Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/119926
Title: Análisis de la progresión de los estudiantes en una asignatura introductoria a la programación mediante redes bayesianas
Author: Marco Galindo, Maria Jesús
Minguillón Alfonso, Julià  
Sancho Vinuesa, Teresa  
Keywords: Bayesian networks
programming
personalized feedback
formative evaluation
Issue Date: 8-Jul-2020
Publisher: Asociación de Enseñantes Universitarios de la Informática (AENUI)
Citation: Marco-Galindo, M. J., Minguillón, J. & Sancho-Vinuesa, T. (2020). Análisis de la progresión de los estudiantes en una asignatura introductoria a la programación mediante redes bayesianas. Actas de las Jornadas sobre Enseñanza Universitaria de la Informática (JENUI), 5, 69-76.
Published in: Actas de las XXVI Jornadas sobre Enseñanza Universitaria de la Informática (JENUI 2020), València, Espanya, 8-9 juliol, 2020
Abstract: To foster the acquisition of computer programming competencies, combining theoretical concepts with practical exercises in a continuous sequence seems to be an appropriate methodology. It is important that the learning curve allows students to advance in a progressive manner, including elements that promote reflection. This paper analyzes learners' paths with respect to the practical exercises, which are organized as a sequence combining mandatory and optional exercises, so learners can decide which exercises they want to submit along the semester. Such analysis was performed using Bayesian networks. Results show that learners's profile seems to be of no relevance to determine their performance, but it is for their engagement level in the first exercise.
Language: Spanish
URI: http://hdl.handle.net/10609/119926
ISSN: 2531-0607MIAR
Appears in Collections:Conference lectures

Share:
Export:
Files in This Item:
File Description SizeFormat 
Marco2020JENUI.pdf288.16 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons