Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrados Carrasco, Ferran-
dc.contributor.authorMoccia, Marcello-
dc.contributor.authorJohnson, Aubrey-
dc.contributor.authorYiannakas, Marios-
dc.contributor.authorGrussu, Francesco-
dc.contributor.authorCardoso, Manuel Jorge-
dc.contributor.authorCiccarelli, Olga-
dc.contributor.authorOurselin, Sebastien-
dc.contributor.authorBarkhof, Frederik-
dc.contributor.authorWheeler-Kingshott, Claudia-
dc.contributor.otherUniversity College London-
dc.contributor.otherUniversità di Pavia-
dc.contributor.otherKing's College London-
dc.contributor.otherUniversitat Oberta de Catalunya (UOC)-
dc.identifier.citationPrados, F., Moccia, M., Johnson A., Yiannakas M., Grussu, F., Cardoso, M. J., Ciccarelli, O., Ourselin, S., Barkhof, F., Wheeler-Kingshott, C. (2020). Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy. NeuroImage, 209. doi: 10.1016/j.neuroimage.2019.116489-
dc.description.abstractSpinal cord atrophy measurements obtained from structural magnetic resonance imaging (MRI) are associated with disability in many neurological diseases and serveasin vivobiomarkers of neurodegeneration. Longitudinal spinal cord atrophy rate is commonly determined from the numerical difference between two volumes (basedon 3D surfacefitting) or two cross-sectional areas (CSA, based on 2D edge detection) obtained at different time-points. Being an indirect measure, atrophy rates aresusceptible to variable segmentation errors at the edge of the spinal cord. To overcome those limitations, we developed a new registration-based pipeline thatmeasures atrophy rates directly. We based our approach on the generalised boundary shift integral (GBSI) method, which registers 2 scans and uses a probabilistic XORmask over the edge of the spinal cord, thereby measuring atrophy more accurately than segmentation-based techniques. Using a large cohort of longitudinal spinalcord images (610 subjects with multiple sclerosis from a multi-centre trial and 52 healthy controls), we demonstrated that GBSI is a sensitive, quantitative andobjective measure of longitudinal spinal cord volume change. The GBSI pipeline is repeatable, reproducible, and provides more precise measurements of longitudinalspinal cord atrophy than segmentation-based methods in longitudinal spinal cord atrophy studies.en
dc.rightsCC BY-
dc.subjectSpinal cord atrophyen
dc.subjectGBSI Methoden
dc.titleGeneralised boundary shift integral for longitudinal assessment of spinal cord atrophy-
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Prados_NeuroImage_Spinal_cord.pdf1.33 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons