the log-normal. Algorithm ??
describes the steps required to implement biased randomization.

Algorithm 1 Biased randomization techniques

1: procedure Biased randomization
2: µ← get random number uniformly distributed in [0, 1) given a specific seed
3: ρ← get random number from a distribution PD(parameters, µ)
4: l← get the ρ element of the sorted list
5: return l
6: end procedure

Some recent works applying biased randomization are introduced here. The reader interested
in a comprehensive review is refered to Grasas et al. (submitted). In the context of smart cities,
Mazza et al. (2016) study the use of computation offloading for delegating computing-intensive
tasks of smart mobile devices to the cloud. The authors develop a biased-randomized algorithm
for solving this assignation problem. Related to real-life transportation activities, Dominguez et al.
(2016a) focus on the two-dimensional loading VRP with clustered backhauls, where both delivery
and pickup demands are composed of non-stackable items. This work presents a hybrid algorithm
integrating biased-randomised versions of vehicle routing and packing heuristics within a large
neighbourhood search (LNS) metaheuristic framework. Dominguez et al. (2016b) discuss the two-
dimensional loading capacitated VRP with heterogeneous fleet. A MS algorithm based on biased
randomization of routing and packing heuristics is proposed. Quintero-Araujo et al. (2016) solve
the location routing problem (LRP), which deals with the simultaneous decisions of: (i) locating
facilities; (ii) assigning customers to facilities; and (iii) defining routes of vehicles departing from
and finishing at each facility to serve the associated customers’ demands. A biased-randomized
metaheuristic relying on classical heuristics is proposed.

2.4 Multi-start
The MS is a simple metaheuristic consisting of two steps that are alternated for a certain number
of global iterations (Algorithm ??). They are: (i) generating a solution; and (ii) applying a local
search (i.e., a procedure to move from one solution to a better one by applying local changes).
Each iteration produces a solution, usually a local optimum, and the best one is returned. Muth
and Thompson (1963) and Crowston et al. (1963), both focused on scheduling, are considered the
first works proposing a MS framework. However, Glover (1977) is the one introducing a local
search to improve starting solutions. This author compared procedures for generating starting
values for variables and for generating values perturbed from other starting points (known as re-
starts), and adressed controlled randomization, learning strategies, induced decomposition, and
adaptive memory processes (Glover, 1986; Glover, 1989; Glover, 2000).

A comprehensive review on this metaheuristic is provided by Martí et al. (2013). This work
describes the origins of the methodology, includes a classification of versions in terms of their use
of memory, and introduces adaptive memory programming and the GRASP metaheuristic.
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Algorithm 2 Multi-start structure

1: procedure MS metaheuristic
2: repeat
3: Generate a solution s
4: s← LocalSearch(s)
5: until stopping criterion is met
6: end procedure

2.5 Iterated local search
The ILS metaheuristic is a flexible metaheuristic that became very popular at the beginning of this
century with the publication of Lourenço et al. (2010), an article that describes and analyzes its
framework, reviews the literature, explains the importance of each of the elements involved and
the interactions between them, and discusses its relationship with other metaheuristics. Burke et
al. (2010) show that the ILS obtains the best average performance among a set of selected meta-
heuristic approaches in three classical COPs: bin packing, PFSP, and personnel scheduling. The
authors also emphasize two main factors for its success: (i) an excellent balance between explo-
ration and exploitation by “systematically combining a perturbation followed by local search”; and
(ii) its simplicity and the reduced number of parameters required, factors that facilitate its quick
implementation in practical applications.

The high level architecture of the ILS is shown in Algorithm ??. First, an initial solution is
generated, usually employing a random solution or the return of a fast heuristic. Afterwards, a
local search is applied to the initial solution. It starts then an iterative process that stops when a
termination condition is met; this condition can be based on time, number of iterations or solution
converge, among others. Initially, the current solution is perturbed; this process may have memory,
i.e., depend on the previous walk (history). It is recommended to implement a random move in a
neighborhood of higher order than the one used by the local search algorithm. The following step
consists in applying a local search to the perturbed solution. This solution will become the next
element of the walk if it passes an acceptance test. Otherwise, one returns to the previous accepted
solution. The criteria designed can be adaptive.

An important advantage of this metaheuristic is its modularity, which enables its development
without problem-dependent knowledge. However, usually the most knowledge about the problem
one introduces, the best performance it gets. The metaheuristic relies on the assumption that local
minima are distributed in clusters.

Algorithm 3 Iterated local search structure

1: procedure ILS metaheuristic
2: Generate an initial solution s0
3: s∗ ← LocalSearch(s0)
4: repeat
5: s′ ← Perturbation(s∗, history)
6: s∗ ← AcceptanceCriterion(s∗, s′, history)
7: until stopping criterion is met
8: end procedure

2.6 Simulated annealing
The SA metaheuristic is a well-established metaheuristic used in both discrete and continuous op-
timization. It is inspired by the process of physical annealing with solids in which a crystalline
solid is heated, and then allowed to cool slowly until it achieves its most regular possible crystal
lattice configuration, without crystal defects (Nikolaev and Jacobson, 2010). Similarly, the meta-
heuristic searches a global solution following this thermodynamic behavior. Algorithm ?? shows
the steps in detail. First, a temperature change counter k is initialized to 0. Additionally, a starting
temperature t0 is set, a temperature cooling schedule is designed, and a repetition schedule Mk is
stablished, which represents the number of iterations executed at each temperature tk. An initial
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solution s is created, and an outer loop is started. In this loop, a repetition counter m is set to 0.
Afterwards, an inner loop starts which repeats the following steps Mk times: (1) a new solution
s′ in the neighborhood of s, N(s), is built; (2) the difference between the objective function value
of s′ and s, ∆s,s′ , is calculated; (3) if ∆s,s′ is negative (assuming a minimization problem), then
s′ replaces s, otherwise this replacement is performed with a probability of exp(−∆s,s′/tk); and
(4) m is incremented by one. After the inner loop stops, k is increased by one, which represents
a decrease in the temperature. The criterion applied to decide whether s must be replaced by s′

is called Metropolis acceptance criterion (Metropolis et al., 1953). It allows the algorithm to es-
cape from local optima. An interesting overview of this metaheuristic can be found in Suman and
Kumar (2006).

Algorithm 4 Simulated annealing structure

1: procedure SA metaheuristic
2: Build a solution s
3: Set temperature change counter k = 0
4: Design a temperature cooling schedule tk
5: Design a repetition schedule Mk

6: repeat
7: Set repetition counter m = 0
8: repeat
9: Build a solution s′ ∈ N(s)

10: Calculate ∆s,s′ = f (s′) − f (s)
11: if ∆s,s′ ≤ 0 then s← s′

12: elses← s′ with probability exp(−∆s,s′/tk)
13: end if
14: m← m + 1
15: until m = Mk

16: k ← k + 1
17: until stopping criterion is met
18: end procedure

2.7 Variable neighborhood search
The VNS was first proposed by Mladenović and Hansen (1997). Besides being a popular meta-
heuristic in combinatorial as well as global optimization, it has been used in a wide range of re-
search fields such as scheduling, routing, telecommunications, biology, and artificial intelligence.
For extensive reviews on applications the reader is referred to Moreno-Vega and Melián (2008)
and Hansen et al. (2010). In essence, the VNS proposes systematic changes of neighborhood to
find a local minimum by intensifying the search, and to escape from the associated valley by di-
versifying. It relies on three facts: (i) a local minimum with respect to one neighborhood structure
is not necessarily so for another; (ii) a global minimum is a local minimum with respect to all
possible neighborhood structures; and (iii) for many problems, local minima with respect to one
or several neighborhoods are relatively close to each other.

Algorithm ?? shows a simple version of the VNS. Its inputs are the problem instance to solve,
the number of neighborhoods considered (K), and the maximum computational time (T ). Fre-
quently, K is set to two or three, and the neighborhoods are nested. First, the variable t for
measuring the time is initialized at zero. Afterwards, an initial solution is obtained and stored
in currentSol. An outer loop sets the current neighborhood to the first one, and controls that the
time-based constraint is satisfied. Inside, another loop builds and tests new solutions. Within this
loop, the current solution is initially shaken (or perturbed), generating a solution from the k-th
neighborhood of currentSol. The resulting solution is stored in newSol, which is then improved
by means of a local search. If there is an improvement (i.e., newSol is preferred over currentSol),
newSol is copied into currentSol, and the current neighborhood is set to the first. This constitutes
a descendent phase aimed to find a local minimum. Otherwise, the next neighborhood is analyzed
(i.e., k is set to k + 1). The inner loop is executed until the last neighborhood is explored (i.e.,
k = K). Finally, currentSol is returned.
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Algorithm 5 Variable neighborhood search structure

1: procedure VNS metaheuristic
2: Set K
3: t ← 0
4: Generate an initial solution s0
5: s∗ ← s0
6: repeat
7: k ← 1
8: while k ≤ K do
9: s′ ← Shake(s∗, k)

10: s′ ← LocalSearch(s′)
11: if s′ � s∗ then
12: s∗ ← s′

13: k ← 1
14: else
15: k ← k + 1
16: end if
17: end while
18: until stopping criterion is met
19: end procedure
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Chapter 3

Simulation and simheuristics

This chapter presents simheuristics, including a literature review and a discussion
of benefits and limitations.
It is based on the following journal articles: Calvet et al. (submitted[a]), Calvet
et al. (submitted[b]), Gruler et al. (2017), Gruler et al. (submitted), and Pages et al.
(submitted).

3.1 Introduction
Metaheuristics constitute a powerful approach to tackle COPs, they are indeed highly popular in
many research fields. However, these methodologies have been developed considering determin-
istic problems (i.e., ignoring stochasticity) when, in fact, real-life is plenty of uncertainty. For
example, in garbage collection or stocking of vending machines, the demand is not revealed until
the place is reached. Other situations in which there is unknown information are flight scheduling
and capital management. Unfortunately, the oversimplification of scenarios, i.e., assuming no un-
certainty, can lead to poor-quality solutions. This is the reason why there is an increasing interest
in considering randomness in COPs (Bianchi et al., 2009).

Simheuristics (Juan et al., 2015a) is an approach combining metaheuristics (in a general sense,
i.e., including heuristics, metaheuristics, and exact methods, among others) and simulation (Nance
and Sargent, 2002; Borshchev and Filippov, 2004; Gass and Assad, 2005), specially designed to
tackle COPs containing stochastic components. These components can be modeled as random
variables following either theoretical or empirical probability distributions, and can be located in
the objective function (for instance, random processing times) or in the set of constraints (e.g.,
deadlines that must be met with a given probability).

3.2 Simheuristics
A simheuristic algorithm is a particular simulation–optimization approach oriented to efficiently
tackle a COP instance that typically contains stochastic components. These components can either
be located in the objective function (e.g., random customers’ demands) or in the set of constraints
(e.g., deadlines that must be met with a given probability). In particular, the simheuristic approach
is aimed at solving COPs of the form:

Min f (s) = E[C(s)] or, alternatively,
Max f (s) = E[B(s)] (3.1)

subject to: P(qi(s) ≥ li) ≥ ki ∀i ∈ {1, 2, . . . , n} (3.2)

h j(s) ≤ r j ∀ j ∈ {1, 2, . . . ,m} (3.3)

s ∈ S (3.4)

where: (i) S represents a discrete space of possible solutions s to the optimization problem; (ii)
C(s) represents a stochastic cost function (alternatively, B(s) represents a stochastic profit or in-
come function); (iii) E[C(s)] represents a probabilistic measure of interest associated with the cost
function (e.g., the expected value of C(s)); (iv) Equations ?? represent probabilistic constraints
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related to the problem (e.g., the probability that the service quality q(s) reaches a given threshold
l is above a user-defined value k); and (v) Equations ?? represent typical deterministic constraints
in COPs.

The simheuristic approach relies on the assumption that high-quality solutions for the de-
terministic version of a COP are also likely to be high-quality solutions for its corresponding
stochastic version, specially in scenarios with a low or moderate uncertainty (variance).

The steps proposed to solve a SCOP instance are described next (see also Figure ??). First,
a deterministic counterpart of the instance is obtained, for example, by replacing random vari-
ables by their expected values. Afterwards, an iterative process is started. It consists in running
a metaheuristic-driven algorithm to perform an efficient search inside the solution space associ-
ated with the deterministic COP first, and then estimating the quality or feasibility of each of the
promising solutions when being considered as solutions of the SCOP instance. These estimations
are computed using simulation techniques. The estimated values can be employed to keep a ranked
list of the best solutions for the SCOP instance. Once a stopping criteria is met, more accurate
estimates are obtained for the best solutions with an intensive simulation process. The advantages
of this approach are numerous: it benefits from the extensive literature research related to solve
deterministic COPs, and is simple, easy-to-understand and to-implement, efficient, and capable of
solving realistic problems.

Figure 3.1: Scheme of the simheuristic approach. Source: Juan et al. (2015a)



3.2. Simheuristics 15

After identifying a set of high-quality solutions (those that provide the highest average perfor-
mance), the risk aversion of the decision-maker can be taken into account by performing a risk
analysis. It is done by studying the empirical probability distribution functions of the quality and
feasibility measures computed during the intensive simulation process. An easy and fast proce-
dure can be to provide a multiple box-plot including the solutions returned by the algorithm or
only a subset of them, the non-dominated. It provides information (quartiles and outliers) about
the functions. Figure ?? shows an example where there is a trade-off between solution risk and
expected value.

Figure 3.2: Risk analysis of alternative solutions. Source: Juan et al. (2015a).

The described procedure is proposed when simulation is to be used as an evaluation function
technique. Nevertheless, simheuristics can also be applied in the context of analytical model
enhancement methods. The first case is the most developed so far. An example of the second can
be found in Figueira et al. (2013).

Despite the fact that this approach is relatively new, there are many relevant lines of investiga-
tion being explored. In Juan et al. (2011b), the authors address the VRP with stochastic demands
(VRP-SD) employing safety-stocks to reduce the route failure-risk. The single-period stochas-
tic inventory routing problem (stochastic IRP) with stock-outs is tackled in Juan et al. (2014b).
Another routing problem, the arc routing problem (ARP) with stochastic demands is studied by
Gonzalez et al. (2016). Juan et al. (2014a) present a methodology to solve the PFSP. In Cabr-
era et al. (2014), the authors address the SCOP of determining a minimum-cost configuration of
non-dedicated resources able to support a specific service while maintaining its availability over
a user-defined threshold. Focusing on the home service industry, Fikar et al. (2016) propose a
flexible discrete-event driven metaheuristic to deal with dynamic routing and scheduling scenarios
using combined trip sharing and walking. It facilitates real-world operations, enabling reschedul-
ing and rerouting.

3.2.1 Benefits
According to Chica et al. (submitted), the most relevant benefits of simheuristics are:

• Embracing reality by a validated simheuristic
They allow the construction and study of valid complex system models. Indeed, new simu-
lation paradigms can better represent the complexity of reality, and there are computational
resources to run demanding simulations for addressing models that are too complicated for
analytical models.

• Risk assessment of alternative solutions and sensitivity analysis
The outputs of the simulations can be employed to generate information about the probabil-
ity distribution of the quality of each solution. These outputs can also be used to perform
a sensitivity analysis, which identifies the parameters having a higher effect on the model.
These analyses aim to gain insights into existing or prospective systems, which could lead
to better decisions and, as a consequence, to better managerial outcomes.
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• System understanding and output analysis
An innovization process (Deb et al., 2014) consists in analyzing a set of trade-off optimal or
near-optimal solutions to decipher useful relationships among problem entities. Visualiza-
tion methods promote design innovations. An analysis of the input/output variables space
of a model may strengthen trust in the solving approach. All these analyses provide a better
understanding of the behavior of the optimization and simulation models.

3.2.2 Limitations
The most important limitations are:

• Results are not expected to be optimal
Metaheuristics do not guarantee the optimality of the solution provided. Additionally, sim-
ulation in simheuristics represents a nonlinear complex system which cannot be analytically
treated. Thus, simheuristics should be used when simple and flexible methods are needed to
address complex problems.

• Additional stakeholders effort is demanded to define the system
Simheuristics require additional effort when defining the simulation system and analyzing
the results.

• More computational resources are required with respect to traditional methods
Running a simheuristic algorithm requires a high computational effort, which depends on
the selected type of simulation paradigm.



17

Chapter 4

Statistical learning

This chapter introduces statistical learning. It summarizes the basic learning ap-
proaches describing the most popular methods and highlighting the main applica-
tions.
It is based on the following journal articles: Calvet et al. (2017), Calvet et al. (sub-
mitted[c]), and Calvet and Juan (2015).
This work has been presented at the following seminar: De Armas et al. (2016).

4.1 Introduction
The term “statistics” was originally created in the 18th century to denote the systematic collection
of demographic and economic data of a state. Since then, its meaning has been increasingly broad-
ened. Some more updated informal definitions proposed in Hahn and Doganaksoy (2012) are: (i)
the science of learning from data; (ii) the theory and methods of extracting information from ob-
servational data for solving real-world problems; and (iii) the science of uncertainty. Statistics
plays an important role in numerous economics sectors. The world of statistics1 remarks the most
visible: business and industry, health and medicine, learning, research, social sciences and natural
resources.

The following subsections present the most basic learning methods classified into supervised
and unsupervised learning (Hastie et al., 2009).

4.2 Supervised learning
Supervised learning encompasses a set of procedures for function approximation. Given data pairs
{xi, yi} ∀i = {1, . . . , n}, in a (p + 1)-dimensional Euclidean space, there is a function f (xi) that has
a domain equal to the p-dimensional input subspace, and is related to the data via a model such as
yi = f (xi) + εi. The goal of these procedures is to obtain a useful approximation to f (xi) for all x
in some region of Rp.

Functions are estimated to describe a relation between variables, and to predict a response
variable based on explanatory variables. Despite the fact that linear models with few explanatory
variables are usually robust and powerful, sometimes a more complex model as a neural network
can be required. In this case, the user can hardly explain the specific role of each explanatory
variable in the model, i.e., the main aim of the model is to make predictions.

It is essential to validate a model before using it. This is done by splitting the dataset into
two subsets: a training set, containing the data pairs used to build the model, and the test set,
which is used to assess its performance. This split should be random, in order to obtain two
representative subsets. Sometimes, it is required to have three subsets: a training, a validation
and a test set. The validation test is employed to determine the best model between a set, or
to estimate a model-specific parameter like the number of hidden units in a neural network or
the parameter that determines the shrinkage penalty in a ridge regression. Often, specially with
high-dimensional data (p >> n), it is undesirable or unfeasible to perform those splits. Then, a
common procedure consists in applying cross-validation, a method for estimating the prediction
error of a model based on the following steps: (1) generate a given number of disjointed training

1The world of statistics is a global network of more than 2.350 organizations worldwide committed to increasing
public awareness of the power and impact of statistics, nurturing statistics as a profession, and promoting the development
of probability and statistics. Its official web is: www.worldofstatistics.org.

www.worldofstatistics.org
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sets from the dataset and define the corresponding test sets (all data pairs except those included
in the associated training set); (2) for each training set, build a model and compute the prediction
error with the corresponding test set; and (3) estimate the prediction error of the model as the
average. The most popular methods of supervised learning are introduced below.

• Linear regression
A linear regression model assumes that the relationship between the response variable and
the explanatory variables is linear. This relationship is modeled through an error variable εi,
which is an unobserved random variable. The corresponding model is:

yi = β0 +
p∑

j=1
β jxi j + εi ∀i = {1, . . . , n}

• Tree-based methods
Tree-based methods partition the feature space with splits, and fit a simple model for each
subset of data. There are methods both for regression and classification.

• Neural networks
Neural networks (NNs) extract linear combinations of explanatory variables as derived fea-
tures, and model a response variable as a non-linear function of these features. Hidden
layers are layers between the input and the output layers. Increasing the number of hid-
den layers and/or hidden neurons adds complexity and improves computational capacity.
Having too few hidden neurons, the model might not have enough flexibility to capture the
non-linearities in data. NNs tend to have many weights, which might cause problems of
overfitting. Weight decay is a method of regularization to prevent it. This method adds a
penalty to the error function that shrinks the weights toward zero. A tuning parameter allows
weighting the penalty in the error function.

There are several types of NN, both in supervised and unsupervised learning. They may
be employed for prediction, classification, clustering, and ranking. The most popular is the
feed-forward NN for prediction in supervised learning.

• Support vector machines
The basic support vector machine (SVM) algorithm employs a training subset with a binary
response variable to build a model capable of assigning new observations into one category.
The algorithm constructs a hyperplane so that categories are separated by the widest margin
possible. The model may include penalizations in case observations are not separable. This
method may perform non-linear classification by employing the kernel trick, and mapping
the explanation variables into high-dimensional spaces.

4.3 Unsupervised learning
In unsupervised learning, there is a set of observations xi,∀i = {1, . . . , n}, of a random p-vector X
having joint density Pr(X). The aim is to infer the properties of this probability density. The most
popular methods are introduced below.

• Cluster analysis
Cluster analysis consists in grouping a collection of observations into subsets or clusters,
such that those within each cluster are more closely related to one another than those as-
signed to different clusters. The grouping is based on the definition of similarity / dissim-
ilarity between two observations. The dissimilarity between two clusters is defined by the
linkage. The most used types are: complete, single, average, centroid, and medoid. The
result of the clustering highly depends on the linkage selected.

Hierarchical clustering is an approach that aims to build a hierarchy of clusters. The related
strategies fall into two types: agglomerative and divisive. The first group starts with each
observation being considered a cluster, and pairs of clusters are merged as one moves up the
hierarchy. On the other hand, in the divisive approach all observations start in a cluster, and
splits are done recursively as one moves down the hierarchy.
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• Self-organizing maps
A self-organizing map (SOM) is a type of NN. It produces a low-dimensional and dis-
cretized representation of the input space of the dataset, which is called map. An important
characteristic of this NN is that preserves the topological properties of the input space by
employing a neighbourhood function. A SOM represents a mapping from the input space
to the map space with a lower dimension.

• Principal components analysis
Principal components analysis (PCA) consists in transforming a dataset to a new coordinate
system by applying orthogonal linear transformation in such a way that the greatest vari-
ance by some projection of the data comes to lie on the first coordinate or first principal
component, the second greatest variance on the second coordinate, and so on. The number
of principal components is less or equal to the number of original variables. PCA is usu-
ally performed by eigenvalue decomposition of the covariance or correlation matrix of the
original data.

There is a third method so-called semi-supervised learning (Chapelle et al., 2006), which em-
ploys both labeled and unlabeled observations (i.e., not all have associated an output value). It is
extremely powerful for problems in which large amounts of unlabelled observations are available,
and only a few of them can be manually labelled. Typical examples are visual object recognition,
where milions of untagged images are publicly available, or natural language processing.
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Chapter 5

Learnheuristics: statistical learning
and metaheuristics

This chapter reviews works combining statistical learning and metaheuristics, and
proposes a hybrid approach for tackling optimization problems with dynamic inputs.
It is based on the following journal articles: Calvet et al. (2017).
This work has been presented at the following seminar: Calvet (2015a) and Calvet
(2015b).

5.1 Introduction
The OR community shows a growing interest in coping with increasingly challenging COPs, such
as SCOPs and dynamic COPs (in which some of the problem inputs evolve over time). This might
be due to several factors, including: (i) the rich characteristics of real-life problems frequently
faced by modern companies in sectors such as logistics and transportation (Caceres et al., 2014);
(ii) the technological development; (iii) the availability of vast amounts of Internet-based data;
and (iv) a shift to a more data-driven culture. During the last years, hybrid approaches have been
extensively employed due to their success when dealing with realistic problems, among others:
those combining different metaheuristics (Talbi, 2013), matheuristics (i.e., metaheuristics com-
bined with mathematical programming) (Maniezzo et al., 2009), and simheuristics.

The hybridization of metaheuristics with statistical learning is an emerging research field. In
this context, the main contributions of this chapter are: (i) providing a classification on works com-
bining metaheuristics with statistical learning; and (ii) proposing a novel ‘learnheuristic’ frame-
work, combining a heuristic-based constructive procedure with statistical learning, to deal with
COPDIs. In these problems, the inputs are deterministic (i.e., non-stochastic) but, instead of be-
ing fixed in advance, they vary according to the structure of the solution (i.e., they change as the
solution is being constructed following a heuristic-based iterative process). In this sense, these
COPDIs represent an extension of the classical deterministic COPs in which all inputs are given in
advance and are immutable. An example of such a COPDI is given next for illustrative purposes.
Suppose there is a set of heterogeneous radio access technologies (RATs) that provide pay-per-use
services to a group of users. Each user has to be assigned to just one RAT, and each RAT can
serve only a limited number of users. The goal is to maximize the total benefit, which depends on
the customers’ demands. Several scenarios may be described based on the nature of the demands
(Figure ??): (i) they are deterministic and static; (ii) they contain some degree of uncertainty but
can be modeled as random variables or using fuzzy techniques; and (iii) they are dynamic in the
sense that they depend on the solution characteristics (e.g., the number of users connected to the
same RAT, which has an effect on the service quality and, therefore, on the customers’ demands).
While the first case corresponds to a classical deterministic COP, the second case introduces a level
of uncertainty that usually requires the use of stochastic programming, simulation-optimization,
or fuzzy methods. Focusing on the third case, the learnheuristic algorithms have a learning mech-
anism that updates the input values as the solution is iteratively constructed using the heuristic
logic (Calvet et al., 2016d).
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Figure 5.1: Type of problem according to the nature of the inputs.

5.2 Related reviews
The existing literature analyzing the hybridization of metaheuristics and statistical learning may
be mainly divided into two groups: works were statistical learning is employed to enhance meta-
heuristics, and those in which metaheuristics are used to improve the performance of statistical
learning techniques.

Regarding the first group, there are several works providing overviews. For instance, the
emergence of hybrid metaheuristics is studied in Talbi (2013), which includes the combination
of metaheuristics and: (i) complementary metaheuristics; (ii) exact methods; (iii) constraint pro-
gramming; or (iv) statistical learning. The author distinguishes between low-level hybridizations,
in which a given internal function of a metaheuristic is replaced by another optimization method,
and high-level hybridizations, where the different optimization methods are self-contained. In a
second phase, these algorithms can be further classified into relay (where techniques are applied
one after another) or teamwork hybridization. Jourdan et al. (2006) describe applications of data
mining techniques to help metaheuristics. A survey on the integration of statistical learning in
evolutionary computation can be found in Zhang et al. (2011). The work presented in Corne et al.
(2012) gathers the synergies between OR and data mining, highlighting three benefits of employ-
ing data mining in OR: (i) increasing the quality of the results; (ii) speeding up algorithms; and (iii)
selecting an algorithm based on instance properties. This chapter builds on the classification in
Jourdan et al. (2006) and extends it by proposing more categories and analyzing a higher number
of works. Works are classified into specifically-located hybridizations (where statistical learning
is applied in a specific procedure) and global hybridizations (in which statistical learning has a
higher effect on the metaheuristic design).

Similarly, there are a few reviews on metaheuristics used to improve the performance of sta-
tistical learning techniques. For instance, Freitas (2008) focuses on two evolutionary algorithms
(EAs), namely GAs and genetic programming (GP), and discusses their application to discovery
of classification rules, clustering, attribute selection and attribute construction. Corne et al. (2012)
analyze the role of OR in data mining discussing the relevance of exact methods, heuristics and
metaheuristics in supervised classification, unsupervised classification, rule mining and feature
selection. More recently, Dhaenens and Jourdan (2016) provides an overview of the use of opti-
mization in Big Data focusing on metaheuristics. The book introduces the role of metaheuristics
in clustering, association rules, classification, and feature selection in classification. Building on
these reviews, here the literature works are arranged into the following categories: classification,
regression, clustering, and rule mining.
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5.3 Statistical learning for enhancing metaheuristics
This section describes works employing statistical learning for enhancing metaheuristics. They
are first grouped into specifically-located hybridizations and global hybridizations.

5.3.1 Specifically-located hybridizations
The fine-tuning of metaheuristic parameters is known to have a significant effect on the algorithm
performance. However, this issue is not always properly addressed and many researchers still con-
tinue selecting parameter values by performing exhaustive testing or copying values recommended
for similar instances or problems. Basically, there are three approaches:

1. Parameter control strategies (De Jong, 2007) apply a dynamic fine-tuning of the parameters
by controlling and adapting the parameter values during the solving of an instance. The
main types of control are: (i) deterministic, which modifies the parameter values by some
deterministic rule; and (ii) adaptive, which employs feedback from the search. For instance,
there are works relying on fuzzy logic (Jeong et al., 2009), SVMs (Zennaki and Ech-Cherif,
2010), and linear and SVM regression (Lessmann et al., 2011).

2. Parameter tuning strategies assume that the algorithms are robust enough to provide good
results for a set of instances of the same problem with a fixed set of parameter values. Fre-
quently, researchers focus on a subset of the instances and analyze their fitness landscapes.
Popular techniques are: response surface (Gunawan et al., 2013), logistic regression (Ramos
et al., 2005), and tree-based regression (Bartz-Beielstein et al., 2004).

3. Instance-specific parameter tuning strategies present characteristics from the previous ap-
proaches. While the parameter values are constant as in the second approach, they are
specific for each instance as in the first one. These strategies employ a learning mechanism
able to return recommended sets of parameter values given a number of instance features.
Techniques employed are: Bayesian networks (Pavón et al., 2009), case-based reasoning
(CBR) (Pereira et al., 2013), fuzzy logic (Ries et al., 2012), linear regression (Caserta and
Rico, 2009), and NNs (Dobslaw, 2010).

Typically, metaheuristics generate their initial solutions randomly, using design of experi-
ments (Leung and Wang, 2001), or via a fast heuristic. There are also works employing statisti-
cal learning techniques. For instance, some of them apply CBR to initialize GAs (Ramsey and
Grefenstette, 1993; Louis and McDonnell, 2004; Li et al., 2011b), while others explore the use of
Hopfield NNs (Yalcinoz and Altun, 2001). In De Lima et al. (2008) the authors suggest using the
Q-learning algorithm in the constructive phase of a GRASP and a reactive GRASP metaheuristics.
In this line, the hybridization of data mining and the GRASP metaheuristic is discussed in Santos
et al. (2008).

In real-life applications it is common to find objective functions and constraints that are com-
putationally expensive to evaluate (Lim et al., 2010; Tenne and Goh, 2010). In these cases, it
is required to build an approximation model to assess solutions employing polynomial regression
(Zhou et al., 2005), NNs (Adra et al., 2005; Pathak et al., 2008), SVMs (Yang et al., 2009), Markov
fitness models (Brownlee et al., 2010), kriging (Díaz-Manríquez et al., 2011) or radial basis func-
tions (Regis, 2014), for example. Some authors combine their use with that of real objective
functions (Rasheed and Hirsh, 2000; Zhou and Zhang, 2010). A survey on model approximation
in evolutionary computation may be found in Jin (2005). Another option to reduce evaluation
costs is to evaluate only representative solutions. Following this idea, Yoo and Cho (2004) apply
fuzzy clustering, while Jin and Sendhoff (2004) use clustering techniques and NNs ensembles.

Regarding population management, many authors attempt to extract information from solu-
tions already visited and employ it to build new ones, aiming to explore more promising search
spaces. A number of works rely on the Apriori algorithm (to identify interesting subsolutions)
(Dalboni et al., 2003; Santos et al., 2005; Ribeiro et al., 2006; Santos et al., 2006) or on CBR
(Louis, 2003). Another important issue in PMs is the population diversity, since maintaining it
may lead to better performances. The most common technique for promoting diversity is cluster-
ing analysis. In Streichert et al. (2003), for instance, individuals in a GA are separated in different
sub-populations based on their features and only those in the same cluster compete for survival.
The selection operator is applied independently to each cluster.
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The search of a metaheuristic may be improved by introducing knowledge in operators such
as mutation or crossover operators in PMs. For example, Michalski (2000) design a class of
evolutionary computation processes called learnable evolution model (LEM), which uses sym-
bolic learning methods to create rules that explain why certain individuals are superior to others.
These rules are then employed to create new populations by avoiding past failures, using rec-
ommendations or generating variants. In Jourdan et al. (2005), this class is extended to address
multi-objective problems.

Some statistical learning techniques have been used as local searches. For instance, Gaspar-
Cunha and Vieira (2004) employ a multi-objective EA (MOEA) combined with an inverse NN.
The authors test their approach on a set of benchmark bi-objective functions. A similar approach
is suggested in Adra et al. (2005) to be applied to an aircraft control system design application.

5.3.2 Global hybridizations
A few works have attempted to reduce the search space in order to make more effective and
efficient searches. Statistical learning techniques used are: clustering techniques (Hu and Huang,
2004; Senjyu et al., 2005; Barreto et al., 2007; Adibi and Shahrabi, 2013), NNs (ChangYoon and
Way, 2001; Marim et al., 2003) and PCA (Auger and Hansen, 2005).

The algorithm selection problem (ASP) aims to predict the algorithm from a portfolio that
will perform best, employing a given set of instance features. Its framework was proposed by
Rice (1976), where it was applied to partial differential equation solvers. More recently, Smith-
Miles (2009) presents it in the context of optimization algorithms. Kanda et al. (2011) design
an approach to select the best optimization method for solving a given travelling salesman prob-
lem (TSP) instance. Initially, 14 TSP properties and the performance values obtained with each
metaheuristic analyzed (GRASP, TS, SA and GA) are stored. Then, a rank of metaheuristics is
determined by using a multi-layer perceptron network. Several network architectures are assessed.
In Smith-Miles et al. (2014), the authors construct a methodology to compare the strengths and
weaknesses of a set of optimization algorithms. First, the instance space is generated. This step
includes selecting a subset of features providing a good separation of easy and hard instances.
Afterwards, classification techniques are used to identify the regions where an algorithm performs
well or poorly. The experiment is carried out with 8 algorithms for solving the graph coloring
problem.

According to Burke et al. (2010), hyperheuristics may be described as search methods or
learning mechanisms for selecting or generating heuristics to solve computational search prob-
lems. Typically, these methods do not aim to obtain better results than problem-specific meta-
heuristics, but to be able to automate the design of heuristic methods and/or deal with a wide
range of problems. The authors propose a classification taking into account the following dimen-
sions: (i) the nature of the heuristic search space (either heuristic selection or generation); and (ii)
the feedback, since hyperheuristics may learn (following online or offline learning strategies) or
not. A comprehensive survey on hyper-heuristics may be found in Burke et al. (2013). Reinforce-
ment learning is highly popular in methodologies selecting heuristics employing an online learning
strategy (e.g., see Berberoğlu and Uyar, 2010). In Asta and Ozcan (2014) an apprenticeship learn-
ing hyperheuristic is proposed for vehicle routing. Taking a state-of-the-art hyperheuristic as an
expert, the authors follow a learning approach that yields various classifiers, which capture dif-
ferent actions that the expert performs during the search. While this approach relies on a C4.5
algorithm, in Tyasnurita et al. (2015) it is improved by using a multilayer perceptron.

During the last decades, a new trend in optimization has emerged based on cooperative strate-
gies. It consists in combining several algorithms/agents to produce a hybrid strategy in which they
cooperate in parallel or sequentially. Communication among them can be either many-to-many
(direct) or memory-based (indirect). Agents may share partial or complete solutions and models,
among others. It is broadly accepted that strategies based on agents with unrestricted access to
shared information may experiment premature convergence. Commonly, there is an agent that
coordinates the search of the others, organizing the communication. For example, Cadenas et al.
(2009) develop a centralized hybrid metaheuristic cooperative strategy, where knowledge is in-
corporated into the coordinator agent through fuzzy rules. These rules have been defined from a
knowledge extraction process applied to the results obtained by each metaheuristic. The strategy
is tested on the knapsack problem, employing a TS, a SA, and a GA. In Martin et al. (2016), a
cooperative strategy relying on different metaheuristic / local search combinations is put forward.
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The architecture makes use of two types of agents: the launcher and the metaheuristic agent. Each
metaheuristic agent continuously adapts itself according to a cooperation protocol based on rein-
forcement learning and pattern matching. This proposal is tested on the PFSP and the capacitated
VRP (CVRP).

There are several new metaheuristics based on learning procedures. Most rely on the fact that
a set of pseudo-optimal solutions may be considered a sample drawn from an unknown proba-
bility distribution. This distribution may be estimated by employing a selected set of promising
solutions and used to generate new solutions. A review of these metaheuristics, called estimation
of distribution algorithms (EDAs), can be found in Pelikan et al. (2002). These metaheuristics
have been employed in a wide range of fields such as routing (Euchi, 2014; Wang et al., 2015),
scheduling (Ceberio et al., 2012), and nutrition (Gumustekin et al., 2014).

5.4 Using metaheuristics to improve statistical learning
Metaheuristics have been extensively employed to improve statistical learning tasks. Briefly, some
of the most successful approaches are reviewed in the supervised learning topic, both in classifica-
tion and regression, and in the unsupervised learning topic, including clustering and rule mining.

In classification, metaheuristics have been mainly applied for feature selection, feature ex-
traction and parameter fine-tuning. Escalante et al. (2016) suggest that the bags of visual words
algorithm could be improved when non linear combinations of weighted features obtained with
GP are considered. The approach is successfully applied to the object recognition field, learning
both the weights of each visual word (feature) and the non linear combination of them. Fernández-
Caballero et al. (2010) present a multi-classification algorithm relying on multi-layer perceptron
NN models. In order to obtain high levels of sensitivity and accuracy (which may be conflicting
measures), a Pareto-based multi-objective optimization methodology based on a memetic EA is
proposed.

In regression, the use of statistical learning is typically related to the training of complex
regression models. Neuroevolution is an emergent field which employs EAs to train NNs. Thus,
Yao (1999) provides a literature review on elements evolved: connection weights, architectures,
learning rules, and input features. In Stanley and Miikkulainen (2002), the authors develop the
neuroevolution of augmenting topologies (NEAT) method, which evolves topologies and weights
at the same time. Carvalho et al. (2011) present a methodology to find the best architecture of a NN
using metaheuristics. The authors tested the following ones: generalized extremal optimization,
VNS, SA, and canonical GA.

Regarding clustering, centroid models are based on an NP-hard optimization problem (thus,
only approximated solving methods such as metaheuristics may be employed). For instance, Sh-
elokar et al. (2004) use ACO to cluster objects, obtaining faster results in terms of the number of
objective functions evaluations. Gene clustering is performed in Banu and Andrews (2015), where
a comparative study is presented based on the following metaheuristics: GA, PSO, cuckoo search
and levy flight cuckoo search. More recently, Ferone et al. (2016) present a GRASP metaheuristic
for biclustering of gene expression data. The reader can find more details in the applications of
metaheuristics to unsupervised learning in these surveys: Hruschka et al. (2009) and Kurada et al.
(2013).

Related to rule mining, Freitas (2002) presents data mining tasks and paradigms, and describes
the application of GAs and GP for rule discovery, and EAs for generating fuzzy rules. After mod-
eling association rules discovery as an optimization problem, Khabzaoui et al. (2004) explore the
use of a GA to obtain associations between genes from DNA microarray data. Noticing that most
approaches tend to seek only frequent rules, Khabzaoui et al. (2008) propose a multi-objective
approach combining a GA and exact methods to discover interesting rules in large search spaces.

5.5 Learnheuristics
The learnheuristic framework aims at solving COPs in which the model inputs (either located in
the objective function or in the set of constraints) are not fixed in advance. Instead, these inputs
might vary in a predictable way according to the current status of the partially-built solution at
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Figure 5.2: Basic scheme of a learnheuristic framework.

each iteration of the constructive heuristic. More formally, these problems might be represented
as follows:

Min C(s, IOF(s)) or, alternatively,
Max B(s, IOF(s)) (5.1)

subject to: Q j(s, IC(s)) ≤ r j ∀ j ∈ J (5.2)

s ∈ S (5.3)

where: (i) S refers to a discrete space of possible solutions s; (ii) C(s) represents a cost function
(alternatively, B(s) represents a benefits function); (iii) IOF(s) and IC(s) refer to inputs in the objec-
tive function or the constraints, respectively; and (iv) Equations ?? represent a set of constraints.
Thus, the aim of this type of problems is to minimize a function of costs (or, alternatively, max-
imize a function of benefits) subject to a number of constraints. The novel characteristic is that
inputs in the objective function and/or the constraints may depend on the solution structure, which
makes them to be dynamic as the partially-built solution evolves, and not fixed in advance.

In order to deal with these COPDIs, the use of a learnheuristic framework is proposed as
explained next (see Figure ??). Initially, historical data on different system states (e.g., different
assignments of users to RATs) and their associated inputs (e.g., users’ demands observed for the
corresponding assignments) are employed to generate predictive models. Then, these models are
iteratively used during the heuristic-based constructive process in order to obtain updated estimates
of the problem inputs (e.g., users’ demands) as the structure of the solution (e.g., users-to-RAT
assignment map) varies. Eventually, once the construction process is finished, a complete solution
is generated. Without the use of the learning mechanism, the heuristic-based construction process
will not take into account the variations in the inputs due to changes in the solution structure,
which will lead to sub-optimal solutions.

Algorithm ?? contains a more detailed description of the basic learnheuristic framework. No-
tice that the main loop iterates over a list of elements that are provided by the constructive heuristic
(e.g., next user-to-RAT assignment). At each iteration, the algorithm evaluates the current status
of the partially-built solution, makes use of the predictive model to update the problem inputs ac-
cording to this status, and follows the heuristic logic to take another solution-building step based
on the new problem inputs.

As any other heuristic procedure, the aforementioned learnheuristic approach can be integrated
into a more complex metaheuristic framework. For instance, it can be easily integrated into MS,
GRASP, or ILS frameworks. In order to do so, the learnheuristic algorithm may be combined with
biased-randomization strategies as the ones proposed in Juan et al. (2011b).
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Algorithm 6 Learnheuristic algorithm.
Learnheuristics(historicalData, inputs)
% historicalData: historical data on different system states and their associated inputs
% inputs: problem instance

model←buildPredictiveModel(historicalData)
sol← empty
while (sol is not completely built) do % iterative learning-heuristic process

inputs←updateInputs(model, inputs, sol)
sol← nextHeuristicStep(inputs, sol)

end while
return sol

Algorithm 7 Learnheuristic algorithm based on the MS metaheuristic.
Multi-start(historicalData, inputs, distribution, maxTime)
% distribution: probability distribution and parameters for the biased-randomization process
% maxTime: maximum computing time allowed

initInputs← inputs % copy of initial inputs
elapsedTime← 0
initT ime← currentT ime
bestS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
inputs← initInputs % reset inputs
while (elapsedTime ≤ maxTime) do

newS ol← biasedRandLearnheuristic(historicalData, inputs, distribution)
newS ol← localSearch(newS ol)
if (cost(newS ol) ≤ cost(bestS ol)) then

bestS ol← newS ol
end if
inputs← initInputs % reset inputs
elapsedTime← currentTime−initT ime

end while
return bestS ol
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5.6 Applications
This section provides a series of examples in which the use of learnheuristics might facilitate the
solving process of more realistic and rich models.

• Transportation: In the transportation area and, in particular, in VRPs and ARPs, inputs
such as the customers’ demands might be dynamic in the sense that they might depend upon
the delivery time and whether or not certain time-windows are satisfied. It is a function of
the solution structure, e.g., the order in which the customers are visited, the number and
type of vehicles employed, etc. Similarly, the traveling times, which affect the distribution
cost, might also be dynamic and dependent on the solution structure, specially in large cities
where traffic jams occur frequently.

• Logistics: As discussed in Calvet et al. (2016d), the assignment of customers to certain
distribution centers might have a significant effect on the customers’ willingness to spend
(i.e., on their demands). Therefore, in realistic facility location problems and similar ones,
modelers might have to face dynamic inputs influenced by the shape of the solution (i.e.,
which facilities are open and how customers are assigned to them).

• Production: In scheduling problems, for instance, processing times of jobs into machines
might not be fixed but, instead, they may be a function of the order in which they are
processed by the machine (e.g., due to ‘fatigue’ issues or to breaks). A similar situation
can happen in project scheduling, where some working teams might be more efficient than
others and assigning them to a given sub-project could cause the delay of others.

• Finance: In problems such as portfolio optimization, the covariance matrix that measures
the risk associated with each pair of assets could also be a function of the current portfolio
structure (i.e., which other assets are already included and which percentage of investment
has been assigned to each of them). Likewise, the expected return for each asset might
depend on the current composition of the portfolio. This dynamic behavior of the inputs can
be extended to different risk-management problems which include some sort of portfolio
optimization.

5.7 Example
This section describes a simple numerical experiment based on a VRP in which each customer’s
demand will depend on the order in which the customer is visited. For each customer, its initial
demand value is an upper-bound of the real demand. In other words, this value will be valid
only if the customer is visited by a vehicle as the first stop in its route. Then, as the position in
which the customer is visited increases, the customer’s demand will be reduced. Therefore, the
use of a constructive heuristic to solve the VRP considering the initial demands as fixed inputs
will overestimate the real demands. This, in turn, will lead to higher costs, since the number of
routes employed to satisfy the real demands will be higher than necessary. Likewise, vehicles will
be carrying more load than strictly required. On the contrary, if the real customers’ demands are
predicted based on their position inside a route, then each route might be able to cover additional
customers and the total distance-based costs will be reduced.

In order to compare both cases, the CWS heuristic have been applied to a random instance
belonging to the well known benchmarks for the VRP, particularly to the instance P-n70-k10
(http://neo.lcc.uma.es/vrp/wp-content/data/instances/Augerat/P-VRP.zip). On the one hand, fixed
demands are considered, i.e., the original demands are used to obtain the solution through the
heuristic in the standard way. On the other hand, a predictive model is created to calculate dynamic
demands in order to apply a learnheuristic algorithm. In this case, for illustrative purposes, the
following linear regression model has been considered:

d = max{k1 · d0, d0 − k2 · d0 · (p − 1)} (5.4)

where d is the predicted demand of a given customer, d0 is the initial demand of the same
customer, k1 and k2 ∈ (0, 1), and p is the position order in the route of the aforementioned customer.
In particular, k1 and k2 are set to 0.20 and 0.05, respectively.
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The regression model aims at predicting a customer’s demand taking into account the position
in which the customer is served in the route, so that the demand decreases as the position increases
or until a certain demand lower-bound is reached. Thus, each time the heuristic performs a step,
incorporating a new customer in a route or moving a customer from one route to another, the
customer’s demand is predicted and updated according to its new position in the corresponding
route. As mentioned before, the total demand in a route is limited by the capacity of the vehicle.
Therefore, this prediction affects the next steps that can be performed.

When fixed demands are considered, the best solution the constructive heuristic is able to ob-
tain has an associated cost of 896.86, and it involves 11 routes. However, if demands are predicted
taking into account the delivery order, the same heuristic obtains a solution with 8 routes and a cost
of 791.26. Therefore, the savings might be noticeable when dynamic demands are considered.
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Part II

APPLICATIONS





33

Chapter 6

Applications in transportation

This chapter studies several rich and realistic routing problems. It proposes different
hybrid algorithms relying on metaheuristics, Monte Carlo simulation and regression
models.
It is based on the following journal articles: Calvet et al. (submitted[a]), Calvet et
al. (2016d), Gruler et al. (2017), Reyes et al. (submitted), and Calvet et al. (2016a).
This work has been presented at the following conferences: Juan et al. (2015d),
Juan et al. (2015b), Calvet et al. (2015a), and Calvet et al. (2015b).

6.1 Introduction
As a consequence of the growing flows of freight, the development of efficient and sustainable
transportation and logistics activities has become a priority for Europe (European Union, 2011a;
European Union, 2011b). The globalization, the growth of population, their purchase capacity and
the efficiency of production systems are the main reasons of the increase in this sector. According
to Eurostat (2015), emissions of greenhouses gases, air pollutants and noise from transport have
significant impacts on the climate, the environment and human health. The need of flexible and
efficient optimization tools affects both the public and the private sectors, since a huge number of
companies daily address problems related to the transportation of people and/or goods.

In this context, the design of intelligent approaches is key for: (i) company competitiveness;
(ii) good functioning of the labour market; (iii) cohesion within and between regions; (iv) reduction
in the fossil energy importation, by the decrease of the consumption of petroleum derivatives; (v)
decrement in the pollution, which improves people health; and (vi) reduction in traffic accidents.

The VRP is the most classical and simple formulation employed to describe logistic problems
dealing with physical distribution. It constitutes the most popular research line in combinatorial
optimization because of its practical relevance and its scientific interest due to its NP-hardness.
This chapter studies five realistic and rich extensions of the VRP (RVRP): the MDVRP-SD, the
MDVRP-HD, the sustainable MDVRP, the WCP and the HSAVRP.

The MDVRP is a two-stage decision process, since assignation and routing issues are often
interrelated, i.e., the assignment map may affect the quality of the posterior routing. Montoya-
Torres et al. (2015) highlight a noticeable growing interest in the MDVRP during the last decade,
with over 103 publications between 2006 and 2014. In the stochastic and capacitated MDVRP,
a set of customers with random demands must be served by a fleet of homogeneous capacitated
vehicles departing from one among several capacitated depots. The main goal is to determine the
set of routes that minimizes the expected total routing cost, including recursive actions, subject to
a number of capacity-related constraints. The problem has numerous applications in real-life, e.g.:
garbage collection, gas distribution, stocking of vending machines, and other similar activities in
which the specific amount of goods to leave or pick up is not known until the place is reached.
Despite its relevance, there are few works on the stochastic MDVRP and, to the best of our knowl-
edge, Calvet et al. (submitted[a]) is the first one addressing the stochastic and capacitated MDVRP.

Most works on the MDVRP has focused on minimizing distance-based distribution costs.
However, no attention has been given so far to potential variations in demands due to the fitness of
the customer-depot mapping in the case of heterogeneous depots. In the MDVRP-HD, the depots
are heterogeneous in terms of their commercial offer, and customers show different willingness
to consume depending on how well the assigned depot fits their preferences. As a consequence,
market-segmentation strategies need to be considered to increase sales and total income while
accounting for the distribution costs.
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The increasing social concern is compelling companies to change purely commercial objec-
tives in order to consider sustainability. This new vision seeks to compensate the negative impacts
of transport activities without neglecting economic profits. In this context, it is essential to intro-
duce approaches considering the impacts of the three pillars of sustainability for routing problems
such as the MDVRP. For instance, travelling time and distance are related to economical impacts,
carbon emissions to environmental impacts, and risk of accidents to social impacts.

In the face of rising population densities in urban areas around the world, a large number
of cities are currently reorganizing their municipal responsibilities (Nations, 2015). As a conse-
quence, the WCP is of high practical importance, especially in the context of smart city initiatives
(Neirotti et al., 2014). On the one hand, uncollected garbage can lead to pollution of the environ-
ment and health-issues, while noise and road congestions through extensive use of waste collection
vehicles decrease urban living standards. On the other hand, waste collection represents up to two
thirds of operational waste management costs (Malakahmad et al., 2014; Son, 2014; Tavares et al.,
2009). As waste generation and travel times of vehicles cannot be predicted with full certainty,
there is a need for fast and risk-aware solutions of high quality which are able to take stochastic
input variables into account.

The HSAVRP-SD considers a heterogeneous fleet. This diversity usually comes from two
facts: different customers and locations may require different types of vehicle (e.g., due to narrow
roads, available parking spaces, and vehicle weight restrictions), and the vehicle acquisitions may
be made in different times and places. In addition, this problem describes a scenario where some
customers cannot be accessed with all types of vehicle, which is known as site-dependency. Re-
garding the cost matrix, the classical assumption about its symmetry is relaxed, since there can
be cost differences associated to the direction of a route (for instance, differences between driving
uphill or downhill in mountainous regions). Moreover, the HSAVRP-SD also accounts for un-
certainty in demands. It has several real-life applications such as the fuel oil distribution, which
can be associated to petrol station replenishment or to the delivery of domestic heating oil. In
these cases, the exact demand is not known until the time of the delivery, and cost between nodes
(based on energy consumption) is asymmetric due to the presence of important road grades. The
optimization of domestic heating oil distribution has been less studied, even though the high de-
pendence on heating oil of some isolated regions. It could be of particular interest in mountainous
regions where in absence of a gas pipeline, domestic oil is frequently the predominant fuel for
heating.

6.2 Literature review
This section reviews related works. First, it focuses on the MDVRP and the WCP. Afterwards,
routing works considering stochasticity and sustainability are introduced. More references can be
found in the articles introduced in this chapter.

6.2.1 The MDVRP
As commented before, the MDVRP has been intensively studied in the last decades. Table ??
summarizes the information of the main related works.

6.2.2 The WCP
Probably the first work to address municipal solid waste collection is Beltrami and Bodin (1974).
Since then, various solution techniques for different variants of the WCP have been proposed.
While some works formulating the WCP as an ARP can be found (Ghiani et al., 2005; Bautista
et al., 2008), the following discussion refers to recent publications using VRP formulations. More
extensive literature reviews are provided by Beliën et al. (2014), Ghiani et al. (2014), and Han and
Ponce-Cueto (2015).

Most works on the WCP focus on case studies with some problem extension. For exam-
ple, Baptista et al. (2002) elaborate an extension of the Christofides and Beasley heuristic for the
multi-period WCP (Christofides and Beasley, 1984), modeled as a periodic VRP to combine ve-
hicle scheduling over multiple time periods with route planning. Also addressing a multi-period
WCP, Teixeira et al. (2004) develop a cluster-first route-second heuristic to schedule and plan
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waste collection routes for different waste types. Nuortio et al. (2006) present a guided variable
thresholding metaheuristic to solve a multi-period WCP. Hemmelmayr et al. (2013) address the
periodic VRP with different waste types, which they solve with a VNS metaheuristic. The landfills
are considered intermediate facilities, which are inserted in pre-constructed routes using dynamic
programming. The authors also discussed the single period WCP with multiple depots, in which
the landfills serve as vehicle depots and disposal sites at the same time. Later, Hemmelmayr et al.
(2014) discuss the integrated vehicle routing- and bin allocation problem using the same real-life
problem set, which they solve with a combination of a VNS metaheuristic for the routing part
and a mixed integer linear programming-based exact method for the bin allocation. Ramos et al.
(2014) extend the typical objective of minimizing routing costs in order to include environmental
concerns, considering multiple waste types and numerous vehicle depots.

Only focusing on waste collection routing, Kim et al. (2006) develop an extension of
Solomon’s insertion algorithm (Solomon, 1987) to optimize routes of a waste management ser-
vice provider, considering a capacitated vehicle fleet, time windows, and driver lunch breaks. A
benchmark set of 10 realistic instances based on the original case study ranging from 102-2100
nodes is provided. This benchmark set has been later employed by Ombuki-Berman et al. (2007)
to test a multi-objective GA. Furthermore, the same benchmark set has been used by Benjamin and
Beasley (2010) and Buhrkal et al. (2012) to test their metaheuristic solution methods. Benjamin
and Beasley (2010) combine the TS and the VNS metaheuristics. By exchanging containers and
landfills within and between routes, the solution search space is systematically increased. Buhrkal
et al. (2012) put forward an adaptive LNS metaheuristic. Based on an initial solution, this ap-
proach applies a range of destroy-and-repair methods to examine several solution neighborhoods.
It is called adaptive since the choice of methods depends on the solution quality obtained during
the construction of earlier solutions. Moreover, an acceptance criterion for new solutions based on
the SA metaheuristic is included. Recently, Markov et al. (2016) present a multiple neighborhood
search heuristic for a real-word application of the WCP with intermediate facilities. The authors
consider a heterogeneous vehicle fleet and flexible depot destinations in their approach.

6.2.3 Stochasticity
Regarding the VRP-SD, the first works appear in the 80s. Table ?? shows some related works. It
is worth highlighting a few outstanding contributions. In Dror and Trudeau (1986), the concept
of route failure is introduced, and its effects on the expected cost of a route are illustrated. A
review on the stochastic CVRP is presented in Gendreau et al. (1996), where the main variants are
presented. Yang et al. (2000) suggest anticipating possible stock-outs by incorporating preventive
breaks or restocking in the route design. The aim is to reduce the probability of route failure
and, as a result, the cost. During the last decades, the scientific community has focused on the
implementation of metaheuristics. In this context, Bianchi et al. (2006) compare the performance
of several methodologies embedding one of the following metaheuristics: SA, TS, ILS, ACO, and
EA.

The stochastic MDVRP

The number of works analyzing the stochastic MDVRP is rather limited. Tillman (1969) expands
the CWS heuristic to address it. The procedure proposed may be applied to demands with Pois-
son, exponential, normal, binomial or chi-squared distributions. In Chan et al. (2001), a multi-
depot, multiple-vehicle LRP with stochastically processed demands is formulated. The proba-
ble demands are estimated by stochastic processes before the vehicle location-routing decisions.
Tatarakis and Minis (2009) study the stochastic MDVRP considering both the case in which prod-
ucts are stored dedicatedly or together in a compartment. Dynamic programming algorithms are
proposed to determine the minimal routing cost, and an optimal routing policy is derived to de-
cide whether a vehicle has to return to the depot for a reload after serving the current customer or
should continue to the next customer. Tauhid et al. (2012) solve the stochastic MDVRP in three
phases: first a nearest neighbor classification method is used for grouping the customers; then,
the sum-of-subsets method is applied for routing; and finally, the routes are optimized throughout
a greedy method. They aim to minimize the number of routes and, accordingly, the number of
vehicles needed.
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None of the aforementioned works deals with the stochastic and capacitated MDVRP ana-
lyzed here. In particular, Tillman (1969) and Tauhid et al. (2012) consider unlimited capacities at
each depot -which significantly reduces the difficulty of the problem and constitutes an unrealistic
assumption. In addition, Tauhid et al. (2012) do not really consider stochastic demands. Also,
Tillman (1969) makes strong assumptions on the probability distributions of these demands. Chan
et al. (2001) and Tatarakis and Minis (2009) deal with problems that, although somewhat related,
can not be considered stochastic and capacitated MDVRPs. While the former focuses on location
issues, in the latter a single vehicle must deliver multiple products given a predefined customer
sequence.

The stochastic WCP

Concerning the WCP with stochastic demands, the literature is scarce. The ACO metaheuristic
and a hybrid approach based on a GA and TS for a case study with 50 containers is presented
in Ismail and Irhamah (2008), and Ismail and Loh (2009). After planning a priori routes, waste
levels are simulated according to a discrete probability distribution. Routes undergo a recourse
action (i.e., an additional disposal trip) whenever actual demand exceeds the planned collection
amount. Nolz et al. (2014) formulate a collector-managed IRP for a case study on the collection of
infectious waste. By using real information obtained through radio frequency identification, their
ALNS algorithm is able to consider stochastic inputs. Alshraideh and Abu Qdais (2016) combine
a multi-period WCP with time windows and stochastic demands. They use a GA and a probability
constraint regarding a pre-defined service level to solve the problem.

6.2.4 Sustainability
The increasing social concern for the environment and a sustainable growth requires the transfor-
mation of cities. During the last decade, the green VRP (GVRP) and the pollution VRP (PVRP)
have become increasingly popular. While the former is focused on the environmental impact
caused by the fuel or energy consumption of transport, the latter takes into account the pollution
and different emissions generated. Thus, both problems analyze the emissions and fuel/energy
consumption levels, which depend on traffic congestion, speed, acceleration, type of road, type of
vehicle, and load, among other internal and external factors of the operation (Bektaş and Laporte,
2011; Koç et al., 2014).

Regarding environmental impacts, the distance and vehicle weight play a crucial role in the
fuel/energy consumption and carbon emissions, thereby Ubeda et al. (2011) aim at reducing trans-
port costs and emissions, considering the distance and some variations in the vehicle maximum
capacity. It is concluded that enhancing load factors (which may be achieved by using heteroge-
neous fleets) is an efficient way to get significant savings and environmental benefits. The authors
also discuss negative externalities of transport such as noise, air pollution, congestion, accident
rate, energy consumption and land use, among others. There are studies tackling the negative
impacts from three perspectives: negative externalities, emissions released and fuel consumption.
Faulin et al. (2011), Liu et al. (2014), and Zhang et al. (2015) consider environmental indicators
for the CVRP; they state that the load variation defines fuel consumption and emissions caused
by transport. Besides, the load variation influences the distribution processes profitability. In this
line, Kuo (2010), Demir et al. (2014), and Xiao and Konak (2015) develop methodologies for the
green heterogeneous VRP, considering traffic congestion, road gradient, speed variations, and dis-
tance traveled as variables that influence fuel consumption and as elements that characterize the
urban transport dynamics (Jabbarpour et al., 2015). More recently, Niknamfar and Niaki (2016)
study the MDVRP with time windows to optimize the customers-depots allocation and the vehi-
cles selection aiming to minimize the environmental impacts. They demonstrate that an optimal
allocation and coordination between stakeholders not only reduce the negative impacts but also
enhance the total profit. Juan et al. (2014c) consider a supply chain with multiple suppliers for
minimizing the empty trips and the travel distance in each route. They conclude that it is possible
to reduce the CO2 emission to 23% when the distribution process is carried out in collaboration
with multiple suppliers. Wang et al. (2014b) demonstrate that considering environmental criteria
allows a saving up to 10% of the operation costs. The authors develop an algorithm to integrate
the economic and environmental goals based on the MDVRP with backhauls. Demir et al. (2014)
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consider the MDVRP with freight pick-up and delivery to ensure that any customer demand can
be met from any depot and thus reducing the operation cost.

Some studies focus on the analysis of environmental impacts caused by transport activities in
urban zones, however there is no characterization for getting a rough estimation of the real impact
of these activities. For instance, about 60% of transport activities take place in urban regions at
where around 80% population is concentrated, making people the main harmed (European Com-
mission, 2015). Social impact refers to health problems and other factors such as quietness, air
quality, urban esthetic, accessibility and urban safety. Penalties, taxes or willingness to pay as a
means to reduce the social impacts constitute the costs associated. It is estimated that about 0.4%,
0.2%, 1.5% and 2% of the gross domestic product is related to air pollution problems, noise, ac-
cidents and traffic congestion, respectively (Caceres et al., 2014). Therefore, the sustainability
concept has started to take part in the decision-making process but there is a lack of structured
tools that allow the integration of the three dimensions and support decision-makers (Chen et al.,
2013).

There are only a few works on sustainability criteria. Chibeles-Martins et al. (2016) pose
ecological criteria to determine an optimal structure of distribution networks. They solve a bi-
objective problem determining the suitable locations, capacities and attributes in factories, ware-
houses and a distribution center. The solution method is based on the SA metaheuristic, and Pareto
optimality is considered to get a balancing between economic and ecological concerns. In the
same sense, Zhang et al. (2016) implement EAs to determine the optimal design of supply chains
considering two possible scenarios: first, the transport is outsourced and second the transport is
leased. It is a multi-objective problem aimed at minimizing CO2 emissions, fine dust and costs.
The authors implement the non-dominated sorting GA-II (NSGA-II) and the strength Pareto EA2
(SEAP2) to compare their performance, both methods take into account Pareto optimality through
a scalarization method computed by a weighted sum. Later, Kadziński et al. (2017) define a
sustainable objective to design an optimal distribution structure considering a supply chain with
multi-distribution channels. Objectives are maximizing customer coverage, and minimizing cost
and environmental impacts. Notice that social objectives do not respond to problems highlighted
by the society, besides these approaches belong to strategic levels without considering the synergy
among tactical levels, operative levels and stakeholders’ particular objectives.

6.3 The MDVRP-SD
The stochastic and capacitated MDVRP is characterized by the randomness of at least one of its
parameters or structural variables. These random variables follow specific probability distribu-
tions. This problem may be seen as a non-trivial extension of the stochastic CVRP (Gendreau
et al., 1996; Stewart and Golden, 1983). There are three problems belonging to this family: the
CVRP with stochastic demands, which is the most popular (Bianchi et al., 2006); the CVRP with
stochastic customers (Bertsimas, 1988); and the CVRP with stochastic times (Laporte et al., 1992;
Kenyon and Morton, 2003). The MDVRP may be described as follows. Let G = {V, E} be a
complete directed graph, where V = {Vd,Vc} is the set of vertices including the depots (Vd) and
the customers (Vc), and E is the set of edges connecting all vertices in V . Each customer i ∈ Vc

has a positive demand di. Each depot p ∈ Vd has assigned a maximum number of vehicles, m.
All vehicles are supposed to have the same capacity W. Each edge in E has an associated cost
ci j = c ji ≥ 0. A solution is a set of routes in which each route starts at one depot in Vd, connects
one or more customers in Vc, and ends at the same depot (Figure ??). Moreover, each customer
must be visited only once. The MDVRP-SD differs in the following two consideration: (i) each
customer has a positive demand Di that follows a probability distribution, either theoretical or
empirical, with an existing mean denoted as E[Di]; and (ii) each customer is visited once except
in the undesirable case in which a route failure occurs. While the demands’ distribution is known
beforehand, the exact demand cannot be revealed until the vehicle reaches the customer.
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Figure 6.1: Customer-depot assignment and posterior routing processes in the
MDVRP.

The classical goal of the MDVRP-SD is to find a solution that minimizes the expected routing
cost while satisfying the customer demands, and the constraints related to the number of vehicles,
and the vehicles’ capacity. However, other constraints may also apply, e.g.: a maximum allowable
cost for a route, time windows for visiting each customer, etc. In addition, different goals may be
proposed such as solution balance or minimization of environmental costs. Even in its simplest
version, this problem represents a challenge since it integrates a combinatorial assignment prob-
lem, in which each customer is assigned to one depot, with several stochastic CVRPs, one per
depot. The additional complexity lies in the interrelation between assigning and routing issues.

One way to model the MDVRP-SD is as a two-stage problem. In the first stage (design stage),
a set of routes is designed considering the probability distributions associated with each customer’s
demand. The second stage (corrective stage) specifies the actual route of each vehicle, which may
include corrective actions if the route fails, i.e., if the demand of a customer visited by a given
vehicle is higher than the remaining vehicle capacity. In this case, the vehicle must return to the
depot to reload. Often, the possibility of re-stocking is allowed, that means that a vehicle may
return to the depot before it has run out of capacity. For instance, if the remaining vehicle capacity
is not enough to satisfy the expected demands of the customers that still have to be served. The
solution must minimize the expected total cost, which is the sum of the costs of the routes planned
in the first stage (fixed cost), and the expected costs due to corrective actions (variable cost).

6.3.1 Methodology
The proposed approach relies on two facts: (i) the MDVRP-SD can be considered a generalization
of the MDVRP, i.e., the MDVRP can be seen as a MDVRP-SD in which the random demands have
zero variance; and (ii) despite the fact that the MDVRP-SD has not been intensively studied, there
exists efficient algorithms for solving the MDVRP.

The general ideas behind the approach are described next. Initially, given an instance of the
MDVRP-SD, it is transformed into a deterministic one by replacing each random variable by its
mean. A set of high-quality solutions for the deterministic version is then obtained by using an
efficient algorithm. While the search takes place, MCS techniques are employed to assess the
performance of these promising solutions for the stochastic version. The best solution is defined
as the one with the lowest expected total cost. Safety stocks are employed as suggested in Juan
et al. (2011b). A safety stock is a certain amount of the vehicle capacity that is not considered
while designing the routes. Then, if the final routes’ demands surpass their expected values, this
stock can be employed to try to satisfy them. Thus, the aim of considering safety stocks is to
reduce the probability of a route failure.

Proposed steps

The flowchart diagram is depicted in Figure ?? and described next:

1. Consider a MDVRP-SD instance defined by a set of n customers. Each customer i has
associated a demand Di (1 ≤ i ≤ n) that follows a known probability distribution with an
existing mean E[Di].
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2. Determine a set K of percentages, where each element kl is the percentage of the vehicle
capacity (W) that can be used during the route design phase; in other words, 1−kl represents
a fixed level of safety stock. For each of these elements, follow the steps 3 to 9.

3. Consider the capacitated MDVRP(kl) with a total vehicle capacity of W∗l = kl · W and
deterministic demands di = E[Di].

4. Generate an initial solution for the MDVRP(kl). This solution is also an aprioristic solution
for the MDVRP-SD. It will be employed “as it is” as long as there is no need of corrective
actions (routes failures and re-stockings). Therefore, the cost associated to this solution,
CMDVRP(kl), can be considered a base or fixed cost of the MDVRP-SD solution. In the case
of the stochastic problem, there is also a variable cost CCA(kl) that depends on the corrective
actions undertaken. Consequently, for a given value of kl, the total cost of the ‘stochastic’
solution (the one associated with the MDVRP-SD) is the sum of the fixed cost corresponding
to the ‘deterministic’ solution (the one associated with the MDVRP) and the variable cost
due to corrective actions, CMDVRP−S D(kl) = CMDVRP(kl) + CCA(kl).

5. Use MCS to estimate the expected cost due to corrective actions for each route j of the
aprioristic solution, E[C j

CA(kl)] (1 ≤ j ≤ m). Then, aggregate the expected total cost for

all routes, E[CCA(kl)]) =
m∑

j=1
E[C j

CA(kl)]. In this phase, a short simulation is used to quickly

get that estimate. Then, the expected total cost of the solution is calculated as follows:
E[CMDVRP−S D(kl)] = CMDVRP(kl) + E[CCA(kl)].

6. Set a base solution as the initial solution.

7. Employ a metaheuristic algorithm, which starts an improvement process that will continue
until a stopping condition, based on time or a fixed number of iterations, is reached. At each
iteration the following steps are implemented. First, a perturbation is applied to the base
solution to generate a new one. If the fixed cost of the new solution is lower than the fixed
cost of the current base solution, then the list of the best deterministic solutions is updated
(only if it is not full or if the worst solution has a higher cost, then a swap is performed) and
the expected total cost of the new solution is estimated with a short simulation. If this cost
is lower than the expected total cost of the base solution, the latter is replaced and the list of
the best stochastic solutions is updated. Otherwise, an acceptance criterion is used to decide
whether the base solution is deteriorated to the new one. Before that, if the fixed cost of the
new solution is higher, then that solution is discarded. This iterative process will provide,
after analyzing many possible solutions, a list of promising solutions for the MDVRP-SD.

8. Try to improve all promising solutions with an intensive routing algorithm.

9. Use a long simulation to generate a sample of total costs for each promising solution. Large
samples are required to obtain estimates with small confidence intervals.

10. Finally, return the top best stochastic solutions (considering all solutions found with the
different values in K), and the corresponding samples (they will be used for completing a
risk analysis).
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Figure 6.2: Flowchart of the proposed approach for the MDVRP-SD.

Details and further considerations

The algorithm used to get the initial solution for the MDVRP is the one proposed in Juan et al.
(2015c). Initially, a customer-depot assignment map is set, and then the CWS heuristic is applied
to obtain a fast routing plan. Regarding safety stocks, it is expected that lower values of kl will
provide more reliable routes, as a high percentage of the vehicle capacity will be reserved as safety
stock. However, a high fixed cost will result too, since more vehicles will be needed to cover all
the customers’ demands. On the other hand, a high value of kl is related to a lower fixed cost but a
higher variable cost due to the elevated risk of having to return to the depot to reload. Considering
the trade-off between these two costs, different values are tested as indicated in step 2.

The cost due to corrective actions is computed as follows. In case of route failure, it includes
the cost of returning to the depot first and then to the customer being served. It is assumed that the
vehicle delivers all the remaining stock before going back to reload. A re-stocking is carried out
when the expected demand of the next customer is higher than the current remaining stock. The
cost of this strategy incorporates the costs on the edges that link a customer with the depot and the
depot with the next customer minus the cost of the edge linking both customers.
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The perturbation operator modifies the current solution by reallocating a given percentage p of
customers randomly selected, considering the remaining capacity of the depots, and the distance-
based cost for each pair of customer and depot. The savings heuristic is applied again to design
the routes. A Demon-like acceptance criterion (Talbi, 2009) is used to diversify the search.

In order to improve the most promising solutions found within the metaheuristic framework,
the routing algorithm proposed by Juan et al. (2011a) is applied to each one. This algorithm is
based on a randomized version of the savings heuristic that employs a geometric distribution to
guide the random search, and a cache and splitting techniques to make it more efficient. This
algorithm has been adapted for the stochastic solutions.

Finally, it is interesting to observe that, considering the parameters (not the estimates), the
fixed cost and the expected total cost of the best deterministic solution represent a lower and an
upper bound, respectively, of the expected total cost associated to the best stochastic solution. The
set of samples will allow us to compare the solutions not only focusing on the expected total cost,
but also on the distribution of the total cost.

6.3.2 Computational experiments
The algorithm has been implemented as a Java application and tested on 23 MDVRP benchmark
instances: the first seven were proposed by Christofides and Eilon (1969), the following four
were created by Gillett and Johnson (1976) and the remaining are described in Chao et al. (1993).
Vidal et al. (2012), Escobar et al. (2014), and Juan et al. (2015c) are some recent works using
them. These instances have been adapted as described next. The demand of each customer (di)
has been considered as a random variable Di following a log-normal distribution with mean di

and variance vdi. Three different scenarios have been considered, each one with a respectively
different variance: 0.1 E[Di], 0.5 E[Di], and 1 E[Di], where E[·] represents the mean or expected
value. In order to choose the percentage of the vehicle capacity in the route design phase (1 − kl),
5 equally-spaced values varying from 0.90 to 1.00 have been tested.

The computational time is limited to 30 seconds. The number of seeds is set to 10, and only
the best result is stored. Concerning the number of iterations in each simulation, 200 runs have
been employed for the short simulations and 2, 000 runs for the long simulations. The selection of
these values, as well as of the number of solutions stored in the list of top solutions (4), is mainly
driven by the total computing time available. Biased randomization techniques rely on two geo-
metric distributions (one for mapping and one for routing) and, therefore, they require distribution
parameters: bM and bR, respectively. Additionally, there is a parameter p which controls the per-
centage of nodes that may be reallocated in a solution when perturbing it. They have been tuned
by performing a full factorial experiment. bM, bR and p follow uniform distribution between
[0.3, 0.4], [0.2, 0.3] and [0.3, 0.4].

Results are displayed in Tables ??, ??, and ??. Each of these tables represents a specific sce-
nario. The first column identifies the instance and the second shows the best known solution (BKS)
for the MDVRP. The next five columns are associated with the solution with the lowest fixed cost:
the first, the best deterministic solution - fixed cost (BDS-FC), represents the fixed cost; the second
calculates the gap between the BKS and the BDS-FC, which reveals the performance of the algo-
rithm for the deterministic version of the problem; the third, the best deterministic solution - total
expected cost (BDS-TEC), is the expected total cost; the fourth, the best deterministic solution -
reliability (BDS-R), has been computed as one minus the number of route failures divided by the
number of routes; and the fifth, best deterministic solution - k (BDS-K), provides the percentage of
the vehicle total capacity chosen. The following column represents the gap between the BDS-TEC
and the BDS-FC. The next three columns are associated with the solution with the lowest expected
total cost: the best stochastic solution - total expected cost (BSS-TEC) contains the expected total
cost; the following two columns, the best stochastic solution - reliability (BSS-R) and the best
stochastic solution - k (BSS-K), show the associated reliability, and the k-value respectively. The
next two columns are the gaps between the BSS-TEC and the BKS, and between the BSS-TEC
and the BDS-FC, respectively. It is important to highlight that, provided a ‘large’ number of sim-
ulation iterations is used, the BSS-TEC is bounded by the BDS-FC and the BKS (lower bounds),
and the BDS-TEC (upper bound). Therefore, the previous gaps show the difference between the
BSS-TEC and its lower bounds. The last column is the gap between the expected total costs of
both solutions.
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Table 6.6: Summary of results for the MDVRP benchmark instances.

Scenario G. BDS-FC -
BKS

G. BDS-TEC -
BDS-FC

G. BSS-TEC -
BKS

G. BSS-TEC -
BDS-FC

G. BSS-TEC -
BDS-TEC

Var: 0.10E[Di] 1.83% 3.10% 3.12% 1.26% −1.69%
Var: 0.50E[Di] 1.83% 5.89% 5.53% 3.62% −2.06%
Var: 1.00E[Di] 1.74% 7.48% 7.12% 5.27% −1.97%

6.3.3 Analysis of results
The results obtained show that assuming a problem being deterministic can lead to solutions with
poor performance even in scenarios characterized by demands with a relatively low variance. In all
experiments, the expected total cost obtained with the best stochastic solution is better than the one
obtained with the best deterministic solution. There is a case in which the gap reaches the −9.39%
(instance ‘p08’ with high variance). The reason is that the deterministic solution is not balanced,
and a high variance results in an increasing of the expected total cost. Figure ?? illustrates the
case of the instance ‘p02’ with a high variance. The vehicle capacity is 160. The left and right
plots represent the best deterministic solution and the best stochastic solution, respectively. The
numbers in the nodes reveal the expected customer demands, while the numbers in the center of
each route are the total demands. Although the routes are similar, notice that the best stochastic
solution seems more ‘balanced’ in terms of demands, which explains why it is also more reliable.

Figure 6.3: Best deterministic (left) and stochastic solutions (right) for the MD-
VRP instance ‘p02’.

Table ?? summarizes the results described in Tables ??, ?? and ??. For each scenario, it shows
the mean gaps. The mean gaps between the BDS-FC and the BKS, which ranges from 1.74%
to 1.83%, show that our approach is relatively competitive for finding the best solution to the
deterministic problem. The third column reveals that the difference between the BDS-TEC and
the BDS-FC (i.e., the total cost if there was no stochasticity) is positive and positively correlated
with the variability of the scenario. Next two columns quantify the gaps between the BSS-TEC and
its lower bounds, the BKS and the BDS-FC. They both increase as the variability of the scenario
gets higher. Finally, the last gap shows the benefit of using the simheuristic approach. Thus, it can
be concluded that the higher the variability the higher the benefit.

Here a risk analysis is presented in which the four best stochastic solutions and the best de-
terministic solution are compared. It is illustrated on a specific case, the instance ‘p09’ with high
variance. Thus, Figure ?? shows a boxplot of the total costs obtained by means of MCS. It can be
stated that the variability of total costs associated to the best deterministic solution is the highest,
and all distributions present a positive skew. In Figure ??, the empirical cumulative distributions
functions (CDFs) for the best deterministic and stochastic solutions are drawn. The probability
distribution function of the best stochastic solution is above the other almost for the entire domain.
In other words, the probability of having a total cost equal to or lower than a given value is usually
higher with this solution. As a consequence, a risk-averse decision-maker would prefer it. Never-
theless, the minimum values are provided by the deterministic solution, which makes sense since
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this solution will be the one selected in scenarios where the customer demands are similar to the
corresponding mean of the distributions.

Figure 6.4: Boxplots of best solutions for the MDVRP instance ‘p09’ with high
variability.

Figure 6.5: CDFs of best deterministic and stochastic solutions for the MDVRP
instance ‘p09’ with high variability.

6.4 The MDVRP-HD
The problem addressed here is an extension of the MDVRP, already introduced in this chapter.
When adopting a marketing perspective, companies focus on market segmentation to group cus-
tomers according to their features and preferences. Considering the heterogeneity of markets,
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segmentation attempts to divide customers into subsets that behave in a similar way. This exten-
sion of the MDVRP aims at assigning customers to depots based not only on distribution costs
but also on customers’ features and preferences. The goal is to optimize expected benefits by
considering both distribution costs and expected incomes.

6.4.1 Methodology
In order to assign customers to depots, the heterogeneity of the depots is taken into account. It is
a realistic approach, since depots belonging to the same organization usually have different char-
acteristics related to products, trade credit policies, and complementary services, among others.
This diversity leads to consider customer preferences. Specifically, the willingness to consume (or
expenditure) of each customer depends on how well the assigned depot fits his/her preferences.
Market segmentation techniques are applied to identify subsets of customers with similar profiles
and assign them to the particular depot that better fits their preferences, considering the restrictions
of the problem. Accordingly, it is proposed to study the relationship between expenditure and cus-
tomers’ features from data of existent customers by employing statistical learning methodologies
(e.g., prediction techniques). It will enable the assignation of new customers in such a way that
the expected benefits (expected incomes minus distribution costs) is maximized. The phases of
the proposed approach are represented in Figure ?? and described next:

1. Data collection. The approach requires several inputs: database of historical sales, descrip-
tion of new customers, location of depots, vehicle maximum capacity, number of available
vehicles at each depot, and maximum distribution costs per route. The sales database in-
cludes the following information for each existent customer: personal features, geographi-
cal location, expenditure level, and depot to which he/she has been assigned (randomly or
according to a metric not related to personal features such as distribution costs). The de-
scription of new customers gathers personal features and geographical locations. Regarding
the information of both existent and new customers, an initial selection of variables has to be
performed by assessing which ones may be valuable. Besides explaining the differences of
expenditures among depots, they should be easy to obtain, estimate or compute, and store.

2. Statistical learning. Given the database of existent customers, a statistical model exploring
the relationship between customers’ features and expenditure is performed for each group
of customers assigned to a specific depot. Considering several groups, it is allowed the
existence of a different trend in each one. A high number of methodologies are available to
carry out regression analysis (Hastie et al., 2009; Lantz, 2013).

3. Prediction of expenditure for new customers. Once a methodology has been selected and
the different functions have been fitted, the expenditure is predicted for each new customer
given his/her features if assigned to each depot.

4. Assignment of customers to depots. In order to perform an efficient and feasible assignation,
it is necessary not only to consider the predicted expenditure but also the distribution costs,
the maximum number of vehicles per depot, and their capacity. Taking a decision for each
customer individually may provide non-feasible and poor-quality solutions. Consequently,
a global and iterative strategy is presented in which customers are selected one at a time to
be assigned to a specific depot. It prioritizes the assignments of those customers that have
associated a relatively high expected benefits only for a particular depot, and is based on the
procedure developed in Juan et al. (2015c). In particular, the following steps are proposed:

• For each depot k and customer i,

– Compute the expected benefits µk
i as the difference between the predicted expen-

diture pk
i and the distribution costs ck

i (computed as the cost of moving from k to
i).

– Compute the difference between the expected benefits of assigning i to k and the
maximum expected benefits of assigning i to a depot l other than k, i.e.:

sk
i = µk

i − maxl∈Vd\{k} µ
l
i ∀i ∈ Vc, ∀k ∈ Vd
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This measure is referred to as “marginal savings”. Accordingly, sk
i will be high

in the case customer i reports relevant expected benefits only if assigned to k,
low (in absolute terms) if the expected benefits are similar for k and at least one
other depot, presenting both depots the highest expected benefits, and very low
(negative) when there is at least one depot where the expected benefits are larger
than those estimated for k.

• For each depot k, create a priority list of customers and sort it in descending order
according to the marginal savings sk

i .

• Create a list of unassigned customers. Then, select a depot and choose the next cus-
tomer to assign from its priority list. Update the list of unassigned customers and
repeat these steps while there are unassigned customers. Different policies may be
applied to determine which depot selects the next customer, as: (i) allowing the depot
with the highest remaining capacity to choose, (ii) using a round robin-based criterion,
or (iii) selecting it randomly.

5. Routing. Having an assignment map, the MDVRP can be solved as a set of independent
CVRPs. However, the most important challenge when addressing a MDVRP instance is the
interrelation between assignation and routing. Therefore, algorithms are required to take the
decisions associated to both phases ‘simultaneously’. Thus, instead of finding an optimal or
near-optimal solution for the customer-to-depot assignment phase and then use this unique
solution as a starting point to solve the routing phase, an iteration process combines ‘good’
and fast computed solutions for the first stage with ‘good’ and fast computed solutions for
the second one in order to find a near-optimal solution for the overall problem.

Figure 6.6: Scheme of the proposed approach for the MDVRP-HD.

Detailed algorithm

Figure ?? summarizes the proposed approach, highlighting the main differences between the clas-
sical version of the problem and the proposed one.

Since the phase of data collection is company-specific, it is assumed to be already done. The
second and the third phases are related to the development and use of predictive statistical learning
models. First, the database of existent customers is split into two subsets: a training set, which will
be used to build the models, and a test set, to assess their performance. These subsets are generated
by means of random sampling: 75% of customers are assigned to the training set and 25% to
the test set. Having different alternatives to explore the relationship between expenditure and
customers’ features, three well-known methodologies are employed in the experiments: multiple
linear regression (MLR), multi-layer feedforward network (MFN), and model tree.

• Regarding MLR, the ordinary least squares method is applied to estimate the parameters,
and the stepwise regression approach with a bidirectional elimination procedure is chosen
to perform the variable selection.

• The MFN with one hidden layer is considered. The number of hidden units (4, 5, 6, 7, or 8)
and the decay value for regularization (0.2, 0.3, 0.4, 0.5 or 0.6) are set using 10-fold cross
validation based on the metric R2 (Kuhn, 2008). The back propagation method is employed
to estimate the parameters.

• The algorithm selected to implement a model tree is the standard M5P (Wang and Witten,
1996).
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The mean squared error (MSE) for each model (the number of models is the number of depots
multiplied by the number of methodologies tested) using the same problem instance is computed.
The total MSE is computed by aggregating the values of the models corresponding to the same
methodology. In the experiments, the methodology selected is the one with the lowest total MS E.
Thus, during the third phase, the expenditure that each new customer would make if he/she was
assigned to each one of the depots is predicted using the selected methodology and the customer’s
features.

For the assignation and the routing phases, an existing methodology described in Juan et al.
(2015c) has been adapted. The authors propose an efficient algorithm based on the ILS metaheuris-
tic framework. Firstly, an initial solution is generated assigning customers to depots according to
the marginal savings (only the distribution costs are considered) and designing the routes by im-
plementing the classical CWS heuristic. Afterwards, an iterative procedure is started in which the
base solution (the initial solution in the first iteration) is perturbed. If the new solution is better than
the base solution, then the latter is replaced. In case no improvement is achieved, a Demon-based
acceptance criterion is considered to avoid entrapment at local optimum. These steps are repeated
until a termination condition is met. Finally, the top best solutions are improved by means of a
post optimization process, and the best one is returned. The described algorithm includes biased
randomization techniques to further diversify the search (Juan et al., 2009). They are implemented
both in the assignation phase, to randomize the sorted priority list of customers of each depot in
such a way that the reasoning behind the sorting is not erased but many orderings are provided,
and in the routing phase, where the CWS heuristic is randomized.

6.4.2 Computational experiments
An algorithm based on the described approach has been implemented and employed to solve
a number of generated instances. The computational experiments compare the results of our ap-
proach for the analyzed version of the MDVRP and for the classical version (i.e., the one assuming
homogeneous depots).

Set of instances

A total of 15 instances have been generated. Each of them consists in three datasets: the first two
gather data concerning existent and new customers, respectively, and the third includes depots’
locations and information related to restrictions. Regarding data of existent customers, four vari-
ables have been created: age (a discrete variable following a uniform distribution with parameters
16 and 80), sex (a categorical variable with two equally probable values), estimated income (it
follows a normal distribution with a mean of 1500 and standard deviation of 300), and preferred
article (a categorical variable including four equally probable values). Initially, each customer has
been assigned to his/her closest depot, while the expenditure level has been determined by a given
function that depends on the depot, the aforementioned variables and a white noise term. For a to-
tal of 100 new customers, the variables age, sex, estimated income and preferred article have been
generated using the same distributions. Customers’ and depots’ locations have been randomly
generated in a square of 100 x 100. In order to simplify the instances’ generation, Euclidean dis-
tances are employed as distribution costs. Different values have been chosen for the number of
depots, existent customers and vehicles, the maximum cost per route and vehicles’ capacity. This
information is shown in Table ??.

Test

Each instance has been adapted by modifying the expenditure of existent customers to analyze the
following scenarios: (1) low ratio (LR), the average ratio between average expenditure of existent
customers and average distribution costs is similar; (2) medium ratio (MR), average expenditure
is relatively higher than average distribution costs; and (3) high ratio (HR), average expenditure is
much higher than average distribution costs. The target ratio has been reached multiplying expen-
ditures by a coefficient. The analysis of these scenarios will allow the comparison of the expected
benefits (expected incomes, defined as the sum of predicted expenditures, minus distribution costs)
associated to solutions considering only distribution costs and those taking into account also cus-
tomer preferences (predicted expenditure), thus exploring the consequences of having different
weights of expenditure in the objective solution. For the first scenario, it is expected that the gap
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Figure 6.7: Flowchart of the proposed approach for the MDVRP-HD.

between distribution costs will be low (i.e., solutions are expected to be relatively similar). Like-
wise, it is expected that this gap will be higher as the ratio increases. Similarly, it is also expected
that the higher the ratio, the higher the gap between the expected benefits of the solutions. The
code has been implemented with Java and R (Team, 2008). The ILS process runs for 4,000 itera-
tions, and all executions are solved for 10 different seeds. Only the best values obtained after the
10 runs are reported.

Results

Tables ??, ?? and ?? show the results. The information gathered is the following: instance name;
methodology selected for prediction; distribution costs, expected incomes, expected benefits and
time associated to the best solution found considering only distribution costs (classical MDVRP)
and to the best solution found when maximizing expected benefit (MDVRP with heterogeneous
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Instance
Numb.
depots

Numb. existent
cust.

Numb.
vehicles

Vehicle
capacity

Max. cost

1 3 300 3 250 200
2 3 300 3 225 200
3 3 300 3 225 150
4 3 300 3 225 200
5 3 300 3 200 150
6 3 400 3 350 225
7 3 400 3 300 200
8 3 400 3 200 175
9 5 400 4 325 175

10 5 400 4 200 150
11 5 400 4 275 175
12 5 400 4 275 150
13 5 400 4 225 200
14 5 400 4 175 125
15 5 400 4 250 175

Table 6.7: Description of the generated instances.

depots); and gaps between distribution costs, expected incomes and expected benefits of both
solutions.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.1 MLR 898.6 961 62.4 82 930.6 1006 75.4 123 31.9 45.0 13.1
p02.1 M5P 834.3 943 108.7 112 834.5 947 112.6 335 0.1 4.0 3.9
p03.1 MFN 944.0 911 -33.0 143 964.4 939 -25.4 159 20.4 28.0 7.6
p04.1 MFN 891.8 852 -39.8 79 923.4 884 -39.4 165 31.6 32.0 0.4
p05.1 MFN 909.7 824 -85.7 189 914.4 829 -85.4 66 4.8 5.0 0.2
p06.1 MFN 868.5 1425 556.5 655 870.2 1429 558.8 613 1.7 4.0 2.3
p07.1 MFN 923.4 1073 149.6 103 925.7 1093 167.3 383 2.3 20.0 17.7
p08.1 M5P 898.2 867 -31.2 105 900.9 872 -28.9 122 2.7 5.0 2.3
p09.1 MLR 1039.2 2008 968.8 91 1127.5 2218 1090.5 33 88.3 210.0 121.7
p10.1 MFN 1029.6 1404 374.4 63 1062.5 1462 399.5 40 32.9 58.0 25.1
p11.1 MLR 880.7 1469 588.3 47 939.1 1609 669.9 464 58.4 140.0 81.6
p12.1 MFN 1858.4 1699 -159.4 108 1864.2 1709 -155.2 328 5.8 10.0 4.2
p13.1 MLR 1428.3 1495 66.7 437 1568.0 1691 123.0 144 139.6 196.0 56.4
p14.1 MFN 930.0 1163 233.0 43 930.0 1163 233.0 40 0.0 0.0 0.0
p15.1 M5P 1268.1 1401 132.9 374 1375.0 1512 137.0 59 107.0 111.0 4.0

Average 35.2 57.9 22.7

Table 6.8: Table of results for the MDVRP-HD instances considering a low ratio.

6.4.3 Analysis of results
Given the flexibility of neural networks, and despite the basic topology and parameter fine-tuning,
and the medium size of the training set, they have been selected to solve more than half of the
instances (57.8%). MLR has provided the best results in a high number of cases (31.1%).

The gaps related to the distribution costs and the expected incomes are strictly positive except
in one case. It confirms the trade-off decision-makers face between both measures; that is to say,
higher distribution costs are required to obtain an increase in expected incomes. Regarding the
gap of expected benefits, it is strictly positive for all instances except for two where both solutions
are equal. Therefore, attempting to achieve the highest benefits studying only distribution costs
in instances with heterogeneous depots results in sub-optimal solutions. As expected, all average
gaps increase with the ratio, i.e., the difference between solutions (in terms of distribution costs,
expected incomes or expected benefits) is positively correlated to the average expenditure for
fixed average distribution costs. However, this rule does not apply for all cases. In some of them,
despite the fact that the gap of expected incomes increases, so does the gap of distribution costs.
As a consequence, the gap of expected benefit may be reduced.
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Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.2 MLR 925.3 1383 457.7 277 978.0 1483 505.0 173 52.7 100.0 47.3
p02.2 MLR 901.2 1334 432.8 301 921.9 1385 463.1 254 20.7 51.0 30.3
p03.2 MLR 959.3 1405 445.7 134 979.1 1438 458.9 89 19.8 33.0 13.2
p04.2 MFN 942.5 1280 337.5 124 947.8 1292 344.3 101 5.3 12.0 6.7
p05.2 MFN 919.0 1264 345.0 51 921.3 1269 347.8 221 2.3 5.0 2.7
p06.2 MFN 945.6 2103 1157.4 106 948.6 2122 1173.4 327 3.1 19.0 15.9
p07.2 MFN 962.8 1581 618.2 394 992.3 1617 624.7 139 29.5 36.0 6.5
p08.2 MFN 969.9 1302 332.1 300 969.9 1302 332.1 296 0.0 0.0 0.0
p09.2 MFN 1169.6 2897 1727.4 36 1336.1 3335 1998.9 173 166.5 438.0 271.5
p10.2 MFN 1165.1 2109 943.9 161 1222.9 2222 999.1 97 57.8 113.0 55.2
p11.2 MLR 1001.8 2212 1210.2 80 1054.4 2288 1233.7 253 52.5 76.0 23.5
p12.2 MFN 1050.0 2571 1521.0 75 1070.5 2620 1549.5 41 20.6 49.0 28.4
p13.2 MLR 1633.4 2178 544.6 106 1778.2 2446 667.8 270 144.8 268.0 123.2
p14.2 MFN 1020.2 1703 682.8 63 1026.8 1717 690.2 67 6.6 14.0 7.4
p15.2 M5P 1419.6 2090 670.4 69 1560.2 2257 696.8 106 140.5 167.0 26.5

Average 48.2 92.1 43.9

Table 6.9: Table of results for the MDVRP-HD instances considering a medium
ratio.

Traditional (1) Rich(2) Gaps(2-1)

Inst. Meth. Dist.
cost

Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben. Time Dist.

cost
Exp.
inc.

Exp.
ben.

p01.3 MLR 1060.3 1930 869.7 199 1153.7 2132 978.3 42 93.4 202.0 108.6
p02.3 M5P 1070.7 1803 732.3 253 1097.0 1864 767.0 174 26.3 61.0 34.7
p03.3 MFN 1042.7 1864 821.3 23 1067.1 1923 855.9 162 24.4 59.0 34.6
p04.3 MFN 1043.2 1701 657.8 54 1080.5 1755 674.5 393 37.2 54.0 16.8
p05.3 MFN 994.0 1621 627.0 174 1011.0 1657 646.0 68 17.0 36.0 19.0
p06.3 MFN 1068.1 2856 1787.9 109 1102.7 2906 1803.3 208 34.6 50.0 15.4
p07.3 MFN 1064.1 2115 1050.9 152 1081.2 2139 1057.8 71 17.1 24.0 6.9
p08.3 M5P 1069.6 1741 671.5 32 1069.6 1741 671.5 261 0.0 0.0 0.0
p09.3 MLR 1420.5 4269 2848.5 37 1690.6 4825 3134.4 138 270.1 556.0 285.9
p10.3 MFN 1434.8 2913 1478.2 113 1734.8 3396 1661.2 33 299.9 483.0 183.1
p11.3 MLR 1238.0 3020 1782.0 25 1486.3 3407 1920.7 265 248.3 387.0 138.7
p12.3 MFN 1195.7 3385 2189.3 37 1216.1 3452 2235.9 125 20.3 67.0 46.7
p13.3 MLR 1843.3 2801 957.7 79 2321.4 3387 1065.6 101 478.1 586.0 107.9
p14.3 MFN 1198.9 2297 1098.1 17 1251.0 2351 1100.0 23 52.1 54.0 1.9
p15.3 M5P 1416.0 2086 670.0 164 1595.5 2311 715.6 210 179.5 225.0 45.5

Average 119.9 189.6 69.7

Table 6.10: Table of results for the MDVRP-HD instances considering a high
ratio.

The results are summarized in Figures ??. The boxplots on the left show the expected benefits
per scenario and version of the problem: considering heterogeneous depots (rich) and assuming
homogeneous ones (traditional). Even if the medians associated to each ratio level do not dif-
fer significantly, the third and second quartile values do present a higher value for the extended
version of the problem. This behavior is caused by the long right tails of the corresponding dis-
tributions, which indicate that for some instances the rich version results in better solutions in
terms of expected benefits. The second figure displays the variables in which expected benefits are
decomposed per scenario and considering the rich version. It can be observed that differences of
expected benefits between scenarios are mainly due to differences between expected incomes.

6.5 Sustainable urban freight transport
This section studies a MDVRP considering the sustainability concept as optimality criteria. The
three-axis of sustainability (measured as economic, environmental and social impacts) are repre-
sented by traveling distances and times, carbon emissions and risk of accidents. These measures
are monetized and aggregated. Several studies have addressed the economic impacts as a variable
mainly influenced by traveling distances; therefore most existing models seek to minimize them.
However, doing this does not guarantee the minimum impact because many elements such as con-
gestion, speed limits, traffic signs and vehicles crashes make longer the time of the distribution



6.5. Sustainable urban freight transport 55

Figure 6.8: Boxplots of the expected benefits for the MDVRP-HD instances per
scenario and version (left), and of the distribution costs and expected incomes for

the rich version (right).

routes (Wang et al., 2016). In fact, the shortest paths in urban zones tend to have more traffic signs
since these are the most frequented and, as a result, main streets may be the slowest paths.

• Economic dimension: It is composed by the classical measures total traveling times and
distances, which are monetized based on the driver wage, vehicle fixed cost and oil price.

• Environmental dimension: CO2 emissions estimates assume that the internal combustion
process of vehicles burns the carbon of the fuel and it is released as carbon dioxide. Thus,
emissions are assumed to depend on fuel consumption. The fuel consumption is estimated
as suggested in Kuo (2010) and Zhang et al. (2015).

• Social dimension: Accidents are an externality caused by speed variations on roads, among
other factors. These variations represent the state and stability of the roads, and are associ-
ated to an accident risk for pedestrian and vehicles (Wang et al., 2016).

6.5.1 Methodology
The methodology proposed (Algorithm ??) is based on the VNS metaheuristic. The inputs are the
problem instance and the number of neighborhoods (K). It is usual to set K to two or three, and to
design nested neighborhoods.

First, an initial solution is generated and stored in initSol and baseSol. Then, the cost of all
the impacts associated are computed. bestSol will store the best solution found. An outer loop
is started, which sets the current neighborhood to the first one. Inside, another loop builds and
assesses new solutions. Within this loop, the base solution is initially shaken (i.e., it is partially
destroyed and reconstructed in a random way), generating a solution from the k-th neighborhood
of baseSol. The total cost of this solution (newSol) is computed (Algorithm ??). The variable rpd
measures the relative percentage difference between the total cost of newSol and baseSol. If there
is an improvement (i.e., rpd < 0), a local search is applied to newSol, the resulting solution is
copied into baseSol, and the current neighborhood is set to the first. In addition, bestSol is updated
if it applies. This constitutes a descendent phase aimed to find a local minimum. Otherwise,
newSol is accepted and the current neighborhood is set to the first with a probability of exp(−rpd).
This acceptance criterion, first proposed in Hatami et al. (2015), aims to avoid entrapment at local
optimum. In case of not accepting newSol, the next neighborhood is analyzed (i.e., k is set to k+1).
The inner loop is executed until the last neighborhood is explored (i.e., k = K). Finally, bestSol is
returned.

The generation of solutions for the MDVRP has two sequential and interrelated stages: a)
the assignment of customers to depots, and b) the design of distribution routes for each depot.
Both stages employ biased randomization techniques. The first stage relies on a measure called
“marginal savings” (Juan et al., 2015c), which is computed for each pair depot-customer as fol-
lows: the distance between each depot and the customer is obtained, and the difference of assigning
the customer to the specific depot instead of the closest depot among the others is computed. A
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Algorithm 8 Approach for the MDVRP considering externalities.
1: procedure MDVRP WITH SUSTAINABILITY INDICATORS (inputs, impactsParameters)
2: initS ol← genInitS ol (inputs) # generate solution based on the BR-CWS heuristic
3: baseS ol← clone (initS ol)
4: computeTotalCost(baseS ol, impactsParameters)
5: bestS ol← clone (baseS ol)
6: while (stopping criterion is not met) do
7: k ← 1
8: while (k ≤ K) do
9: newS ol← shake(baseS ol, k) # destruction-construction stages

10: computeTotalCost(newS ol, impactsParameters)
11: rpd← (getTotalCost(newS ol) - getTotalCost(baseS ol))/getTotalCost(baseS ol)· 100
12: if (rpd < 0) then # newSol improves baseSol
13: newS ol← localSearch(newS ol)
14: baseS ol← newS ol
15: k ← 1
16: if (getTotalCost(newS ol) - getTotalCost(bestS ol) < 0) then
17: bestS ol← newS ol
18: end if
19: else
20: u← generateU()
21: if (u < exp(−rpd)) then #acceptance criterion
22: baseS ol← newS ol
23: k ← 1
24: else
25: k ← k + 1
26: end if
27: end if
28: end while
29: end while
30: bestS ol← localSearch(bestS ol)
31: return bestS ol
32: end procedure

Algorithm 9 Function to monetize the impacts of a given solution.
1: procedure COMPUTE TOTAL COST(MDVRPS ol, impactsParameters)
2: distance← 0
3: time← 0
4: emissions← 0
5: social← 0
6: for each (cvrpSol in MDVRPSol) do
7: distance← distance + getDistance(cvrpS ol)
8: time← time + getTime(cvrpS ol)
9: for each (edge in cvrpSol) do

10: emissions← emissions + getDistance(edge)/getKPL(edge)
11: social← social + getDistance(edge) · getLoad(edge, cvrpS ol)
12: end for
13: end for
14: distanceCost ← distance· getDistUnitCost(impactsParameters)
15: timeCost ← time· getTimeUnitCost(impactsParameters)
16: emissionsCost ← emissions· getEmissionsUnitCost(impactsParameters)
17: socialCost ← social· getSocialUnitCost(impactsParameters)
18: totalCost ← distanceCost + timeCost + emissionsCost + socialCost
19: return totalCost
20: end procedure

priority list of customers is created for each depot and sorted according to the marginal savings.
Thus, high marginal savings are prioritized, since assigning the corresponding customer to another
depot (which would be farther) could lead to a poor-quality solution. These lists are randomized
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assigning probabilities according to a geometric distribution. Three different policies are itera-
tively applied to choose the depot to select the next customer to be assigned: i) all depots choose
the first node in their list at a time, following consecutive turns (known as round robin criteria);
ii) randomly; iii) the depot with the highest remaining capacity is selected. Thus, using biased
randomization and different policies promotes the generation of different assignation-maps. The
second stage is based on the randomized version of the CWS heuristic (Juan et al., 2011a), which
also depends on a geometric distribution applied to the savings to iteratively choose one merge
among all possible. However, the classical distance-based savings are replaced by “rich savings”
including all costs.

The performance of each solution is computed and the sum of the costs associated to the
impacts considered: economic, environmental and social. The shaking procedure randomly selects
a percentage pk of customers to be assigned to a different depot. Afterwards, the procedure to
construct solutions is applied to repair the solution. This movement is introduced to diversify the
search. The search is guided by the base solution, since the shaking procedure applied at each
iteration works with that solution. It is set to the initial solution at the beginning and replaced by
the new solution if the acceptance criterion is met. The stopping criterion is based on the number
of iterations. Two local searches are used: the first is applied to solutions improving the current
base solution and is based on the classical 2-opt operator defined for the CVRP (Lin, 1965), while
the second is a routing extensive improving search described in Juan et al. (2011a), and applied
only to the best solution found at the end.

6.5.2 Computational experiments
The algorithm proposed has been implemented in JAVA and run on a personal computer with 8
GB of RAM and an Intel Core i7 of 1.8 GHz. In order to test it, illustrate its use and the analysis
of results that may be carried out, 4 MDVRP benchmark instances (p10, p11, p12 and p13) called
here instance 1, 2, 3 and 4, respectively, are employed. They have been extensively used (see Vidal
et al., 2012; Escobar et al., 2014).

Each instance has been adapted as follows. Vehicles’ efficiency parameters are based on a type
of light duty vehicle used for freight distribution in urban zones. The cost for CO2 emissions (0.1
USD/L) is suggested by Zhang et al. (2015). Regarding the time cost, it is defined by Koç et al.
(2014) as the sum of a vehicle fixed cost and driver wage, which are set to 1.4 USD/h and 6.3
USD/h, respectively. The distance cost is based on the price of fuel (1.1 USD/L) and the average
miles per fuel liter (5.56 km/L). Delucchi and McCubbin (2010) propose an the interval [1 · 10−4,
1.3 · 10−3] USD per kg-km for the coefficient to estimate the social cost. Without loss of generality,
times ti j are generated from distances di j using this formula ti j = α · di j + εi j, where α is a constant
based on an estimated speed (α−1 = 35 km/h) and εi j represents external factors that define the
correlation between traveling time and distance. It is set to follow a truncated normal distribution
with a lower bound and mean equal to 0 and a standard deviation equal to 3.5, 2, and 0.5. These
deviations are set in order to get a correlation around 0.5, 0.7 and 0.9, which may represent a high,
medium and low congested zone, respectively. Thus, three scenarios are generated per instance.
For example, for di j = 10 km, ti j fall in the following intervals considering a probability of 95%:
(0.59, 1.69), (0.64, 5.06), and (0.69, 8.42).

Each instance has been solved 10 times (employing a different seed) and only the best so-
lutions are reported. 300,000 iterations are considered. The parameter fine-tuning is performed
by using design of experiments and testing reasonable ranges. The parameters for the geometric
distributions related to the allocation and the routing process are randomly chosen in the intervals
(0.5, 0.8) and (0.1, 0.2), respectively. The degree of shaking, which defines the neighborhoods, is
set to 10%, 30% and 50% (for the first, second and third neighborhood, respectively).

The experimentation process consists in analyzing how the solution space changes according
to the optimization criterion and how it influences the other indicators. Thus, five options are con-
sidered: optimization criterion is based on minimizing each component of the objective function
or the sum of them. In a real-life application, the choice will depend on the particular interests of
the decision-maker.
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6.5.3 Analysis of results
This section analyzes the solutions found considering all the indicators or each one of them as
optimization criterion. This comparison aims to determine a solution subspace representing an
equilibrium between the economic, environmental, and social dimensions.

Table ?? shows the total cost of the best solutions found according to the objective pursued
for each instance and scenario. As described before, the total cost is computed as the sum of the
costs associated to traveling distance, traveling time and CO2 emissions, and the social cost. In
instance 1 and 2, the solution minimizing the traveling time matches the solution minimizing the
total cost, which means that these objectives converge to the same solution. Similarly, the same
solution ensures the minimum traveling distance cost and emissions cost (this is due to the way
in which the emissions are estimated). Obviously, the total cost is higher in the zones where the
traveling time and the traveling distance have a low correlation (i.e., in congested zones, based on
the description of the scenarios). The solution with the minimum social cost is the most expensive,
because the other costs are significantly increased.

Table 6.11: Total cost by scenario, instance and optimization criterion.

Scenarios

Low Medium High

Instance Objective Total cost Total cost Total cost Run Time (s)

1
Total cost 7597.4 5669.1 3763.3 1665.8
Distance 8601.8 6054.1 3763.3 1572.9
Time 7597.4 5770.8 3867.3 1688.3
CO2 emissions 8601.8 6054.1 3763.3 1572.9
Social cost 8686.3 6393.7 3977.7 1485.0

2
Total cost 7625.8 5979.4 3645.0 1368.4
Distance 9087.9 6392.3 3645.0 1625.2
Time 7625.8 6060.9 3741.2 1603.2
CO2 emissions 9087.9 6392.3 3645.0 1625.2
Social cost 9096.5 6651.7 3898.9 1130.3

3
Total cost 2475.6 1913.3 1197.9 200.2
Distance 2949.0 1944.5 1199.6 190.8
Time 2475.6 1949.0 1197.9 198.5
CO2 emissions 2949.0 1944.5 1199.6 190.8
Social cost 2979.8 1999.8 1241.6 186.0

4
Total cost 2757.8 1904.3 1217.0 185.9
Distance 2871.1 1913.3 1217.0 187.3
Time 2813.3 1927.9 1222.7 189.3
CO2 emissions 2871.1 1913.3 1217.0 183.9
Social cost 3144.2 2103.1 1385.6 182.8

Regarding the social cost, it is important to determine the customer sequence and the direction
of the route. Figure ?? illustrates and quantifies their effect on the total cost of a given route.
Accordingly, high-quality solutions visit first the customers with higher demands, minimizing
the amount of freight transported over long stretch of roads. On the other hand, the scenario
influences the total cost. Table ?? suggests that the gap between solutions with minimum total
cost and minimum social cost is higher in congested zones. This happens because minimizing the
social cost involves reducing the traveling distance, which leads to optimize also the traveling time
if there is a high correlation between time and distance.

Figures ?? and ?? provide information regarding the behavior of solutions for each scenario.
The first represents the average weight of each cost component per scenario considering the four
instances. It can be observed that traveling time represents the main cost and its magnitude is the
most sensitive to the scenario. Figure ?? shows the ranges of total cost and its components per
scenario for instance 1. In this case, the time cost increases at a higher rate than the distance cost,
which causes differences among scenarios.

Table ?? shows the cost of each indicator when the main objective is to minimize the total cost
for all instances and scenarios. The gaps reflect the difference between the solution with minimum
total cost and the best solution for each indicator. For example, the solution with the minimum
total cost for instance 1 in the low scenario has a social cost 9.49% higher than the best solution
found when the objective is to minimize the social cost. This table demonstrates that the solution
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Figure 6.9: Effect of the customer sequence and the direction for a given route.

(a) Low Scenario (b) Medium Scenario (c) High Scenario

Figure 6.10: Weight of each sustainability component in the total cost by scenario
considering all instances.

Figure 6.11: Total cost and component per scenario for instance ’1’.

with the minimum total cost does not tend to be the best when applying another optimization
criterion.

Figure ?? displays radar plots for instances 1 and 4, and the scenarios low and high using the
best solutions found for each indicator and the total cost. These plots identify the desirable and
sustainability regions. The desirable region is defined as the union of the subspaces associated
to the solutions. Solutions falling outside the figure may be discarded since they are dominated
by at least one solution (i.e., there is at least one solution with the same or better values for all
indicators). Similarly, the intersections of at least two solution subspaces form the sustainability
region, which contains the best solutions, i.e., solutions that achieve a suitable balance considering
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Table 6.12: Comparison among solutions for each instance and scenario.

Objective: Minimizing Total cost

Scenario Instance Traveling distance Traveling time CO2 emissions Social cost

(V, C, D) Cost Gap (%) Cost Gap (%) Cost Gap (%) Cost Gap (%)

Low
1 (8,249,4) 1386.35 -12.88% 5136.15 0.00% 672.10 -12.88% 402.78 -20.37%
2 (6,249,5) 1376.06 -14.96% 5192.52 0.00% 667.11 -14.96% 390.11 -21.38%
3 (5,80,2) 560.84 -23.09% 1624.93 0.00% 271.89 -23.09% 17.90 -31.55%
4 (5,80,2) 460.19 -5.66% 2059.82 -1.16% 223.10 -5.66% 14.69 -28.31%

Average 945.86 -14.15% 3503.36 -0.29% 458.55 -14.15% 206.37 -25.40%

Medium
1 (8,249,4) 1328.31 -9.07% 3325.69 -2.38% 643.96 -9.07% 371.14 -13.58%
2 (6,249,5) 1312.04 -10.81% 3671.20 -2.96% 636.08 -10.81% 360.05 -14.82%
3 (5,80,2) 434.16 -0.65% 1254.84 -12.01% 210.48 -0.65% 13.78 -11.05%
4 (5,80,2) 442.88 -1.97% 1232.64 -0.26% 214.71 -1.97% 14.09 -25.23%

Average 879.35 -5.63% 2371.09 -4.40% 426.31 -5.63% 189.77 -16.17%

High
1 (8,249,4) 1204.67 0.00% 1626.95 -4.72% 584.02 0.00% 347.65 -7.74%
2 (6,249,5) 1177.17 -0.59% 1563.70 -3.79% 570.69 -0.59% 333.45 -8.03%
3 (5,80,2) 435.35 -0.92% 538.16 0.00% 211.06 -0.92% 13.33 -8.06%
4 (5,80,2) 434.16 0.00% 558.53 -0.48% 210.48 0.00% 13.78 -23.54%

Average 812.84 -0.38% 1071.84 -2.25% 394.06 -0.38% 177.05 -11.84%

a number of indicators.

(a) Instance 1: Low Scenario (b) Instance 1: High Scenario

(c) Instance 4: Low Scenario (d) Instance 4: High Scenario

Figure 6.12: Solution spaces for decision-making considering sustainability in-
dicators.

6.6 The WCP
The WCP (Figure ??) can be described on a graph G = (V, A), where the set of nodes V = Vd∪V f∪

Vc ∪Vb includes: (i) a set of starting and ending depots Vd = {0, 0′} (in practice both depots could
be the same), with the starting depot being the initial location of a fleet of homogeneous vehicles
K = {1, 2, . . . , k}, each of them having a capacity C; (ii) a set V f = {1, 2, . . . ,m} describing m
landfills at which collected waste must be disposed at least once before visiting the ending depot;
(iii) a set of waste containers (customers) Vc = {m+1, . . . ,m+n}with associated waste levels qi > 0
(∀i ∈ Vc); and (iv) a set Vb = {0∗} representing a virtual lunch-break node that has to be included
in each route. Each node i ∈ V \ Vd has an associated time window represented by [ai, bi] (with
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0 ≤ ai < bi). Necessary service times for emptying any container and the duration of the lunch
break are formulated as ri > 0 (∀i ∈ Vc∪Vb). Likewise, the set A = {(i, j)/i, j ∈ V, i , j} describes
the arcs connecting any pair of different nodes. Each pair is characterized by its respective travel
costs, ci j = c ji ≥ 0, and travel times, ti j = t ji ≥ 0. The travel time associated with going
from any node i ∈ V ∪ Vb to the virtual lunch-break node (and vice versa) is equal to zero, i.e.:
ti0∗ = t0∗i = 0. Notice, however, that the travel cost associated with ‘crossing’ the lunch-break
virtual node is given by the travel cost of the origin and destination nodes, i.e.: ci0∗ + c0∗ j = ci j .
The decision variables xi jl (∀(i, j) ∈ A, ∀l ∈ K) equal 1 if arc (i, j) is employed by vehicle l and 0
otherwise. The aim is to minimize total travel costs.

Figure 6.13: Representation of a WCP instance.

The following restrictions are considered: (i) the number of vehicles used is not predetermined,
only the maximum number of available vehicles is given; (ii) the lunch break is automatically
included in a route whenever a certain time window is reached; (iii) there is a maximum number
of stops at containers and landfills per route; (iv) there is a maximum amount of waste that can be
collected on a single vehicle route; and (v) the depot also has a time window. Methodologies for
both the deterministic and the stochastic versions are presented.

6.6.1 Methodology
The WCP

A VNS metaheuristic is proposed to solve the deterministic WCP. An initial solution is obtained
by applying the biased-randomized extension of the CWS heuristic. This procedure is adapted to
the special case of waste collection by changing the calculation of savings values used for merging
two customers i and j, originally calculated as si j = ci0 +s0 j−ci j. In the WCP, the costs of traveling
between a customer and the depot are asymmetric due to the additional landfill visit. To address
this new situation, the average savings associated to each arc are employed.

Based on the initial solution baseS ol, different neighborhood structures Nk({k = 1, ..., kmax})
are created. The shaking procedures applied to create new solution structures are outlined in Table
??. Within each neighborhood Nk(baseS ol), different local descent heuristics described in Table
?? are randomly applied to find the local minimum of Nk(baseS ol). To conclude the local search
phase, a quick solution improvement procedure based on a cache memory technique (Juan et al.,
2013a) is implemented: the best-known order of traveling between a set of nodes establishing
a sub-route –i.e., starting at the depot or a landfill and ending at a disposal site– is stored in a
hash-table data structure, thus allowing new solutions to benefit from previously constructed ones.
Whenever the local search phase leads to a more competitive objective function value than that
of baseS ol, baseS ol is updated and k is returned to its initial value of 1. If baseS ol cannot be
improved through the local minimum of Nk, k is incremented by 1 and the next shaking operator
is applied. Once each neighborhood has been constructed (k = kmax), the process is repeated until
a certain predefined stopping criterion (e.g.: time, iterations, etc.) has been reached. Note that we
shuffle the list of neighborhood operators every time k > kmax. A description of the VNS procedure
for the deterministic WCP can be seen in Algorithm ??.
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Table 6.13: Shaking operators for the WCP.

Operator (k) Description
Customer Swap Inter-Route Swaps two random customers between different routes.
2-Opt Inter-Route Interchanges two chains of randomly selected customers between different routes.
Reinsertion Inter-Route Inserts a random customer in a different route.
Cross-Exchange Interchanges positions of 2-4 random, non-consecutive customers from

different routes.

Table 6.14: Local search operators for the WCP.

Operator (LS-Scheme) Description
Best Position Insertion Reinserts the container with the highest objective function increase into the best

available position of any route.
Re-allocate all Iteratively calculates the objective function increase of each container and

reinserts it at the best possible position.
Random Swaps Randomly selects and interchanges two nodes (from the same or different routes)

if the objective function improves.

The stochastic WCP

Waste levels cannot be predicted with full certainty when solving a more realistic stochastic ver-
sion of the problem. The fact that actual waste levels in containers are only known when reach-
ing designated pick-up points can lead to route failures whenever collected garbage exceeds the
planned collection amount. In these cases, the collection vehicle needs to add an additional and
expensive landfill visit to its route. The proposed simheuristic methodology (Algorithm ??) allows
an estimation of the solution quality of previously created outputs using the VNS metaheuristic
proposed before by integrating MCS into the solution procedure.

The methodology starts by transforming the stochastic input variables into their deterministic
counterpart, which is used to establish initial WCP solutions. The waste levels can be modeled
according to some kind of probability distribution. This allows the (stochastic) waste levels wi

at each container i to be replaced with expected values E[wi]. Using these deterministic values,
an initial solution baseS ol is constructed. In the following, the solution quality in a stochastic
environment is tested by randomly simulating the waste levels of each container i for a certain
number of iterations (or simulation runs) within the predefined distribution. During each run the
occurring route failure costs are estimated by penalizing situations in which vehicle capacities
are reached before a scheduled landfill trip. More specifically, route failure costs are calculated
as corrective actions to the predefined routes. Finally, the sum of all route failure costs of all
simulation runs are divided by the number of simulation runs. Thus, the expected total costs
of baseS ol consist not only of the deterministic routing costs, but rather in the addition of the
deterministic routing costs with the expected route failure costs. At this stage a small number
of iterations shortS imIter is proposed. On the one hand, a larger number of simulation runs
lead to more reliable estimates of the stochastic route costs. On the other hand, at this stage a
shorter simulation procedure can be used to keep the computational effort through the simulation
reasonable.

Once detCosts(baseS ol), stochCosts(baseS ol), and totalCosts(baseS ol) have been defined,
new deterministic solution neighborhoods are constructed and locally improved as described pre-
viously. A newly constructed solution newS ol is considered as promising whenever it yields lower
deterministic costs than the current base solution. The behavior of each promising solution un-
der waste level uncertainty is then evaluated by applying a short simulation run, leading to a first
estimation of the total solution costs. Whenever totalCosts(newS ol) < totalCosts(baseS ol), the
current base solution is updated and k is returned to its initial value. Furthermore, the solution
is stored as elite stochastic solution. With each elite solution, a more extensive simulation run is
started for longS imIter iterations once the metaheuristic stopping criteria has been reached. The
number of stored eliteS ols is limited to 10.

In addition to calculating the stochastic objective function value of promising deterministic
solutions, the methodology allows the estimation of a solution reliability by considering the pro-
portion of runs where the solution plan can be implemented without any route failure. Thus,



6.6. The WCP 63

Algorithm 10 VNS procedure for the WCP

1: baseS ol← solve biased randomized CWS for the WCP
2: while stopping criteria not reached do
3: shuffle(ListO f S hakingOperators)
4: k ← 1
5: repeat
6: newS ol← shake(baseS ol, k)
7: improving← true
8: while improving do
9: newS ol∗ ← localDescent(newS ol, randomLS operator)

10: if costs(newS ol∗) ≤ costs(newS ol) then
11: newS ol← newS ol∗
12: else
13: improving← false
14: end if
15: cacheSubRoutes(newS ol)
16: if costs(newS ol) < costs(baseS ol) then
17: baseS ol← newS ol
18: k ← 1
19: else
20: k ← k + 1
21: end if
22: end while
23: until k > kmax

24: end while
25: bestS ol← baseS ol
26: return bestS ol

the reliability reliabr of each route r of any solution S is computed as the quotient of the num-
ber of runs in which a route failure occurs divided by the total number of simulation runs, i.e.
reliabr = simRunsWithRouteFailue/simRuns. Notice that each route in a solution can be seen as
an independent component of a series system (i.e., the proposed solution will fail if, and only if,
a failure occurs in any of its routes). Therefore, the overall reliability of a solution with R routes

can be computed as
R∏

r=1
reliabr.

6.6.2 Computational experiments
To test the deterministic approach, the 10 WCP benchmark instances provided by Kim et al.
(2006), which were later adopted by Benjamin and Beasley (2010) and Buhrkal et al. (2012),
are employed. Furthermore, the clustered instances presented by Buhrkal et al. (2012) are used. A
clustering procedure is applied to nodes with the same location and time windows to change the
total number of nodes. The algorithm was implemented as Java application and run on a personal
computer with an Intel R©XeonTMCPU E5-2630 v2 @ 2.60GHz processor. The initial solutions
constructed with the biased randomized version of the savings heuristic are based on a distribution
parameter randomly chosen within the range (0.4, 0.5) at each solution construction step.

The results are summarized in Table ??. Column (1) reports the BKS for each instance, column
(2) the computational times (CT) in seconds, and column (3) the average results with 10 different
random number seeds. The VNS metaheuristic is tested with two different stopping criteria. On
the one hand, our best solution (achieved with 10 seeds) is reported in column (4). Furthermore,
our average solution (5) and our best solution (6) with a stopping criterion of 300 seconds per
instance are reported, as suggested by Benjamin and Beasley (2010). It can be seen that the
proposed algorithm outperforms current BKSs by an average of -0.85% and -2.65%. Moreover, it
reaches 9 new BKSs (11 with the extended algorithm running time).
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Algorithm 11 Simheuristic approach for the WCP-SW

1: replace stochastic waste levels by expected values
2: baseSol← solve biased randomized CWS for the WCP
3: shortSimulation(baseS ol)
4: while stopping criteria not reached do
5: k ← 1
6: repeat
7: newSol← shake(baseSol, k)
8: localSearch(newSol)
9: if detCosts(newS ol) < detCosts(baseS ol) then . Solution is promising

10: shortSimulation(newSol)
11: if totalCosts(newS ol) < totalCosts(baseS ol) then
12: update(eliteS ols)
13: baseS ol← newS ol
14: k ← 1
15: else
16: k ← k + 1
17: end if
18: end if
19: until k > kmax

20: end while
21: for each eliteS ol do
22: longSimulation(eliteS ol)
23: estimateReliability(eliteS ol)
24: end for

Table 6.15: Table of results for the WCP benchmark instances.

Instance
(1)

BKS

(2)
CT BKS

(s)

(3)
BKS

average

(4)
Our

best sol1

(5)
Our sol

average2

(6)
Our

best sol2

(7)
CT our

best sol (s)

%-Gap
(1)-(4)

%-Gap
(1)-(6)

Kim102 174.5 3 176.03 158.61 158.64 154.62 5 -9.11 -11.39
Kim277 447.6 8 455.7 472.73 457.14 450.6 299 5.61 0.67
Kim335 182.1 10 196.49 189.79 187.36 184.22 298 4.22 1.16
Kim444 78.3 18 78.99 80.22 80.09 79.49 292 2.45 1.52
Kim804 604.1 72 650.65 603.17 601.14 593.2 300 -0.15 -1.80
Kim1051 2250.6 194 2387.7 2128.37 2119.50 2077.37 294 -5.43 -7.70
Kim1351 871.9 105 891.17 929.5 929.40 910.6 238 6.61 4.44
Kim1599 1337.5 252 1385.3 1184.67 1208.54 1182.58 292 -11.43 -11.58
Kim1932 1162.5 285 1192.2 1149.45 1169.95 1136.34 273 -1.12 -2.25
Kim2100 1749 356 1916.8 1595.48 1622.29 1603.93 293 -8.78 -8.29

Clustered Instances
Kim86 174.5 3 176.6 155.68 158.35 155.68 10 -10.79 -10.79
Kim267 450.7 8 456.4 460.4 455.96 449.41 294 2.15 -0.29
Kim322 182.4 10 190.7 189.78 185.93 184.26 298 4.05 1.02
Kim444 78.6 18 79.2 80.22 80.09 79.49 292 2.06 1.13
Kim602 586.2 72 647.8 610.52 593.25 586.11 297 4.15 -0.02
Kim1011 2295.2 116 2370.5 2151.51 2131.00 2102.23 299 -6.26 -8.41
Kim536 850 105 850.9 885.83 877.69 850.46 292 4.22 0.05
Kim870 1170.2 252 1230.6 1156.15 1180.07 1145.83 286 -1.20 -2.08
Kim1860 1128.7 285 1180.9 1129.89 1154.48 1138.6 295 0.11 0.88
Kim1877 1594.2 266 1650.8 1620.89 1642.20 1604.33 186 1.67 0.64
Average 868.44 122 908.27 846.64 849.65 833.47 257 -0.85 -2.65

1 Computational times per instance equal to column (2)
2 Computational times per instance equal to column (7)

Since there is a lack of stochastic benchmark instances, the non-clustered instances of Kim et
al. (2006) are used as reference. The deterministic instances are then transformed into stochastic
ones by using random waste levels following a log-normal distribution with expected values equal
to the original deterministic value.
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Table 6.16: Comparison of elite solutions for the WCP-SW.

Elite
Solutions Best 1 Best 2 Best 3

Instance
Name Mean St. Dev. Mean St. Dev. Mean St. Dev.

Kim102 157.05 3.54 157.14 3.38 157.22 3.65
Kim277 498.66 4.53 499.07 4.45 499.12 4.59
Kim335 187.84 1.81 187.96 1.84 188.25 1.85
Kim444 87.79 0.84 87.80 0.79 91.35 0.82
Kim804 633.97 5.93 634.34 5.74 635.00 5.90

Kim1051 2342.85 16.67 2343.58 15.48 2345.62 16.29
Kim1351 1009.88 26.48 1012.78 26.57 1025.50 26.54
Kim1599 1290.02 24.34 1291.67 23.40 1292.07 23.83
Kim1932 1199.85 29.77 1202.21 30.50 1245.03 30.14
Kim2100 1742.47 13.97 1742.81 14.62 1748.34 13.83

The approach is tested using low (Var[wi] = 0.05), medium (Var[wi] = 0.15), and high
variance levels (Var[wi] = 0.25) concerning the waste level distribution at any container. The
number of short simulation runs is set to 500, while a more extensive simulation with 5000 runs
is applied only to the elite solutions. Moreover, vehicle safety stocks k are considered to better
deal with unexpected demands (Juan et al., 2011b). Instead of considering the complete available
vehicle capacity C in the construction of the deterministic solution, a decreased capacity C∗ =

C(1− k) is applied. On the one hand, high levels of k will, on average, lead to higher deterministic
costs, as the considered vehicle capacity during the route construction is reduced. On the other
hand, it can be expected that the stochastic route failure costs will decrease. 6 different levels k are
considered: 0, 0.02, 0.04, 0.06, 0.08, and 0.1. The average calculation time of all scenarios was
351.92 seconds.

6.6.3 Analysis of results
Figure ?? shows the expected total costs and reliabilities for the average of all tested instances for
each waste variance level/safety capacity factor combination. As can be observed, the highest total
costs for each waste variance level is obtained when no safety capacity factor is considered as a
result of high expected route failure costs. Furthermore, it can be seen that the lowest total costs
over all instances for a low variance level are obtained with a safety capacity factor of 2%. For
medium and high waste variance, a safety capacity factor of 4% seems to yield the most promising
results concerning total costs. As expected however, the reliability levels increase for all variance
levels as the vehicle safety capacity is increased. It can also be concluded that the inclusion of
only a small safety capacity already significantly increases reliability levels (up to around 60% in
the most extreme case).

A more detailed risk analysis is done in Figure ??, which shows a boxplot of the long simula-
tion outputs for the three most competitive elite solutions of the ‘Kim277’ instance. In this specific
case the first solution seems to be the most promising one, as it has the lowest mean and the lowest
quartiles. However, this is not necessarily always the case. In Table ??, the mean and standard
deviation of the results from the long simulation concerning total costs of the three best solutions
of each instance are listed. It can be concluded that the solution with the lowest mean does not
always have the lowest standard deviation. This information can be used by decision-makers to
select the solution that he/she prefers according to his/her risk preference. In a similar manner,
our solution approach allows the consideration of different risk-aversion levels of decision takers
by comparing solutions with different safety capacity levels. A more risk-averse route planner
will choose to construct routes with higher safety capacity levels, which typically lead to higher
routing costs while experiencing lower route failure, and vice versa.

6.7 The HSAVRP-SD
The HSAVRP-SD is defined over a complete graph G = (N, A), where N = {0, 1, . . . , n} is a set
of nodes representing the depot (node 0) and the n customers. Each node i ∈ N has associated
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(a)

(b)

Figure 6.14: Expected total costs (a) and reliabilities (b) for the WCP-SW in-
stances.
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Figure 6.15: Boxplots of the total costs of the WCP instance ‘Kim277’ consider-
ing a high waste variance level and a 2% safety capacity level.

a demand Di, which is a random variable following a given probability distribution. The actual
demand of a specific customer is only known when a vehicle visits her/him. The set A = {(i, j) :
i, j ∈ N, i , j} contains the arcs connecting each pair of nodes. Moreover, there is a set F =

{1, ...,m} referring to the types of vehicle. For each type o ∈ F, there are po available vehicles, the
parameter Qo represents the maximum load that a vehicle can carry, and Uo (Uo ⊆ N \ 0) denotes
the set of customers that can be served. Each arc has associated a cost co

i j that depends on the type
of vehicle. The cost of a route is the sum of the costs of its arcs and a fixed cost for using a vehicle
( fo). The goal is to design routes that satisfy all demands and minimize the total costs.

6.7.1 Methodology
The methodology proposed is a simheuristic procedure combining the ILS metaheuristic and MCS
techniques. For building solutions, the successive approximations method (SAM) (Juan et al.,
2014c) (Algorithm ??) is used. The description of the methodology is explained below and sum-
marized in Figure ??.

Algorithm 12 The SAM procedure

1: procedure buildSolution(customers, vehicles)
2: globalS ol← empty
3: nonS ervedCust ← customers
4: while nonS ervedCust , empty do
5: vehType← selectType(vehicles)
6: compatCust ← getCompatibleCust(nonS ervedCust, vehType)
7: sol← solveHoS AVRP(compatCust, vehType)
8: routes← getRoutes(sol)
9: numVehO f TypeK ← numberO f Vehicle(vehType)

10: if numberO f Routes > numVehO f TypeK
11: routes← S electRoutes(numVehO f TypeK,Random)
12: end if
13: globalS ol← addRouteToS ol(routes, globalS ol)
14: vehicles← deleteUsedVehicles(vehicles)
15: nonS ervedCust ← extractCustomers(nonS ervedCust, globalS ol)
16: end while
17: return globalS ol
18: end procedure
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Figure 6.16: Flowchart of the proposed approach for the HSAVRP-SD.

The inputs are the HSAVRP-SD instance and a set K of values used to determine safety stocks.
Their use leads to lower costs due to route failures (which are the costs of going from the customer
being served to the depot to refill and come back to complete the delivery). However, it may also
increase the number of routes needed, increasing the deterministic costs (those obtained consider-
ing that demand variances are 0). Consequently, it is required to test different values and compare
expected total costs.

The algorithm starts by selecting the first value k ∈ K and transforming the original instance
into a deterministic one replacing stochastic demands by their means. Additionally, the capacities
are reset to: Qo = (1−k)Qo (∀o ∈ F). The next step consists in building an initial solution (initSol)
for the new instance and estimating the associated total costs using MCS techniques with a short
number of scenarios. Afterwards, a base solution (baseSol) is constructed by cloning initSol, and a
list of solutions (bestSols) is created, which will store the best stochastic solutions (i.e., those with
the lowest expected total cost). Initially, the list includes (initSol). Then, a new solution (newSol) is
obtained by perturbing baseSol, which involves removing a random number of routes and repairing
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it. If the former has lower total costs (i.e., costs in the deterministic environment), it replaces
baseSol, the total costs in the stochastic environment are estimated with a short MCS, and bestSols
is updated. On the other hand, if (newSol) is not better than (baseSol), an acceptance criterion
is checked to decide whether the base solution is replaced. A Demon-like acceptance criterion
(Talbi, 2009) is used to allow the base solution to be deteriorated if no consecutive deteriorations
take place and the degradation does not exceed the value of the last improvement. By doing this,
the algorithm avoids getting stuck in a local optima. This procedure is repeated to visit different
solutions until a stopping criteria is met. At this point, the algorithm is re-initialized with another
value of K. When all values have been tested, the total costs of bestSols are accurately estimated
using MCS with a larger number of scenarios. Finally, the list is returned.

Regarding the building of solutions, the SAM procedure is implemented. It can be described
as follows. The procedure receives one list of customers and one of available vehicles. First,
an empty global solution is created, and the list of customers is copied into a list of non-served
customers. While this list is not empty, the next steps are taken. A vehicle type not used yet is
selected and those customers not compatible with the selected vehicle are removed from the list.
Then the problem is transformed into an homogeneous SAVRP (HoSAVRP) with no limitation on
the number of vehicles that is solved with a state-of-the-art algorithm.

If the solution provided reports more routes than the number of available vehicles of the current
type, some routes are discarded. This partial solution is included in the global solution. The last
instructions inside the while loop update the list of available vehicles and the list of non-served
customers. This process ends when all customers are assigned to a route. Finally, the global
solution is returned.

The procedure for repairing solutions is exactly the same but receiving as inputs only those
customers that remain to be included in a route and copying the perturbed solution into the global
one when this is created.

Each HoSAVRP solution is constructed using the SR-GCWS-CS algorithm (Juan et al.,
2011a). It is based on the CWS heuristic and incorporates biased randomization techniques and
cache and splitting techniques, which contribute to reduce computational times. We have adapted
this algorithm in order to consider asymmetric costs. For this, the easy procedure of computing
savings as the mean of the two savings associated to each pair of nodes (Gruler et al., 2015) has
been applied.

6.7.2 Computational experiments
A set of 4 classical CVRP instances from Branch and Cut are generalized to test the approach.
The same location of the nodes and demand is used. They have been modified to include the
characteristics of the RVRP.

A fixed cost for using a vehicle, fo, and a variable cost, vo, that multiplies the distance have
been established. Therefore, the cost of arc (i, j) ∈ A, co

i j = vodi j, where di j is the Euclidean
distance. In order to account for asymmetric costs, the cost of an edge (i, j) is incremented by
10% if the y-coordinate of the destination node j is greater than the y-coordinate of the origin
node j.

An heterogeneous fleet with three type of vehicles has been proposed. Large vehicles have a
capacity equal to the one used in the benchmark, and medium and small vehicles have a reduced
capacity of 75% and 50% respectively. All vehicles can serve all customers except for customers
belonging to a randomly selected sub-area in which it is assumed that large vehicles cannot access.

The demand of a particular customer, Di, follows a log-normal distribution, with expected
value as the demand of the benchmark instance (di) and variance proportional to the expected
value (κdi). The results presented next are obtained with κ = 0.1.

Several measures are computed for each solution. When a solution is evaluated with deter-
ministic demands, the cost (Zdet) and the distance (dist) are shown. When a solution is assessed
with stochastic demands, route failures may happen. Therefore, the expected cost (Z stoch) and the
percentage of expected route failures (r f ail) is displayed. Finally, the safety stock is also included.

Test cases were run on a laptop with 4 cores at 2.6GHz. Experiments were run over 5 random
seeds for 60 seconds except for instance A-n80-k10 which run for 300. The name of the instances
indicate the number of nodes (after the letter n). Short MCS were run for 100 scenarios, and long
simulations for 10000.
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6.7.3 Analysis of results
Table ?? compares the solution of the original CVRP instance with the HSAVRP with determin-
istic demands. When the SAM method is employed to solve the CVRP, our best solution (OBS)
shows to be competitive compared with the optimal (OPT) solution reported in the literature, with
an average gap of 0.52%. The composition of the fleet for each solution is also reported. It can
be observed that a mix fleet is used, motivated by the fact that some vehicles cannot access some
customers. The performance of the deterministic solution is tested in the operational level with
stochastic demands in Table ??.

A particular solution is tested under stochastic demands using MCS techniques. According to
Table ??, the expected cost of the deterministic solution increases on average a 4% and experiences
a high percentage of route failures. This is due to the fact that some routes has a filling rate of
99%. On the other hand, stochastic solutions show a filling rate more balanced among the routes,
and the route failures decrease dramatically.

6.8 Conclusions
The flow of goods and products is becoming increasingly complex as a consequence of many
factors such as the globalization. The weight of this sector in the gross domestic product and the
employment rates of most countries require the development of inteligent algorithms to obtain
efficient solutions. The constant evolution and dynamism of the sector calls for fast algorithms.
Moreover, the rellevance of the social and enviromental impacts caused by this sector and the
growing concern for these issues makes it necessary to study classical problems focusing on a
different perspective (i.e., not analyzing only the common measures: distances or time).

While the literature on logistic transportation is extensive and varied, there are plenty of re-
search lines to be explored. Here, both classical and novel problems have been addressed, pre-
senting reviews, methodologies, computational experiments, and analyses of results. The main
conclusions are:

• Statistical learning techniques may help to deal with uncertainty. Hybrid algorithms for
routing problems allow to maximize benefits by increasing sales and total income while
accounting for the distribution costs, which is a more realistic approach than the classical.

• Simheuristics are very useful to address routing problems such as the MDVRP and the WCP
modeling demands as stochastic variables. Whereas solutions for the deterministic version
of the problem (e.g., considering expected values to replace the random variables) tend
to provide good results in scenarios characterized by a low variability, this is not true for
scenarios with a higher degree of stochasticity.

• Sustainability indicators are needed to analyze the externalities of transport activities. Even
if there is a high correlation between a solution’s performance in terms of distance or time,
and in terms of the cost associated to other sustainability indicators, it is not perfect. As a
consequence, the solutions minimizing each indicator individually may be very different in
some cases.

• Smart cities require efficient and clean systems of waste collection. There are plenty of
works on this problem, most of them using real data. However, there are many lines of
research; a version dealing with stochastic waste levels has been addressed.

• RVRPs encompass a large number of challenging problems with real-life applications. The
HSAVRP has been tackled with a simple approach based on classical procedures but able
to deal with the characteristics of the problem: heterogeneous fleet, site-dependency and
asymmetric costs.
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Chapter 7

Application in production

This chapter studies PFSPs with stochastic processing times and a common due
date. It proposes a simheuristic algorithm based on the ILS metaheuristic and MCS.
It is based on the following journal article: Hatami et al. (submitted).
This work has been presented at the following conferences: Calvet et al. (2016c)
and Calvet et al. (2016e).

7.1 Introduction
The manufacturing industry is facing important challenges, including fierce competition, short
product life cycles, increasing speed of product innovation, high product variety and quality, and
rising customer expectations, among others. Industries need to find proper strategies to cope with
these challenges and remain successful in the market, being one of these strategies the use of
distributed manufacturing systems (Moon et al., 2002), with contrasted benefits in terms of higher
product quality, lower production costs and fewer management risks (Wang, 1997; Chan et al.,
2005; Kahn et al., 2013).

In distributed manufacturing systems there is an horizontal cooperation among entities when
they have strategic relationships and join their individual strengths to achieve a common goal. By
doing so, the complexity of manufacture is shared among different entities, resulting in conditions
in which risks and costs become acceptable and market opportunities can be captured. Quite
often single manufacturing centers are not able to produce products and increase product diversity
within reasonable costs because of rigid organizational structures, deterministic approaches to
take decisions, lack of technology and a competencies’ hierarchical allocation (Sluga et al., 1998;
Wang et al., 2006). As a result, single manufacturing centers are infrequent while distributed
manufacturing systems are quite usual (Moon et al., 2002; Naderi and Ruiz, 2010). Constructing
these collaborative manufacturing systems help industries to address market global challenges in
an efficient way but their optimization is more complicated. The optimization of these systems has
received a considerable attention from practitioners and the research community in recent years.

The distributed permutation flowshop scheduling problem (DPFSP) (Naderi and Ruiz, 2010)
consists of a set of distributed manufacturing factories with flowshop configurations. The respon-
sibility of the factories is to produce a product composed of various jobs. Each factory has to
process a certain number of jobs, and all of them should be completed at a given deadline or be-
fore. Typically, the DPFSP involves two decisions: assigning each job to be manufactured to a
factory, and determining a job sequence for each factory. The classical DPFSP assumes determin-
istic processing times to simplify the problem. However, real-world manufacturing systems are
dynamic and often exposed to uncertainties and unforeseen events such as machine breakdown,
changing due date, operator unavailability, materials out of stock, order rush, etc (Rodammer and
White, 1988).

This chapter addresses a problem related to the DPFSP, which assumes that the components
have already been assigned, and deals with job sequencing for each flowshop. Furthermore, the
processing times of the components in each flowshop are random variables. The objective is to
find a robust job sequence for each factory which starts to process at the latest possible time while
completes all jobs by the deadline. Since stochastic processing times are considered, it will only
be guaranteed that jobs are finished by then with a given probability. This probability depends on
the probability of each factory ending on time. Thus, if a minimum probability is required, each
PFSP can not be separately solved.
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The problem can be also related to the PFSP-ST. The literature on this problem is not exten-
sive, especially when compared with the PFSP (Lin et al., 2015; Fernandez-Viagas and Framinan,
2015b; Fernandez-Viagas and Framinan, 2015c; Hsu et al., 2015), but it is becoming more popular
(Baker and Altheimer, 2012; Kianfar et al., 2012; Juan et al., 2014a). Since the PFSP is an NP-
hard problem when the number of machines are equal to or higher than 3 (Garey et al., 1976), the
problem studied is also NP-hard. As a consequence, it is sensible to focus on designing heuristic
or metaheuristic approaches for obtaining good solutions in reasonable CPU times.

7.2 Literature review
A review on three problems sharing characteristics with the problem described is presented.

7.2.1 PFSP-ST
Baker and Trietsch (2011) design heuristics for addressing the 2-machine PFSP-ST, where the
processing times are independent random variables following specific probability distributions.
Later, Baker and Altheimer (2012) present a methodology for the m-machine version. In addition,
several variations of the PFSP-ST have been analyzed. For instance, Allaoui et al. (2006) and Choi
and Wang (2012) work on the stochastic hybrid FSP, aiming to minimize the expected makespan.
The same problem has been tackled by Kianfar et al. (2012) with the goal of minimizing the
average tardiness of jobs. A novel approach is applied in Zhou and Cui (2008) for tackling the
multi-objective PFSP-ST, where both the flow time and delay time of jobs are minimized.

An interesting line is related to uncertainty. Basically, there are two categories: proactive (or
robust) scheduling and reactive scheduling. For works falling in the first category, Roy (2010) pro-
pose constructing an original predictive schedule. The aim is to find schedules that do not require
new schedules (or significant changes) when confronting disruptions. These works may consider
probability distributions or sets of scenarios. Al Kattan and Maragoud (2008), Ghezail et al. (2010)
and Liu et al. (2011) address the PFSP with uncertainty implementing proactive scheduling strate-
gies. On the other hand, reactive scheduling consists in revising and re-optimizing schedules when
unexpected events take place. A classical option is to obtain a predictive scheduling and then try
to repair it according to the actual state of the system. A comprehensive review on rescheduling
under disruptions is provided by Katragjini et al. (2013).

Some authors employ exact methods for addressing the PFSP-ST. A disadvantage of many of
these methods is that they only work with a specific set of probability distributions and relatively
small instances. Moreover, it may be difficult to adapt them for handling dependencies among pro-
cessing times. Simulation techniques enable researchers to deal with these situations in a natural
way. Baker and Altheimer (2012) propose a hybrid approach combining heuristics and simulation,
and test three heuristic methods: two relying on the CDS heuristic (Campbell et al., 1970) and one
on the NEH heuristic.

7.2.2 DPFSP
In this problem the jobs have not been assigned to each flowshop, so this assignment becomes
part of the decision problem. This problem is also known as the distributed flowshop scheduling
problem (DFSP) since Naderi and Ruiz (2010) resumed the topic for a distributed environment
and makespan minimization. Nevertheless, this decision scheduling problem was first studied by
David et al. (1996) based on a glass industry considering non-delay flowshops and batch produc-
tion mode. Note that each factory is treated as line in this paper, but the mathematical scheduling
problem inside is the same. Since then, it has been also studied under different names in the lit-
erature: parallel flowline (Vairaktarakis and Elhafsi, 2000) and parallel flowshops (Cao and Chen,
2003). Before Naderi and Ruiz (2010), the particular two-machine-flowshop layout in each factory
or line has been solved using approximate algorithms by Zhang and Van De Velde (2012) and Al-
Salem (2004). This particular problem turns to be a pure assignment problem due to the Johnson’s
rule (Johnson, 1954). For a general configuration of m machines, Naderi and Ruiz (2010) propose
and compare several mixed integer linear programming models and constructive heuristics to solve
the problem. Regarding iterated optimization algorithm, the problem has received an increasing
attention for makespan minimization in the last years. Gao and Chen (2011) propose a GA using
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local search phases based on interchange and insertion of jobs. A TS algorithm is proposed by Gao
et al. (2013). An iterated greedy (IG) algorithm without local search phases is presented by Lin
et al. (2013). A SS algorithm with a reference set made up of solutions and restarts mechanisms
is proposed by Naderi and Ruiz (2014). Fernandez-Viagas and Framinan (2015a) present an IG
algorithm with bounded local search phases employing properties of the problem to reduce the
space of solutions. Recently, Ribas et al. (2017) propose several constructive heuristics and two
simple iterated algorithms (IG and ILS) with variable neighbourhood searches but with zero-buffer
flowshops (blocking constraint).

A particular case of the DFSP refers to the so-called distributed assembly flowshop schedul-
ing problem, which combines the DFSP with assembly scheduling. In this problem, a distributed
flowshop composed of f identical flowshops is followed by a single assembly operation. n jobs
consisting each one of f components have to be assembled after each component has been manu-
factured in one of the flowshops. This decision problem includes job assignment plus the schedul-
ing of jobs in the assembly line. The main references for this problem are Hatami et al. (2015)
and Hatami et al. (2013). In the first reference, the authors consider the objective of makespan
minimization, while in the second sequence-dependent setup times are assumed.

7.2.3 Assembly scheduling
This problem is also denoted n-stage assembly or assembly flowshop scheduling. There are m
tandem lines that are arranged prior to a single assembly station. Using this layout, n different
products (jobs) have to be manufactured, each one consisting of m components manufactured in
the tandem lines. The processing time of each component in each line is different. Some authors
distinguish among the fixed case (i.e. each component can be processed only in a given tandem
line), and the unfixed case.

Different objectives are sought, such as makespan minimization (Sung and Juhn, 2009), total
flowtime (Al-Anzi and Allahverdi, 2013; Sung and Kim, 2008), due date fulfilment (Al-Anzi and
Allahverdi, 2007), or the combination of several indicators (Seidgar et al., 2014). Most references
refer to the 2-stage case (production followed by assembly), so they assume that each tandem line
consists of a single machine. The underlying hypothesis is that there is a single processing time for
each component before the assembly process. Different exact and approximate methods have been
proposed, and some variants of the original problem have been tackled by Sung and Juhn (2009),
where two types of components –manufactured and imported– are considered, and by Liao et al.
(2015), where assembly batches are assumed. Several other variants for three stages have been
addressed (see e.g. Koulamas and Kyparisis, 2001 and Komaki et al., 2017), but in none of the
different versions the processing times have been assumed to be stochastic.

7.3 The DPFSP-ST
There is a set F of f distributed manufacturing factories. The shop configuration of each factory
is a PFSP, which is a particular case of the flowshop scheduling problem (FSP) (Johnson, 1954).
In the FSP, there is a set M of m machines where each job of a set N of n jobs must be processed
on each machine. Each job starts to process from the first machine to the last one. Therefore, the
number of operations per job is equal to the number of machines. The jth operation of job i is pro-
cessed on machine j, and can start if the j−1th operation on machine j−1 has been completed and
machine j is free. Processing times are supposed to be known in advance and deterministic. Other
classical assumptions (Baker, 1974) are: (i) all operations and jobs are independent and available
for processing at time 0; (ii) all machines are continuously available and there are no breakdowns;
(iii) each machine can process at most one job at a time; (iv) each job can be processed in only
one machine at a time; (v) once an operation of a given job on a given machine has started, it
cannot be interrupted (i.e., no preemption is allowed until the processing has been completed); (vi)
setup and removal times are sequence-independent and are included in the processing times or are
negligible; and (vii) in-process storage is considered infinite. In the FSP, there are (n!)m possible
solutions since the number of job permutations per machine is n!. The PFSP is a simpler version
which assumes that all machines have the same job permutation and the job passing is not allowed.
It has n! possible solutions.
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In this manufacturing layout, a product consisting of various components (jobs) has to be
processed on the machines located at the factories. The processing time of each job i in each
machine j, Pi j, is considered a random variable. The product is considered finished when all its
jobs have been completed. It is required that all components are completed by a (deterministic)
deadline d̃ with a probability not lesser than p.

Consequently, it is intended that the processing operations for job i at factory k should ter-
minate by the deadline d̃. In a PFSP with a deadline, a specific job sequence has a makespan
associated and the starting time can be set at the deadline minus the makespan. In contrast, the
PFSP-ST is characterized by having potential different makespans under different conditions for
a given job sequence. Therefore, in this setting, at least one of the three following approaches
should be considered:

• To ignore the stochastic nature of the problem and replace the random variables by their rep-
resentation (typically their mean). While it may provide solutions of poor quality, this is not
necessarily the case (Framinan and Perez-Gonzalez, 2015). The reason is that a determinis-
tic optimization algorithm is faster and, as a consequence, may visit more solutions during
a limited amount of time. Thus, if the level of stochasticity is low, there is a chance that
solutions found are robust enough to have a good performance in a stochastic environment.
This approach is labelled as makespan (M) in the following.

• To minimize the expected makespan. This approach stresses the average behaviour of the
layout. However, if the starting time is set at the deadline minus the expected makespan,
there is no guarantee that all processing operations will be completed on time. This approach
is labelled as expected makespan (EM).

• To ensure that the final product will be finished on time with a probability p. This option
allows the decision-maker to include a restriction that sets the probability of finishing on
time or, conversely, the risk of a delay. This approach is labelled as percentile makespan
(PM).

It is assumed that the factories are independent, so p can be computed as: p =
∏ f

k=1 pk, and
by assuming an equal allocation of probabilities we have pk = f

√
p. Therefore, the problem

is equivalent to ensure that factory k will finish its jobs with a probability pk. In order to
do so, the pk-th makespan percentile can be computed for each factory k given a sample of
makespans, and its starting time can be set to the deadline minus the makespan percentile.

Figure ?? shows the concepts of starting time, expected makespan and makespan percentile.
The choice between the last two approaches depends on the risk-aversion of the decision-
maker. For example, if the decision-maker prefers to focus on the worst outputs (i.e., the largest
makespans), it is better to minimize the makespan percentile requiring a high probability. On the
other hand, if he prefers to analyze the average case, he should focus on minimizing the expected
makespan.

7.3.1 Methodology
Three algorithms are presented: the ILSM algorithm considers the deterministic version of the
problem, while the SIM-ILSEM and the SIM-ILSMP algorithms minimize the expected makespan
and the percentile makespan, respectively. For each solution returned by an algorithm, the (deter-
ministic) makespan, the expected makespan and the makespan percentile are computed. The aim
of working with different algorithms is to study and compare their behaviour. While simulation
techniques are used in the SIM-ILSEM and the SIM-ILSMP algorithms, the ILSM algorithm, which
works with average processing times, skips that part. From here, SIM-ILS algorithm refers to the
basic structure of the SIM-ILSEM and the SIM-ILSMP algorithms.

The SIM-ILS algorithm combines the ILS metaheuristic with MCS. The metaheuristic
searches for promising solutions while MCS techniques are employed to assess their performance.
The promising solutions are returned by the metaheuristic when solving a (deterministic) PFSP in-
stance, which is created from the original PFSP-ST instance by replacing the random variables Pi j

by constant values pi j using the means, i.e., pi j = E[Pi j]. Simulation is applied to a given solution
to compute the expected makespan or makespan percentile. The algorithm works with a list of best
stochastic solutions found and the best deterministic solution found. The best deterministic one
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Figure 7.1: Starting time, expected makespan and makespan percentile in the
DPFSP-ST.

is the job sequence with the smallest makespan referring to the PFSP instance. Depending on the
objective considered, the best stochastic solutions found are the job sequences with the smallest
expected makespans or makespan percentiles, referring to the PFSP-ST instance. The algorithm
starts solving the PFSP. The obtained result is set as the best deterministic solution and the best
stochastic solution. During the algorithm execution, the best stochastic solutions are saved in a list
with length l. This list is sorted iteratively in increasing order of the considered objective function.
Thus, the solution at the first position is considered as the best stochastic solution. The steps of
the algorithm are detailed in Figure ?? and explained below.

Generation of the initial solution
A biased-randomized version of the classical NEH heuristic (Nawaz et al., 1983) described in

Juan et al. (2014a) is proposed to generate initial solutions.
Solution improvement
An iterative improvement procedure using shift-to-left as first-improvement type pivoting rule

(Ruiz and Stützle, 2007; Juan et al., 2014a) is applied in different parts of the algorithm to improve
solutions. Each iteration of the procedure consists of three steps. In the first, a position s is
randomly selected, without repetition, from the current job sequence. The selected positions are
saved in a selection list. In the second step, the job placed in the position s is removed from the
sequence and the shift-to-left movement is applied, i.e., the insertion of the job in each possible
position at the left side of s is tested. The makespan of each option is calculated through the
accelerations of Taillard (Taillard, 1990). Finally, the job is inserted in the position resulting in the
sequence with the smallest makespan. The iteration of these steps are continued until all positions
have been selected or a better solution is achieved. If there is an improvement, the algorithm is
restarted with an empty selection list.

Simulation
The assessment of a solution using MCS techniques follows these steps: (1) a number of

iterations numsim is considered to repeat the simulation process; (2) a job processing time is
generated for each random variable according to the probability distribution associated, and the
makespan is computed; (3) this process is repeated numsim times; and (4) a performance measure
such as the expected makespan, E[Cmax], or the pro makespan percentile, P[Cmax]pro, is computed.



78 Chapter 7. Application in production

Figure 7.2: Flowchart of the proposed approach for the DPFSP-ST.

While the assessment of solutions during the search is done quickly (i.e., numsim is relatively
small), a long simulation (numsim relatively big) is used at the end to provide accurate estimates
related to the best deterministic and best stochastic solutions.

Iterated local search
A series of steps are performed iteratively during the search. Initially, a perturbation oper-

ator is applied to change the region of the current solution space and then, the new solution is
improved using the local search. The simple and efficient enhanced-swap operator proposed by
Juan et al. (2014e) is used to perturbate the solution. It follows three instructions: (1) two different
positions are selected randomly from the current job sequence; (2) the jobs at these positions are
interchanged; and (3) the shift-to-left movement is applied for both jobs.

In the second step, the algorithm decides whether the new solution is accepted. If it has a
smaller makespan than the current base solution, then the latter is replaced by the new. In this
case, the best deterministic solution is accordingly updated (i.e., replaced by the new solution if
this has a smaller makespan). Additionally, a short simulation is applied to check whether the best
stochastic solution list has also to be updated considering the objective function value. Finally, if
the new solution does not provide a smaller makespan than the current base solution, an acceptance
criterion is applied. These steps are repeated until the stopping criterion based on the elapsed CPU
time is reached.

Acceptance criteria
The algorithm assigns an acceptance probability to the new solutions that are worse than the

current base solution. This criterion prevents the algorithm from getting stuck in a local optima. It
is used for the first time by Hatami et al. (2015). Given a new solution πn with a worse makespan
than the current base solution πC , the acceptance criterion decides if it is accepted or not. Let
CMax(πc) and CMax(πn) denote the makespans of each solution. The acceptance of πn depends on
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the probabilistic mechanism shown in Equation ??, where random is a random number uniformly
distributed between 0 and 1, and the relative percentage difference is: RPD =

C(πn )−C(πc )

C(πc)
× 100.

random ≤ e−RPD (7.1)

7.3.2 Computational experiments
The algorithms have been implemented as Java applications and tested on 27 instances. A standard
personal computer, Intel QuadCore i5 CPU at 3.2 GHz and 4 GB RAM with Windows 7, has been
used to execute all tests.

Set of instances and test

Since no benchmark instances exist for the problem analyzed, a new set is constructed based on
Taillard instances (Taillard, 1993). Table ?? gathers the following characteristics for each instance:
name, total number of the jobs (total n), number of machines (m) and number of factories ( f ). For
a given factory, each instance contains a processing time pi j for job i at machine j, which describes
a random variable Pi j following a log-normal distribution with mean pi j and variance σ2

i j set to
c · pi j. In real-life applications, empirical distributions based on historical data could be used.

Table 7.1: Description of the generated instances for the DPFSP-ST.

Total n
20 50 100

f / m 5 10 20 5 10 20 5 10 20
2 Ins. 1 Ins. 4 Ins. 7 Ins. 10 Ins. 13 Ins. 16 Ins. 19 Ins. 22 Ins. 25
3 Ins. 2 Ins. 5 Ins. 8 Ins. 11 Ins. 14 Ins. 17 Ins. 20 Ins. 23 Ins. 26
4 Ins. 3 Ins. 6 Ins. 9 Ins. 12 Ins. 15 Ins. 18 Ins. 21 Ins. 24 Ins. 27

Three levels of processing time variability c (small, medium and high) are considered: 0.25, 1
and 1.5, respectively. Three different values of 80%, 90% and 95% are considered for the general
probability p (used only for the SIM-ILSMP algorithm). The maximum computational time for
solving the PFSP-ST of each factory is limited to 0.05 · n · m, which seems a reasonable amount
for real-life applications. Ten seeds are randomly generated and only the best result is stored.
Regarding the number of iterations for assessing solutions, 600 and 1000 runs are employed during
the algorithm and at the end, respectively. Note that the selection of these values are mainly
driven by the computing time available. Thus, if more time is available, then these values can be
incremented in order to obtain better and more accurate results.

Results

Results are displayed in Tables ??-??, where each table represents a specific level of processing
time variability: low, medium and high. Due to space limitations and the fact that results show
similar trends for all three values of general probability, only those related to 90% are shown.
The composition of the tables is as follows. The first column identifies the instance. The next
five summarize the results of the ILSM algorithm. For each instance, they show the following
information regarding the best solution found: Cmax(1), E[Cmax](2), P[Cmax]pro(3), gap between
the first two measures, computed as: (E[Cmax](2) − Cmax(1))/Cmax(1) · 100, and gap between the
second and the third ones. While the first gap represents the ‘extra’ processing time, on average,
for applying a solution assuming deterministic processing times, the second focuses on percentiles,
showing the additional processing time required to finish the product with a probability of 90%.
The next four columns provide the following results of the SIM-ILSEM algorithm: E[Cmax](4),
P[Cmax]pro(5), gap between the expected makespan of the best solutions found by the ILSM and the
SIM-ILSEM algorithms, and the gap of percentiles among the same solutions. The third gap, which
is expected to be null or negative, shows the benefit of using a simheuristic approach (i.e., taking
into account the variability of the processing times) in terms of expected makespan. The fourth gap
quantifies the difference of percentiles. Similarly, the next four columns refer to the best solution
found by the SIM-ILSMP algorithm. In particular, they contain: E[Cmax](6), P[Cmax]pro(7), and
gaps of expected makespans and percentiles between the best solutions found by the SIM-ILSEM
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and SIM-ILSMP algorithms. These gaps allow us to quantify the processing time difference based
on whether one measure or the other is minimized. Finally, the last column shows the mean
computational time of the three solutions obtained. In addition, a row is added at the end of each
table to gather the mean gaps and computational time.

Boxplots in Figure ?? show the distributions of gaps of E[Cmax] and P[Cmax]pro regarding
the best values considering the three algorithms and a probability of 90%. While the approach
minimizing a given measure is expected to present a null value for the corresponding gap, this
figure reveals the difference between choosing one approach or the other. Focusing on the instance
14, Figure ?? represents the 30 solutions found (resulting of 3 algorithms and 10 seeds). Each
column is a measure, and colors and line formats are used to distinguish algorithms. As the
previous figure, this analysis provides insights about a “potential” trade-off between the measures.
Additionally, the figure gives information about the effect of using multiple seeds.

Figure ?? represents the relationship between probability required, variability level of the pro-
cessing times and P[Cmax]pro for the instance 14 using the SIM-ILSMP. Finally, Figure ?? shows
the effects of different instance characteristics on P[Cmax]pro considering a medium level of vari-
ability and a probability of 90%. First, an analysis of variance was carried out to identify which
factors and pairwise interactions had a statistically significant effect on the results. For each of
these elements (single factors or pair of them), a figure is drawn which shows the mean value
associated to each level of the factor or combination of levels for pair of factors. Given the ran-
domness in the generation of instances, all factors are expected to have significant positive effects.

Figure 7.3: Boxplots of performance gaps for the DPFSP-ST instances consider-
ing a medium level of variability and p = 90%.

Figure 7.4: Parallel coordinates plot showing different measures for the DPFSP-
ST instance ‘14’, considering a medium level of variability and 10 seeds.
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Figure 7.5: P[S Cmax]pro as function of general probability and variability level
for the DPFSP-ST instance ‘14’ considering the SIM-ILSMP algorithm.

7.3.3 Analysis of results
Tables ??-?? provide detailed information on the performance of the algorithms. The following
comments refer to the results of the ILSM algorithm. Mean gaps between Cmax and E[Cmax] for
small, medium and high levels of variability are 1.02%, 2.78%, and 3.74%, respectively. These
values between E[Cmax] and P[Cmax]pro are 1.99%, 3.88%, and 4.73%. They quantify the extra
processing time required, on average, when variability is not considered, and the processing time
needed to satisfy the deadline with a probability of 90%. For example, in the scenario of low vari-
ability, the processing time will be on average 1.02% higher than that assumed, and the processing
time needed to finish with the specific probability will be 1.99% higher than the E[Cmax]. Both
gaps increase as the variability is incremented. Comparing the results of the ILSM and the SIM-
ILSEM algorithms, the mean gaps of E[Cmax] (−0.24%, −0.46% and −0.58%) and P[S Cmax]pro

(−0.15%, −0.36% and −0.46%) quantify the benefits of using a simheuristic algorithm. Regard-
ing the results of the SIM-ILSEM and SIM-ILSMP algorithms, the mean gaps of E[Cmax] (0.06%,
0.10% and 0.09%) and P[Cmax]pro (−0.08%, −0.14% and −0.20%) at different level of variabil-
ity, evidence the benefits of using one or the other approach. Thus, the main findings are: (i)
ignoring the variability in processing times may have an important effect on the performance mea-
sures (even in scenarios with a low level of variability); (ii) the solutions found by the SIM-ILSEM

and the SIM-ILSMP algorithms are relatively similar in terms of these measures but not equal;
and (iii) the gaps tend to increase with the variability, i.e., minimizing the expected makespan is
almost equivalent to consider the makespan percentile when the variability is low, but the differ-
ence increases as the variability is incremented. As a consequence, a decision-maker has to assess
whether he prefers to minimize the expected makespan (i.e., processing finished at the deadline, on
average) or the percentile (i.e., be sure that the processing will be finished at the deadline or before
with a given probability), which may be seen as a more conservative or risk-aversion approach.

Figure ?? compares performance measures among the algorithms proposed. The distributions
of the gaps are relatively symmetric, with few outliers on right tails. It is easy to see that the biggest
gaps are related to the ILSM algorithm, while the gaps referring to P[S Cmax]pro values are higher.
Similarly, Figure ?? shows that there is a stronger correlation between the simheuristic-based
algorithms in the sense that the profiles are similar. It is interesting to analyze the differences
among the solutions obtained with multiple seeds. For instance, while solutions of the ILSM

algorithm have the same or a similar Cmax, these solutions may differ significantly in the other
measures (i.e., there are solutions more robust than others). For the instance studied, the ranges of
the last two measures are higher than that of the first.

Figure ?? represents a valuable tool for a decision-maker. It analyzes the relationship between
the probability required to process a product at the deadline or before and the processing time
needed. As the probability tends to 1 (i.e., no risk) the processing time tends to infinite. Instead
of having a single solution, the decision-maker may choose the best option (given risk-aversion,
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Figure 7.6: Effect of different DPFSP-ST instance characteristics on P[Cmax]pro

considering the SIM-ILSMP algorithm.

company policies/situation, etc.) among many. As expected, for a given p value, P[Cmax]pro

increases as the variability is incremented.
Figure ?? reveals that factors total n, m, f , and the interaction between f and m have statis-

tically significant and positive effects (when considering the others elements) on P[Cmax]pro. The
ranges related to total n and m are the highest. While the effects of f and total n seem lineal, the
effect of m draws a convex function. Focusing on the interaction, it can be concluded that the effect
of f is positive for any value of m, but P[Cmax]pro increases as m is incremented.

7.4 Conclusions
The manufacturing industry is becoming increasingly complex and competitive. Companies need
powerful optimization algorithms to design proper strategies that make them efficient in order to
remain in the market. Although there is an extensive literature on classical scheduling problems,
there is a lack of works on richer and more realistic problems. This chapter studies a novel problem
called DPFSP-ST. It consists in the manufacturing of a product that requires several jobs that are
performed in independent factories. The sub-problem of each factory can be modelled as a PFSP-
ST. All factories are expected to finish at a given deadline or before. This problem describes
several real-life applications where a company acquires intermediate products from others and
assembles them to obtain a final product with a higher added value.

Three algorithms are proposed to deal with this problem which aim to minimize a different
objective function: the makespan (ignoring the stochasticity), the expected makespan and the
makespan percentile given a probability p. This percentile is the value below which a given pro-
portion p of makespans fall when simulating scenarios, and can be interpreted as follow: if the
starting time in a factory is set to the deadline minus this percentile, the processing of the product
will be finished before or at the deadline with a probability p. While all algorithms rely on the
ILS metaheuristic, the second and the third ones are simheuristic algorithms, i.e., integrate MCS
techniques in order to deal with the stochasticity. Note that the second algorithm is intended to
provide good results on average whereas the third one aims to guarantee that the manufacturing
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will be finished by the deadline with a given probability. A set of computational experiments en-
able the comparison of the algorithms in terms of makespan, expected makespan and makespan
percentile, and quantify these differences. It is proven that: (i) gaps among algorithms for each
measure increase as the level of stochasticity is incremented; (ii) while there is a strong correla-
tion between simheuristic algorithms (in the sense that solutions having the best performance in
terms of expected makespan are also of good quality regarding makespan percentile, and the other
way around), it is weaker between the first algorithm and any of the others; (iii) in some cases
the differences between the second and the third algorithm may be significant, so a priority must
be set by the decision-maker; (iv) the fact that the algorithms are so fast enable the running of
the third one considering different probabilities, which provides a deeper insight of the relation-
ship between probability (related to the risk-aversion, i.e., how sure decision-maker wants to be
about finishing at a given deadline or before) and makespan percentile (i.e., how much time he
needs to start before the deadline); (v) the effect of using different seeds is significant; and (vi)
the makespan percentile linearly depends on the number of factories, jobs and machines, and the
interaction between number of factories and machines.
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Chapter 8

Applications in finance

This chapter reviews works using metaheuristics in portfolio optimization and risk
management, studies the deterministic and stochastic portfolio optimization prob-
lem, and presents an application to stocks and individual commodity futures con-
tracts. It proposes hybrid algorithms based on the ILS or the VNS metaheuristics,
and MCS.
It is based on the following journal articles: Doering et al. (submitted[a]), Kizys
et al. (submitted), Calvet et al. (submitted[b]), and Doering et al. (submitted[b]).
This work has been presented at the following conferences: Doering et al. (2016b),
Calvet et al. (2016f), and Doering et al. (2016a).

8.1 Introduction
Investments play an essential role in improvements of welfare standards. This striving for improve-
ment is represented through the formulation of optimization problems for most of the questions in
financial economics. Traditionally, exact methods have been employed. The current international-
ization and integration of financial markets and institutions has caused financial decision-making
processes to become even more complex. Metaheuristics constitute an attractive alternative for
problem solving in the financial sector (Gilli et al., 2011).

The second section reviews the literature on metaheuristic optimization applications for port-
folio and risk management in a systematic way. The linkages between portfolio optimization and
risk management are identified. It is expected that the revocation of the strict classification of
financial COPs can lead to a methodological transfer of knowledge. In addition, the trends that
have gradually become apparent in the literature are outlined.

The third section focuses on a single-period version of the constrained mean-variance POP.
Three realistic constraints are considered. First, justified on the grounds of the investor’s prefer-
ence, the pre-assignments force some specific assets to be included in the portfolio. Second, the
quantity constraint keeps the quantity of each selected asset within user-specified floor and ceil-
ing values. The ceiling rules out excessive exposure to a specific asset. The floor is introduced
in order to rule out the possibility of tiny (and therefore disproportionately costly) fractions of
assets. Third, the cardinality constraint, which imposes a floor and a ceiling on the number of
assets included in the portfolio, accounts for the fact that diversification benefits decrease when
the portfolio features a huge number of assets. In the presence of these constraints, the problem
becomes NP-hard (Bienstock, 1996) and, thus, exact optimization methods quickly lose their ef-
ficiency as the number of considered assets grows. A matheuristic algorithm is devised for rich
portfolio optimization (ARPO) that is based on the combination of an ILS metaheuristic, quadratic
programming, and biased randomization strategies.

Contrary to the well-established real-life constraints, the growing body of literature assumes
constant rates of returns and covariances. This empirically unsupported assumption poses a key
limitation when real-life approaches are sought. The aim of the fourth section is to address this
limitation. Indeed, since asset returns are random variables that obey certain probability density
functions, and future returns are unpredictable, the minimum desired rate of return may not be
attained with certainty. More concretely, the above simplifying assumptions are relaxed, and rates
of returns and covariances are considered random variables. The resulting problem is known as
the SPOP. Here a simheuristic algorithm to solve it is proposed based on the VNS metaheuristic.
While the metaheuristic generates promising portfolios, simulation techniques are applied to: (i)
estimate the expected risk of these portfolios under uncertainty conditions; (ii) complete a risk
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analysis on each portfolio; and (iii) provide feedback to the metaheuristic in order to better guide
the searching process.

Finally, the last section addresses the rich POP, considering individual futures contracts in
addition to stocks. Recently, stock markets have become more integrated, resulting in higher
positive correlation among individual stocks and thus diminishing successful diversification (You
and Daigler, 2012). Because most research on metaheuristics applied to POPs relies on pre-
established benchmarks, the outcomes of such a development on the quality of the established
portfolios cannot be detected. Thus, it would be convenient to include a second asset class to
exemplify possible diversification benefits. Individual commodity futures contracts are selected
because they have been found to have low correlations with stocks (Jensen et al., 2002; Chong
and Miffre, 2010). Their correlational properties have been found to be caused among others by
an opposite reaction of futures to macroeconomic shocks (Silvennoinen and Thorp, 2013; Bansal
et al., 2014).

8.2 Survey on metaheuristics in portfolio optimization and risk
management

The increasing popularity of the application of metaheuristics to POPs and risk management prob-
lems (RMPs) is depicted in Figure ??, based on Scopus-indexed publications. The search for
POPs was conducted by examining the articles that explicitly consider portfolio optimization, in-
dex tracking or project selection in the abstract, title or keywords and make use of metaheuristics.
For risk management problems, the search terms were bankruptcy, credit risk or stock or foreign
exchange trading. In the case of portfolio optimization, it becomes obvious that the trend in publi-
cations is increasing. Continuing increases in computing power, the advancement of metaheuristic
frameworks and parallelization strategies favour metaheuristics when dealing with NP-hard fi-
nancial COPs. On the contrary, risk management problems seem to have received much less
attention. These proportions are broken down in Figure ??, which shows that traditional portfolio
optimization represents the majority of metaheuristic applications.

Figure 8.1: Scopus-indexed publications applying metaheuristics to POPs and
RMPs for the period 2003 to 2016-1 (first semester).

Figure 8.2: Number of publications on POPs and RMPs.
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8.2.1 Portfolio optimization
Since Markowitz (1952) developed the portfolio optimization theory centred around the mean-
variance approach, the academic community has been highly engaged in advancing the tools for
portfolio optimization. The theory is based on two constituting assumptions, namely: (i) the
financial investors being concerned with the expected returns; and (ii) the risk of their respective
investment. It is thus the goal to minimize the level of risk expressed through the portfolio variance
for a given expected return level, resulting in the so-called unconstrained efficient frontier, from
which the portfolio choice is determined by the risk awareness of the investor. This established
the POP, which is a strategy of: (i) selection of financial assets; and (ii) determination of the
optimal weights allocated to those assets that results in a desired portfolio return and associated
minimum level of risk. Based on the investor’s involvement with the asset selection, two types of
investment management strategies can be identified. On the one hand, active investment strategies
aim at beating market returns. On the other hand, passive investment strategies aim at replicating
a benchmark index.

Table ?? presents a summary of the metaheuristics applied to each of the problems reviewed:
single-objective portfolio optimization, multi-objective portfolio optimization, index tracking, en-
hanced index tracking, and project portfolio selection. The number of articles found on each topic
and metaheuristic is included inside each cell. The classical portfolio optimization is an active in-
vestment strategy, particularly when active re-balancing of the portfolio takes place in multi-period
observations and, by its nature, investment appraisal requires the active selection of project port-
folios. Index tracking is traditionally a passive strategy, while enhanced index tracking involves
active management to some extent.

Table 8.1: Application of metaheuristics and hybridization to POPs.

Optimization problem Single-solution search Population-based search HybridSA TS FD SD GA FA ACO DE EA ABC PSO IWO AIS SS
Single-objective portfolio optimization 2 3 1 1 2 1 3 3
Multi-objective portfolio optimization 2 2 2 1 1 4 2
Index tracking 1 2 2 3 1 3
Enhanced index tracking 1 1 1 1 2 1 1 2 1
Project selection 3 2 6 1 2 5

Traditional portfolio optimization

While the original Markowitz problem can be solved using quadratic programming, metaheuris-
tics have increasingly been employed to cope with the fact that the problem becomes NP-hard
when more realistic constraints are introduced (Beasley, 2013). In effect, cardinality constraints,
quantity constraints, and pre-assignment constraints have received overwhelming attention in the
literature.

Single-objective portfolio optimization The classical POP can be considered a single-
objective optimization problem with either one of the following model formulations: the investor
minimizes the risk exposure subject to a minimum attainable expected return, or the investor max-
imizes the expected return for a given maximum level of risk. The first variant can be formulated
as follows (Chang et al., 2000): A quadratic objective function is computed by aggregating over
the covariances of the constituent asset returns and then minimized:

Min
N∑

i=1

N∑
j=1

wiw jσi j (8.1)

subject to a minimum desired rate of return, the constraint that the weights have to add up to
one, and the constraint that all asset weights must lie between zero and one, inclusive, thus elimi-
nating short selling as a measure of preventing investors from excessive risk-taking by restricting
them to the available budget. In formal terms:

N∑
i=1

wiµi ≥ R (8.2)

0 ≤ wi ≤ 1, ∀i ∈ {1, 2, . . . ,N} (8.3)
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where N is the total number of available assets, µi is the expected return of an asset i, R is
the minimum required return, w are the respective weights of the assets, and σi j is the covariance
between two assets i and j.

Chang et al. (2000) solve it using three metaheuristic approaches (GA, SA, and TS) in order to
generate a cardinality-constrained efficient frontier. They suggested pooling the results from the
different approaches because no single heuristic was uniformly dominating. However, Soleimani
et al. (2009) introduce sector capitalization and minimum transaction lots as further constraints
and find that the GA they developed outperformed TS and SA. Following the suggestion of Chang
et al. (2000), Woodside-Oriakhi et al. (2011) explore the pooling option. They found that, on
average, SA contributes little to the performance of the process and that a pooled GA and TS
algorithm is superior to single metaheuristic approaches at the expense of higher computational
time.

As for the application of strict single metaheuristic methodologies, PSO has been found to
be competitive with all three of the previously employed algorithms (GA, TS, and SA) for the
cardinality-constrained portfolio selection problem and especially successful in low-risk portfolios
(Cura, 2009). To evaluate the performance of PSO for even more realistic instances, Golmakani
and Fazel (2011) further introduce minimum transaction lots, bounds on holdings, and sector
capitalization in addition to cardinality constraints. These authors applied a combination of binary
PSO and improved PSO (CBIPSO), and found that CBIPSO outperforms GA in that it provides
better solutions in less computing time. As constraints become increasingly complex, the question
of constraint-handling in determining feasible solutions arises. Reid and Malan (2015) investigate
this research line and develop a portfolio repair constraint handling technique applied in a PSO
portfolio optimization.

Di Tollo and Roli (2008) provide a review on the applications of metaheuristics and some of the
proposed constraints explicitly highlighting the potential use of hybrid approaches. Likewise, such
a hybrid method is proposed by Maringer and Kellerer (2003), who combine principles of SA and
EA to optimize a cardinality-constrained portfolio. By combining exact mathematical program-
ming and metaheuristics, Woodside-Oriakhi et al. (2011) further hybridize and create different
matheuristics. This option is also investigated by Schaerf (2002) and Di Gaspero et al. (2011)
who respectively combine TS and first descent (FD) and steepest descent (SD) local search meta-
heuristics with quadratic programming to optimize a portfolio while accounting for cardinality
constraints, lower and upper boundaries for the quantity of an included asset, and pre-assignment
constraints. Concerning optimality, Cesarone et al. (2013) develop an exact increasing set algo-
rithm that, for small instances, solves the POP with quantity and cardinality constraints optimally
and can be extended into a heuristic procedure to account for larger instances. It outperforms the
metaheuristics employed by Di Gaspero et al. (2011) and Schaerf (2002).

Multi-objective portfolio optimization
Multi-objective optimization methods combine two objective measures into a single one that

is to be optimized (Mishra et al., 2014) or, more often, find a set of Pareto solutions while balanc-
ing two or more objective functions simultaneously. With respect to single-objective optimization
methods that require the ex-ante definition of an acceptable degree of profitability, multi-objective
optimization requires no previous knowledge about the investor’s degree of risk aversion and is
thus a more general approach transferrable to different decision-makers. The approach of com-
bining risk and return characteristics into a single objective function is taken by Zhu et al. (2011).
They introduced the Sharpe ratio as a simultaneous measure.

According to Streichert et al. (2003), the multi-objective POP can be formulated as follows. It
becomes necessary to minimize the portfolio risk expressed by the portfolio variance:

Min
N∑

i=1

N∑
j=1

wiw jσi j (8.4)

while maximizing the return of the portfolio, i.e.:

Max
N∑

i=1

wiµi (8.5)
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subject to:

N∑
i=1

wi = 1 (8.6)

0 ≤ wi ≤ 1, ∀i ∈ {1, 2, . . . ,N} (8.7)

Alternatively, Equations ?? and ?? can be combined into a single one by incorporating objec-
tive weights as follows (Mishra et al., 2014):

Min λ
N∑

i=1

N∑
j=1

wiw jσi j − (1 − λ)
N∑

i=1

wiµi (8.8)

subject to the aforementioned constraints. In this case, the weights as determined by the param-
eter λ represent the risk aversion of the investor. By varying this parameter and running repeatedly,
a Pareto efficient frontier can be established. Because of the high performance of PSO in solving
the single-objective POP, enhanced PSO algorithms for solving the multi-objective POP have been
proposed by Deng et al. (2012) and He and Huang (2012). Cardinality and bounding constraints
are incorporated by Deng et al. (2012) who find that their algorithm mostly outperforms GA,
SA, and TS algorithms as well as previous PSO approaches, especially in the case of low-risk
portfolios. Similarly, He and Huang (2012) propose a modified PSO (MPSO) algorithm that out-
performs regular PSO for their optimization sets. More recently, they also develop a PSO to deal
with discontinuous modelling of the POP and find that it generally outperforms PSO and also per-
forms better than MPSO in larger search spaces (He and Huang, 2014). Other population-based
algorithms applied in optimizing cardinality-constrained portfolios include firefly algorithms (FA)
(Tuba and Bacanin, 2014b) and artificial bee colony (ABC) algorithms (Tuba and Bacanin, 2014a).
The authors hybridized FA and ABC by incorporating the FA search strategy into ABC to enhance
exploitation and found that their data suggested the superiority of the methodology compared to
GA, SA, TS, and PSO (Tuba and Bacanin, 2014a). Streichert et al. (2003) account for further
constraints: buy-in thresholds (acquisition prices) and round lots (smallest volume of an asset that
can be purchased). They employ two MOEAs: a GA and an EA enhanced through the integration
of a local search that applies Lamarckism, thus allowing the individual improvements to be passed
on to the offspring.

Nevertheless, apart from the neglect of realistic non-linear constraints, there is a second point
of criticism to the original Markowitz model, namely its assumption of normal financial returns,
which, in reality are characterised by a leptokurtic distribution (Krink and Paterlini, 2011), making
it necessary to consider non-parametric risk measures. Such a measure is the value-at-risk, as em-
ployed by Babaei et al. (2015) who develop two multi-objective algorithms based on PSO to solve
a cardinality- and quantity-constrained POP. Through splitting the whole swarm into sub-swarms
that are then evolved distinctly, their methodology outperform similar benchmark metaheuristics.
In order to optimize a non-parametric value-at-risk and to include further constraints, including
lower and upper bounds for the weights of included assets, a threshold for asset weight changes,
lower and upper bounds for the weights of one asset class and a turnover rate that determines the
maximum asset allocation changes possible at once, Krink and Paterlini (2011) develop the differ-
ential evolution (DE) for multi-objective portfolio optimization algorithm. An extended version
of a generalised DE metaheuristic is also employed in optimizing a highly constrained POP by
Ayodele and Charles (2015). The included constraints consist of bounds on holdings, cardinality,
minimum transaction lots, and expert opinion. An expert can form an opinion based on indicators
beyond the scope of the analysed data and influence whether or not an asset should be included.
Lwin et al. (2014) consider cardinality, quantity, pre-assignment and round lot constraints and
develop a MOEA that is improved through a learning-guided solution generation strategy, which
promotes efficient convergence. It has been shown that the developed algorithm outperforms four
benchmark state-of-the-art MOEAs.

An extensive review of the application of EAs to the POP is provided by Metaxiotis and Liagk-
ouras (2012). Likewise, for an extensive review on different POPs, including single- and multi-
objective optimization, the reader is referred to Mansini et al. (2014).
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Passive investment

Passive investment strategies have received less attention in the optimization literature. They are
characterized by limited on-going buying and selling, as well as by ensuing limited maintenance.
Based on the traditional capital market theory stating that market portfolios offer the greatest return
per unit of risk, passive investment strategies have been shown to outperform actively managed
funds and thus gained popularity (Alexander and Dimitriu, 2004).

Index tracking
The index tracking problem (ITP) is a portfolio management strategy, in which investors aim

at mimicking a market or sector index. This is done by either replicating the index or by selecting
a portfolio that follows the index behaviour as closely as possible without including all the stocks
that make up the original index. In the case of perfect replication, there are transaction costs
associated with updating the portfolio to continuously accurately depict the index. Therefore,
the ITP is largely concerned with the latter, partial replication. There are thus two stages in index
tracking, the common goal of which is to minimize the resulting tracking error. The first consists of
selecting the assets to include in the portfolio and the second relates to determining the weights. It
consists of a combinatorial and a continuous numerical problem, which both have to be addressed
simultaneously (Krink et al., 2009). Once similar rich constraints as in portfolio optimization are
introduced, it becomes extraordinarily difficult to solve with exact methods.

The problem can be addressed with the following formulation (Beasley et al., 2003). Minimize
the tracking error:

Min E =

[∑
t∈S |rt − Rt |

α]( 1
α )

T
(8.9)

where S = 1, 2, . . . ,T are the time periods considered, rt is the tracking portfolio return, Rt

is the return of the tracked index, and α is the penalization power that is applied to the difference
between the realized return and the benchmark return. In the most basic formulation, the following
constraints have to be considered:

N∑
i=1

zi = K (8.10)

which ensures that any new tracking portfolio contains K stocks, as zi takes on the value of
one if a stock is included in the replication portfolio and zero otherwise. The weights have to be
limited:

0 < wi ≤ 1, zi = 1, ∀i ∈ {1, 2, . . . ,N} (8.11)

The non-included stocks must naturally dispose of a weighting of zero:

wi = 0, zi = 0, ∀i ∈ {1, 2, . . . ,N} (8.12)

Maringer and Oyewumi (2007) investigate partial replication and introduce cardinality con-
straints concerning upper and lower weight limits and integer constraints in the ITP employing
a DE methodology. Their findings suggest that partial replication is indeed sufficient in replicat-
ing the benchmark index. This is due to the fact that only a decreasing marginal improvement is
reached by increasing the cardinality.

Scozzari et al. (2013) develop a mixed integer quadratic programming formulation to solve the
ITP including hard constraints set by the European Union on ceilings of asset inclusion weights
as well as low turnover rates and resulting low transaction costs in small instances. Early research
by Beasley et al. (2003) introduce a population-based evolutionary metaheuristics to solve the
partial reproduction ITP with regard to stock indices including constraints on transaction costs (as
well as a ceiling for the total inclusion of stocks). Derigs and Nickel (2004) develop a two-stage
SA metaheuristic, in which they control for cardinality constraints and transaction costs through
turnover volume restrictions.

For larger instances, especially in multi-period analysis, Scozzari et al. (2013) propose hy-
bridizing metaheuristics with exact methods. This has been done by Krink et al. (2009) who apply
a DE metaheuristic combined with a combinatorial search operator. Although their methodology
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initially failed to find acceptable solutions, they show that extending DE with a search opera-
tor by selecting the assets with highest weights in the benchmark improves the results greatly in
comparison with GA, SA, and PSO. Ruiz-Torrubiano and Suárez (2009) employ a GA hybridized
with quadratic programming. More recently, Ni and Wang (2013) also tackle the ITP employing
a hybridized GA with increased learning ability that is enabled through goal programming. The
authors include cardinality and integer constraints, as well as proportion constraints for individual
portfolio assets. While both methodologies yielded successful solutions, the models neglect trans-
action costs. The trade-off between transaction costs and tracking performance has been investi-
gated by Chiam et al. (2013) who develop a multi-objective evolutionary index tracking platform
that considers multiple periods and simultaneously optimizes tracking performance and transac-
tion costs while considering round lots and non-negativity constraints as well as floor constraints
as buy-in threshold to prevent unnecessary transaction costs and capital injections.

Affolter et al. (2016) find that due to the missing measure to define the distance between
portfolios with respect to their assets and weights, invasive weed optimization (IWO) do not lead
to satisfactory optimization results. Di Tollo and Maringer (2009) have created a framework for
classifying the metaheuristics applied to ITP and present a review of the literature.

Enhanced index tracking
Beasley et al. (2003) define an objective function that accounts for a trade-off between the

tracking error and excess returns above those of the benchmark index. Considering that investors
might see a trade-off between the trading error and excess returns above the index has led to
the enhanced index tracking problem (EITP), in which investors aim at beating the benchmark
index. The EITP then becomes a multi-objective optimization problem, in which the tracking
error is minimized while maximizing the degree of beating the benchmark index so that a solution
dominates another if the excess return is higher given the same level of trading inaccuracy or if the
trading accuracy for the same level of excess return exceeds that of the other solution. This can be
formulated by including a second objective function that defines the excess return between rt and
Rt:

Max r∗ =
∑
t∈S

rt − Rt

T
(8.13)

Canakgoz and Beasley (2009) solve the ITP as well as the EITP including transaction costs,
an upper limit on the total number of stocks purchased, and a limit on the incurred transaction
costs using exact methods (mixed-integer linear programming formulations). However, Li et al.
(2011a) show they could mostly outperform the methodology employed by Canakgoz and Beasley
(2009) by implementing an immunity-based optimization algorithm. Including further constraints,
Li and Bao (2014) also employ an immunity-based multi-objective optimization algorithm with
non-negativity and floor and ceiling buy-in thresholds. They conclude that the inclusion of op-
timization of the tracking process is valuable. A perfectly enhanced tracking portfolio would
outperform the index by a low-frequency trend such as steady excess return while negative returns
should be trendless and characterized by high frequency variation. Thus, the tracking process can
be enhanced by considering different frequencies for tracking error and excess returns when the
former is minimized and the latter maximized (Li and Bao, 2014). Optimization of the tracking
process is expected to increase in importance for multi-period assessment; the authors, however,
leave this for further research. The question of multi-periodicity has been investigated by An-
driosopoulos et al. (2013) who address the EITP employing both DE and GA. They show that
the so-constructed mimicking portfolios inhibit less risk compared to the underlying benchmark
index, while replicating their performance. Nevertheless, they conclude that the GA version out-
performs DE in terms of minimum tracking errors, as well as maximum mean excess returns. As
they explicitly consider different time horizons for rebalancing the portfolio, these authors rein-
force the idea that there exists a trade-off between transaction costs, which decrease with longer
rebalancing periods, and Sharpe ratios (as a measure of the tracking performance and profitabil-
ity), which is negatively impacted by decreased rebalancing frequency as investigated by Chiam
et al. (2013) for the ITP.

An alternative approach is pursued by Guastaroba and Speranza (2012) who apply a kernel
search framework to both the ITP and the EITP. They introduce the possibility that an investor
already holds a portfolio as a further constraint to consider in addition to transaction costs. How-
ever, they treat the EITP as a single-objective optimization by outperforming the market index,
while keeping the tracking error below a given threshold. Compared to a general-purpose solver,
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the performance of the kernel search model is superior. Thomaidis (2011) consider an EITP prob-
lem with restrictions on the maximum of tradable assets, and employ fuzzy set theory to consider
non-standard investment objectives, such as the probability of under-performing. The resulting
cardinality-constrained problem is solved using nature-inspired optimization techniques: SA, GA,
and PSO.

Lastly, while some authors declare active and passive portfolio management as mutually ex-
clusive concepts, the close connection between index tracking and portfolio optimization could
be illustrated by the approach taken by Di Tollo et al. (2014) who combine the two methods in
a multi-criteria optimization problem. They employ a hybrid metaheuristic consisting of local
search metaheuristics (FD, SD and TS) and quadratic programming to estimate the efficient fron-
tier. Combining the concepts of risk and return with tracking error leads to a three-dimensional
objective function and Pareto frontiers. Their methodology is found competitive in performance
with other metaheuristics such as TS.

Project portfolio selection

Unlike banks and institutional investors, non-financial companies as well as governments are faced
with a different type of portfolio choice. As a method to determine which proposals to pursue and
the corresponding budget allocation, investment or project appraisal is related to portfolio opti-
mization in its goal of maximizing a benefit figure. Usually, decisions cannot be altered or adjusted
during the course of the projects, or at least not without incurring financial losses. This problem
becomes NP-hard due to its sheer complexity (Fernandez et al., 2015). It is a multi-period prob-
lem and the budget-allocating entity usually pursues several conflicting objectives, some of which
can be of qualitative nature. For that matter, Doerner et al. (2004) propose a two-stage procedure.
First, the Pareto frontier is constructed. Then, in the second phase, it is interactively explored
by the decision-maker to account for personal preferences. A formal description of this problem,
based on the one presented in Doerner et al. (2004), is included next. The benefit function blt(x)
that comprises the value of the l different benefit groups, such as generated funds, cash flows,
patents or other beneficial outcomes is to be maximized over all time periods t for all included
projects, i.e.:

blt(x) =

N∑
i=1

bilt xi (8.14)

where xi is a binary variable that takes on the value of one for included projects and zero
otherwise, subject to constraints concerning resource limitations Rqt that apply to all resource
categories rq, such as budget, capacity, or manpower, as well as minimum benefit requirements
Blt:

rqt(x) ≤ Rqt,∀q ∈ {1, . . . ,R} and ∀t ∈ {1, . . . ,T } (8.15)

blt(x) ≤ Blt,∀l ∈ {1, . . . , B} and ∀t ∈ {1, . . . ,T } (8.16)

Because of the modelled similarities, the methodological approaches employed are inspired by
the research on traditional portfolio optimization. Early work (Ghasemzadeh and Archer, 2000)
conduct optimization after the construction of a weighted objective function and constraints con-
cerning budget and man-hours in an integer linear programming approach. However, instances
are very limited because the authors aspired a comparison between manually computed portfolios
and those constructed employing their decision support system. For their metaheuristic approach
Doerner et al. (2004) employ a Pareto ACO (P-ACO). As there are possible synergies between
projects that should be evaluated, the authors make an attempt at incorporating these considera-
tions into their methodology and point out that P-ACO specifically constructs project portfolios
through pheromone vectors. This has two advantages. Firstly, infeasible solutions are avoided
and secondly, project interactions can more naturally be considered in the construction of solu-
tions. They further take into account floor and ceiling constraints for inclusion of projects from
any given subset, as well as resource limitations and minimum benefit requirements for individual
projects. Compared to Pareto SA and a non-dominated sorting GA (NSGA), P-ACO yields the
most efficient results. This approach has been then further enhanced by Stummer and Sun (2005),
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who compare the performance of a P-ACO procedure enhanced through adding a neighbourhood
search routine, a TS procedure, and a variable neighbourhood procedure. Their findings suggest
that the improved P-ACO model performs better than TS with many objective functions and a large
set of efficient solutions. Furthermore, Doerner et al. (2006) conclude that including both a learn-
ing and a two step integer linear pre-processing procedure to initialize efficient project portfolios
improves performance of the P-ACO algorithm.

More recently, research has also drawn on findings from other areas, such as scheduling: Gut-
jahr et al. (2008) and Gutjahr et al. (2010) also take employee competencies and the evolution
of their knowledge scores over time through learning or depreciation into account. While the
earlier work optimizes a weighted average objective function using ACO and GA metaheuristic
procedures and finds the GA to be superior when the search space is not highly constrained, the
authors develop a multi-objective optimization model, which simultaneously optimizes the objec-
tives of maximum economic gains and aggregated competence increase in their later work. They
also divide the problem into master and slave subproblems, the first of which is concerned with
the project selection, while the slave problem optimizes the allocation of personnel to the projects
over time. Although the slave problem can be solved using exact methods, the master problem is
solved using the NSGA-II and P-ACO metaheuristics. NSGA-II outperforms P-ACO in synthetic
instances, while P-ACO outperforms NSGA-II for real-life instances. Carazo et al. (2010) include
scheduling as a continuative concept following the project selection. Their developed metaheuris-
tics approach is based on SS for project portfolio selection (SS-PPS). As previous work, they also
consider interdependences between different projects and can show that their model outperforms
other heuristic approaches based on EA. Similar to Rabbani et al. (2010), who present a multi-
objective PSO metaheuristic that is competitive with respect to SPEA II, Urli and Terrien (2010)
formulate the project portfolio selection problem as a multi-objective non-linear integer program,
which they solve using the SSPMO metaheuristic (Molina et al., 2007). In a first phase, they
generate an initial set of efficient solutions through TS and then combine these via SS. While this
approach solves small and medium instances in satisfactory computation time, the determination
of all non-dominated project portfolios still remains difficult when considering large instances
(100 projects or more).

Another issue that has only recently been addressed is project divisibility. While business
projects are at least partially indivisible, research projects funded by governments can often also
be executed with partial funding and it is thus a further question how much of the sought after
funding is awarded. Cruz et al. (2014) use ACO in solving a stationary project portfolio opti-
mization problem, in which partial support of the requested budget is allowed. They develop a
non-outranked ACO approach, incorporating a fuzzy outranking preference model. Outranking is
employed in an a priori preference system in order to model that decision-makers will have prefer-
ences towards different portfolios on the efficient frontier based on their personal goals. Fernandez
et al. (2015) further enhance this approach by including integer linear programming methods to
generate an initial population. They also include synergies in their optimization. It can be asserted
that project synergies, project divisibility, the incorporation of multi-periodicity, and outranking
are prominent real-life constraints that increase the complexity of the portfolio selection process.

8.2.2 Risk management
Risk management of companies refers to the evaluation of data concerning the institution’s ex-
posure to a certain source of risk and it is further concerned with statistics on trends that will
influence that exposure in the future. While quantitative data is relevant and necessary for this, it
must be complemented by qualitative information for informed decision-making (Chorafas, 2007).
Risk management is addressed in terms of optimization through metaheuristics for credit risk as-
sessment and the resulting bankruptcy prediction. García et al. (2015) provide a review of systems
and applications to the optimization of trading rules in the financial markets. Table ?? presents the
metaheuristic methodologies applied to the different subproblems of risk management.
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Table 8.2: Application of metaheuristics and hybridization to risk management.

Optimization problem Single-solution search Population-based search HybridSA TS GA ACO EA ABC PSO SS HBMO FA BA HS
Credit risk assessment 2 4 1 1 1 1 6
Bankruptcy prediction 4 1 2 6
Optimization in stock trading 2 4 1 2 1 1 1 7
Optimization in foreign exchange trading 3 1 4

Several conclusions can be drawn. Firstly, GA are the preferred metaheuristics in risk man-
agement. Furthermore, PSO has also received widespread attention. Contrary to that, more exotic
algorithms, such as harmony search (HS), FA, or bat algorithms (BA). Secondly, it can be seen
that bankruptcy prediction, as well as optimization of trading systems for foreign exchange mar-
kets, have received less attention and have been approached with fewer methodologies. They thus
represent interesting future research lines. Thirdly, it becomes evident that hybridization among
metaheuristics or other optimization methods is far more prevailing in risk management optimiza-
tion than in portfolio optimization. Lastly, relatively recently developed metaheuristics, such as
IWO and honey bees mating optimization (HBMO), have not been applied as comprehensively as
well-established ones.

Credit risk assessment and optimization

Credit risk assessment is one of the most researched topics in the banking industry. There are
many different approaches for financial institutions. However, during the last years, non-financial
companies have also recognized the need to treat their trade credits to customers with the same
caution and scrutiny. While the use of metaheuristics is still scarce, they are increasingly used
as a pre-processing procedure in order to identify the most relevant predictors of credit risk in
the analysis of large datasets. Marinakis et al. (2008) classify a set of companies into different
classes of credit risk level. They propose and compare TS, GA, and ACO for solving the feature
selection subset problem. The accuracy measures are determined by whether or not a subject has
been classified in the right category (Table ??).

Table 8.3: Definitions of the classified and the misclassified samples.

Actual class
1 2

Estimated class 1 T1 F2
2 F1 T2

The overall classification accuracy (OCA) can serve as optimization objective that is to be
maximized:

OCA =
T1 + T2

T1 + F1 + T2 + F2
· 100. (8.17)

More recently, Marinaki et al. (2010) employ HBMO in determining the relevant features.
Their metaheuristic reduces the number of used features by more than half and still yields superior
results compared to PSO, ACO, GA, and TS. Oreski et al. (2012) employ NN hybridized with GA
to enhance the classification accuracy of the NN classifiers by choosing optimal features. Oreski
and Oreski (2014) further improve the results by employing a hybrid GA instead of GA. Their
results suggest that they achieve a higher and less volatile accuracy with fewer features through
a reduction of the search space and an incremental phase of the GA. Chi and Hsu (2012) employ
GA in selecting relevant variables to combine a bank’s internal behavioural scoring model with an
external credit bureau scoring model and thus creating a dual scoring model that outperforms the
individual model. A survey on the importance of employing the right fitness function in the GA is
provided in Kozeny (2015).

Trends in credit risk assessment concern the hybridization of metaheuristics with other tech-
niques for feature selection. Wang et al. (2010) develop a feature selection based on rough set and
TS. Similarly, Wang et al. (2012) use a rough set and SS feature selection able to improve results
in all three considered base sets, i.e. NN, J48 decision tree and LR. Lastly, Danenas and Garsva
(2015) pursue the idea of optimizing the classifiers of a linear SVM using PSO. While their results
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are comparable to the use of other classifiers (LR and radial basis function or RBS networks), the
proposed methodology delivers less stable performance.

Bankruptcy prediction

Bankruptcy occurs when debtors are unable to repay outstanding debts. While bankruptcy pre-
diction constitutes part of the credit risk evaluation process, it is vital for banks and companies to
constantly monitor their credit risk exposure. Because of the two-classes framework (firms that
go bankrupt and firms that do not), the basic optimization framework is similar as suggested for
credit risk assessment. The difficulty and difference lies in the relatively longer aspired forecasting
period and the difficulty in predicting the exact time of bankruptcy.

It is worth considering to differently value the two classes of mistakes that occur. While falsely
classifying a subject as bankruptcy candidate merely leads to missed revenues, a false classification
as healthy company usually leads to a failure on a payment and thus has greater consequences.

Early research conducted by Back et al. (1996) highlight the contribution of GA in predicting
bankruptcy when hybridized with NN. Shin and Lee (2002) introduce the prediction of corporate
bankruptcy using GA and historical financial data. Kim and Han (2003) further employ GA to
extract decision rules based on qualitative expert decisions and find their methodology to be su-
perior compared to NNs or inductive learning methods because the rules created by GA are more
accurate and have larger coverage. An extensive survey can be found in Kumar and Ravi (2007)
who review both statistical and computing methods. Their evaluation conclude that all statistical
methods are outperformed by back propagation NNs. They further highlight the prediction ac-
curacy of SVM. More recently, Kirkos (2015) presents the literature on artificial intelligence and
machine learning techniques employed in bankruptcy prediction.

Min et al. (2006) improve the performance of SVM with regards to optimizing the feature
subset and parameters simultaneously. They show that selecting an appropriate feature subject
has implications for the kernel and that their integration improves bankruptcy prediction accuracy.
Chen (2011) highlights that while intelligent techniques provide higher prediction accuracy for
smaller datasets and are adversely affected by increasing datasets, statistical methods perform
more accurately when the dataset is large. But the author also indicates that a hybrid between
PSO and SVM may yield a good balance between short- and long-term prediction accuracy. This
is consequently done by Lu et al. (2015) who combine switching PSO (SPSO) and SVM. The
SPSO is employed in searching the optimal parameter values of RBF kernel of the SVM and the
authors show that this hybridization yields superior results to GA-SVM and PSO, respectively.
These findings are supported by Chen (2011) and Chen (2014) who also employ PSO-SVM and
show high accuracy with a reduced number of parameters. Furthermore, Gaspar-Cunha et al.
(2014) propose an evolutionary approach that simultaneously minimizes the number of features
and maximizes the accuracy of the classifier in SVM.

Recently, ensemble learning has been applied to the bankruptcy prediction problem. Kim and
Kang (2010) propose hybridizing an ensemble with NNs and show that it improves prediction
accuracy compared to regular NNs. However, these attempts often suffer from high correlation
among the individual classifiers, and thus Kim and Kang (2012) improve their methodology to in-
clude a GA-based coverage optimization to alleviate multicollinearity through classifier selection.
More recently, Davalos et al. (2014) develop an accurate GA-based ensemble classifier model with
heterogeneous instead of individual classifiers that is comprehensible due to its if-then-structure.

However, the financial ratios employed in the main research lines are unavailable for a large
portion of companies. Small and medium-sized enterprises (SMEs) do not dispose of regular
audited financial data or market prices and public ratings due to publicly traded equity or debt
instruments and it is necessary to include available and relevant indicators for these individual
firms. Thus, with special regards to SMEs, Gordini (2014) compares the prediction accuracy of
GA, SVM, and LR. The author shows that the prediction of GA is superior.

Optimization of decision-support systems for trading

The development and optimization of automated trading systems has become of prevalent im-
portance for broker investment banks and other institutional investors alike. A large portion of
the literature addresses stock trading, while some researchers have concentrated on the foreign
exchange markets.



98 Chapter 8. Applications in finance

Stock market trading
Derigs and Nickel (2003) develop a decision support system (DSS) for portfolio optimization

and index tracking. They stress the importance of hard (government-imposed and compulsory)
and soft (shaped by preferences of the investor) constraints. They implement a local search guided
by SA in order to optimize the DSS with respect to floor and ceiling constraints and transaction
costs. These authors show for the application to passive tracking of the DAX 30 that their system
delivers solutions with minimal tracking errors in acceptable computing time. Focusing on real-
time decisions, Chavarnakul and Enke (2009) propose a trading system for the stock market based
on volume adjusted moving average that is hybridized with NN to decrease the time of receiving
trading signals, fuzzy logic to deal with uncertainty, and GA techniques to optimize the trading
signals to overall increase efficiency. Depending on the strength and direction of a given signal,
the system assumes a buy or sell position. If the signal is not confident enough, a hold position is
taken. The so established neuro-fuzzy based GA is shown to lead to fewer trades and thus reduce
transaction costs, while profitability is increased.

Gorgulho et al. (2011) also propose a system to automatically manage a portfolio of assets and
highlight the necessity of adapting the system to the state of the market. They employ GA and
technical analysis rules. The system requires the user to input the available budget, the maximum
of assets to be included at any time, whether or not short selling is considered and the allowed
amount of transaction costs. Then, an initial portfolio is constructed employing a GA. Over the
course of the investment, the system regularly updates the proposal based on technical trading rules
based on closing positions and refilling empty positions. Teixeira and De Oliveira (2010) combine
technical trading rules with nearest neighbour classification. Their analysis is based on historical
data of stock closing prices and volume. Their system outperforms a buy and hold strategy in
most cases. Because the parameters in these functions have to be determined, metaheuristics have
been applied. Brasileiro et al. (2013) further refine the strategy by Teixeira and De Oliveira (2010)
by searching for the best system parameters and number of lags with an ABC algorithm. Nunez-
Letamendia (2007) shows that GA is robust and powerful when applied to optimizing technical
trading rules. Similarly, Lin et al. (2011) apply a GA to improve trading rules for individual stocks,
which are then combined with echo state networks to provide suggestions for trading. Their results
show an outperformance of the buy and hold strategy. In a more recent work, Wang et al. (2014a)
employ a time-variant PSO (TVPSO) to determine the optimal parameter values of a complex
trading system: performance-based reward strategy (PRS). PRS combines moving average and
trading range breakout trading rules. Considering transaction costs and excluding short selling,
the system is able to achieve high profits and the application of the TVPSO significantly optimizes
the trading system.

Hybridizations of metaheuristics and NN have recently shown to provide accurate forecasts of
stock market prices. While both provide better results than a passive buy and hold strategy, HS
based models have been shown to outperform GA based models with regards to forecasting errors
(Göçken et al., 2016). Very recently, the hybridization of data mining techniques with metaheuris-
tics has created clustering metaheuristics able to predict patterns in the general movement of stock
markets, such as periods of lower and higher return (Prasanna and Ezhilmaran, 2015).

Foreign exchange market trading
Foreign exchange market trading can either concern hedging foreign exchange risk or spec-

ulation. Only the latter has the objective of making a profit by exploiting market inefficiencies.
Myszkowski and Bicz (2010) establish a trading system based on decision trees that consider tech-
nical trading indicators. EA then generates trading strategies. While these are able to achieve a
profit, the system is still too fragile to be used in automated trading. Mendes et al. (2012) propose
employing GA to optimizing trading rules and although their developed trading system performs
well in terms of computational time because of the small population size employed, it fails to
perform well in terms of profitability when faced with transaction costs. Zhang and Ren (2010)
develop a high-frequency trading system based on the optimization of technical indicators through
GA that is able to produce annualized profits. In addition to intraday prediction, Evans et al. (2013)
implement a trading system based on NNs, whose topology is optimized using GA. In comparison
with Zhang and Ren (2010), they are able to considerably improve annualized net profits.



8.2. Survey on metaheuristics in portfolio optimization and risk management 99

8.2.3 Linkage between portfolio optimization and risk management
Despite the fact they have been addressed as two independent types of problems in most of the
literature, this section highlights the relationship between portfolio selection and risk management.
In the first place, POPs directly consider a risk measure (such as portfolio variance, portfolio
semivariance, value at risk, alpha and beta, among others) and, therefore, they can also be seen
as risk management problems. For example, the specification of adequate risk measures that
accurately depict return distributions is a well-established area of research. It is concerned with
one-dimensional risk measures of individual assets and multi-dimensional measure to account for
interaction of asset portfolios (Rachev et al., 2010).

In the second place, most risk management models related to optimization problems can be
seen as rich variants of POPs. For instance, stock market trading is in the essence of the prob-
lems concerned with constructing an initial portfolio and updating it over time to reflect current
macro- and microeconomic developments. Likewise, while credit risk and bankruptcy risk are
only estimated in the overwhelming majority of the risk management literature, it is the ultimate
goal to build low-risk portfolios by including preferably those assets with a lower credit risk and
excluding other assets expected to go bankrupt. Using a MOEA, Moreno-Paredes et al. (2013)
explicitly acknowledge the linkage between credit risk management and portfolio optimization by
treating the loan decision among a set of customers as a credit portfolio optimization problem.
More generally, implicit in a POP is pooling assets with imperfectly correlated returns that leads
to a diversification of idiosyncratic sources of risk and a reduction in the overall risk of portfolio
investment.

Figure ?? depicts the relationship between risk management and POPs reviewed here. The
extension of the ovals representing risk management problems and POPs respectively signifies
the extension of possible solving approaches beyond traditional optimization techniques. The risk
management problems of bankruptcy and credit risk prediction are located directly on the border
to portfolio optimization, as the predictions are generally employed in a following portfolio selec-
tion process. Foreign exchange trading, unlike stock trading, is considered a sole risk management
problem. While stock trading consists of the establishment and maintaining of a portfolio, specula-
tive profits in foreign exchange trading are generated through simultaneous buying and selling and
not the establishment of a portfolio. Concerning the subproblems of portfolio optimization, the
ITP and EITP do not directly consider risk measures. Unlike that, the POP is directly concerned
with risk minimization and thus closely related to risk management problems.

Figure 8.3: A unified classification of portfolio optimization and risk manage-
ment.
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8.2.4 Emerging trends
From the previous discussion, one clear trend is the transfer of methodological knowledge from
portfolio optimization to risk management optimization. Another trend is related to the increasing
complexity of the problems being addressed, which makes even more evident the need for faster
(or parallelizable) metaheuristic approaches. These ‘fast metaheuristics’ will be needed as the
models introduce further constraints to account for real-life circumstances, and as the real-time
factor that is required in most of the decision-making processes will become even more relevant.
Strongly related to this point, distributed and parallel computing techniques can be employed to
accelerate the ‘wall clock times’ (Juan et al., 2013b). Furthermore, the fact that two or more ob-
jectives have to be considered simultaneously to account for the complexity has shown to increase
the employment of multi-objective optimization techniques.

Another clear trend is the predominance in the use of population-based metaheuristics over
single-point metaheuristics. It is our opinion that no family of metaheuristics are shown to be su-
perior in performance (regarding both quality of solutions as well as computing times) to another.
At least, we have not found any scientific evidence that supports that claim. Thus, a lot of research
can be done yet regarding the use of single-point metaheuristics. Related to this, it is possible to
observe a trend to develop hybrid algorithms, which combine different types of metaheuristics as
well as metaheuristics with machine learning and statistical techniques. While hybridization can
be an effective strategy to solve complex problems, it might also add some degree of additional
complexity to the solving algorithms. This, in turn, might make them more difficult to be clearly
understood, correctly implemented, and applied in practical scenarios. Adding complexity to al-
gorithms –e.g., additional parameters that require fine tuning– also makes it difficult to reproduce
their experimental results. For those reasons, only in cases in which significant improvements in
performance are obtained, is the hybridization of algorithms justified.

With regards to data, recent research has shown a trend to employ different risk measures to
more accurately depict the characteristics of the underlying data. This is also a particularly inter-
esting research area as further stakeholders of financial optimizations (e.g. SMEs) do not provide
traditional optimization inputs and thus alternative measurements of risk are promising. Further
concerning measuring, while hybridizations of simulation and optimization have recently been
developed and gained popularity in the application to SCOPs in different areas, the above finance-
related problems have not yet been extensively addressed by simheuristics, even though financial
data is characterised by stochastic macro- as well as firm-level uncertainty. It can thus be expected
that this research line is promising, with respect to both, the design of new problems and the
application of simheuristics to established COPs that previously neglected stochastic uncertainty.

8.3 The POP
The single-objective POP has been already introduced in the previous section. Here, a richer
version is addressed which includes realistic constraints. A binary variable zi ∀i ∈ {1, 2, . . . ,N} is
created to reveal if an asset i is selected (zi = 1 if wi > 0) or not (zi = 0 otherwise). The number
of assets in the portfolio,

∑N
i=1 zi, is bounded by user-defined values, kmin and kmax (cardinality

constraints). Moreover, the user can pre-select certain assets to be included in the portfolio, i.e.:
∀i ∈ {1, 2, . . . ,N}, pi = 1 if the asset i is pre-assigned (i.e., wi > 0) and pi = 0 otherwise (pre-
assignment constraints). Finally, for each asset i, its associated quantity in the portfolio, wi, is
bounded by user-defined values, εi and δi (quantity constraints).

The mathematical model is:

Min
N∑

i=1

N∑
j=1

wiw jσi j, (8.18)

N∑
i=1

wiµi ≥ R (8.19)

N∑
i=1

wi = 1 (8.20)
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0 ≤ wi ≤ 1,∀i ∈ {1, 2, . . . ,N} (8.21)

kmin ≤

N∑
i=1

zi ≤ kmax (8.22)

εizi ≤ wi ≤ δizi,∀i ∈ {1, 2, . . . ,N} (8.23)

0 ≤ εi ≤ δi ≤ 1,∀i ∈ {1, 2, . . . ,N} (8.24)

pi ≤ zi,∀i ∈ {1, 2, . . . ,N} (8.25)

zi ≤ Mwi,∀i ∈ {1, 2, . . . ,N} (8.26)

zi ∈ {0, 1},∀i ∈ {1, 2, . . . ,N} (8.27)

Equations (??) – (??) outline the unconstrained optimization problem and determine the un-
constrained efficient frontier (UEF). Specifically, Equation (??) provides the lower bound for the
investor’s required return. Equation (??) ensures that portfolio weights add up to unity. The
purpose of Equation (??) is to regulate leveraged positions. By solving the constrained optimiza-
tion problem given by Equations (??) – (??) the constrained efficient frontier (CEF) is obtained.
Equation (??) formulates cardinality constraints. Equation (??) defines quantity constraints. A
minimum and maximum quantities of wealth invested in asset i is given by εi and δi. Both param-
eters εi and δi range from 0 to 1 (Equation (??)). Given a vector of N binary decision variables Z
(Equation (??)), and a binary vector P of pre-assignments, whenever asset i is pre-assigned, it has
to be included in the portfolio (Equation (??)). In Equation (??), M is a large positive value such
that Mwi ≥ 1 for all wi ≥ 0. Thus, if the quantity in the portfolio of asset i, wi, is equal to 0, it
means that this asset is not included in the portfolio (i.e., zi = 0).

According to the problem description, the output of the algorithm will be an assets-investment
plan, W = (w1,w2, . . . ,wN), satisfying all the aforementioned constraints and with the lowest
possible risk.

8.3.1 Methodology
The ARPO matheuristic combines three main components: (i) an ILS framework; (ii) the use
of a biased randomization process that guides the generation of promising solutions (perturbation
stage); and (iii) the use of a quadratic programming solver that, given a current portfolio, optimizes
the levels of investment of each asset (local search). Pseudo-code ?? shows the main procedure
of the algorithm. Apart from the inputs defining the instance, also the maximum computing time
allowed, maxTime, and an additional parameter, beta, are passed to the procedure –the use of this
additional parameter will be discussed later.

The procedure starts by generating a ‘dummy’ initial solution. It is constructed by including
the assets with the highest return levels so that it provides the highest possible expected return
while satisfying all the remaining constraints. This way, if the expected return provided by this
solution does not reach the minimum return threshold imposed by the investor, then the problem
will be infeasible since no other solution will do it. Notice that it is also likely to obtain a high risk
associated with this initial solution.

At this point, a quick local search is applied to the initial solution, which uses quadratic pro-
gramming in order to optimize the investment level assigned to each asset. The improved solution
will be considered both as the current ‘base’ solution and the ‘best-so-far’ solution. Now, the
ARPO procedure resumes by starting an iterative improvement process. It comprises three stages:
(i) the perturbation stage, which applies strong changes to the base solution in order to increase
exploration of the space of solutions; (ii) the local search stage, which tries to perform a quick
improvement of the base solution by using a quadratic programming and a cache memory; and
(iii) the acceptation stage, which makes use of a credit-based system in order to allow accepting,
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Algorithm 13 Main procedure of the ARPO algorithm.

procedure ARPO(inputs, minReturn, maxTime, beta)
1: initSol← genInitSol(inputs) . generate sol with highest possible return rate
2: if {getReturn(initSol) < minReturn} then
3: return unfeasible . unfeasible problem
4: end if
5: genFriendshipLists(inputs) . generate a sorted list of “friends” for each asset
6: baseSol← QPOptimize(initSol, minReturn) . optimize levels for each asset in portf.
7: baseSol← cleanSol(baseSol) . delete from portf. assets with level = 0
8: bestSol← baseSol . initialize bestSol
9: elapsedTime← 0

10: credit← 0 . used in the acceptance criterion
11: while {elapsedTime < maxTime} do . iterated local search
12: newSol← perturbateSol(baseSol, inputs, beta) . destruction-construction stages
13: if {getMaxReturnAsset(newSol) < minReturn} then . fix solution if unfeasible
14: newSol← repairSol(newSol, inputs)
15: end if
16: if {newSol is in cache} then . already optimized levels
17: newSol← loadFromCache(newSol) . use optimized levels saved in cache
18: else . apply a local search based on quadratic programming optimization
19: newSol← QPOptimize(newSol, minReturn) . optimize levels f.e. asset in portf.
20: newSol← cleanSol(newSol) . delete from portf. assets with level = 0
21: saveInCache(newSol)
22: end if
23: delta← getRisk(newSol) - getRisk(baseSol) . newSol improves baseSol
24: if {delta < 0} then
25: credit← -delta
26: baseSol← newSol
27: if {getRisk(newSol) < getRisk(bestSol)} then . newSol improves bestSol
28: bestSol← newSol
29: end if
30: else{delta > 0 and delta ≤ credit} . acceptance criterion
31: credit← 0
32: baseSol← newSol
33: end if
34: update elapsedTime
35: end while
36: return bestSol

end procedure
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under certain restrictive conditions, a new base solution even when it offers a slightly higher risk
than the current base solution.

As regards as the perturbation stage (Pseudo-code ??), this follows a destruction - reconstruc-
tion process. First, this process takes as an input the base solution. Second, the base solution is
partially destroyed by deleting a randomly selected number of assets. Third, the destroyed solution
is re-constructed (completed) by adding new assets to the portfolio.

Algorithm 14 Perturbation procedure to generate promising solutions.

procedure perturbateSol(baseSol, inputs, beta)
1: newSol← copySol(baseSol)

. 1. Remove a random number of randomly selected assets (destruction stage)
2: nAssetsInSol← getNAssetsInSol(newSol)
3: if {nAssetsInSol > 1} then
4: nAssetsToRemove← genRandomNumber(1, nAssetsInSol - 1)
5: for {i = 1 to nAssetsToRemove} do
6: asset← selectRandomAsset(newSol)
7: newSol← removeAsset(asset, newSol)
8: end for
9: end if

. 2. Randomly select one asset in current portf. to add several of its “friends”
10: asset← getRandomAsset(newSol)

. 3. Use biased rand. to add friendly assets until reaching kMax (re-construction stage)
11: while {size(newSol) < getKMax(inputs)} do
12: listOfFriendlyAssets← getFriendlyList(asset) . Sorted list of friendly assets
13: do . Randomly select a position using a Geometric(beta) prob. distribution
14: position← biasedRandom(size(listOfFriendlyAssets), beta)
15: newAsset← getAsset(listOfFriendlyAssets, position)
16: while {newAsset in newSol} . Repeat until newAsset not in current portf.
17: newSol← addAsset(newAsset, newSol)
18: asset← newAsset
19: end while
20: return newSol

end procedure

During this re-construction process, the selection of each new asset added to the portfolio is
done following a ‘friendship’ criterion, i.e.: although the selection of the new asset is random, this
new asset will be most likely selected among those assets that are highly compatible –i.e., showing
a low covariance value– with the last asset added to the portfolio. This special behavior is attained
throughout the use of a biased randomization selection process, which makes use of a geometric
distribution of parameter beta (0 < beta < 1).

Finally, there might be times in which the newly generated solution does not fulfil the minimum
return requirement. In those cases, a ‘repair’ stage is used to swap a randomly selected asset in the
current portfolio by a high-return asset not currently in the portfolio (Pseudo-code ??).

Algorithm 15 Repair procedure to make newly generated solutions feasible.

procedure repairSolution(sol, inputs)
1: unusedAssets← getAssetsNotInSol(sol, inputs) . Consider assets not in portf.
2: unusedAssets← shuffle(unusedAssets) . Random sorting of the unused assets list
3: assetA← getRandomAsset(sol) . Select a random assetA in current portf.
4: sol← deleteAsset(assetA, sol) . Delete assetA from current portf.
5: for {each asset assetB in unusedAssets} do . Search unused assetB with high return
6: if {getReturn(assetB) ≥ minReturn} then
7: sol← addAsset(assetB, sol) . Add assetB to current port.
8: return sol
9: end if

10: end for
11: end procedure
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8.3.2 Computational experiments
The ARPO algorithm has been implemented as a Java application. Two sets of stock market data
are used to test it. The first set is retrieved from the repository ORlib: http://people.brunel.
ac.uk/~mastjjb/jeb/orlib/portinfo.html. These instances were proposed by Chang et al.
(2000) and were studied by Schaerf (2002), Armañanzas and Lozano (2005), Moral-Escudero et
al. (2006), Fernández and Gómez (2007), and Di Gaspero et al. (2011). The data set comprises
constituents of five stock market indices, Hang Seng (Hong Kong), DAX 100 (Germany), FTSE
100 (United Kingdom), S&P 100 (United States) and NIKKEI 225 (Japan). These indices were
extracted from DataStream and are measured at weekly frequency spanning the period from March
1992 to September 1997.

The portfolio frontier is divided into 100 equidistant points on the vertical axis that represents
the user-defined rate of expected portfolio return. Although the algorithm has been designed for the
constrained case, it is initially tested on the unconstrained mean-variance optimization problem.
The test results show that it is able to return solutions that are overlapping with the UEF published
at the OR Library, which contributes to validate the approach.

Next, the algorithm is executed on a constrained mean-variance frontier (the algorithm is ex-
ecuted 30 times and both the best and average results are recorded). The maximum time of ex-
ecution for each instance is 20 seconds. The constraints are those imposed by the previous au-
thors. The constraints involve the following conditions: εi = 0.01, δi = 1, kmin = 1, kmax = 10,
∀i ∈ {1, 2, . . . ,N}. As in the aforementioned studies, pre-assignment constraints are not consid-
ered. Despite other authors claim that their approaches can solve the constrained problem with all
the aforementioned constraints, this fact is not clearly showed, since the parameter values they use
do not seem to impose a real challenge for their algorithms in terms of tight constraints.

8.3.3 Analysis of results
Table ?? shows the values of average percentage loss (APL) and associated computational times.
In terms of the minimum APL, the ARPO algorithm outperforms on Instances 2 – 5 the hybrid
solvers proposed by Di Gaspero et al. (2011), which comprise combinations of first descent and
steepest descent with quadratic programming (FD+QP and SD+QP, respectively). In terms of
computational time, ARPO shows a superior performance relative to that of the solver’s SD+QP
and is comparable or better than the solver’s FP+QP performance. Although the minimum APL
provided by ARPO is slightly superior to the hybrid solver combining a GA and QP in Moral-
Escudero et al. (2006), on the remaining instances the minimum APL accomplished by ARPO is
lower. Furthermore, the computational times are considerably lower than those reported by the TS
in Schaerf (2002), and by GA+QP in Moral-Escudero et al. (2006).

The UEF (as provided in the ORlib) and CEF (as provided by ARPO) for the five stock market
indices are compared in Panels A – E of Figure ??. Panel A depicts the CEF for the Hang Seng
stock market. A visual inspection suggests that the CEF is hardly distinguishable from the UEF.
However, as the rate of expected return increases, the CEF tends to diverge relatively less from the
UEF. In particular, at the higher end of the CEF that features rewarding but risky portfolios, the
expected rate of return can be attained with fewer assets. Panel B depicts the CEF for the DAX
100 stock market. The CEF diverges from the UEF at the lower end of expected return. As the rate
of expected return increases, the CEF becomes indistinguishable from the UEF. Panel C depicts
the CEF for the FTSE 100 stock market. It indicates that –similarly to the DAX 100 stock index–
the CEF departs from the UEF at the lower end of expected return. Panel D depicts the CEF for
the S&P 500 stock market. It indicates that –as with the DAX 100 and FTSE 100 stock indices–
the CEF departs from the UEF at the lower end of expected return. As the rate of expected return
increases, the CEF becomes visually indistinguishable from the UEF. Finally, Panel E depicts the
CEF for the NIKKEI stock market. It indicates that the relation between the CEF and the UEF
follows a pattern similar to the Hang Seng stock index.

To evaluate differences between the UEF and the CEF-ARPO, the portfolio weights for FTSE
100 stock indices are provided (Figure ??), where the required rate of return is 0.0041572635,
which is an approximately central value within the overall of returns. The UEF considers all assets
with weights ranging from 0 to 1 inclusively. The CEF is constrained to the minimum of 1 and the
maximum of 10 assets, with portfolio weights ranging from 0.01 to 1. The minimum values of the

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Panel A – Hang Seng Stock Market Panel B – DAX 100 Stock Market

Panel C – FTSE 100 Stock Market Panel D – S&P 100 Stock Market

Panel E – NIKKEI Stock Market

Figure 8.4: UEF and CEF-ARPO.
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Figure 8.5: Portfolio weights for the FTSE 100 stock indices.

portfolio variance are 2.3872556507357437E-4 (the UEF) and 2.5098945345432527E-4 (CEF-
ARPO). The percentage loss is 5.137%. The UEF selects 26 assets, whereas the CEF portfolio
selects 10 assets, which are a subset of the assets selected in the UEF portfolio.

8.4 The SPOP
The difference between the POP and the SPOP lies in the modelling of asset returns and co-
variances. While they are represented by expected values in the first case, the second considers
realistic stochastic uncertainty and thus treats these as random variables. This results in a modified
return constraint where a return no lower than R must be achieved with a probability of, at least,
P0.

The mathematical formulation for the SPOP requires two modifications:

• Covariances (Ci j) in the objective function are considered to be random variables following
a given probability distribution (e.g., the one that best fits the historical data available):

f (x) =

n∑
i=1

n∑
j=1

wiw jCi j ≥ R (8.28)

• Equation ?? is replaced by the following probabilistic constraint:

P(
N∑

i=1

Riwi ≥ R) ≥ P0 (8.29)

where Ri refers to the asset return modeled as a random variable.

8.4.1 Methodology
The VNS metaheuristic is proposed as a base framework. The methodology includes biased
randomization and employs the open-source quadratic programming solver ojAlgo (http://
ojalgo.org) to determine the weights allocated to a given set of assets. Additionally, a cache
memory is used in order to avoid calling the solver repeatedly for a specific set of assets.

The flowchart diagram of the approach is depicted in Figure ?? and described next:

1. Consider a SPOP instance defined by N assets. Each asset i has an associated return rate Ri,
which is a random variable following a probability distribution. Each pair of assets i, j is
characterised by a covariance Ci j, which is also random and depends on the correlation Pi j

and the standard deviations S i and S j according to the following equation: Pi j =
Ci j

S iS j

2. Transform the original stochastic problem into a POP instance by means of replacing the
random variables by their expected values µi and σi j.

http://ojalgo.org
http://ojalgo.org
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3. Construct an initial solution (initS ol) by selecting the kmin assets with the highest returns,
after including the s assets pre-selected by the investor, and calling the solver. Afterwards,
simulation techniques are considered to compute the probability of satisfying the return
constraint in the stochastic environment described by the original instance. In particular,
a short number of scenarios (simshort) is used to simulate returns. The solution is stored
and one moves on to the fourth step, provided the constraint is satisfied. If this is not the
case, a feasible solution is searched using a randomised and iterative procedure. First, the
pre-selected assets compose a portfolio. In the next step, the non-preselected assets are
ordered according to their expected return, and a random number, between kmin − s and
kmax − s, are selected using biased randomization, relying on a geometric distribution with
a parameter β (Juan et al., 2011b). All weights are set to the minimum value initially, and
then, each weight is set to the maximum value possible (taking into account for an asset ai

the following elements: εi, δi, and the fraction that remains to be allocated, i.e., 1 −
∑n

i=1 xi)
in the order previously established. If an initial solution can be constructed through this, one
moves to step 4. It is worthwhile to remark that the focus is on finding an initial feasible
solution considering the stochastic environment and not the one with the lowest risk. The
time spent searching for a feasible solution is limited by Tinit, and the algorithm execution
stops if no feasible solution is obtained.

4. A list bestS ols is created for storing the l best found solutions in terms of expected risk.
Then, initS ol is copied into currentS ol and k is set to one. Following this, the expected
risk of currentS ol is computed by using MCS, and the solution is included in the created
bestS ols list.

5. An iterative procedure is started and steps 6 and 7 are executed during a given amount of
time (Tloop).

6. A new solution (newS ol) is created by shaking the current one. This procedure consists
of randomly erasing a number of non pre-selected assets in the solution and randomly in-
troducing new assets until reaching kmax. The number of assets erased is determined by k.
Moreover, a local search is applied to the resulting solution. It aims to improve the solution
by replacing the asset with the lowest weight with another one from the list of non-selected
assets.

7. newS ol is compared against currentS ol. If the former is better in terms of risk associated
with the deterministic version of the problem, newS ol is considered to be a promising port-
folio setting and the return constraint for the stochastic environment is checked for it. In
case of being satisfied, the expected risk is computed for the stochastic version of the prob-
lem. If the expected risk of newS ol is better than that of currentS ol, then newS ol replaces
currentS ol, k is set to one and bestS ols is updated. If it is not satisfied, the solution is
discarded. If newS ol is not better, k is increased in one unit if k < K or set to one otherwise.

8. Once the iterative procedure ends, the algorithm returns bestS ols. For each solution, a sam-
ple of risk measurements is obtained by simulating a large number of scenarios (simlarge).
A risk analysis is performed where solutions are compared using the distributions of risk.
In order to simplify the analysis, it is based on the expected values and the variances of
the distributions, and the reliabilities (or probabilities of satisfying the return constraint).
Accordingly, the Pareto dominant solutions (i.e., those that are not dominated by another
portfolio for one measure while the other measures are at least equally good) are reported to
the decision-maker.

8.4.2 Computational experiments
The algorithm has been implemented as a Java application. It is executed ten times using different
seeds; only the best results are stored. Stock market data from the repository ORlib is used. This
benchmark instance is deterministic. It has been adapted by replacing the deterministic returns
and covariances by random variables. More specifically, the following complementary scenarios
have been considered:
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Figure 8.6: Flowchart of the proposed approach for the SPOP.
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• S i (Standard deviation) follows a LN(µS , σS ), where LN represents a log-normal distribu-
tion, and µS and σS are the mean and the standard deviation of the variable natural log-
arithm, respectively. They may be determined by the value of the mean and the standard
deviation of the variable that are set to σi and cσi, being c an input.

• Pi j (Correlation) follows a T N(µP, σP, l, u), referring T N to truncated normal distribution,
where the parameters are the mean, the standard deviation, and the lower and upper limit,
respectively. µP is set to the original correlation ρi j, while σP is an input. By the definition
of correlation, l and u are set to −1 and 1, respectively. A special case is when i = j, then l
and u are equal to 1 (i.e., Pi j = 1).

• Ri follows a N(µR, σR), where µR and σR are the mean and the standard deviation of the
variable, respectively, which may be determined by the value of the mean and the standard
deviation of the variable that are set to ri and S i, respectively.

Three values for c (0.01, 0.025, 0.08) and σP(
√

0.00002,
√

0.0002,
√

0.002) have been tested
in order to explore different levels of stochasticity. The former values have been selected after
performing some quick tests to explore the “reasonable” range for each parameter. Two compu-
tational experiments have been carried out. The first considers stochastic covariances (first two
scenarios). The second builds on the first one, introducing stochastic returns (all three scenarios).

The parameter fine-tuning has been performed by doing fast experimental tests. The recom-
mended number of neighbours (K) is 3 (Hansen et al., 2010). A movement in each neighbour
involves changing 25%, 35%, and 45% of the assets, respectively. Regarding the number of so-
lutions stored to analyse at the end (l), a total of 10 are considered. As suggested in Juan et al.
(2011b), β is randomly selected from a uniform distribution with parameters 0.05 and 0.25. Fi-
nally, simshort and simlarge are set to 2500 and 12500, respectively, and Tinit and Tloop are set to 5
and 15, respectively.

8.4.3 Analysis of results
Table ?? summarises the results of the first experiment. The first experiment compares two types of
solutions: (i) the best found solution to the deterministic version of the problem (BDS); and (ii) the
best found solution to the stochastic version (BSS). For each variability levels (low, medium, and
high) a different stochastic scenario is defined. Different risk measures (costs) associated with the
BDS portfolio configuration are considered: the risk measure obtained when employing the BDS
in a deterministic scenario, and the expected risk value obtained when using it in each stochastic
scenario. The former could be considered as a lower bound for the BSS, while the latter could be
considered as an upper bound. The first column reveals the required return. The next four columns
depict the BDS. The following three columns contain the expected risk associated with the BSS
for each of the stochastic environments. Also, the average computational time is provided. The
last five columns gather some gaps: (i) the gap between the risk and the expected risk for a low
level of stochasticity of the BDS; (ii) the gap between the risk of the BDS and the expected risk of
the BSS (also for a low level of stochasticity); (iii) the gap between the expected risks for the BDS
and the BSS considering the environment of a low risk, which quantifies the benefit of using the
simheuristic approach instead of assuming constant values; and (iv) the previous gap considering
the other two environments. Additionally, the average of each ratio has been added at the bottom
of the table. Figure ?? illustrates boxplots of the gaps regarding expected risk between the BDSs
and BSSs for the different environments. The expected risk of the BDS is subtracted from that of
the BSS so that negative gaps indicate an improvement in the expected risk of the solution. Mean
values are represented by diamonds.

Based on these outputs, it may be concluded that the algorithm is able to obtain a reasonably
good BSS in 0.73 seconds on the average. The gaps between the risk of the BDS and the expected
risk of the BDS (when used as a portfolio configuration for the stochastic environment) and the
BSS are quite high even for the low-variability scenario (11.82% and 9.92% on the average). As
expected, the measure of the BSS is closer to the lower-bound (the risk) than the one of the BDS.
Regarding the benefits of using the simheuristic approach in comparison with assuming constant
values in terms of expected risk, the mean gaps found for each environment are: -1.68%, -3.09%,
and -7.10%. It is important to remark that the gaps are never positive. Thus, the BSS shows a
lower expected portfolio variance than the BDS when the latter is used to solve the stochastic
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Figure 8.7: Risk gaps between the best deterministic and stochastic solutions for
different levels of stochasticity (environments).

version of the problem. Furthermore, the performance of the BDS deteriorates when covariances
become more uncertain.

Results from the second experiment are displayed in Table ??. As in the previous table, the
first column identifies the required return. Columns 2, 3, and 4 detail the expected risk of the
BSSs under the lower, medium, and high levels of uncertainty, given a probability of 50% for
attaining the required rate of return. Columns 5, 6, and 7 report the gaps between the expected
values of risk of the BSSs under the lower, medium, and high levels of uncertainty, when the
probabilities of attaining the required return are 50% and 47%, respectively (since the benchmarks
used are extensions of classical ones for the deterministic version, only some probability values
make sense). Finally, the average computational time is provided.

It can be concluded that the gap between the expected risk of the BSS requiring a probability
of 47% and the one with a probability of 50% is relatively small, although it can be relevant in
some cases. The average values for the different environments are: 0.31%, 0.39%, and 1.84%.
Thus, the gap increases as the level of stochasticity gets higher.

8.5 Example with stocks and individual commodity futures
contracts

Diversification is best achieved through combining assets with low or negative correlation into
an investment portfolio. Due to the increased correlation among individual stocks, diversification
possibilities of stock portfolios have become limited. Commodities in general and metals in par-
ticular on the contrary have shown to yield low correlation with stocks (Jaffe, 1989; Chua et al.,
1990; Hillier et al., 2006; Daskalaki and Skiadopoulos, 2011), especially because macroeconomic
shocks tend to impact stock and commodity prices in different directions (Silvennoinen and Thorp,
2013). Particularly concerning inflation, the reaction of commodities and stocks might differ fun-
damentally. Indeed, while unexpected inflation leads to an increase in the prices of commodities,
stocks have generally been found to be an inflation-protected asset class (Hardouvelis, 1987; Mc-
Queen and Roley, 1993) or, in case of fluctuation, have even yielded falling prices (Fama, 1981;
Amihud, 1996; Bansal et al., 2014). However, investment in physical commodities is charac-
terized by high costs (storage) and additional uncertainty (perishable nature, seasonal cycles of
the goods) so that commodity futures are a natural alternative, providing the same diversification
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Table 8.6: Hang Seng Stock Market (Hong Kong) with stochastic covariances and correlations.

Required ER (50%) ER Gaps [%] (50-47%)
Time (s)

Return Low Medium High Low Medium High

0.002861137 0.0007006 0.0007872 0.0011358 0.00% 0.00% 4.38% 1.244
0.002941981 0.0007006 0.0007873 0.001135 0.00% 0.00% 4.44% 2.749
0.003022827 0.0007019 0.0007882 0.0011272 0.00% 0.00% 3.66% 2.647
0.003103671 0.0007027 0.00079 0.0011392 0.00% 0.00% 3.24% 1.7
0.003184516 0.0007068 0.0007925 0.0011075 0.33% 0.00% 1.23% 2.715
0.003265361 0.0007093 0.0007954 0.0011243 0.66% 0.00% 2.15% 1.438
0.003346206 0.0007085 0.000796 0.001137 0.09% 0.19% 2.67% 0.633
0.003427051 0.0007085 0.0007983 0.0011017 -0.11% 0.14% 0.00% 0.764
0.003507896 0.0007138 0.000799 0.0011144 0.54% 0.02% 0.05% 1.365
0.00358874 0.0007161 0.0008014 0.0011068 0.39% 0.00% 0.00% 1.726
0.010137479 0.0040004 0.0046595 0.0071471 0.00% 0.00% 1.05% 1.631
0.010218315 0.0041312 0.0048569 0.0074155 0.00% 0.82% 1.15% 2.8
0.010299151 0.004268 0.0049834 0.0076973 0.00% 0.00% 1.23% 1.421
0.010379986 0.0044359 0.0052031 0.0079926 0.57% 0.90% 1.31% 2.937
0.010460822 0.0045867 0.0053878 0.0083013 0.59% 0.93% 1.37% 4.313
0.010541657 0.0047435 0.0055803 0.0086235 0.61% 0.97% 1.42% 2.31
0.010622493 0.0049063 0.0057805 0.0089592 0.63% 1.00% 1.46% 3.76
0.010703329 0.0050752 0.0059884 0.0093083 0.65% 1.02% 1.49% 1.836
0.010784164 0.0052501 0.006204 0.0096709 0.67% 1.05% 1.52% 0.773
0.010865 0.0054126 0.0063772 0.0098998 0.37% 0.70% 3.06% 1.729

Average 0.30% 0.39% 1.84%

benefits without the implied disadvantages to an investor. Bansal et al. (2014) calculate the ef-
ficient frontier for an investment portfolio made up of indices of commodity futures and stocks
and find it to lie above that for a traditional stock and bond portfolio. This diversification takes
place independent of the state of the stock market: Crude oil futures contracts were shown to
lead to successful diversification in both upward and downward trending stock markets (Geman
and Kharoubi, 2008). Commodities emerge as a significant diversifier of both equity returns and
volatility (Brooks and Prokopczuk, 2013). Investment in commodities is also demonstrated to sig-
nificantly improve investor’s expected utility. In this regard, Garrett and Taylor (2001) find that
expected-utility-maximizing investors, depending on the degree of risk aversion, should invest 30
to 68% of their wealth in commodities. Unlike in Geman and Kharoubi (2008), this finding is
event-dependent and period-specific. In contrast to the above mentioned studies that were con-
ducted from the standpoint of a US-based investor, Belousova and Dorfleitner (2012) show that a
euro investor can also accrue diversification benefits from commodity investments. In particular,
the authors emphasize that industrial metals, agricultural commodities and livestock contribute to
the reduction of investment risk, while precious metals and energy are associated with both lower
portfolio risk and higher return. Investments in commodities become especially rewarding when
the general financial climate becomes negative (Chow et al., 1999). In the quest for hedging and
‘save haven’ vehicles against losses in the sovereign bond market, Agyei-Ampomah et al. (2014)
highlight the superiority of industrial metals (aluminium, copper, lead, nickel, tin and zinc) over
precious metals (gold, silver, platinum and palladium). Antonakakis and Kizys (2015) underline
the information contents of gold, silver and platinum in improving forecast accuracy of returns
and volatilities of palladium, crude oil and the EUR/CHF and GBP/USD exchange rates. Promi-
nent among commodities is gold – commonly regarded as a ‘safe haven’ asset – that provides
wealth protection by hedging investments in the stock and foreign exchange markets, even during
extreme price movements during periods of turmoil (Pukthuanthong and Roll, 2011; Ciner et al.,
2013; Reboredo, 2013). The above results have previously been confirmed by You and Daigler
(2012). However, they employ individual stocks and futures contracts rather than stocks and com-
modity indices. This increases the complexity of the optimization problem. In order to cope with
this, they resort to a portfolio optimization software package, which is limited to 120 observations.
To circumvent this, a metaheuristic algorithm is applied here that is not only capable of dealing
with an extensive number of observations, but also with further constraints.

However, an extensive analysis on the diversification benefits of commodity futures by Cheung
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and Miu (2010) raises concerns about the universal validity of the above findings, indicating that
individual assessments become necessary. Furthermore, the ex-post performance of stock and
commodity futures portfolios was found to be inferior to that of a portfolio made up of traditional
assets by Daskalaki and Skiadopoulos (2011), thus making this another important question in the
evaluation. It is thus also evaluated whether the applied methodology is able to identify stable
asset weights based on ex-post performance and if so, whether the performance of the portfolio
including commodity futures outperforms the traditional stock portfolio.

8.5.1 Problem and data description
There is a set of potential assets to choose from. On the one hand, there is a set of n stocks
S = s1, s2, ..., sn and on the other hand, a set of m individual commodity futures contracts F =

f1, f2, ..., fm is included, resulting in a total number of potential assets A = a1, a2, ..., am+n equal to
m + n. For all assets, the expected return based on historical data of a specified time period E[Ri]
is calculated. The inclusion of assets with negative expected returns is allowed for two reasons.
The first is a technical one: As investors choose from a potential pool of assets whose returns
are notably influenced by the historical time horizon chosen for analysis, it prevents introducing
a bias. Furthermore, the introduction of futures contracts with slightly negative returns can still
cause the portfolio to outperform that composed of only stocks. As a measure of riskiness of the
portfolio, its variance is calculated. The methodology employed is the one described before for
the POP.

As the approach is concerned with the comparison of a stocks-alone and a stocks-and-futures
portfolio, individual daily historical closing price data for the Dow Jones 30 constituents on the one
hand and daily settlement prices for the 21 most actively traded commodity futures prices in the
United States covering the period from February 18, 2014 to April 1, 2016 are obtained, resulting
in 535 observations for each time series. Due to expiration of fixed-maturity futures contracts, the
continuous series are created by data providers by rolling over the futures contracts of different
maturities. Table ?? presents the average daily returns and the corresponding standard deviations
for each of the included stocks and commodity futures contracts. The average correlations within
the two asset classes, as well the mean overall correlation, are presented in Table ??. It becomes
obvious that the correlation between the potential stocks is significantly higher than that within
the class of commodity future contracts. Furthermore, the mean correlation between stocks and
futures is the lowest overall for the data sample.

8.5.2 Analysis of results
In the following the results for two experiments are analyzed first with respect to risk analysis of
the ex-ante portfolios and then with respect to the ex-post performance, or stability, of the found
solutions. Ex-ante portfolios are those portfolios with constituent assets and weights determined
by the matheuristic based on the data gathered for the sample period. Ex-post portfolios refer to
the application of the ex-ante portfolio asset weights to the data following the sample period at
time t + 1. It thus refers to a hypothetical investment at time t into the best found portfolios that is
then evaluated one month later at time t + 1.

Figure ?? and ?? present two exemplary solutions. It is to be noted that assets 1 through 30
represent stocks and assets 31 through 51 represent commodity futures contracts. For low-level
minimum returns in Figure ??, the first stock portfolio contains portions of asset 7, 8, 9, 10, and 11
(all stocks), while the stocks and futures portfolio contains assets 11, 31, 39, 40, and 42 (one stock
and four futures contracts). For high-level minimum returns, the solutions are much more similar
with respect to the asset composition. The first exemplary stock solution in Figure ?? is composed
of assets 14, 20, 21, and 30 (all stocks), while the stocks and futures portfolio contains asset 39
instead of asset 21. The exemplary solutions showcase that the solutions for higher minimum
returns overlap further and are more similar in terms of selected assets constituents and weights
than for low levels of return. This illustrates the finding that the allocation of commodity futures
increases with increasing risk aversion of the investor, yielding that they represent a valuable
alternative as diversification means especially for lower-risk portfolios.

Risk analysis
Table ?? summarizes the results of the two experiments. It compares the results obtained for

a particular minimum return. At first sight, the previously mentioned complexity of the problem
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Table 8.7: Descriptive statistics of stocks and futures.

Assets Average return Standard deviation

Stocks 0.000307% 0.012996

Apple 0.076993% 0.015544
Microsoft 0.084877% 0.015512
Exxon Mobil Corporation -0.014890% 0.013191
Johnson & Johnson 0.035448% 0.009978
General Electric Company 0.047681% 0.012239
JPMorgan Chase & Co. 0.015270% 0.014037
The Procter & Gamble Company 0.013599% 0.009085
Verizon Communications Inc. 0.032659% 0.009721
Wal-Mart Stores Inc. -0.010853% 0.011372
Pfizer Inc. -0.004829% 0.011537
The Coca-Cola Company 0.038688% 0.009100
Chevron Corporation -0.021950% 0.015983
Visa Inc. 0.069322% 0.014216
The Home Depot, Inc. 0.110242% 0.012426
The Walt Disney Company 0.050015% 0.012805
Merck & Co. Inc. 0.002151% 0.012748
International Business Machines Corporation -0.026583% 0.012757
Intel Corporation 0.062516% 0.015464
Cisco Systems, Inc. 0.054523% 0.013921
UnitedHealth Group Incorporated 0.116388% 0.014094
McDonald’s Corp. 0.058294% 0.010550
3M Company 0.050225% 0.010810
NIKE, Inc. 0.103030% 0.014542
The Boeing Company 0.005434% 0.014169
United Technologies Corporation -0.017746% 0.011471
The Goldman Sachs Group, Inc. 0.005036% 0.013801
American Express Company -0.061105% 0.013448
E. I. du Pont de Nemours and Company 0.009985% 0.015360
Caterpillar Inc. -0.030999% 0.015346
The Travelers Companies, Inc. 0.067270% 0.009718

Commodity futures -0.000496% 0.000338
Brentcrudeoil -0.120960% 0.025457
Copper -0.043944% 0.012876
Crudeoil -0.125399% 0.025594
Cocoa 0.017888% 0.012117
Coffee -0.055508% 0.023227
Corn -0.031191% 0.014505
Cotton#2 -0.058913% 0.013930
Feedercattle -0.032845% 0.010810
Gold -0.004478% 0.009594
Heatingoil -0.120557% 0.023106
KCWheat -0.079898% 0.016955
Leanhog -0.054406% 0.023260
Livecattle -0.035734% 0.011952
Naturalgas -0.116111% 0.022118
Orangejuice -0.003081% 0.020640
Silver -0.017541% 0.016391
Soybean -0.047312% 0.015006
Soybeanmeal -0.030699% 0.020249
Soybeanoil -0.042044% 0.013330
Sugar#11 0.015679% 0.022557
Wheat -0.054146% 0.017646

Table 8.8: Average correlations between asset classes.

Within stocks Within futures Stocks and futures Overall

0.4385 0.0765 0.0075 0.1756
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Figure 8.8: POP solutions for minimum returns on the lower spectrum.

Figure 8.9: POP solutions for minimum returns on the higher spectrum.

becomes obvious when the instance times are considered: They significantly increase for the com-
posite portfolios that are selected from an asset pool of 51 potential constituents as opposed to
the basic formulation that only considers a pool of 30 stocks. More importantly, the associated
risk is presented. As expected, it continuously increases with increasing returns demanded by the
investor. The risks between two best found solutions based on different asset pools are then com-
pared. A positive risk gap indicates that the risk was minimized with respect to the solution found
for a stock-alone portfolio and thus successfully diversified. This was the case for 94 out of the 99
return instances, while the remainder showed a gap equal to zero.

Generally, the gap decreased with increasing minimum returns. Two conclusions may be
drawn. On the one hand, there is a threshold return, beyond which additional returns require
a more significant increase in associated risk because this return is generally only achieved by
fewer assets, reducing diversification benefits. For this set of data, it is found at 0.00114%. From
this threshold on, the minimum required return could solely be achieved by certain assets, thus
reducing the pool of potential assets and leading to portfolios of fewer included assets than the
maximum number of five dictated by the cardinality constraint. This leads to portfolios composed
of only stocks and thus also to a zero gap. On the other hand, it becomes obvious that the gap
is much larger for low-return portfolios, from which one can conclude that risk-averse investors
profit to a larger extent from futures diversification.

Ex-post stability analysis
Concerning the stability of the resulting portfolios, an ex-post application of the portfolio

weights has been conducted. Two of these are exemplarily presented below; the first corresponds
to the lowest daily minimum return and the second corresponds to the highest minimum return
level at which the portfolios still differed. A one-month ahead analysis is considered and the
resulting returns of the portfolio are compared against the corresponding minimum return on a
monthly basis. The ex-post analysis consists of the hypothetical investment into the best found
solution at the corresponding asset weights at the end of the sample period. Then, after a hold-
ing period of one month, the returns on the investment are calculated based on the actual price
movements of the constituent assets.

Table ?? presents the metrics of the ex-post analysis for the first of two best found portfolios
presented in Figure ?? and ??, respectively. Solution 1 was found for an extremely risk-averse
investor, while solution 2 represents a risk-loving investor’s investment recommendation. The
actual return is presented below the minimum return for both the stocks and the combined stocks
and futures portfolio. Exemplified by the two solutions, the ex-post performance differs greatly
depending on the required minimum return and the asset pool.
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Table 8.9: POP results for a selected subset of minimum returns.

Stock-alone portfolio Stock-and-futures portfolio Gap Gap [%]
Minimum return Risk (1) Time [s] Risk (2) Time [s] (1) - (2) (1) - (2)
0.0000117564 0.0000531088 0.873 0.0000218480 10.202 0.0000312608 58.86180821%
0.0000822945 0.0000531088 0.042 0.0000230232 0.567 0.0000300856 56.64899226%
0.0001528327 0.0000531088 0.031 0.0000238688 3.141 0.0000292400 55.05678908%
0.0002233709 0.0000533257 0.183 0.0000265600 0.279 0.0000267657 50.19287135%
0.0002939091 0.0000533474 0.058 0.0000271226 12.655 0.0000262247 49.15853444%
0.0003644473 0.0000540647 0.014 0.0000311877 2.541 0.0000228770 42.31411623%
0.0004349855 0.0000546027 0.287 0.0000343818 16.648 0.0000202209 37.03278409%
0.0005055236 0.0000558261 0.225 0.0000375692 8.41 0.0000182569 32.70316214%
0.0005760618 0.0000573681 0.099 0.0000428111 19.99 0.0000145571 25.37472916%
0.0006466000 0.0000601832 1.1 0.0000473472 11.772 0.0000128360 21.32821120%
0.0007171382 0.0000642364 0.254 0.0000543535 17.792 0.0000098829 15.38520216%
0.0007876764 0.0000694180 0.4 0.0000619521 6.255 0.0000074659 10.75499150%
0.0008582145 0.0000766848 3.21 0.0000705611 16.555 0.0000061238 7.98554603%
0.0009287527 0.0000855374 0.091 0.0000812718 13.253 0.0000042656 4.98682448%
0.0009992909 0.0000965467 1.369 0.0000936730 5.567 0.0000028737 2.97648703%
0.0010698291 0.0001099596 1.089 0.0001090107 1.553 0.0000009488 0.86295330%
0.0011403673 0.0001373443 0.001 0.0001373443 0.001 0.0000000000 0.00000000%

Table 8.10: Ex-post performance of two exemplary solutions.

Solution 1 – Low return Solution 2 – High return
Required daily return 0.0000118% 0.0011051%
Actual return stocks portfolio -0.0009301% 0.0002369%
Actual return stocks and futures portfolio 0.0051194% 0.0003352%

Figure ?? presents the risk-return characteristics of all ex-post portfolios. At first sight, it can
be constated that, solely taking into consideration the positive portion of the return axis, the two
curves resemble the shape of a Markowitz efficient frontier curve. It further becomes obvious that
stock-and-futures portfolios overall achieved positive average ex-post daily returns, while a large
portion of stock-alone portfolios presents the potential investor with negative returns. Because
these negative returns are the result of downside risk exposure of the accompanying portfolios
with high variance, it is intuitive that this part of the plot does not possess a positive slope. Con-
cluding, it becomes evident that adding futures to the portfolios significantly improved the portfo-
lio’s behavior with respect to traditional financial theory in that increased returns can be achieved
by assuming a more risk-exposed investment position. Moreover, the superiority of the stock
and futures portfolios in ex-post performance is reinforced when considering both investment di-
mensions, risk and returns. Figure ?? shows that the ex-post portfolios of stocks and commodity
futures can be a more effective vehicle of diversification than the portfolios of stocks only. Indeed,
the ex-post portfolio variance is smaller for the former than for the latter, as shown by the min-
imum variance portfolio. Moreover, for a given value of the portfolio variance, average returns
are larger for the portfolio combining both stocks and commodity futures. Furthermore, including
commodity futures caters not only to risk-averse but also to risk-taking investors, since a broader
range of values for both portfolio variance and return can be obtained.

8.6 Conclusions
Finance constitutes a highly dynamic and stochastic field playing an essential role in economy and
social welfare. In this context, decision-makers frequently face COPs such as the POP, in which an
investor aims to select a few risky assets, and decide the proportion of the budget to invest in each
one in order to achieve a minimum return while minimizing a portfolio’s risk measure. A richer
version of the POP is defined by a number of additional constraints such as: cardinality, quantity
and pre-selection constraints. This problem is usually tackled by using expected values for returns
and covariances. A more realistic scenario is covered by the SPOP, where the aforementioned in-
puts are modelled as random variables. In addition to provide a review on metaheuristics applied
to rich portfolio optimization and risk management, this chapter has presented solving method-
ologies based on metaheuristics and simulation. Aiming to facilitate the maximum diversification,
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Figure 8.10: Frontiers of ex-ante optimal portfolios in ex-post analysis.

a study is performed to quantify the benefit of introducing commodity futures to a portfolio of
stocks.

The main conclusions are:

• The number of related publications has been increasing during the last decade, especially
in the case of POPs. Population-based metaheuristics, and in particular GA and PSO, have
been the predominant solving methodologies. Regarding single-solution metaheuristics, TS
and SA have been extensively applied too. There is not a ‘single winner’ approach, meaning
that different metaheuristic implementations have provided results of comparable quality to
different problems.

• There is a clear trend in promoting the development of hybrid algorithms, either by com-
bining different metaheuristics or by combining metaheuristics with statistical or machine
learning techniques. However, there is a lack of works considering stochastic versions of
the optimization problems.

• Most POPs include some kind of risk management and, in the other direction, most RMPs
considering optimization issues can be modelled as enriched variants of POPs.

• The methodologies presented are able to solve real-sized instances in small amounts of time.

• Even in an environment with a relatively low level of variability, a stochasticity-aware ap-
proach may provide much better results than a metaheuristic approach generating solutions
for the (deterministic) POP.

• Futures contracts provide successful investment diversification. Particularly, risk-averse in-
vestors can drastically reduce their expected risk exposure by diversifying into stock-and-
futures portfolios. Likewise, these portfolios of risk-averse investors yield more stable actual
returns in the short term.
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Chapter 9

Applications in computing

This chapter studies two important issues related to metaheuristics: the parameter
fine-tuning and parallel computing. It presents a classification of works on param-
eter fine-tuning, and proposes a simple, general and automated methodology. In
addition, a set of computational experiments on different COPs are carried out in
order to analyze the effect of the number of agents and time on the performance of
classical heuristics.
It is based on the following journal article: Calvet et al. (2016b).
This work has been presented at the following conferences: Calvet et al. (2015c)
and Ruiz et al. (2015).

9.1 Introduction
Although the performance of metaheuristics is known to depend on its parameter values, the sci-
entific community has not formally addressed the parameter setting problem (PSP) until the end
of the last century. According to Eiben et al. (1999), during the first decades of metaheuristics re-
search, many scientists based their choices on tuning the parameters “by hand”, i.e., experimenting
with different values and selecting the ones that provide the best outputs, or “by analogy”, apply-
ing settings that have been proven successful for similar problems. More recently, the need for
a systematic approach towards setting of metaheuristic parameters has been increasingly outlined
in the literature (Hooker, 1995; Johnson, 2002). Subsequently, researchers employ a scientific
approach to tackle the PSP more frequently. It is important to highlight that the selection of a sys-
tematic methodology leads to a gain of efficiency, as in general, less time is required to fine-tune
the parameters while the performance of the metaheuristic is the same if not improved. However,
there is no methodology commonly accepted by the scientific community and there is also a lack
of publications that compare, in an exhaustive and objective manner, the main approaches and the
techniques used so far. Moreover, some of the proposed methodologies are not easily reproducible
or are highly metaheuristic and problem dependent. These are some of the reasons why, in spite of
the amount of parameter fine-tuning works, many practitioners go on tuning by hand or designing
algorithms without parameters (or with a very low number of them), even in the case when more
parameterized algorithms could lead to better performances. This chapter aims to contribute to
the literature by proposing a general and automated statistical learning based procedure to tackle
the PSP. It is accompanied by some methodological guidelines to validate the results. In order to
test the methodology and illustrate its application, the approach is employed to fine-tune a hybrid
algorithm implemented to solve the MDVRP.

The use of distributed and parallel computing systems (DPCS), which allows the aggregation
of multiple autonomous computing resources interacting to achieve a common goal (Coulouris
et al., 2005), may also have a significant effect on the performance of metaheuristics. This chapter
describes and tests an efficient, flexible, and browser-based framework to facilitate access to com-
putational resources (Berry, 2009) and, ultimately, solve COPs in ‘real time’ (a few seconds). This
framework enables the employment of new versions of web browsers (such as Google Chrome,
Firefox, and Internet Explorer) as nodes in a cluster. The only required step is to visit a web-
site. The embedded JavaScript code into this website enables the communication with the job
dispatcher service. It may be considered a more scalable paradigm than traditional grid comput-
ing, since the connection of people is boosted by the fact that no third party software installation
is required. Due to the relevance of COPs for SMEs and some academic works proposing the
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implementation of DPCS for addressing them (Talbi, 2006; Talbi, 2009), the working and the po-
tential benefits of the proposed approach are illustrated here by solving the CVRP and the PFSP
using different numbers of nodes running a simple metaheuristics with a given seed and limit of
computing time.

9.2 Parameter fine-tuning
Ries et al. (2012) define the PSP as the search for a set of parameter values θ∗ in the parameter
space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation of preference), for a given
metaheuristic m in the metaheuristic space M, and a given instance x or group of them X in the
instance space I. In practice, the amount of time available for experimenting T may be a restriction.
In this case, the solution is approximate (θ̂). With regards to the difficulty of this problem, Montero
et al. (2014) state that: (i) it is time consuming; (ii) the best set of parameter values depends on
the problem at hand; and (iii) the parameters can be interrelated.

During the last decades, a large number of methodologies have been put forward to solve
it. These proposals can be classified in two groups (Birattari and Kacprzyk, 2009): parameter
control strategies (PCS), and parameter tuning strategies (PTS). This classification is extended
by instance-specific parameter tuning strategies (IPTS), which includes features of the aforemen-
tioned groups.

9.2.1 Literature review
This section provides a brief description of each approach and some of the most cited works. The
interested reader is refered to more specific publications such as Eiben et al. (1999), De Jong
(2007) and Battiti and Brunato (2010) for an expanded review of PCS, Birattari and Kacprzyk
(2009) in the case of PTS, and Ries (2009) for IPTS.

Parameter control strategies

These methodologies aim for a dynamic fine-tuning of the parameters by controlling and adapting
their values while solving a problem instance. They follow two basic steps: firstly, an initial set of
parameter values is chosen; secondly, an adaptation mechanism is integrated which changes rel-
evant parameter values. Most of these strategies apply adaptive parameter control, which means
that their adaptation mechanism is based on the assessment of particular information that is stored
during the iterative process of a metaheuristic. This information is usually related to the goodness
of intermediate solutions. The main drawbacks of this approach are the potentially high compu-
tational effort required and the lack of acquired understanding about good parameter values each
time an instance is solved.

Eiben et al. (1999) address the PSP in EAs. Three categories were defined to classify the PCS.
The first one, deterministic parameter control, alters the value of a parameter by some deterministic
rule, which is usually time based. The second category, adaptive parameter control, does employ
feedback to determine the direction and/or magnitude of a parameter change. This is the most used
kind of control. The third, self-adaptive parameter control (Smith, 2008), encodes the parameters
to be adapted into the chromosomes of an EA. De Jong (2007) describes the main motivations to
use dynamic parameter setting strategies in EAs: first, as the running proceeds, information about
the fitness landscape is generated, which may be used to improve the performance; also, changing
the parameters is needed as an EA “evolves from a more diffuse global search process to a more
focused converging local search process”. Table ?? gathers a few representative works following
this approach.

Parameter tuning strategies

This approach relies on the concept of robustness (Viana et al., 2005). A robust algorithm provides
good results for a given set of instances of a problem using a fixed set of parameter values. The
basic procedure involves finding a set of parameter values providing satisfactory results for a
set of instances, usually using statistical and/or optimization techniques. Some authors analyse
only a representative subset of instances and apply the set of parameter values found to solve
all the instances. This approach also includes the case of solving one instance. Table ?? shows
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Table 9.1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization problem

Battiti and Tecchiolli
(1994) and Battiti
and Brunato (2005)

Reactive scheme TS QAP and maximum
clique problem

Zennaki and Ech-
Cherif (2010)

SVMs TS TSP

Lessmann et al.
(2011)

Regression models PSO Water supply network
planning problem

some works relying on this approach. Many authors focus on minimizing the number of runs,
presenting simple models without interactions (e.g., Coy et al., 2001; Pongcharoen et al., 2007;
Xu et al., 1998). DOE and regression analysis are the most employed techniques.

Table 9.2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Xu et al. (1998) Tree growing and pruning
method based on statistical
tests

TS Steiner tree-star problem

Bartz-
Beielstein
et al. (2004)

DOE, classification and re-
gression trees, and design and
analysis of computer experi-
ments

PSO and Nelder-Mead
simplex algorithm

Elevator group controller
problem

Birattari and
Kacprzyk
(2009) and
Birattari et al.
(2010)

Racing algorithm (Maron and
Moore, 1993) and the Fried-
man’s two-way analysis of
variance by ranks (Conover,
1999)

ILS and ACO QAP and TSP

Adenso-Diaz
and Laguna
(2006)

DOE and local search Neighbourhood struc-
ture, TS, SA, TS,
heuristic based on the
SA and the TS, and TS

Steiner problem, part-machine
grouping problem, part-
machine grouping problem,
single-machine scheduling,
proportionate flowshops, and
bandwidth packing

Pongcharoen et
al. (2007)

DOE GA TSP

Ridge and Ku-
denko (2007)

DOE and desirability func-
tions

ACO TSP

Gunawan et al.
(2013)

DOE, response surface
methodology and ParamILS
(Hutter et al., 2009)

SA Industry spares inventory opti-
mization problem

Instance-specific parameter tuning strategies

As in the case of PCS, IPTS aim for an instance-specific tailoring of the parameters. At the
same time, these strategies use a fixed set of parameter values, as the PTS, avoiding the need
of modifying the metaheuristic algorithm and reducing the potential computing effort required
to adapt parameter values during the algorithmic run. In order to implement these strategies the
relation between the parameter values and the performance of the metaheuristic has to be analysed,
taking into account instance features. The next step consists in developing a mechanism able to
use the features of a new instance to recommend a set of parameter values. The key element is
the selection of instance features easy and fast to compute, and good at discriminating instances
on the shape of their fitness landscapes, which explore the relationship between the objective
function values and the parameters. This learning may take a non-negligible amount of time, but
it is assumed that this approach requires less computing time than the PCS approach does. Some
contributions are included in Table ??. The number of works is low since it is relatively new.

Approaches comparison

All approaches have different advantages. The dynamic adaptation of the parameter values that
characterizes PCS usually provides better results. However, the computing effort tends to be
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Table 9.3: Representative works implementing IPTS.

Work Main techniques Metaheuristic Optimization problem

Ries (2009) DOE and fuzzy logic Guided local
search and GA

TSP

Pavón et al.
(2009)

CBR and Bayesian net-
works

GA Root identification prob-
lem

Dobslaw (2010) DOE and NNs PSO TSP

higher. On the other hand, the PTS approach is the easiest and fastest to use, once a set of pa-
rameter values is selected. Although the code of the algorithm is not changed, finding an adequate
set may be also time-consuming. The last group of strategies represents a compromise solution:
it takes less computing time than the PCS approach, but requires implementing a learning mech-
anism, for which statistical learning skills are needed. Therefore, there is no approach that stands
out from the others. Probably, the most adequate depends on the specific problem to tackle, the in-
stances to solve, the available time and the skills of the researcher. Despite this fact, some general
guidelines can be formulated. PTS can be considered as the best option when working with robust
algorithms. Regarding IPTS, they are more complex than PTS but provide better results when the
algorithm is not robust. In case of prioritizing the algorithm performance, PCS usually constitute
the most recommendable approach.

9.2.2 Methodology
A methodology that follows the PTS approach is proposed. As described before, this approach
is not computationally intensive, and the inference from a representative sample of benchmark
instances to the whole set usually provides good results, specifically if the analysed algorithm
is robust. Another reason for focusing on PTS is that there is no methodology based on this
approach and widely employed, but at the same time, there are plenty of techniques that can be
used. The methodology is based on clustering and DOE. The remainder of this section presents
a statistical learning based methodology to obtain a list of sets of parameter values, and a more
global procedure to validate and assess its goodness.

General methodology

It is assumed that the experimenter has described a problem and chosen the metaheuristic to tackle
it.

• The first step involves choosing a subset of the instances. Their fitness landscapes will be
analysed in order to obtain sets of parameter values that provide good results for them. The
subset has to be representative as these sets of parameter values will be used to solve the
whole set of instances. An approach to select a representative subset is, firstly, to determine
the instance features that have a major influence on which set of parameter values is the most
adequate, and then, choose the instances in such a way that the feature values of the subset
are representative of those of the entire set of instances. For example, if there is a parameter
for which its optimum value is known to depend on the instance size, a representative subset
of the instances will present the same proportion of instances of a given size that the whole
set does. A possible simplification for feature selection consists of choosing those that are
commonly used to discriminate instances of a specific problem. For instance, Ries et al.
(2012) study the size, the distance metric, a ratio to describe the shape of the area within
which a set of cities is distributed and a measure of clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially, for a given num-
ber of randomly generated sets of parameter values, each instance is solved several times
using different seeds for the random number generator of the algorithm. Alternatively, the
sets could also be generated using more advanced statistical techniques such as DOE. The
medians of the objective function values found with the same parameter values but different
seeds are considered. It is essential to remark the importance that a seed may have in the
performance of an algorithm (Juan et al., 2015c; Czarn et al., 2004). Afterwards, feature
scaling is applied to the values obtained for each instance. Then, this data is used to cluster
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instances and select a representative one from each cluster. These instances form the subset
to analyse.

For each instance of the subset, the steps ranging from the second to the fourth are implemented
as follows.

• The second step requires selecting the range over which each parameter can be set. Some
experience or knowledge about the problem and the metaheuristic may be highly valuable.
The ranges should be large enough to cover at least one set of parameter values that can
provide a sufficiently good solution with a high probability. On the other hand, a smaller
range would allow the experimenter to describe more accurately, with the same resources,
the relationship between the parameter values and the objective function value. If there is
no a priori information about which are the best regions of the parameter space, a suitable
procedure is to perform a rough and fast landscape analysis.

• The third step consists of designing an experiment. A central composite design is studied.
Each parameter is considered a factor and the extreme values of its range define the levels.
According to this design, the algorithm is executed also several times for each combination
of factor values, each one with a different seed.

• In the fourth step, a procedure is developed to search the neighbourhood of the best set of
parameter values found. Specifically, another central composite design centred on this set is
applied.

Finally, the upshot is a list of recommended sets of parameter values, one per cluster; in particular,
those that reported the best results on the last step. The procedure is shown in Figure ??. An
extended proceeding (Figure ??) is described below in order to validate the list of sets of parameter
values obtained and analyse the results provided by it.

Figure 9.1: Outline of the procedure for parameter fine-tuning.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where K is the number of
clusters, is chosen as has been explained in the precedent subsection. Later on, each instance of
the subset used to select θ̂ is solved with the corresponding set of θ̂‚ and with different sets, θ̄ j ( j =

1, 2, . . . , J) (equally spaced, randomly selected or relatively close to the set of θ̂ according to some
distance measure). To assess the performance of a set of θ̂ in a specific instance regarding the other
sets, the associated solutions are compared. Given a decision level parameter r (1 ≤ r ≤ J + 1),
if the rank of the objective function value provided by the proposed set is equal or lower than r,
then it is considered a good set for that instance. Once all the instances of the subset are examined,
it can be reckoned the proportion of them in which the corresponding set has been classified as
good. θ̂ is validated by comparing this proportion with a predefined parameter p (0 < p < 1); if
the proportion is higher, then the experimenter has enough evidence of the quality of θ̂ to go on to
test it with other instances in the next step.

If θ̂ is not validated, the process has to be readjusted and restarted. This readjustment may
be done in several ways, some options are: checking the robustness and the adequacy of the
clustering, adapting the ranges, dedicating more resources to the search, etc. The best strategy is
problem-dependent. As a consequence, the choice should rely on the opinion of the experimenter,
who will have acquired valuable information from the outputs observed.

Once the list of sets of parameter values has been labelled as valid, it is applied for solving the
other instances (each one with the set proposed for the representative instance of the cluster where
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Figure 9.2: Flowchart representing the proposed methodology.

it has been assigned). To examine the effectiveness of the procedure, it is desirable to compare the
solutions with others reported in the literature for the same instances, by performing the t-test for
paired samples if data is normal, or the Wilcoxon signed rank test otherwise. If the means (or the
mean ranks if data is not normal) do not differ significantly, it may be classified as a satisfactory
outcome as it will mean that the proposed methodology, automated and general, has been proven to
be competitive. If the results are unsatisfactory, the procedure should be modified and reinitiated.

It is useful to consider that, since the available resources are usually limited, the possible
readjustments should be also limited (T represents this limit). Consequently, the process may end
without a satisfactory list of sets of parameter values. In this case, the list which provides on
average the best solutions will be accepted.

9.2.3 Computational experiments
The methodology has been implemented to fine-tune the parameters of the hybrid algorithm de-
scribed in Juan et al. (2015c), which combines biased randomization and the ILS metaheuristic
to address the MDVRP. This algorithm has three main parameters: bM, bR and p∗, which take
values between 0 and 1.

The first step is the selection of a representative subset of instances. Initially, 10 randomly
generated sets of parameter values, 7 seeds and the 33 benchmark instances solved in the afore-
mentioned paper were selected. Therefore, information from 2310 runs was stored. Data from
different seeds was aggregated by computing the median; then feature scaling was applied. The
instances that were considered easy-to-solve, those that presented no variation in the results, were
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Table 9.4: Clustering of the benchmark instances.

Medoids Clusters

p01 p01
p07 p04, p07, p11, p18, pr02, pr05, pr09
p09 p03, p09, pr04, pr10
p17 p17
p19 p19
p22 p22
p23 p20, p23
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

separated. Afterwards, a clustering using the k-medoids algorithm (Theodoridis and Koutroum-
bas, 2009) was performed. The range of values considered for setting the value of k was 2-12.
The final value was selected employing the average silhouette criteria (Rousseeuw, 1987). The
composition of the clusters and the representative instances can be observed in Table ??.

Once the subset of instances was formed, the second step, setting the ranges of the parameters,
was carried out. After a statistical analysis, it was concluded that just two parameters, bM and bR,
did significantly affect the performance of the algorithm. Therefore, only those two parameters
were studied. Five equally spaced values ranging from 0 to 1 were analysed for each parameter.
Each instance was solved seven times (considering different seeds) for each possible combination
of parameter values. The objective function values were aggregated as before. Then, the values
for other possible combinations were estimated by linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter space that included
the lowest objective function values. In particular, the values labelled as the lowest were those
meeting the following condition:

Objective solution ≤ minimum value + β · (maximum value − minimum value)
The value of β was set at a different value for each instance. More precisely, it was the mini-

mum value that encompassed, at least, 5% of the search space. Figure ?? shows the contour plot
and the area in which the search was intensified for each instance.

The next step was applying a design for each instance of the subset. It was performed to better
analyse the relation between the metaheuristic performance and the parameter values. A face-
centred central composite (FCC) design was selected, as in most of the cases the space parameter
could not be expanded (since all parameters could only take values between 0 and 1). Figure ??
displays the scheme for instance p01. The objective function values for the same instance are
represented in Figure ??.

Then, the neighbourhood of each set that provided the best solution for an instance was ex-
plored applying another FCC design, centred on that set and covering half of the area analysed with
the previous design. The sets that finally presented the best performance were stored. They are
outlined in Table ??. Random values were assigned to the instances that did not present variations
in the results when changing the parameter values.

Table 9.5: Proposed list of sets of parameter values.

Medoids Clusters bM bR

p01 p01 0.513 0.501
p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372
p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random
p19 p19 0.443 0.378
p22 p22 0.001 0.231
p23 p20, p23 0.449 0.250
pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07,

pr08
0.500 0.231

p02, p12, p13, p14, p16, p21 random random
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Figure 9.3: Contour plots of the medoids sorted from left to right, and top to
bottom.
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Figure 9.4: Scheme of the FCC design applied to the instance ’p01’.

Figure 9.5: Solutions for the instance ’p01’.
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9.2.4 Analysis of results
The following parameters were chosen to validate the list of sets: J = 10, T = 3, α = 0.05, r = 6,
p = 0.7. The number of sets randomly generated was fixed considering the trade-off between the
reliability of our comparisons and the computational time required. The number of iterations was
set considering only the time available. The significance level is the one most commonly used in
the literature. The value of the fourth parameter is the mean rank that could be expected due to
randomness with 11 solutions (1 set proposed and 10 randomly generated). The last parameter was
calibrated to force the algorithm to provide good results at most of the instances. The algorithm
was run 7 times with different seeds for each combination of parameter values, the medians and
the minimum values were stored. The ranks of the results obtained are detailed in Table ??. Ties
receive a rank equal to the average of the ranks they span, shown inside the parentheses.

Table 9.6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)

p01 1 3.5 (1-6)
p07 5 3.5 (1-6)
p09 2 2
p17 2 (1-3) 1
p19 6.5 (2-11) 10.5 (10-11)
p22 11 11
p23 1.5 (1-2) 1
pr06 5 1.5 (1-2)
Valid instances 0.75 0.75

According to our methodology, the list of sets can be considered valid as it presents a rank
equal to or below 6 in 75% of the analysed instances, both considering medians and minimum
values. In order to test our results, the algorithm was executed with the parameter values suggested
in Juan et al. (2015c). Both series of results are comparable as were obtained using the same
computer and stopping criteria based on the number of iterations. Table ?? presents the parameter
values used in the aforementioned paper. Instead of setting fixed values, the authors introduced
randomness by employing uniform distributions. The lower and upper bounds were selected after
some tests.

Table 9.7: Sets of parameter values for comparison.

bM bR p*

Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

Table ?? shows the results obtained solving all instances with the proposed list of sets (our
results, OR), and with the set proposed in Juan et al. (2015c) (JR).

The comparison of the solutions shows that our procedure achieves better results in most of
the instances. Table ?? presents the average and the standard deviation of the differences, and the
p-values of the test to compare the mean ranks of the results. It is a non-parametric test as the null
hypothesis of the Shapiro-Wilk test, a test of normality, was rejected in all cases. The means are
negatives, indicating that our methodology provides better solutions. The p-values reveal that the
differences of the mean ranks are not statistically significant. Even though, the magnitude of the
mean difference can be considered relevant in the context of the MDVRP.

9.3 Parallel computing
Desktop computers have become affordable machines that most people use every day for both
work and leisure. Despite their current capacity, numerous institutions and individuals require
more computational resources to execute intensive problem-solving processes. In these cases,
DPCS constitute a useful approach. Multi-processors and/or multi-computers paradigms may be
employed. A multi-computer schema presents a set of physical machines linked via network
connections. These machines can be coupled geographically or in a more distributed environment
(as in cloud computing). The main parallel paradigm is message passing, in which tasks and
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Table 9.8: Instances experimental results.

Inst. OR medians
(1)

OR, minimum
values (2)

JR, medians
(3)

JR, minimum val-
ues (4)

% Gap (1)
- (3)

% Gap (2)
- (4)

p01 585.000 576.866 593.829 576.866 -1.509 0.000
p02 480.261 476.660 480.261 476.660 0.000 0.000
p03 644.464 641.186 649.229 641.186 -0.739 0.000
p04 1022.085 1019.570 1024.473 1024.062 -0.234 -0.441
p05 760.341 756.281 764.325 754.882 -0.524 0.185
p06 882.827 879.072 880.418 879.763 0.273 -0.079
p07 899.709 897.974 906.395 897.974 -0.743 0.000
p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176
p09 3920.743 3906.561 3923.248 3900.274 -0.064 0.161
p10 3706.763 3667.344 3705.012 3687.054 0.047 -0.537
p11 3598.972 3584.691 3592.891 3585.690 0.169 -0.028
p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000
p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000
p15 2573.393 2556.846 2573.393 2557.528 0.000 -0.027
p16 2605.565 2585.373 2605.565 2600.099 0.000 -0.570
p17 2720.231 2714.663 2725.799 2725.799 -0.205 -0.410
p18 3831.996 3806.783 3835.388 3806.783 -0.089 0.000
p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058
p20 4080.348 4074.779 4091.482 4091.482 -0.273 -0.410
p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000
p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346
p23 6134.441 6128.873 6145.576 6123.306 -0.182 0.091
pr01 861.319 861.318 861.319 861.318 0.000 0.000
pr02 1330.495 1310.679 1331.543 1314.364 -0.079 -0.281
pr03 1813.634 1813.634 1814.452 1813.634 -0.045 0.000
pr04 2084.843 2077.582 2089.785 2079.832 -0.237 -0.108
pr05 2379.075 2359.947 2379.797 2368.525 -0.030 -0.363
pr06 2709.792 2693.680 2713.593 2696.504 -0.140 -0.105
pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000
pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020
pr09 2148.216 2147.192 2153.317 2142.650 -0.237 0.212
pr10 3016.255 3008.129 3028.606 3014.874 -0.409 -0.224

Table 9.9: Means and standard deviations of the differences and statistical tests.

Mean of
the differ-
ences

Standard devia-
tion of the dif-
ferences

P-value of the
comparison of
mean ranks

All instances
Medians -0.149 0.330 0.954
Minimum values -0.070 0.219 0.980

All instances except the studied subset and
those not analysed

Medians -0.117 0.247 0.942
Minimum values -0.100 0.217 0.942

processes of different machines interchange data packets by sending and receiving messages to
communicate.

SMEs are responsible for a significant part of the wealth generated in all developed economies.
Often, they do neither possess advanced technical knowledge nor modern computational resources.
However, a number of them could benefit from having more resources, for example to speed up
intensive-computation processes or to obtain a higher performance. In order to access them, DPCS
offer two alternatives: (i) to pay for using resources from an external provider; and (ii) to employ
underutilized computer resources owned by the SME. This idea of aggregating idle or unused
resources characterizes also volunteer computing systems. The main difference between both
paradigms is that while the latter is usually associated to dynamic (any user can freely enter and
leave) and heterogeneous environments, an SME knows the characteristics and the availability of
its machines. Obviously, their scalability is also more limited. The alternative of using SME’s
underutilized resources presents several advantages. Firstly, SMEs do not have to send private
information to servers of an external enterprise. Secondly, it is a cheaper solution since the SME
does already have the resources. Finally, the energy consumption is reduced by seizing these re-
sources, which could be still consuming otherwise (Cabrera, 2014). These desktop grids systems
may be formed by personal computers with more computing capabilities than the required (stan-
dard computers in which employees mainly use word processors and spreadsheets, for instance)
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or that are not used during some specific days or hours. Moreover, resources from several SMEs
may be gathered to build a larger computing system. They can rely on a directory-of-resources
service that keeps updated information of available computing resources. Once a user requires
executing a process, he sends a query to this directory to select the resources and organize the
tasks to perform. Once these tasks have been completed, the result is sent back to the user.

9.3.1 Methodology
The platform designed aims at facilitating the aggregation of a high number of computational
resources by seizing underutilized or idle resources. It is based on software already installed in
most computers, web browsers. Using a modern version of some of the commonest (Google
Chrome, Firefox, or Internet Explorer), it may integrate a computer into the computing network.
The only action required is to visit a website with an embedded JavaScript code that enables the
communication in real-time with a job dispatcher service. Each one of the jobs includes a piece
of data and the computing task to perform. Additional steps such as downloading, installing,
or setting up additional software are not required, which makes this option a very attractive one
for most SMEs. Because the ease to add new resources, this approach can be considered highly
scalable. Thus, the described platform constitutes a flexible, simple, and scalable approach with
multiple applications in SMEs.

The platform architecture is the typical of a master-slave cluster. The system has been de-
signed to free the master from computationally expensive tasks. For the experiments described
later, a single master has been sufficient to handle all the workload. In a production environment,
the system could easily scale to thousands of slaves or even further when considering other archi-
tectures like a multi-master environment, etc. In our case, the master was placed on a dedicated
server located on a cloud provider (Softlayer). The slaves were located over 2 different locations:
The UOC’s Lab and the Incubio’s offices. The execution process goes as follows. First, the end-
user submits the task to be executed to the master. This task consists mainly in a set of Map and
Reduce functions written in JavaScript, as well as their input dataset. The master is responsible
of creating a list of jobs. Each job is composed of a chunk from the dataset and the source of
code that has to be executed over each piece of data. The master delivers and ensures that jobs
are evenly distributed. After each job is completed, the master receives the results and stores them
in a file or a database depending on the execution flow given by the user. The master keeps track
of the jobs that have been assigned and processed. Different measures handle unfinished jobs,
errors or exceptions that could appear unexpectedly by either rescheduling the jobs or stopping
the execution and reporting the error.

Most approximate methods for solving COPs are probabilistic, which means that their solution
depends on the seed used for a pseudo-random number generator. It has been proved that the
execution time that an algorithm needs to report high-quality solutions can be reduced depending
on this seed (Juan et al., 2014d). According to Talbi (2006) and Talbi (2009), DPCS are commonly
employed to solve COPs. The typical approach in the related literature applies a master-slave
scheme, in which a master or coordinator processor sends tasks to a set of slave processors in
order to execute an intensive-computing process. Each slave is responsible for solving the same
problem instance considering a different scenario, each one formed by a set of parameters and/or
a seed. Once a slave has completed its task, it sends the solution to the master that stores it. In the
simplest version, there is no communication between slaves. Following this approach, multiple
instances of the algorithm are executed at the same time, each with a different seed. As shown in
Figure ??, each of these instances can be considered a cloned agent that is searching the solution
space.

9.3.2 Computational experiments
In order to illustrate the benefits of the presented approach, two relevant COPs have been ad-
dressed: the CVRP and the PFSP. The randomized version of the CWS heuristic (Juan et al.,
2014d) has been chosen for the CVRP. The Kelly instances are used to test our approach (Golden
et al., 2008). The ILS-ESP algorithm (Juan et al., 2014a) has been employed to address the PFSP.
It relies on a biased-randomized version of the NEH heuristic. The Taillard’s benchmark instances
(Taillard, 1993) are employed. They are grouped in 12 sets of 10, which are characterized by
the following pairs of numbers of jobs and machines: 20x5, 20x10, 20x20, 50x5, 50x10, 50x20,
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Figure 9.6: A multi-agent approach for solving COPs.

100x5, 100x10, 100x20, 200x10, 200x20, and 500x20. The instance resolution has been per-
formed considering a specific combination of the parameters ‘limit of time’ (1, 5, 10, 15, 20, and
30 seconds) and ‘number of agents’ running in parallel (1, 4, 8, 16, 32, and 64).

All the experiments have been carried out using 64 slaves and 1 master. The master specifica-
tions are 3.5GHz Intel Xeon-IvyBridge with 8GB of RAM. The slaves are a heterogeneous set of
desktop computers not having more than 8GB of RAM and up to 8 cores each. The machines were
connected to the parallel computing environment using one of the following browsers: Microsoft
Internet Explorer, Google Chrome or Mozilla Firefox, all of them with JavaScript enabled. The
slaves were connected over a usual shared internet connection. For this reason, latencies or high
speed connections were considered negligible.

9.3.3 Analysis of results
Figure ?? shows the results obtained after running the algorithm for solving the Kelly instances
during 20 seconds of clock time per instance. Considering all instances, the first boxplot shows the
gaps between the BKS and the solution generated by the CWS heuristic. The remaining boxplots
show the gaps between the BKS and different executions of the randomized algorithm, each one
using a different number of agents running in parallel. The number of agents tested were: 64, 128,
and 256. It should be noticed that, for the 20 seconds considered, the distributed approach allows
to reduce the gap down to almost 5% even for a reasonably low number of agents.

Regarding the PFSP instances, Table ?? summarizes the results of our computational experi-
ments using a maximum time of 5 seconds. Each row refers to a different set of instances. Each
column shows the gap between the BKS and our solution for different numbers of agents (1, 4,
8, 16, 32, and 64). Notice that the gaps shrink as the number of agents working in parallel is
increased.

Figure ?? summarizes similar results for different values of the maximum clock time. It can
be observed that, as time increases or as the number of agents increases, the average gap (for the
entire set of benchmark instances) decreases. A detailed case is illustrated in Figure ??, which
displays the scatterplot of costs versus limit of time and number of agents for a given instance.
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Figure 9.7: Results for the CVRP using the Kelly instances.

Figure 9.8: Average gaps for different numbers of agents and limits of time.
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Table 9.10: Results for the PFSP considering the Taillard instances. Gaps for
different number of agents and a maximum time of 5 seconds.

Taillard set BKS - 1A BKS - 4A BKS - 8A BKS -16A BKS -32A BKS - 64A

20x5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20x10 0.08% 0.08% 0.04% 0.00% 0.00% 0.00%
20x20 0.06% 0.02% 0.01% 0.00% 0.00% 0.00%
50x5 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

50x10 0.84% 0.74% 0.72% 0.65% 0.61% 0.54%
50x20 3.21% 2.85% 2.76% 2.68% 2.65% 2.58%
100x5 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%
100x10 0.53% 0.33% 0.25% 0.22% 0.21% 0.18%
100x20 3.14% 2.67% 2.66% 2.63% 2.56% 2.46%
200x10 0.40% 0.26% 0.24% 0.23% 0.20% 0.14%
200x20 2.36% 2.20% 2.17% 2.15% 2.06% 2.00%
500x20 1.88% 1.53% 1.42% 1.32% 1.32% 1.26%

Averages 1.05% 0.89% 0.86% 0.82% 0.80% 0.76%

Figure 9.9: Objective solutions for different numbers of agents and limits of time.

9.4 Conclusions
The performance of metaheuristics is significantly affected by the parameter fine-tuning and the
number of agents (each using a different seed for the random number generator) employed. These
issues have not attracted as much attention as new metaheuristics and applications did. How-
ever, this trend is changing. In these lines, this chapter has presented two contributions. First,
an overview on the PSP, a classification, a methodology and a description of a case study have
been presented. Afterwards, an analysis of the computing time and the number of agents on the
performance of two simple algorithms has been described. The conclusions drawn are:

• The parameter fine-tuning of a metaheuristic may be a time-consuming and complex prob-
lem, but may have a high effect on the quality of the solutions found.

• The literature on the PSP is diverse. Works can be grouped by whether the set of parame-
ter values chosen is instance-specific and/or whether it evolves during the execution of an
algorithm.
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• A number of statistical learning techniques for solving the PSP have been proposed in the
literature, but most works focus on DOE and/or lineal regression models. Thus, many op-
tions remain to be tested.

• SMEs may significantly benefit from DPCS by obtaining a higher number of computing
resources seizing the underutilized resources.

• Computing time tends to have a small marginal effect on the performance of metaheuristics
when it is set to more than a few seconds.

• The number of agents executing a given metaheuristic may have an important effect on its
performance, but the marginal improvement decreases as the number of agents increases.
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Chapter 10

Conclusions and future work

10.1 Final conclusions
This thesis has explored the combination of statistical learning and simulation with metaheuris-
tics for solving combinatorial optimization problems (COPs). It includes both methodological
contributions and applications in a wide range of relevant and challenging fields.

First, an extensive review on works using statistical learning and metaheuristics as a solving
approach has been presented. There is a high number of works, which are extremely different.
Two groups are created: metaheuristics for improving statistical learning, and statistical learning
for enhancing metaheuristics. Works in the first group can be classified according to the purpose
of the statistical learning technique: classification, regression, clustering, and rule mining. On
the other hand, the second group is split into two smaller groups: specifically-located hybridiza-
tions (including parameter fine-tuning, initialization, evaluation, population management, opera-
tors, and local search), and global hybridizations (reduction of search space, algorithm selection,
hyperheuristics, cooperative strategies, and new types of metaheuristics).

Then, a novel hybrid methodology integrating statistical learning in metaheuristic frameworks
has been proposed. It is designed to address COPs with dynamic inputs, which depend on the
structure of the solution. A number of potential applications in popular fields have been identified,
and an illustrative experiment has been carried out.

Applications to transportation constitute the main topic in applications. The multi-depot vehi-
cle routing problem has been introduced, and three novel extensions have been addressed. First,
the uncertainty regarding demands has been considered. It may significantly increase the to-
tal expected costs if no measures are undertaken to reduce the probability of route failures. A
simheuristic approach considering safety stocks has been designed and tested. Afterwards, a ver-
sion considering the maximization of benefits, heterogeneous depots and customers’ preferences
has been studied. In order to solve it, a methodology combining predictive models and a meta-
heuristic has been put forward. The third extension considers the introduction of sustainability
indicators in the objective function and presents an analysis relying on visualization techniques to
study the relationship between the different indicators. The aim is to take into account the negative
impacts of transport activities. Later, the waste collection problem has been addressed, presenting
methodologies for both the deterministic and stochastic versions. Finally, the heterogeneous site-
dependent asymmetric vehicle routing problem with stochastic demands has been tackled, and a
simheuristic methodology based on a successive approximations method has been applied. The
potential applications of these problems in real-life have been described.

Regarding production, the distributed permutation flow-shop scheduling problem with stochas-
tic times has been introduced. It describes the realistic scenario where there is a product composed
of several intermediate products that have to be assembled at a given moment. These intermediate
products are processed in independent distributed manufacturing factories, and each sub-problem
is modelled as a permutation flow-shop scheduling problem. An approach relying on a simheuris-
tic algorithm based on the iterated local search metaheuristic has been presented and tested.

Metaheuristics are becoming popular in finance. A survey on metaheuristics in portfolio op-
timization and risk management has been presented. Afterwards, the deterministic and stochastic
versions of the portfolio optimization problem have been addressed. This problem is a strategy of
selection of financial assets and determination of the optimal weights allocated to those assets that
results in a desired portfolio return and associated minimum level of risk. The stochastic version
deals with returns and covariances modelled as random variables.
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Finally, two issues related to computing have been studied: the parameter fine-tuning, and
the effect of the number of agents, and the maximum computing time on the performance of
metaheuristics. While a methodology is presented and applied for the first issue, an exhaustive set
of computational experiments have been carried out to gain insights into the second.

10.2 Directions for future work
Numerous lines of future research stem from this thesis. They are summarized in the following
proposals:

• Extend the methodology of learnheuristics to address stochastic and/or multi-objective op-
timization problems, and develop an online version, in which information regarding new
inputs can be used to improve the predictive model, and a blended version, in which predic-
tions from several models are averaged, not necessarily giving the same weight to each of
them.

• Design and test more approaches relying on learnheuristics for problems in dynamic fields
such as telecommunications, volunteer computing or finance.

• Several rich vehicle routing problems have been addressed. Many realistic characteristics
may be added, which may increase the complexity of the problems. It would be interesting
to study the efficiency of repairing procedures when unexpected events take place. In addi-
tion, large supply chains with flexible structures with more agents than clients and depots
could be included.

• Production systems have dramatically changed during the last decades, and some gaps re-
main in the literature. The most natural extension of the problem analyzed is to study the
effects of dependent processing times.

• There is a high number of non-trivial optimization problems in finance. The uncertainty/risk
of this field calls for the combination of optimization techniques and predictive models,
and/or online optimization. Moreover, it would be interesting to analyze the impact of the
width of the sample period and associated bear and bull market activity periods for the
problems studied.

• In the computing arena, the calibration of parameters is still an open problem, since there is
no single methodology accepted by the scientific community. Even more, there is no general
agreement about the best techniques to use. However, journals devoted to applications of
metaheuristics are becoming more demanding regarding this issue. In addition, the effects
of the number of computational experiments and the maximum computing time on the per-
formance requires more attention. Similarly, the use of parallel and distributed paradigms is
just emerging in the field of metaheuristics. In an increasingly complex world where real-
time solving approaches are required and statistical learning techniques may help to develop
more intelligent/reactive approaches, these paradigms will play a relevant role.
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Chapter 11

List of publications and
presentations

This chapter lists the publications and presentations related to this thesis. It includes the accepted
or in process of reviewing journal papers, and works in conferences and seminars developed in the
last three years.

Ln′ indicates that the corresponding work can be found in the Appendix L.

11.1 Journal papers
First, the following articles have been submitted to ISI JCR and Elsevier-Scopus journals:

Indexed in ISI JCR
A1’. Calvet, L., J. De Armas, D. Masip, and A. A. Juan (2017). “Learnheuristics: Hybridizing

metaheuristics with machine learning for optimization problems with solution-dependent
inputs”. In: Open Mathematics (indexed in ISI SCI, 2015 IF = 0.512, Q3; 2015 SJR =

0.521, Q2).

A2’. Gruler, A., C. Quintero, L. Calvet, and A. A. Juan (2017). “Waste collection under uncer-
tainty: A simheuristic based on variable neighborhood search”. In: European Journal of
Industrial Engineering 11.2 (indexed in ISI SCI, 2015 IF = 0.718, Q4; 2015 SJR = 1.000,
Q1).

A3’. Pages, A., Ramalhinho, H., Juan, A., and Calvet, L. (2017). “Designing E-commerce sup-
ply chains: A stochastic facility-location approach”. In: International Transactions in Op-
erational Research, doi: 10.1111/itor.12433 (indexed in ISI SCI, 2015 IF = 1.255, Q2; 2015
SJR = 1.179, Q1).

A4’. Calvet, L., A. Ferrer, I. Gomes, A. A. Juan, and D. Masip (2016). “Combining statistical
learning with metaheuristics for the multi-depot vehicle routing problem with market seg-
mentation”. In: Computers and Industrial Engineering 94, pp. 93–104 (indexed in ISI SCI,
2015 IF = 2.086, Q1; 2015 SJR = 1.63, Q1).

A5’. Calvet, L., A. A. Juan, C. Serrat, and J. Ries (2016). “A statistical learning based approach
for parameter fine-tuning of metaheuristics”. In: Statistics and Operations Research Trans-
actions 40.1, pp. 201–224 (indexed in ISI SCI, 2015 IF = 0.414, Q4; 2015 SJR = 0.409,
Q3).

Under review
B1’. Calvet, L., R. Kizys, A. A. Juan, and J. Doering (submitted). “A VNS-based simheuristic

methodology for the stochastic portfolio optimization problem”. In: Journal of the Opera-
tional Research Society.

B2’. Calvet, L., M. Lopeman, J. De Armas, G. Franco, and A. A. Juan (submitted). “Statisti-
cal and machine learning approaches for the minimization of trigger errors in earthquake
catastrophe bonds”. In: Statistics and Operations Research Transactions.
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B3’. Calvet, L., D. Wang, and A. A. Juan (submitted). “A simheuristic algorithm for the stochas-
tic multi-depot vehicle routing problem”. In: International Transactions in Operational
Research.

B4’. Doering, J., L. Calvet, A. Fito, R. Kizys, and A. A. Juan (submitted). “Metaheuristics for
realistic portfolio optimisation and risk management: Current state and future trends”. In:
Annals of Operations Research.

B5’. Doering, J., L. Calvet, R. Kizys, A. Fito, and A. A. Juan (submitted). “Rich portfolio op-
timization with stocks and individual commodity futures contracts”. In: Journal of Futures
Markets.

B6’. Gruler, A., T. Perez, L. Calvet, and A. A. Juan (submitted). “A simheuristic algorithm for
time-dependent waste collection management with stochastic travel times”. In: Transporta-
tion Science.

B7’. Hatami, S., L. Calvet, V. Fernandez-Viagas, J. Framinan, and A. A. Juan (submit-
ted). “Combining simulation with metaheuristics in distributed scheduling problems with
stochastic processing times”. In: International Transactions in Operational Research.

B8’. Kizys, R., A. A. Juan, B. Sawik, and L. Calvet (submitted). “ARPO: An iterated local
search algorithm for portfolio optimization under realistic constraints”. In: Quantitative
Finance.

B9’. Reyes, L., L. Calvet, C. Talens, A. A. Juan, and J. Faulin (submitted). “Sustainable Urban
Freight Transport: a multi-depot vehicle routing problem considering different cost dimen-
sions”. In: Journal of Heuristics.

Indexed in Elsevier-Scopus
C1’. Calvet, L. and A. A. Juan (2015). “Educational data mining and e-learning analytics: An

overview of goals, quantitative methods, and time-line evolution”. In: International Journal
of Educational Technology in Higher Education 12.3 (indexed in ISI ESCI, 2014 SJR =

0.215, Q3).

C2. Calvet, L., A. A. Juan, R. Kizys, and J. De Armas (2016). “A SimILS-based methodology
for a portfolio optimization problem with stochastic returns”. In: Springer Lecture Notes in
Business Information Processing 254, pp. 3–11 (indexed in ISI Web of Science and Scopus,
2014 SJR = 0.244, Q3).

C3’. Calvet, L., A. Pages, O. Travesset, and A. A. Juan (2016). “A simheuristic for the hetero-
geneous site-dependent asymmetric VRP with stochastic demands”. In: Springer Lecture
Notes in Computer Science / LNAI 9868, pp. 408-417 (indexed in ISI Web of Science and
Scopus, 2014 SJR = 0.339, Q2).

C4. De Armas, J., L. Calvet, G. Franco, M. Lopeman, and A. A. Juan (2016). “Minimizing
trigger error in parametric earthquake catastrophe bonds via statistical approaches”. In:
Springer Lecture Notes in Business Information Processing 254, pp. 167-175 (indexed in
ISI Web of Science and Scopus, 2014 SJR = 0.244, Q3).

C5. Doering, J., A. A. Juan, R. Kizys, A. Fito, and L. Calvet (2016). “Solving realistic portfolio
optimization problems via metaheuristics: A survey and an example”. In: Springer Lecture
Notes in Business Information Processing 254, pp. 22–30 (indexed in ISI Web of Science
and Scopus, 2014 SJR = 0.244, Q3).

11.2 Conferences and seminars
Some works have been presented in conferences or seminars:
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D1. Calvet, L., V. Fernandez-Viagas, J. Framinan, and A. A. Juan (2016). “Combining sim-

ulation with metaheuristics in distributed scheduling problems with stochastic processing
times”. In: Proceedings of the 2016 Winter Simulation Conference. Washington D. C.,
USA, pp. 2347–2357.

Peer-review conferences
D2. Calvet, L., J. Doering, R. Kizys, A. A. Juan, and A. Fito (2016). “The stochastic port-

folio optimization problem: A formulation and a hybrid methodology”. In: OR58 Annual
Conference. Portsmouth, UK, pp. 127–128.

D3. Calvet, L., A. A. Juan, and N. Schefers (2015). “Solving the multi-depot vehicle routing
problem considering uncertainty and risk factors”. In: Proceedings of the ICRA6 / Risk 2015
Int. Conference. Barcelona, Spain, pp. 187-194.

D4. Calvet, L., A. A. Juan, and C. Serrat (2015). “Técnicas estadísticas aplicadas a la cali-
bración de parámetros de metaheurísticas”. In: Proceedings of the X Congreso Español de
Metaheurísticas, Algoritmos Evolutivos y Bioinspirados. Mérida, Spain, pp. 409–416.

D5. Calvet, L., M. Mateo, A. A. Juan, and C. Laroque (2016). “Optimizing starting times in par-
allel multiple production lines with stochastic processing times and a shared deadline”. In:
Proceedings of the 15th International Conference on Project Management and Scheduling.
Valencia, Spain.

D6. Juan, A. A., J. Faulin, and L. Calvet (2015). “Supporting real-time decision-making in
logistics and transportation by combining simulation with heuristics”. In: Proceedings of
the 12th Int. Multidisciplinary Modeling & Simulation Conf. Bergeggi, Italy, pp. 35–38.

D7’. Ruiz, X., L. Calvet, J. Ferrarons, and A. A. Juan (2015). “SmartMonkey: a web browser
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D12. Calvet, L. (2015). “Neural networks for routing problems: review and challenges”. Green
COOP-CYTED Workshop. Madrid, Spain.





143

Bibliography

Adenso-Diaz, B. and M. Laguna (2006). “Fine-tuning of algorithms using fractional experimental
designs and local search”. In: Operations Research 54.1, pp. 99–114.

Adibi, M. A. and J. Shahrabi (2013). “A clustering-based modified variable neighborhood search
algorithm for a dynamic job shop scheduling problem”. In: The International Journal of Ad-
vanced Manufacturing Technology 70.9, pp. 1955–1961.

Adra, S. F., A. I. Hamody, I. Griffin, and P. J. Fleming (2005). “A hybrid multi-objective evo-
lutionary algorithm using an inverse neural network for aircraft control system design.” In:
Congress on Evolutionary Computation. IEEE, pp. 1–8.

Affolter, K., T. Hanne, D. Schweizer, and R. Dornberger (2016). “Invasive weed optimization for
solving index tracking problems”. In: Soft Computing 20.9, pp. 3393–3401.

Agyei-Ampomah, S., D. Gounopoulos, and K. Mazouz (2014). “Does gold offer a better protection
against losses in sovereign debt bonds than other metals?” In: Journal of Banking and Finance
40.1, pp. 507–521.

Al-Anzi, F. and A. Allahverdi (2007). “A self-adaptive differential evolution heuristic for two-
stage assembly scheduling problem to minimize maximum lateness with setup times”. In:
European Journal of Operational Research 182.1, pp. 80–94.

— (2013). “An artificial immune system heuristic for two-stage multi-machine assembly schedul-
ing problem to minimize total completion time”. In: Journal of Manufacturing Systems 32.4,
pp. 825–830.

Al Kattan, I. and R. Maragoud (2008). “Performance analysis of flowshop scheduling using ge-
netic algorithm enhanced with simulation”. In: International Journal of Industrial Engineer-
ing: Theory, Applications and Practice 15.1, pp. 62–72.

Al-Salem, A. (2004). “A heuristic to minimize makespan in proportional parallel flow shops”. In:
International Journal of Computing & Information Sciences 2.2, pp. 98–107.

Alexander, C. and A. Dimitriu (2004). “Equity indexing: Optimize your passive investments”. In:
Quantitative Finance 4.3, pp. 30–33.

Allaoui, H., S. Lamouri, and M. Lebbar (2006). “A robustness framework for a stochastic hybrid
flow shop to minimize the makespan”. In: International Conference on Service Systems and
Service Management. Vol. 2. IEEE, pp. 1097–1102.

Alshraideh, H. and H. Abu Qdais (2016). “Stochastic modeling and optimization of medical waste
collection in Northern Jordan”. In: Journal of Material Cycles and Waste Management, pp. 1–
11.

Amihud, Y. (1996). “Unexpected inflation and stock returns revisited–evidence from Israel”. In:
Journal of Money, Credit and Banking 28.1, pp. 22–33.

Andriosopoulos, K., M. Doumpos, N. C. Papapostolou, and P. K. Pouliasis (2013). “Portfolio
optimization and index tracking for the shipping stock and freight markets using evolutionary
algorithms”. In: Transportation Research Part E: Logistics and Transportation Review 52,
pp. 16–34.

Antonakakis, N. and R. Kizys (2015). Dynamic spillovers between commodity and currency mar-
kets.

Armañanzas, R. and J. A. Lozano (2005). “A multiobjective approach to the portfolio optimization
problem”. In: IEEE Congress on Evolutionary Computation. Vol. 2. IEEE Press, pp. 1388–
1395.

Asta, S. and E. Ozcan (2014). “An apprenticeship learning hyper-heuristic for vehicle routing in
HyFlex”. In: 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS),
pp. 65–72.

Auger, A. and N. Hansen (2005). “Performance evaluation of an advanced local search evolution-
ary algorithm”. In: 2005 IEEE congress on evolutionary computation. Vol. 2. IEEE, pp. 1777–
1784.



144 BIBLIOGRAPHY

Ayodele, A. A. and K. A. Charles (2015). “Portfolio selection problem using generalized differen-
tial evolution 3”. In: Applied Mathematical Sciences 9.42, pp. 2069–2082.

Babaei, S., M. M. Sepehri, and E. Babaei (2015). “Multi-objective portfolio optimization consider-
ing the dependence structure of asset returns”. In: European Journal of Operational Research
244.2, pp. 525–539.

Back, B., T. Laitinen, and K. Sere (1996). “Neural networks and genetic algorithms for bankruptcy
predictions”. In: Expert Systems with Applications 11.4, pp. 407–413.

Bae, S.-T., H.S. Hwang, G.-S. Cho, and M.-J. Goan (2007). “Integrated GA-VRP solver for multi-
depot system”. In: Computers & Industrial Engineering 53, pp. 233–240.

Baker, K. R. and D. Altheimer (2012). “Heuristic solution methods for the stochastic flow shop
problem”. In: European Journal of Operational Research 216.1, pp. 172–177.

Baker, K. R. and D. Trietsch (2011). “Three heuristic procedures for the stochastic, two-machine
flow shop problem”. In: Journal of Scheduling 14.5, pp. 445–454.

Baker, Kenneth R (1974). Introduction to sequencing and scheduling. John Wiley & Sons.
Bansal, Y., S. Kumar, and P. Verma (2014). “Commodity futures in portfolio diversification: Im-

pact on investor’s utility”. In: Global Business & Management Research 6.2, pp. 112–121.
Banu, P. K. Nizar and S. Andrews (2015). “Gene clustering using metaheuristic optimization al-

gorithms”. In: International Journal of Applied Metaheuristic Computing 6.4, pp. 14–38.
Baptista, S., R. C. Oliveira, and E. Zúquete (2002). “A period vehicle routing case study”. In:

European Journal of Operational Research 139, pp. 220–229.
Barreto, S., C. Ferreira, J. Paixao, and B. Sousa (2007). “Using clustering analysis in a capacitated

location-routing problem”. In: Eur. J. Oper. Res. 179.3, pp. 968–977.
Bartz-Beielstein, T., K. E. Parsopoulos, and M. N. Vrahatis (2004). “Design and analysis of opti-

mization algorithms using computational statistics”. In: Applied Numerical Analysis & Com-
putational Mathematics 1.2, pp. 413–433.

Bastian, C. and A. H. G. R. Kan (1992). “The stochastic vehicle routing problem revisited”. In:
European Journal of Operational Research 56, pp. 407–412.

Battiti, R. and M. Brunato (2005). Reactive search: machine learning for memory-based heuris-
tics. Tech. rep. Teofilo F. Gonzalez (Ed.), Approximation Algorithms and Metaheuristics, Tay-
lor & Francis Books (CRC Press.

— (2010). “Reactive search optimization: learning while optimizing”. In: Handbook of Meta-
heuristics. Springer, pp. 543–571.

Battiti, R. and G. Tecchiolli (1994). “The reactive tabu search”. In: ORSA journal on computing
6.2, pp. 126–140.

Bautista, J., E. Fernández, and J. Pereira (2008). “Solving an urban waste collection problem using
ants heuristics”. In: Computers & Operations Research 35, pp. 3020–3033.

Beasley, J. E. (2013). “Portfolio optimisation: Models and solution approaches”. In: Tutorials in
operations research 10, pp. 201–221.

Beasley, J. E., N. Meade, and T.-J. Chang (2003). “An evolutionary heuristic for the index tracking
problem”. In: European Journal of Operational Research 148.3, pp. 621–643.

Bektaş, T. and G. Laporte (2011). “The pollution-routing problem”. In: Transportation Research
Part B: Methodological 45.8, pp. 1232–1250.

Beliën, J., L. De Boeck, and J. Van Ackere (2014). “Municipal solid waste collection and manage-
ment problems: a literature review”. In: Transportation Science 48, pp. 78–102.

Belousova, J. and G. Dorfleitner (2012). “On the diversification benefits of commodities from the
perspective of euro investors”. In: Journal of Banking and Finance 36.9, pp. 2455–2472.

Beltrami, E. J. and L. D. Bodin (1974). “Networks and vehicle routing for municipal waste collec-
tion”. In: Networks 4, pp. 65–94.

Benjamin, A. M. and J. E. Beasley (2010). “Metaheuristics for the waste collection vehicle routing
problem with time windows, driver rest period and multiple disposal facilities”. In: Computers
& Operations Research Vol. 37, pp. 2270–2280.
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