Please use this identifier to cite or link to this item:

http://hdl.handle.net/10609/89865
Title: Ús d'algoritmes genètics per a la gestió de la ubicació i assignació de pacients d'una unitat d'hospitalització
Author: Miró Pettican, Daniel
Director: Isern Alarcón, David
Tutor: Ventura Royo, Carles  
Keywords: genetic algorithms
patient management
nursing
Issue Date: Jan-2019
Publisher: Universitat Oberta de Catalunya (UOC)
Abstract: The management of patients in hospitalization units is one of the tasks of hospital management that, nowadays, could benefit from the use of artificial intelligence algorithms with the aim of improving their efficiency. This TFG explores the implementation and use of a genetic algorithm that, given a physical distribution of patients in a unit and the determination of their load of care tasks, suggests changes of location trying to improve patient allocation to the unit professionals. For that, it is based on the allocation suggested by another genetic algorithm, which provides patient assignments for the different professionals so that care tasks charges are balanced, trying that distances to cover to attend all the patients are as reduced as they can possibly be. The results of the application of the algorithms show that the allocation algorithm demonstrates a correct behavior when assigning patients. However, when making location changes the algorithm does not respond favorably and, therefore, its use is not feasible. In conclusion, genetic algorithms can be an useful tool when managing certain issues related to hospital management, but other options must be evaluated to find specific tools when it comes to manage certain tasks.
Language: Catalan
URI: http://hdl.handle.net/10609/89865
Appears in Collections:Bachelor thesis, research projects, etc.

Share:
Export:
Files in This Item:
File Description SizeFormat 
Presentació TFG.mp439.82 MBMP4View/Open
Presentació TFG.pptx2.15 MBMicrosoft Powerpoint XMLView/Open
TFG.zipArxiu comprimit amb el codi font i els sets de proves24.87 kBUnknownView/Open
dmiropTFG0119memoria.pdfMemòria del TFG1.72 MBAdobe PDFView/Open
dmiropTFG0119presentación.pdfPresentació en PDF del TFG2.83 MBAdobe PDFView/Open

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.