Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/104966
Title: Hippocampal profiling: Localized magnetic resonance imaging volumetry and T2 relaxometry for hippocampal sclerosis
Author: Vos, Sjoerd B.
Winston, Gavin P.
Goodkin, Olivia
Pemberton, Hugh G.
Barkhof, Frederik
Prados Carrasco, Ferran
Galovic, Marian
Koepp, Matthias
Ourselin, Sebastien
Cardoso, Manuel Jorge
Duncan, John S.
Others: University College London
Queen's University
Universitat Oberta de Catalunya (UOC)
Keywords: Hippocampal sclerosis
Hippocampal volumetry
Neuroimaging
Relaxometry
Issue Date: 24-Dec-2019
Publisher: Epilepsia
Also see: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16416
Abstract: Objective: Hippocampal sclerosis (HS) is the most common cause of drug-resistant temporal lobe epilepsy, and its accurate detection is important to guide epilepsy surgery. Radiological features of HS include hippocampal volume loss and increased T2 signal, which can both be quantified to help improve detection. In this work, we extend these quantitative methods to generate cross-sectional area and T2 profiles along the hippocampal long axis to improve the localization of hippocampal abnormalities. Methods: T1-weighted and T2 relaxometry data from 69 HS patients (32 left, 32 right, 5 bilateral) and 111 healthy controls were acquired on a 3-T magnetic resonance imaging (MRI) scanner. Automated hippocampal segmentation and T2 relaxometry were performed and used to calculate whole-hippocampal volumes and to estimate quantitative T2 (qT2) values. By generating a group template from the controls, and aligning this so that the hippocampal long axes were along the anterior-posterior axis, we were able to calculate hippocampal cross-sectional area and qT2 by a slicewise method to localize any volume loss or T2 hyperintensity. Individual patient profiles were compared with normative data generated from the healthy controls. Results: Profiling of hippocampal volumetric and qT2 data could be performed automatically and reproducibly. HS patients commonly showed widespread decreases in volume and increases in T2 along the length of the affected hippocampus, and focal changes may also be identified. Patterns of atrophy and T2 increase in the left hippocampus were similar between left, right, and bilateral HS. These profiles have potential to distinguish between sclerosis affecting volume and qT2 in the whole or parts of the hippocampus, and may aid the radiological diagnosis in uncertain cases or cases with subtle or focal abnormalities where standard whole-hippocampal measurements yield normal values.
Language: English
URI: http://hdl.handle.net/10609/104966
ISSN: 0013-9580MIAR
Appears in Collections:Articles
Articles

Share:
Export:
Files in This Item:
File Description SizeFormat 
Prados_Epilepsia_hippocampal.pdf2.24 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons