Institutional Repository
Institutional Repository Institutional Repository Login  Institutional Repository  
  • UOC Library |
  •  |
  •  |

Home >
Research >
Techonology and Communication >
Computer Science, Technology and Multimedia >
Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10609/1340
Title: A Sparse Bayesian Approach for Joint Feature Selection and Classifier Learning
Authors: Lapedriza Garcia, Àgata
Seguí, Santi
Masip Rodó, David
Vitrià, Jordi
Issue Date: 2008
Type: Article
Citation: LAPEDRIZA, A.; SEGUÍ, S.; MASIP, D.; VITRIÀ, J. (2008). "A Sparse Bayesian Approach for Joint Feature Selection and Classifier Learning". Pattern Analysis and Applications. Vol. 11 , (3-4), p. 299-308. ISSN: 1433-7541.
Abstract: In this paper we present a new method for Joint Feature Selection and Classifer Learning (JFSCL) using a sparse Bayesian approach.
Description: Peer-reviewed
URI: http://hdl.handle.net/10609/1340
Access rights: The original publication is available at http://www.springerlink.com/content/u2r316781x176n25
Appears in Collections:Articles

Scimago Journal Rank:

Add This:

RefWorks:

Ratings:
  0 (0 valuations)


Files in This Item:

File Description SizeFormat
Lapedriza_PAA2008_Sparse.pdf320.9 kBAdobe PDFPreview  Download

Author names in Twitter


Author names in FriendFeed



Recommend this item

SFX Query

This item is licensed under a Creative Commons License
Creative Commons

Items in Repository e are protected by copyright, with all rights reserved, unless otherwise indicated.

 

The library replies
A product of the Universitat Oberta de Catalunya Virtual Library