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Abstract

Leukemia is a type of cancer that starts in blood-forming tissue, such as the bone marrow. It

causes the production of large numbers of abnormal blood cells that end up entering into the

bloodstream. 1

Within the different types of leukemia, Mantle Cell Lymphoma (MCL) is the one with the

worst prognosis due to the short survival average of a patient, which is close to three years.

This tumor is characterized by the over-expression of Cyclin D1, a protein that helps control

cell division. MCL is also characterized by the binding of this protein to certain regions of

DNA involved in the regulation of DNA-damage response (DDR).

The presented study aims to identify similarities between the gene expression regulated

by Cyclin D1 in lymphomas and the gene expression in DNA damage. That knowledge will

allow the exploration of essential mechanisms of carcinogenesis and help in the identification

of genes that could be an interesting therapeutic target in the process of tumor progression.

Additionally, new biomarkers that could be used in early diagnosis can be found.

With the addition of Machine Learning algorithms to the biology analysis pipeline, this

project explores new ways to improve the traditional methodologies and boost the identification

of significantly enriched genes that will serve the purposes mentioned above.

The result of such a pipeline is the accurate selection of genes correlated with Cyclin D1,

involved in MCL and DDR, and its posterior analysis and identification of significantly enriched

gene sets.

As a conclusion, the results obtained in this study suggested that targeting of Notch pathway

and studying potential common mechanisms of hypoxia and apoptosis resistance would be of

great interest for possible future studies on treatments of MCL.

Keywords: Leukemia, Cyclin-D1, Machine-Learning.

1https://www.cancer.gov/publications/dictionaries/cancer-terms/def/leukemia
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Resumen

La leucemia es un tipo de cáncer que empieza en los tejidos generadores de sangre, tales como

la médula ósea. Esta enfermedad causa la producción de un gran número de células sangúıneas

anormales que van a parar al flujo sangúıneo. 2

Dentro de la leucemia encontramos diferentes tipos, siendo el Linfoma de las células del

manto (en adelante, Mantle Cell Lymphoma o MCL) el que peor pronóstico tiene, debido a la

corta media de supervivencia del paciente, cercana a los tres años. Este tumor se caracteriza

por la sobre-expresión de la Cyclina D1, protéına que ayuda a controlar la división celular, y

también por la unión de ésta protéına a ciertas regiones de ADN involucradas en la regulación

del proceso de reparación del daño al ADN (en adelante, DNA-Damage Response o DDR).

El presente estudio tiene como objetivo identificar las similitudes entre la expresión génica

derivada de la regulación por la Cyclina D1 en Linfoma con la que se da en el caso del daño en el

ADN. Este conocimiento permitirá la exploración de los mecanismos esenciales de carcinogénesis

y ayudará en la identificación de genes que pueden ser un objetivo terapéutico interesante en el

proceso de progresión tumoral. Adicionalmente, se podŕıan hallar nuevos biomarcadores para

el diagnóstico precoz de la enfermedad.

Con la adición de Machine Learning al proceso de análisis biológico, este proyecto explora

nuevas formas de mejorar las metodoloǵıas tradicionales e impulsar la identificación de genes

significativamente enriquecidos que servirán a los propósitos mencionados anteriormente.

El resultado de dicho proceso anaĺıtico es la precisa selección de genes correlacionados con

la Cyclina D1, involucrados en MCL y DDR, y su posterior análisis.

Como conclusión, los resultados obtenidos en este estudio sugirieron que el tratamiento del

Notch pathway y el potencial estudio de los mecanismos comunes de resistencia a la hipoxia y

apoptosis seŕıan de gran interés para posibles estudios futuros sobre tratamientos de MCL.

Keywords: Leucemia, Cyclin-D1, Machine-Learning.

2https://www.cancer.gov/publications/dictionaries/cancer-terms/def/leukemia
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Chapter 1

Introduction

1.1 General description of the problem

Leukemia is a set of tumor processes that causes an uncontrolled increase in leukocytes (white

blood cells) in the blood or lymphatic organs.

Cyclin D1 is an oncogene frequently overexpressed in cancer, especially in leukemia. It is

known that Cyclin D1 is one of the main regulators of the cell cycle, but its role as a regulator

of transcription (the process that generates the proteins needed to control all cellular processes)

remains unknown.

It is also well-known that Cyclin D1 binds to the promoter regions of many genes, although

the result of its transcriptional activity remains unknown as well. That transcriptional activity

is believed to be fundamental in the development of leukemia.

After the creation of the Gene Expression Omnibus repository[1][2] an enormous amount

of genomics data is publicly available for its study. Among others, data related to leukemia

is available and susceptible to be analyzed by Data Mining and Machine Learning techniques,

being its interpretation fundamental to know the basic mechanisms of the cells that can lead

to leukemia. Obviously, the generation of new drugs will depend on knowing these processes

in detail.

In human cells, both metabolic activities and environmental factors, such as UV rays or

radioactivity, can cause DNA damage. Many of these lesions produce potentially harmful

mutations in the genome of the cell, which affects the survival of their descendant cells at the

time of mitosis or induces malignant processes that end up leading to a tumor.

Several human cancers have been linked to DNA abnormalities such as dislocations, deletions

and mutations. The clarification of the mechanisms that initiate the process of repairing DNA

damage (DNA-damage response or DDR) will lead to improve the prediction of cancer risk

and the treatment in the early stages. More extensive studies of the damage and DNA repair

2
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pathways could lead to the development of new therapies aimed at strengthening the natural

defense systems of the cells that prevent a tumor from being developed.

Within leukemia, Mantle Cell Lymphoma (MCL) has the worst prognosis due to the fact

that the survival average of patients is close to three years. Identified in the 1990s, it is a

difficult disease to diagnose and rarely considered cured. The research to find biomarkers to

improve its diagnosis is actively pursued all over the world. This tumor is characterized by the

overexpression of Cyclin D1 and the binding of this protein to certain regions of DNA involved

in the regulation of DDR.

The project presented here aims to analyze the similarity of the gene expression regulated

by Cyclin D1 of MCL with respect to gene expression of DDR. This would allow exploring

possible essential mechanisms of carcinogenesis and focus on the genes that could be interesting

therapeutic targets in the process of tumor progression. In addition, new biomarkers could be

used to help in an early diagnosis, often linked to a better survival rate.

The data sets published for MCL (GSE21452 [3]) and DDR (GSE25848 [4]) will be used to

generate a gene signature in which the significantly enriched genes will be identified in order to

study their possible role as a therapeutic target and as a biomarker.

The R environment will be used to align the reads, generate quality controls and finally

generate the gene signature through Gene Set Enrichment Analysis (GSEA). As stated in

its documentation: ”Gene Set Enrichment Analysis (GSEA) is a computational method that

determines whether an a priori defined set of genes shows statistically significant, concordant

differences between two biological states (e.g. phenotypes).”[5]

All this process will be boosted with the addition of Machine Learning methodologies.
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1.2 Motivation

1.2.1 Why this project?

The amount of data collected in scientific researches has increased exponentially during the

last decades, making the usage of Data Science methodologies a good fit for improving the

final analysis and results. This project is a clear example of how the advances in Data Science

can trigger new ways of doing science, expanding the existing tools in order to achieve better

results.

1.2.2 What can I add?

During my MSc in Data Science, I have been learning about all the different aspects of a Data

Science project, starting from a project management point of view and continuing with all the

different phases of acquisition, storage, hypothesis and modeling, visualization and deployment.

For this specific project, though, my focus will be in the area of Data Mining and Machine

Learning, and that is what I think I can add to the project, my accumulated experience in the

commented area.

1.2.3 Personal interest

My personal interest in this project comes from the fact, or bad luck, of having close family

and friends affected for leukemia, therefore, as soon as I saw the proposal of this project I felt

emotionally connected to it.

Apart from that first reason, I also consider that one of the best usages of the advances

of Data Mining and Machine Learning is to help in the creation of a better society, being one

of its strongest foundations the improvement of the quality of the health of each individual.

Therefore, I feel responsible for using my new acquired knowledge in areas that can lead to

that goal.

1.2.4 How can this project improve my CV?

At the time of writing this, I am working as a research engineer in the control software group

in MAX IV Laboratory, a synchrotron located in the south of Sweden that has the purpose of

improving the scientific researches in a global encompass. Until now, my main activities has

been related to the build of software for all the different aspects of the control system, from the

very low level control, writing drivers for equipment, up to the high level software like graphical

user interfaces that enable the scientist to perform their jobs, passing through all the layers in
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between, like software libraries, servers, etc. In other words, I have been always close to the

control, synchronization and data acquisition, with this project, I can expand my coverage and

help also in the next phase of a scientific research, the analysis of the generated data.
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1.3 Project Objectives

1.3.1 General

Analysis of the similarities of the gene expression regulated by Cyclin D1 in Mantle Cell Lym-

phoma (MCL) and the gene expression of the DNA-damage response (DDR) using Machine

Learning and Gene Set Enrichment Analysis (GSEA).

1.3.2 Specific

• Identify significantly enriched genes that can act as a therapeutic target and as a biomarker.

• Create Machine Learning models to boost the process of identification of the significantly

enriched genes.
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1.4 Description of the Methodology Used

This project has been carried out using a quantitative methodology. This type of method-

ology is based on the quantification of the results, being the main objective the generation

of mathematical models, theories and hypothesis to extract information from an observable

phenomena.

This quantitative methodology was applied in all the different steps in the pipeline imple-

mented, including the final step, GSEA, where the interpretation of the final results are based

on the outcome of the statistical tests applied.

Along with the mentioned methodology, a CRISP-DM methodology has been adopted.

Cross-industry standard process for Data Mining, also known as CRISP-DM, was born in 1996

with the goal of provide a specific methodology suited for the needs of a Data Mining project.

Although this methodology was born with a clear business orientation, it is easy to adapt to

the purposes of the work presented here.

The CRISP-DM approach divide the process of Data Mining in six well differentiated phases

shown in the figure 1.1.

Figure 1.1: CRISP-DM Process diagram by Kenneth Jensen (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons.

In the following paragraph, a short description of the different phases in the context of this

work is provided.

• Business Understanding: the main objective in this phase is to understand the prob-

lem that is intended to be investigated or solved, set objectives to be accomplished and
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create a project plan.

• Data Understanding: in this phase, the data is collected and explored in order to get

familiar with it, understand it or identify possible interesting subsets.

• Data Preparation: during this phase, the data is cleaned and transformed if needed in

order to produce the final dataset that will be used in the next step.

• Modeling: in this phase, modeling techniques are applied in order to obtain a model

that allows to give an answer to the initial objectives.

• Evaluation: after the generation of the model, an evaluation must be done. During

this phase, the model or models obtained in the previous phase are evaluated in order to

assess that the results matches the acceptance criteria. After this evaluation is done, it

will be possible to analyze the results and extract knowledge from them.

• Deployment/Publication: once the results are evaluated and analyzed, the model can

be deployed. In the case of being the project a scientific study as in the case of this

project, this phase will consist in the publication of the results.

An important point to mention here is the iterative nature of the processes. It means

that the order of the phases are not fixed, allowing the return to any previous phase in case

of necessity. This point is important in any Data Mining or Machine Learning project, but

specially in the work presented here, because one key point is the knowledge discovery, and

that may require data or specific domain knowledge not contemplated at the early phases of

the project.
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1.5 Project Research Plan

The figure 1.2 show a Gantt Diagram with the initial planning of the project. It is divided in

the following milestones needed to the accomplishment of the project:

• Definition and planning: this milestone consists on the definition of the project and

its planning.

• State of the art: to accomplish this milestone, a deep study on the recent activities in

the field will be done.

• Design and implementation: during this stage, the implementation of the study will

be carried on.

• Write the report: once the previous step is finish, a report explaining the results must

be written.

• Thesis defense: a presentation of the current work must be done to accomplish this

milestone.

• Public presentation: as a last step, the work must be publicly presented to an academic

trial.

An extra column has been added to the Gantt diagram to illustrate the relation between

the milestones and the corresponding phase or phases of a CRISP-DM project.
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Figure 1.2: Gantt Project



Chapter 2

State of the Art

2.1 Foundations

The overexpression of Cyclin D1 in human cancer is well-known[6] and has been reported in

several studies[7]. An interesting recent work conducted by Albero et al.[8], focuses on the

study of this overexpression and how it produces a global trancriptional donwmodulation in

lymphoid neoplasms. In their own words:

”This finding of global transcriptional dysregulation expands the known functions of onco-

genic Cyclin D1 and suggests the therapeutic potential of targeting the transcriptional machin-

ery in Cyclin D1–overexpressing tumors.” [8]

Studies like the one performed by Mohanty et al.[9] show the importance of Cyclin D1

(CCND1) in the maintenance of MCL tumor cell lines, but leave unclear the protective role of

this gene in preventing DNA damage during replication in MCL. This mentioned study point

out some conflicts with another study on CCND1 performed by Klier et al.[10], which reports

that silencing CCND1 in MCL for up to seven days cause growth arrest but not cell death in

MCL.[9].

Another interesting study performed by Tiemann et al.[11] demonstrate how targeting Cy-

clin D1 and Cyclin D2 in chemotherapy can lead to enhance the efficacy of chemotherapy

agents.

The above cited studies are a small set of examples on how important it is to increase the

knowledge of the transcriptional function of Cyclin D1 in order to improve the prevention and

treatment of MCL.

In parallel, other studies [12] [13], have shown the role of Cyclin D1 in the cell cycle and its

influence in the DNA-damage repair process.

In addition to the already commented works, the field of Artificial Intelligence and in par-

ticular the Machine Learning discipline inside of it, has been winning attention in many fields,

11
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being medicine one of them. Machine Learning has been widely used to study different types of

cancer, and some examples of it will be provided in the following section. As a result, Machine

Learning has been added to the pipeline of biological studies and, among other important con-

sequences, it has produced a big impact improving the identification of discriminant pathways,

as shown in the study done by Barla et a.[14].

Another foundation for this project is the Gene Set Enrichment Analysis method (GSEA)

[15] which was presented in 2005. GSEA has had a big impact in the statistical analysis of gene

sets, prove of that is its more than 10000 citations. GSEA is an analytical method that allows

the researchers to focus on gene sets instead of individual genes, as it was done before. Thanks

to that, it enables the detection of biological processes like metabolic pathways, transcriptional

programs or stress responses. Apart from being a statistical analysis method, it also provides

a software package and a database composed by more than 1000 gene sets that facilitates its

usage and experimentation.

Although the intention of this text is not to provide an exhaustive explanation of how GSEA

works, it is important to offer a minimum introduction to the method, to be able to understand

better the way how Machine Learning can improve it.

A basic schema about how GSEA works is described in the following figure:

Figure 2.1: GSEA Schema.

GSEA receives two inputs, a molecular profile data and a Gene Set Database. Using this

two inputs, GSEA will calculate an Enrichment Score (ES) between phenotypes for each gene

contained in the molecular profile. Thanks to this ES, GSEA will be able to identify which

set of genes offers statistical significance and will make possible the identification of biological

processes.

Due to the big amount of data, in terms of genes, that this kind of analysis can face, it is re-

ally important to make a good selection of them beforehand. This is one of the situations where

Machine Learning is able to help, providing Feature Selection algorithms that can optimize the

genes selected to be passed as an input to the GSEA method.

In relation with that methodology, it is also interesting to remark the importance of choosing

a proper metric for the ranking of genes, as shown in the work carried out by Zyla et al.[16].

All the above concepts have acted as a foundation to trigger the main ideas behind the
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objectives of the project presented here.

2.2 Similar Work

As commented before, it is easy to find examples of the usage of Machine Learning in the field

of cancer study. It has been widely used for different purposes such as classification[17] and

prediction of tumors, treatment prediction, and also to boost the performance of the biological

analysis pipelines using techniques like feature selection[18][19].

An interesting example is found in the study conducted by Ten et al.[20] where Machine

Learning techniques were introduced in their pipeline in order to improve the analysis of multiple

gene expression profiles in cervical cancer. A particular important fact extracted from that

article, is that previous studies were focused either in statistical analysis methods or Machine

Learning methods, but that one integrates both methodologies for the meta-analysis, which is

also one of the objectives pursued by this work.

Another similar interesting work is found in the study elaborated by Park et al.[21]. In

there, the identification of disease-related genes and disease mechanism is investigated using

Machine Learning techniques. The study presents a novel method for gene-gene interaction

(GGI) based on the usage of the Random Forest algorithm. This method is suitable for the

discovery of significant GGI from heterogeneous gene expression datasets, and has the potential

to be used in the research of different disease groups.

2.3 Ongoing and Future Projects

Several studies[22][23][24][25] agree on the necessity of the development of more personalized

(patient-centric) treatments. Such treatments will be possible through an evaluation of each

patient unique set of genomic complications and will result in more accurate treatments that

will be highly effective and will not over-treat the patient. Is also important to comment that

together with personalized treatments, more reliable predictive tools to improve the prognostic

of each patient need to be developed, but before this point will be reached, new biomarkers

and pathways that will enhance the understanding of MCL need to be discovered. This is an

active area of study and it is also one of the purposes of the work presented here.

Apart from the ongoing studies on MCL, it is worth to mention that the field of Artificial

Intelligence continues its expansion. Every day, new studies, methods and developments are

performed. As a consequence, more fields are adopting Artificial Intelligence approaches to

improve their results. Of course, medical research is also profiting from all the consequent

research and development. This Artificial Intelligence explosion has the potential to change
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drastically the way a scientific research will be done in the future, as a small example of it,

new ways of knowledge discovery (cognitive discovery) are studied and developed, combining

different areas of Artificial Intelligence like Knowledge Graphs, Natural Language Processing,

Semantic Search, etc. The products obtained from that work will help the future researchers

to find remarkable literature during the literature review that takes place at the starting phase

of a scientific research.[26]



Chapter 3

Methods

3.1 Introduction

As described in the project objectives, this study aims to find similarities between the gene

expression regulated by Cyclin D1 in MCL and the gene expression of the DDR, using Data

Mining and Machine Learning techniques combined with Statistical Tests and biological analy-

sis, to identify the significant enriched genes that can act as therapeutic target and biomarkers.

In order to fulfill these goals, this study has been developed following two different ap-

proaches that share a common part on the data cleaning and the final GSEA process, where

the identification of enriched gene sets will be performed. Both approaches differ on the data

normalization and posterior gene selection processes. The following sections will explain in

details the two scenarios, but before going into details, it is worth to mention that two public

data sets from Gene Expression Omnibus repository (GEO) were selected for this study. These

data sets are:

• GSE25848 [4]: which contains data about DDR.

• GSE21452 [3]: which contains data from MCL tumors.

15
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3.2 Scenario 1

The first developed pipeline is described in the following figure.

Figure 3.1: Scenario 1 pipeline

As seen in the figure, the pipeline is composed by seven steps or sub-processes:

• Data cleaning: the data from the two original data sets are cleaned and prepared for

the posterior steps.

• Differentially expressed gene ranking: a first ranking of genes is generated. This

ranking is done per each individual data set.

• Normalization: process to allow the posterior merge of both data sets.

• Intersection: common genes from both data sets are discovered and merged into a new

data set.

• RankProd analysis: common genes are analyzed in order to find up and down regulated

genes.

• Feature selection: Machine Learning algorithms are applied to find the most important

features (genes).

• GSEA: analysis to find significantly enriched genes.

3.2.1 Data Cleaning

The first step in the pipeline consist on a general inspection of the data sets and the posterior

data cleaning process. This data cleaning process consisted mainly in removing the entries

containing empty or NA values.
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3.2.2 Differentially Expressed Gene Ranking

A first selection of genes was done in this step. The purpose of this selection is to get the top

ten thousand differentially expressed genes from each of both data sets. This process was done

using the multiClust[27] package in R/Bioconductor.

As a result of this step, two new data sets were created. Each of these data sets were

composed by ten thousand of the most differentially expressed genes of its parent data set.

3.2.3 Normalization

Once the previous steps were performed, a normalization process was applied to the new created

(and reduced) data sets. In this case, a log2 transformation was applied to the data coming

from the data set GSE25848. The data contained in GSE21452 was kept as it was, due to the

fact that it was already log2 transformed.

Thanks to this transformation, the data coming from both data sets were in a similar scale,

and able to be merged.

3.2.4 Intersection

During this process, a match between the two new reduced data sets was performed, and as

a result, a new data set containing only the matched genes was created. This new data set

was the one used for the posterior analysis, but before passing to the next step, another data

cleaning process was performed.

In this case, some empty values (NA) were generated after the log2 transformation, and

they needed to be treated. Two different treatments were applied. First, the Cyclin D1 gene

(CCND1) was identified as one containing a few NA values. As this is the main gene for our

study, the missing values were imputed using the mean of the non NA values for that gene. As

a second treatment, the genes containing NA values were discarded.

Apart from those treatments, the name of the genes were reviewed in order to ensure that

they were valid for the upcoming steps.

3.2.5 RankProd Analysis

The following step in the pipeline is the identification of up-regulated and down-regulated genes

in our data set. For that purpose, a RankProd analysis was performed using the Bioconductor

package RankProd.

As a result of this process, 262 up-regulated genes and 268 down-regulated genes were

selected. This selection was done using a cut-off value of 0.05 on the p-values.
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3.2.6 Feature Selection

Once the up-regulated and down-regulated genes were identified, a Feature Selection process

was carried out. A Random Forest method was applied as an Unsupervised Feature Selection

method. As a consequence, a list of features sorted by importance was generated. From that

list, the top 20 features identified by the algorithm were collected. This identification was done

for both, the up and down regulated genes.

3.2.7 GSEA

As a final step, two different ways of executing a GSEA were carried out. First, the Bioconductor

package FGSEA[28] was used, but the outcome of this process was not satisfactory due to the

lack of valid results obtained. After that first attempt, the original GSEA method[15] was

performed, but again, with unsatisfactory results, where no significantly enriched genes were

obtained.

This negative results forced the re-design of the experiment, and the second scenario was

designed.
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3.3 Scenario 2

For this second attempt, the focus was placed in the correlation between gene expressions and

the Cyclin D1 expression.

The complete pipeline is represented in the next figure.

Figure 3.2: Scenario 2 pipeline

As seen in the figure, the pipeline is composed by similar sub-processes to the previous

pipeline from scenario 1. The main difference in this one is the different normalization applied

and the substitution of the RankProd analysis by the correlation analysis.

The first two steps from the previous scenario (data cleaning and differentially expressed

gene ranking) were shared with this one, therefore, this scenario starts with an already existing

ranked list of ten thousand genes per data set, which was obtained at the end of the Differentially

Expressed Gene Ranking process. Due to that fact, the detailed explanation of those two sub-

processes are going to be skipped in the following paragraphs.

3.3.1 Normalization

The third step in the pipeline is a normalization process. The main goal was to transform the

data from both data sets to the same scale. Such transformation allowed the integration and

correlation of data from both data sets.

The normalization applied in this case was a z-scored normalization.

3.3.2 Intersection

The intersection of the two data sets was carried out in a similar way than the one executed in

the scenario 1. As a result, a new data set with the common genes is obtained.

The difference between this one and the one generated in the first scenario is that in this

one, the data has suffered a different normalization, and therefore, the NA values that were

generated in the log2 transformation are not present, which means that fewer data had to be

removed and no data needed to be imputed.
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3.3.3 Correlation with Cyclin D1

Continuing with this second pipeline, the next step was the calculation of the correlation

between the expression of the available genes and the expression of Cyclin D1.

Once this correlation was calculated, a K-Means algorithm was applied. The purpose of

running this method was to create three clusters and classify the data into three different types

of correlation: positive correlation, no significant correlation and negative correlation.

At the end of this correlation process, two new columns were added to the data set, the first

one containing the correlation value of each gene and the second one with the cluster where

each gene belongs.

Because of time constrains, only the genes in the positive correlation cluster were studied

in the following steps, keeping for future studies the possibility to run GSEA with the negative

correlation cluster.

As a result, a 316 genes were selected for the next step.

3.3.4 Feature Selection

Similar to the Feature Selection process in the previous pipeline, a Random Forest algorithm

was executed. This time, the method was executed in an unsupervised and supervised way,

giving as a result a list of features (genes) ranked by importance. From the ranked list of

genes obtained from the Unsupervised Random Forest, 205 genes were selected to be passed to

the final GSEA process. From the ranked list of genes obtained from the Supervised Random

Forest, 100 genes were selected to be passed to the final GSEA process. Both numbers were

chosen to ensure that the Cyclin D1 (CCND1) was present in the selection.

3.3.5 GSEA

As a final step, a GSEA process was carried out. GSEA takes as input a molecular profile

data set and a gene set database. The selection of genes obtained in the Feature Selection

process was passed as first input. The gene set databases used in this process were obtained

from MSigDB. Those databases are:

• Hallman gene set (H): coherently expressed signatures derived by aggregating many

MSigDB gene sets to represent well-defined biological states or processes.

• Oncogenic gene set (C6): defined directly from microarray gene expression data from

cancer gene perturbations.

• GO gene sets (C5): genes annotated by the same GO terms.



3.3. Scenario 2 21

• Curated gene sets (C2): curated gene sets from online pathway databases, publications

in PubMed, and knowledge of domain experts.

• Immunologic gene sets (C7): defined from microarray gene expression data from

immunologic studies.

Is important to mention the phenotype argument used for the GSEA process. As this study

focuses on Cyclin D1, its corresponding gene was selected to be used as phenotype, in that way,

a correlation with this gene was used.

The result of running GSEA on those inputs is presented in the next chapter.



Chapter 4

Results

4.1 Introduction

This chapter summarizes the results achieved by the developed pipeline in the scenario 2,

starting with a brief compilation of results from the whole pipeline and excluding the GSEA

process which is kept for detailed explanation in the third section of this chapter.

4.2 Across the Pipeline

As commented in the chapter 3, the pipeline starts with the cleaning of the two selected data

sets. It was specially important to clean GSE25848 as it contained 32443 out of 48803 genes

without any data. Those genes were removed from the data set, resulting in a new one with

16360 genes with an expression value.

The second step was to make a first selection of genes. This selection was done individually

per each data set. It consisted in a differentially expressed gene ranking where the top 10000

genes from each data set were selected.

After that process, a normalization and intersection processes took place, giving as a result a

new data set composed by common genes. Such data set contained 1305 genes and 76 samples.

The next step was the computation of the correlation between each gene and CCND1.

Once these values were computed, they were used to run an unsupervised clustering method,

K-Means. The result of this method can be seen in the figure 4.1.

The output of that method was the classification of genes in three clusters, one for the

negative correlations (cluster 3), another for the positive correlation (cluster 2) and a final

one containing the non significant correlation genes (cluster 1). Only the second cluster was

studied, and it was composed by 316 genes.

22
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Figure 4.1: Clustering by correlation with CCND1.

As a penultimate stage in the pipeline, a Feature Selection process was carried out. A

Random Forest algorithm was run in an unsupervised and supervised way, showing better

results in the posterior GSEA process the supervised one. Because of that, the following

explanations will only consider the supervised Random Forest. The outcome of this stage was

the identification of the most significant features.

Figure 4.2: Variance importance plot obtained from Random Forest.

The model obtained had an out-of-bag of around 0.16, which was considered good enough

due to the lack of interest in running predictions to classify any data. Also, as the main interest

was placed in obtaining a ranked list of feature importance, no effort was spent in optimizing
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the model.

Figure 4.3: OOB from Random Forest
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4.3 GSEA

The last step in the pipeline is a Gene Set Enrichment Analysis, which offers the final results

of this study and deserves the dedication of an individual section in this chapter.

In order to give a better understanding of the data obtained from this study, this section

starts with a short explanation of the main statistics that GSEA computes. Its main purpose

is to expose the basic knowledge needed to interpret the final results.

For a deeper explanation on the statistics enumerated here and its interpretation, please

refer to the GSEA documentation page [5].

4.3.1 GSEA Statistics

The following information has been obtained from the official GSEA documentation page [5].

There are four key statistics obtained from a gene set enrichment analysis:

• Enrichment Score (ES): the degree to which a gene set is over-represented at the top

or bottom of the ranked list of genes in the expression dataset.

• Normalized Enrichment Score (NES): the enrichment score for a gene set after it has

been normalized across analyzed gene sets. This value can be used to compare analysis

results across gene sets.

• False Discovery Rate (FDR): the estimated probability that a normalized enrichment

score represents a false positive finding.

• Nominal P Value: the statistical significance of the enrichment score. The nominal p

value is not adjusted for gene set size or multiple hypothesis testing; therefore, it is of

limited use in comparing gene sets.

Having this four statistics defined, the procedure to analyse the results is the following.

First, the identified gene sets are ranked using the NES value. Then, a cut-off on FDR needs

to be applied. The generalized cut-off on FDR is 25%, which indicates that the result is likely

to be valid 3 out of 4 times. The gene sets that passes the FDR cut-off are the most interesting

ones to generate hypothesis for further research.

Finally, the nominal p value is consulted. If a gene set has a small nominal p value and a

high FDR value, it means that it is not as significant when compared with other gene sets in the

empirical null distribution. The reason behind that could be that there are not enough samples,

the biological signal is subtle, or the gene sets do not represent the biology in question. In case

of a high nominal p value and a low FDR value, the result is considered negative, representing
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that the gene set is not significant and there are other sets that are weaker. There are two

cut-off defined for the nominal p value, 1% and 5%.

4.3.2 GSEA Results

The selection of genes which achieve the best results is the one obtained using a Supervised

Random Forest as a Feature Selection method. These genes were used as an input of GSEA

together with the MSigDB collections explained in the previous chapter: H, C6, C5, C2 and

C7.

The following tables summarize the results received after running GSEA using the com-

mented gene selection in combination with the different MSigDB collections.

The table 4.1 shows that several gene sets were identified as enriched for positive correlation

with CCND1. On the other hand, as it can be seen in the table 4.2, there is only one gene set

that passes the FDR cut-off for the negative correlation in the different collections. That is a

normal result as there was a filtering process on positive correlated genes with CCND1 applied

in early stages of the pipeline. Therefore, in the following sections, the focus will be placed in

the positive correlation results showed in the table 4.1.

Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Hallmark, H 13/28 7 4 5

Oncogenic, C6 45/107 6 3 5
GO, C5 919/1824 36 60 95

Curated, C2 908/1598 65 141 175
Immunologic, C7 1707/3175 0 41 106

Table 4.1: Enrichment in phenotype for positive correlations with CCND1. Each row shows
the results obtained from each of the MSigDB collections.

Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Hallmark, H 15/28 0 0 2

Oncogenic, C6 62/107 0 1 7
GO, C5 905/1824 0 10 41

Curated, C2 690/1598 1 37 86
Immunologic, C7 1468/3175 0 37 111

Table 4.2: Enrichment in phenotype for negative correlations with CCND1. Each row shows
the results obtained from each of the MSigDB collections.
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4.3.2.1 Using H collection: Hallmark gene sets

As shown in the table 4.3, using the Hallmark gene sets collection, the enrichment in phenotype

for positive correlations shows that 13 from 28 gene sets are up-regulated. Seven of those passes

the cut-off of FDR smaller than 25%. In addition to that, 4 gene sets have a nominal p-value

less than 1%.

Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Hallmark, H 13/28 7 4 5

Table 4.3: Enrichment in Phenotype for positive correlation using H.

GS SIZE NES NOM p-val FDR q-val LEADING EDGE
HALLMARK ESTROGEN RESPONSE EARLY 3 1.55 0.010 0.071 tags=33%, list=0%, signal=32%

HALLMARK HYPOXIA 2 1.52 0.006 0.051 tags=50%, list=3%, signal=51%
HALLMARK ESTROGEN RESPONSE LATE 2 1.41 0.043 0.145 tags=50%, list=0%, signal=49%

HALLMARK APOPTOSIS 3 1.39 0.075 0.126 tags=100%, list=22%, signal=124%
HALLMARK NOTCH SIGNALING 1 1.33 0.000 0.186 tags=100%, list=0%, signal=99%

HALLMARK ANDROGEN RESPONSE 1 1.33 0.000 0.155 tags=100%, list=0%, signal=99%
HALLMARK TNFA SIGNALING VIA NFKB 4 1.32 0.132 0.137 tags=75%, list=22%, signal=92%

Table 4.4: Up-regulated gene sets for the H collection.

As seen in the table 4.4, the common genes from MCL and DDR resulted in an up-regulated

identification of the following biological states or processes:

• Early and late response to estrogen.

• Hypoxia. Genes up-regulated in response of low oxygen levels.

• Apoptosis. Genes mediating programmed cell death by activation of caspases.

• Genes up-regulated by activation of Notch signaling.

• Androgen response.

• TNFA signaling response via NFKB.

In all of them, except in the Hypoxia state, CCND1 was identified as up-regulated.

4.3.2.2 Using C6 collection: Oncogenic signatures

The tables 4.5 and 4.6 show an enumeration of the results obtained from running GSEA with

the C6 collection. In this case, the detected signatures of cellular pathways were CCND1 is

involved are:
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Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Oncogenic, C6 45/107 6 3 5

Table 4.5: Enrichment in Phenotype for positive correlation using C6.

Gene Set Size ES NES NOM p-val FDR q-val Leading Edge
PRC2 EED UP.V1 DN 3 0.96 1.54 0.004 0.145 tags=100%, list=6%, signal=103%
BMI1 DN.V1 UP 4 0.83 1.54 0.037 0.077 tags=50%, list=3%, signal=49%
BMI1 DN MEL18 DN.V1 UP 4 0.75 1.43 0.079 0.212 tags=50%, list=3%, signal=49%
MEL18 DN.V1 UP 4 0.75 1.43 0.079 0.159 tags=50%, list=3%, signal=49%
RAF UP.V1 DN 3 0.79 1.43 0.070 0.129 tags=33%, list=0%, signal=32%
IL2 UP.V1 UP 2 0.93 1.39 0.035 0.161 tags=100%, list=8%, signal=107%

Table 4.6: Up-regulated gene sets for the C6 collection.

• BMI1 DN.V1 UP. Genes up-regulated in DAOY cells (medulloblastoma) upon knockdown

of BMI1.

• BMI1 DN MEL18 DN.V1 UP. Genes up-regulated in DAOY cells (medulloblastoma) upon

knockdown of BMI1 and PCGF2 genes by RNAi.

• MEL18 DN.V1 UP. Genes up-regulated in DAOY cells (medulloblastoma) upon knock-

down of PCGF2 gene by RNAi.

• RAF UP.V1 DN. Genes down-regulated in MCF-7 cells (breast cancer) positive for ESR1

MCF-7 cells (breast cancer) stably over-expressing constitutively active RAF1 gene.

4.3.2.3 Using C5 collection: Gene Ontology (GO) gene sets

The execution of GSEA using the C5 collection retrieved the results summarized in the tables

4.7 and 4.8. Specially interesting is the up-regulated detection of:

• Positive regulation of catalytic activity.

• Regulation of multicellular organismal development.

• Regulation of mitotic cell cycle.

• Negative regulation of cell cycle process.

• Negative regulation of mitotic cell cycle.
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Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
GO, C5 919/1824 36 60 95

Table 4.7: Enrichment in Phenotype for positive correlation using C5.

Gene Set SIZE ES NES NOM p-val FDR q-val LEADING EDGE
GO POSITIVE REGULATION OF PROTEIN METABOLIC PROCESS 10 0.69 1.82 0.006 0.323 tags=40%, list=9%, signal=40%

GO MOLECULAR FUNCTION REGULATOR 10 0.70 1.81 0.004 0.181 tags=40%, list=6%, signal=38%
GO POSITIVE REGULATION OF PHOSPHORUS METABOLIC PROCESS 8 0.73 1.80 0.000 0.139 tags=50%, list=9%, signal=51%
GO POSITIVE REGULATION OF PROTEIN MODIFICATION PROCESS 8 0.73 1.80 0.000 0.104 tags=50%, list=9%, signal=51%

GO ENZYME REGULATOR ACTIVITY 7 0.80 1.76 0.000 0.134 tags=43%, list=4%, signal=41%
GO POSITIVE REGULATION OF CATALYTIC ACTIVITY 11 0.67 1.74 0.010 0.145 tags=36%, list=9%, signal=36%

GO REGULATION OF MULTICELLULAR ORGANISMAL DEVELOPMENT 6 0.81 1.71 0.012 0.161 tags=50%, list=10%, signal=52%
GO REGULATION OF HYDROLASE ACTIVITY 9 0.68 1.69 0.019 0.190 tags=44%, list=9%, signal=44%

GO POSITIVE REGULATION OF DEVELOPMENTAL PROCESS 6 0.78 1.68 0.014 0.191 tags=50%, list=10%, signal=52%
GO POSITIVE REGULATION OF MOLECULAR FUNCTION 12 0.62 1.68 0.021 0.174 tags=33%, list=9%, signal=32%

GO POSITIVE REGULATION OF TRANSFERASE ACTIVITY 5 0.78 1.66 0.004 0.180 tags=40%, list=6%, signal=40%
GO KINASE ACTIVITY 7 0.74 1.66 0.024 0.167 tags=43%, list=9%, signal=44%

GO PROTEIN KINASE ACTIVITY 5 0.83 1.66 0.012 0.167 tags=60%, list=9%, signal=63%
GO REGULATION OF MITOTIC CELL CYCLE 4 0.87 1.64 0.012 0.176 tags=25%, list=0%, signal=24%

GO PROTEIN PHOSPHORYLATION 7 0.71 1.64 0.015 0.170 tags=43%, list=9%, signal=44%
GO REGULATION OF GTPASE ACTIVITY 7 0.71 1.64 0.023 0.164 tags=43%, list=6%, signal=42%

GO CELL DIVISION 4 0.86 1.63 0.008 0.172 tags=25%, list=0%, signal=24%
GO PHOSPHORYLATION 9 0.63 1.62 0.017 0.169 tags=33%, list=9%, signal=33%

GO NEGATIVE REGULATION OF CELL CYCLE PROCESS 3 0.91 1.60 0.008 0.204 tags=33%, list=0%, signal=32%
GO NEGATIVE REGULATION OF MITOTIC CELL CYCLE 3 0.91 1.60 0.008 0.194 tags=33%, list=0%, signal=32%

Table 4.8: First 20 up-regulated gene sets for the C5 collection.

4.3.2.4 Using C2 collection: Curated gene sets

As in the previous sections, the following tables summarize the outcome from running GSEA,

this using the C2 collection.

Is interesting to point out the consistency of these results with the achieved with the previous

collection as both detected as up-regulated the cell cycle mitotic gene set.

Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Curated, C2 908/1598 65 141 175

Table 4.9: Enrichment in Phenotype for positive correlation using C2.
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Gene Set SIZE ES NES NOM p-val FDR q-val LEADING EDGE
BERENJENO TRANSFORMED BY RHOA UP 6 0.85 1.87 0.000 0.037 tags=33%, list=4%, signal=33%

KRIGE RESPONSE TO TOSEDOSTAT 6HR DN 8 0.77 1.78 0.002 0.089 tags=50%, list=18%, signal=56%
KRIGE RESPONSE TO TOSEDOSTAT 24HR DN 8 0.77 1.78 0.002 0.059 tags=50%, list=18%, signal=56%

CHARAFE BREAST CANCER LUMINAL VS BASAL UP 5 0.89 1.78 0.000 0.045 tags=40%, list=5%, signal=40%
ONKEN UVEAL MELANOMA UP 4 0.93 1.71 0.000 0.093 tags=75%, list=8%, signal=78%

WAMUNYOKOLI OVARIAN CANCER LMP UP 3 0.98 1.69 0.000 0.113 tags=33%, list=0%, signal=32%
BLALOCK ALZHEIMERS DISEASE INCIPIENT UP 6 0.78 1.68 0.006 0.108 tags=83%, list=24%, signal=102%

NUYTTEN NIPP1 TARGETS DN 5 0.82 1.68 0.004 0.103 tags=60%, list=13%, signal=66%
BLALOCK ALZHEIMERS DISEASE UP 15 0.64 1.67 0.008 0.093 tags=60%, list=24%, signal=66%

MARTORIATI MDM4 TARGETS NEUROEPITHELIUM UP 3 0.96 1.62 0.004 0.168 tags=67%, list=5%, signal=68%
MEISSNER BRAIN HCP WITH H3K4ME3 AND H3K27ME3 5 0.88 1.61 0.020 0.184 tags=80%, list=8%, signal=83%

KRIEG HYPOXIA NOT VIA KDM3A 4 0.83 1.61 0.004 0.171 tags=50%, list=6%, signal=51%
SWEET LUNG CANCER KRAS UP 4 0.85 1.60 0.018 0.170 tags=25%, list=0%, signal=24%

BENPORATH SOX2 TARGETS 3 0.90 1.59 0.012 0.167 tags=33%, list=0%, signal=32%
PENG GLUCOSE DEPRIVATION DN 4 0.85 1.59 0.012 0.157 tags=50%, list=10%, signal=53%

REACTOME CELL CYCLE 3 0.91 1.58 0.006 0.168 tags=33%, list=0%, signal=32%
REACTOME CELL CYCLE MITOTIC 3 0.91 1.58 0.006 0.158 tags=33%, list=0%, signal=32%

CHESLER BRAIN QTL CIS 2 1.00 1.57 0.000 0.174 tags=50%, list=0%, signal=49%
YAGI AML WITH T 8 21 TRANSLOCATION 4 0.85 1.56 0.018 0.172 tags=25%, list=0%, signal=24%

PUJANA BREAST CANCER LIT INT NETWORK 3 0.87 1.56 0.018 0.173 tags=33%, list=0%, signal=32%

Table 4.10: First 20 up-regulated gene sets for C2.

4.3.2.5 Using C7 collection: Immunologic signatures

As seen in the table 4.11, there is no enriched gene set that passes the FDR cut-off.

Collection Up-regulated gene sets FDR <25% p-value <1% p-value <5%
Immunologic, C7 1707/3175 0 41 106

Table 4.11: Enrichment in Phenotype for positive correlation using C7.
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Conclusions

It is worth to start these conclusions reminding that the main objective of this study was to

analyze the similarities between the gene expressions regulated by Cyclin D1 in MCL and DDR

using Machine Learning. That objective has been accomplished through an integrative pipeline

where classical statistical methods used in biology has been combined with Data Mining and

Machine Learning techniques.

The first important observation from the data extracted from GSEA is the up-regulation of

hypoxia gene sets in more than one collection, i.e. in H and C2.

Hypoxia is a condition where low levels of oxygen are supplied to a cell tissue. It is used in

cancer treatment to predict the response of a tumor to a specific treatment and it is associated

to the resistance of a therapy. Studies like the one conducted by Possik et al. [29] show that

hypoxia sensitizes melanomas to targeted inhibition of the DDR, contributing in this way to

the tumor expansion.

Another interesting observation is the up-regulation of Apoptosis. Apoptosis is a series of

molecular steps that ends up in leading the cell to its death. This process is used by the body

to eliminate abnormal or unnecessary cells. This process may be blocked by cancer cells.

Studies like the carried out by Greijer and van der Wall [30] show the importance of hy-

poxia and apoptosis resistance as a fundamental mechanism of tumor progression. A better

understanding on this two conditions might lead to better treatments for MCL.

Continuing with the up-regulated gene sets found in this study, GSEA reports an up-

regulation of the Notch signaling pathway. As seen in the study conducted by Li et al. [31],

Notch signaling plays a critical role in the development of different forms of cancer, and due

to its importance in tumorigenesis and metastasis, blocking Notch signaling pathway may be

considered as a potential therapy for cancer treatment, and by extension MCL. Furthermore,

recent studies like the one performed by Yuan et al. [32] show how Notch inhibitors may

improve chemotherapy response, being a great promise for cancer control.

31
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The next up-regulated gene set that worth the attention of this study is the regulation of

cell cycle and specially the regulation of mitotic cell cycle. This process consists of a series

of steps where chromosomes and other cell materials are duplicated for its posterior usage on

the split of the cell into two daughter cells. The found influence of CCND1 in this process for

MCL and DDR could be suggested as a target for further study, with the aim to determine

if a possible therapy can be obtained. This idea is inline with the concluded in the study

done by Bakhoum et al.: ”Cancer cells coopt the mitotic DNA damage response to further

propagate chromosomal instability. This offers untapped therapeutic opportunities to target

genomic instability in cancer.”[33]

In conclusion, the results obtained in this study suggested that targeting of Notch pathway

and studying potential common mechanisms of hypoxia and apoptosis resistance would be of

great interest for future studies on potential treatments of MCL. This in silico conclusion needs

to be further validated by experimental studies on those processes that would shed light on the

common mechanisms of DNA damage response and MCL development.



Chapter 6

Future Developments

One of the purposes of this study was to include more Feature Selection algorithms in the

pipelines, but due to the lack of time this objective is left for future improvements.

The idea of integrating more than one Feature Selection algorithm was to execute several

of them in parallel and combine their results. This combination can be done matching the

common genes that are selected by each algorithm and perform GSEA over that new set of

genes.

Another point worth to comment is the optimization of the model created by the Random

Forest algorithm. In this study no optimization has been performed, as the main objective was

to extract the most important features and a considerable number of features was going to be

selected, but if a more accurate or reduced selection of genes is desired, this point could be

considered.

For this study, only two data sets were evaluated, the addition of more data sets could be

also considered.

Finally, further experimental studies would be required to validate this in silico analysis.
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Noelia Garćıa, Cristina Capdevila, Guillem Clot, Helena Suárez-Cisneros, Mariko Shi-
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Appendix A

Repositories

The code developed during the execution of this study is hosted in the following repository:

• https://github.com/amilan/Thesis-DS-dev

In addition to that, the LaTeX project for this document is available at:

• https://github.com/amilan/Thesis-DS
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