Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/6121
Title: A hybrid algorithm combining metaheuristic with Monte Carlo simulation for solving the Stochastic Flow Shop problem
Author: Peruyero Bernardo, Esteban
Director: Juan Pérez, Ángel Alejandro
Riera i Terrén, Daniel
Others: Universitat Oberta de Catalunya
Keywords: stochastic flow shop problem;metaheuristic;hybrid algorithms;Monte Carlo simulation;metaheurística;metaheurística;algoritmos híbridos;algorismes híbrids;Monte Carlo simulación;Monte Carlo simulació;problema de fluxos estocàstics al comerç;problema de flujos estocásticos en el comercio
Issue Date: Jan-2011
Publisher: Universitat Oberta de Catalunya
Abstract: In this paper, a hybrid simulation-based algorithm is proposed for the Stochastic Flow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Language: English
URI: http://hdl.handle.net/10609/6121
Appears in Collections:Bachelor thesis, research projects, etc.

Share:
Export:
Files in This Item:
File Description SizeFormat 
eperuyeroTFM0111.pdfArtículo final del trabajo309.71 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons