Please use this identifier to cite or link to this item:
Title: Segmentación de núcleos celulares en imágenes de microscopía ayudados por redes neuronales convolucionales
Author: García Seisdedos, David
Director: Alférez Baquero, Edwin Santiago
Others: Universitat Oberta de Catalunya
Keywords: machine learning
convolutional neural network
Issue Date: 2-Jul-2018
Publisher: Universitat Oberta de Catalunya
Abstract: The aim of this project is to develop a bioinformatics tool to detect and isolate cell nuclei. The developed model performs detection and segmentation in three steps. First, an initial segmentation of the raw image is carried out. Second, the fragments obtained are classified by means of a convolutional neural network (CNN) into three groups: mono-nuclei, poly-nuclei or non-nuclear artifacts. Third, the artifacts will be removed and the polynuclear fragments will be segmented and will be analyzed from the second step again. Thus, the main problem - accumulation of nuclei - is subdivided by recursiveness into simpler sub-problems.
Language: Spanish
Appears in Collections:Bachelor thesis, research projects, etc.

Files in This Item:
File Description SizeFormat 
davcoTFM0618memoria.pdfMemoria del TFM3.01 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons